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Summary 16 

China’s Belt and Road Initiative (BRI) is an unprecedented global development 17 

program that involves nearly half of the world’s countries [1]. It will not only have 18 

economic and political influences, but also may generate multiple environmental 19 

challenges, and is a focus of considerable academic and public concerns [2-6]. The 20 

Chinese Government expects BRI to be a sustainable development, paying equal 21 

attention to economic development and environmental conservation [7]. However, 22 

BRI’s high expenditure on infrastructure construction, by accelerating trade and 23 

transportation, is likely to promote alien species invasions [5], one of the primary 24 

anthropogenic threats to global biodiversity [8]. BRI countries may have different 25 

susceptibilities to invasive species due to different financial and response capacities 26 

[9]. Moreover, these countries overlap 27/35 recognized global biodiversity hotspots 27 

[10]. Identifying those areas with high invasion risks, and species with high invasive 28 

potentials within BRI countries, therefore, is of vital importance for the sustainable 29 

implementation of the BRI, and the development of early, economical, and effective 30 

biosecurity strategies [11]. In response, we present here a comprehensive study to 31 

evaluate invasion risks by alien vertebrates within BRI. We identified a total of 14 32 

invasion hotspots, the majority of which fall along the six proposed BRI Economic 33 

Corridors, with the proportion of grid cells in invasion hotspots 1.6 times higher than 34 

other regions. Based on our results, we recommend the initiation of a project targeting 35 



early prevention, strict surveillance, rapid response and effective control of alien 36 

species in BRI countries to ensure that this development is sustainable. 37 

Key words: biological invasions, Belt and Road Initiative, developing world, habitat 38 

suitability, introduction risk, species distribution model, sustainable development 39 

 40 

Results and Discussion 41 

The BRI currently includes more than 120 countries linked by six proposed land-42 

based Economic Corridors between core cities and key ports, along traditional 43 

international transport routes, to strengthen connectivity and cooperation between BRI 44 

countries (Figure 1). We provide grid-based estimates of current invasion risks for 45 

816 global established alien terrestrial vertebrates across four taxa (98 amphibians, 46 

177 reptiles, 391 birds and 150 mammals, Data S1), for a total of 37,430 grid cells at 47 

a resolution of 0.5° across BRI countries, based on risk analyses of species 48 

introduction and establishment [9], which are two main stages of the invasion process 49 

[12].  50 

Introduction risks among BRI regions 51 

We first quantified introduction risks based on spatial data on trade, air 52 

passenger numbers, cargo volumes to airports, and cargo volumes to shipping ports 53 

(“introduction vectors”) across BRI countries. As trade and transport data are only 54 

available at the country level, we applied the “introduction epicentre” framework [9] 55 



to quantify the introduction risk for each grid cell across 121 BRI countries with 56 

available introduction data. We ranked all grid cells and defined areas of high 57 

introduction risk as those grid cells with the top 10% highest values for each of the 58 

four introduction vectors, and determined the high overall introduction areas 59 

according to the highest level posed by any one vector [9].  60 

Our analyses showed that 14.6% of grid cells from 90.9% (110/121) BRI 61 

countries have high overall introduction risks (Figure 2A), most of which (42.4%) are 62 

at risk from all four vectors simultaneously (Figure S1). Of particular concern, the 63 

proportion of grid cells with high introduction risk on the six BRI economic corridors 64 

(defined as a 1° buffer zones around each corridor, Figure 1) is 2.5 times higher than 65 

other regions (Chi-square test, χ2 = 575.67, P < 0.001). 66 

Habitat suitability among BRI regions 67 

We then quantified habitat suitability using species distribution modelling 68 

(SDM) for the 816 alien terrestrial vertebrates in our analysis. SDM is widely used as 69 

a powerful tool to quantify habitat suitability in a new location for an alien species 70 

[13], as a further fundamental factor determining their establishment [14]. SDMs fit 71 

correlative models to species distribution and environmental niches from native and 72 

invaded ranges, and then identify the most suitable habitat for the study area [13]. We 73 

performed the SDM analysis based on climate variables alone, and then with the 74 

addition of habitat variables, including vegetation and water resources, as proxies of 75 



species’ requirements for food, reproduction, and biotic interactions [15]. We 76 

projected suitable environments for each alien species using an ensemble of five SDM 77 

algorithms including generalized additive models (GAM), boosted regression trees 78 

(BRT), classification tree analysis (CTA), multiple adaptive regression splines 79 

(MARS) and random forest (RF), which are powerful methods for predicting habitat 80 

suitability of species under climate change, or as alien species [16].  81 

For all SDMs, two measures evaluating predictive power (the area under a 82 

receiver operating characteristic curve, AUC, and the true skill statistic, TSS) revealed 83 

good model performance when we used climate variables alone (mean ± S.E., AUC: 84 

0.939 ± 0.00048; TSS: 0.828 ± 0.00094; Figure S2), and when we used climate and 85 

habitat variables together (AUC: 0.935 ± 0.00049; TSS: 0.824 ± 0.00098; Figure S2). 86 

SDM predictions show that 67.8% (82/121) of BRI countries have high climatic 87 

suitability (defined as those grid cells with the top 10% highest species richness) for 88 

the 816 alien terrestrial vertebrate species (Figure 2B). As with introduction risk, 89 

areas with high habitat suitability are also concentrated on the six BRI corridors. The 90 

predicted richness of alien terrestrial vertebrates for grid cells on these economic 91 

corridors is approximately 1.1 times higher than other regions (Kruskal-Wallis test, χ2 92 

= 479.01, P < 0.001). 93 



Combined invasion hotspots among BRI regions 94 

Finally, we determined combined invasion hotspots by overlapping areas with 95 

high introduction risk and areas with high climatic suitability. We identified a total of 96 

14 combined invasion hotspots covering 68 BRI countries (Figure 3), which primarily 97 

include (1) Caribbean islands, (2) central America, (3) southern America areas mainly 98 

in central Chile, (4) northern Africa areas including northwest Morocco, northeast 99 

Tunisia and northern Algeria, (5) some scattered areas in west Africa including 100 

southern Ghana, northern Nigeria, northern Togo, western Cameroon, western Gabon 101 

and northern Cote d'Ivoire, (6) some scattered areas in east Africa including central 102 

Ethiopia, northern Tanzania and central Kenya, (7) south-eastern coastal areas of 103 

South Africa and south Mozambique, (8) south-eastern European areas including 104 

Malta, southeast Slovenia, northern Croatia, central Bosnia and Herzegovina, 105 

southern Montenegro, central and northern Serbia, central and southern Greece, 106 

western Albania and the northern Caucasus regions of Russia, (9) western Asian and 107 

eastern European areas including central to west Turkey, southeast Azerbaijan, 108 

Lebanon and western Syria, (10) southern Asian areas including Bangladesh, 109 

northeast India, Sri Lanka and northern Pakistan, (11) eastern Asian areas including 110 

southern part of South Korea, southeast and southwest China, (12) southeast Asian 111 

areas including Brunei, Vietnam, southern Thailand, Malaysia, Singapore, 112 

Philippines, and the Indonesian island of Java, (13) south Pacific island countries 113 

including Fiji and Samoa, and (14) northern and scattered south-central parts of New 114 



Zealand. These invasion hotspots are also mainly located on the six proposed 115 

economic corridors, although there are some scattered areas outside these corridors 116 

(Figure 3). The proportion of grid cells with combined invasion hotspots is 1.6 times 117 

higher on corridors than on non-corridor grid cells (Chi-square test, χ2 = 41.43, P < 118 

0.001). 119 

Some areas are predicted to have lower habitat suitability but higher risk of alien 120 

species introduction. A biosecurity plan to prevent alien invasions needs to prioritise 121 

these areas because aliens may be able to establish in these suboptimal habitats when 122 

propagule pressure (the number of individuals introduced into a region) is high [17]. 123 

Such areas mainly include some southeast European areas in Austria, Czech Republic, 124 

Hungary, Slovakia, Lithuania, Romania, Bulgaria, central Serbia, northeast Croatia, 125 

and central Azerbaijan; western Asian and eastern European areas such as Bahrain, 126 

Kuwait, Qatar, east Turkey, Oman, United Arab Emirates and Israel; some African 127 

regions in Djibouti and Cape Verde; and Asian countries including northern India, 128 

central and north Thailand, central to northern parts of South Korea, and most of 129 

central and eastern China (Figure 2A; Figure 3).  130 

There are also areas with suitable habitats for the alien species in our analysis, but 131 

low introduction risk. These areas should also be monitored closely as most are 132 

located in global biodiversity hotspots, and the deleterious impacts of alien species 133 

that do arrive in such regions can be high. These areas mainly include the Himalayas, 134 



Madagascar, Seychelles, central Bolivia in the tropical Andes, northern South 135 

America including eastern Venezuela, Guyana and southern Suriname, some African 136 

regions including the Succulent Karoo, Guinean forests of West Africa, Coastal 137 

forests of eastern Africa, the Sundaland areas in Kalimantan, Sumatra, and Sulawesi, 138 

Papua New Guinea, and central to southern New Zealand (Figure 2B; Figure 3). 139 

Sensitivity of analyses to data and modeling uncertainty 140 

To test the sensitivity of our results to data and modelling uncertainties, we re-141 

conducted all our analyses using only data on the value of the live terrestrial 142 

vertebrate trade, using projections based on analogous and non-analogous climates 143 

together, incorporating climate plus habitat predictors into SDMs, and using different 144 

thresholds (i.e., the top 20% and 25%) to define high introduction risk and high 145 

habitat suitability. We obtained similar results under all these trade, climate, model 146 

and threshold scenarios, indicating that our results are robust to data uncertainty 147 

(Figure S3).  148 

Nevertheless, we acknowledge that there are other uncertainties inherent in all 149 

predictive studies. For example, although we restricted our study species to those 150 

occupying more than 15 grid cells in order to minimize the potential influence of 151 

small occurrence numbers on SDM performance [18, 19], it is still not possible fully 152 

to eliminate issues of extrapolation in SDMs. In addition, although we did not detect 153 

an obvious signal of variable collinearity (based on a 0.75 cut-off that has been used 154 



in previous large-scale studies modelling climatic effects on alien species 155 

distributions; e.g., [20]; Table S1), we cannot completely eliminate issues of multi-156 

collinearity among our climate variables. Finally, since the BRI started only five years 157 

ago, it is not yet possible to evaluate its impacts on invasions. Interestingly, the 158 

predicted higher invasion risk in economic corridor regions than non-corridor regions 159 

implies that invasion risk may increase considerably in the future. Our analyses are 160 

the best possible in the circumstances, but could be improved in the future by 161 

including long-term trade and transportation prediction data, when they become 162 

available.  163 

Our study provides the first step in assessing introduction risk and habitat 164 

suitability for alien terrestrial vertebrates within the BRI region, and has clear 165 

management implications. We propose tiered biosecurity precautions to reduce 166 

introduction and secondary spread, rigorous quarantine and surveillance protocols, 167 

and rapid response and effective control of alien species during the implementation of 168 

the BRI among partner countries.  169 

Those areas identified as combined invasion hotspots (Figure 3) should be 170 

prioritised for the prevention of alien incursions, notably areas within the six planned 171 

BRI economic corridors, where we observe both high introduction risk and high 172 

habitat suitability for aliens. It is of particular concern that most of the BRI corridors 173 

cross several biodiversity hotspots (Figure 1), where we also observe high 174 

introduction risk (χ2 = 1752.01, P < 0.001) and high habitat suitability (χ2 = 8495.86, 175 



P < 0.001), supporting recent concerns that the BRI programme may pose substantial 176 

threats to global biodiversity conservation [3,4]. Invasive alien species (IAS) 177 

prevention projects could primarily target those species with high habitat suitability 178 

for each BRI country in our present study (Data S2). In particular, alien species that 179 

have not been detected in a region but have invaded neighbouring regions or the same 180 

biogeographic realms should be closely monitored. In addition, emerging IAS that 181 

have never been reported elsewhere are on the increase and posing new challenges to 182 

biosecurity [21]. BRI countries should be especially vigilant for such species and 183 

rapidly communicate such observations in order to implement immediate measures to 184 

stop further introductions. 185 

Much of the BRI region faces joint introduction risks from different transport 186 

vectors (Figure S1), implying a high likelihood of the ad hoc spread of IAS following 187 

arrival in a new region. We thus call for stricter screening for alien wildlife imports 188 

from contact commodities, contaminated vehicles and equipment through airports, 189 

seaports and along other transportation corridors. In addition, increased biogeographic 190 

connectivity as a result of the BRI might facilitate flows of alien species between 191 

regions that historically have been poorly connected. Trade origin and circulation data 192 

should thus be shared by exporter and importer countries, which can be further 193 

applied to trade network analyses to increase the effectiveness of IAS prevention [22]. 194 

As many BRI countries have limited economic capacities, we suggest that a 195 

special fund should be established to support the operation of proposed biosecurity 196 



measures. This fund could be used to enhance research into IAS prevention and 197 

eradication techniques, periodical training of volunteers and professionals in 198 

taxonomic identification of problematic species, and the collection of species 199 

distribution and ecological traits (e.g., life history, diet, parasites, etc.). These data 200 

could then be further integrated into GIS-based maps and freely-available online 201 

databases with regular maintenance, review, and validation by experts. They could 202 

also be shared with resource managers who are interested in the IAS within their 203 

areas, and used in scientific research such as SDMs by incorporating finer spatial data 204 

to guide further field surveys. It is also essential to organize regular opportunities for 205 

communication between scientists, policy makers and public volunteers to share and 206 

discuss new knowledge on IAS. It would be particularly helpful to invite international 207 

experts from countries outside the BRI region, where the IAS of concern are native or 208 

have become invasive, who are familiar with the species distributions, traits, impacts, 209 

introduction pathways and eradication approaches, and who can provide constructive 210 

recommendations for IAS detection and control.  211 

Despite these environmental challenges, the BRI may also provide opportunities 212 

for participating countries to pay greater attention to ecological and environmental 213 

conservation during development [3, 4]. For example, while it remains a subject of 214 

debate, the Chinese government has been calling for the BRI to be “green, healthy, 215 

intelligent and peaceful” and for all recipient countries to “deepen cooperation in 216 

environmental protection, intensify ecological preservation and build a green Silk 217 



Road” [10]. As the convenor of this mega-project, we hope China will take this 218 

opportunity by working together with participating countries to make BRI not only 219 

one of trade and economic development, but also one of sustainable development 220 

inclusive of, and beneficial to, the natural environment. Adopting the alien species 221 

prevention and management suggestions proposed here would be an important step 222 

along that road. 223 
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Figure Legends 395 

Figure 1. Location of the 123 BRI countries and six land-based proposed 396 

Economic Corridors linking core cities and key ports along traditional 397 

international transport routes.  398 

 399 

The list of 123 BRI countries is based on the Chinese Belt and Road government 400 

website (https://www.yidaiyilu.gov.cn/, last accessed on December 5, 2018). South 401 

Sudan and Niue are excluded from data analyses as their trade, airport and seaport 402 

data are not available. The location of 6 proposed Economic Corridors are based on 403 

National Administration of Surveying, Mapping and Geoinformation of China 404 

(http://bzdt.nasg.gov.cn/jsp/browseMap.jsp?picId=%274o28b0625501ad13015501ad405 

2bfc0083%27). NELB: New Eurasian Land Bridge; CMREC: China-Mongolia-406 

Russia Economic Corridor; CCWAEC: China-Central and West Asia Economic 407 

Corridor; CPEC: China-Pakistan Economic Corridor; BCIMEC: Bangladesh-China-408 

India-Myanmar Economic Corridor; CICPEC: China-Indo-China Peninsula Economic 409 

Corridor. 410 

 411 



Figure 2. BRI areas with (A) high introduction risk, and (B) high habitat 412 

suitability based on predicted alien terrestrial vertebrate species richness.  413 

See Figure S1 for relative contributions of each single introduction vector and 414 

different vector combinations to overall introduction risk. See Data S2 for projected 415 

distributions of the 816 alien terrestrial vertebrate species in each BRI country. 416 

 417 

 418 



Figure 3. Locations of the 14 overall invasion hotspots with both high 419 

introduction risk and high habitat suitability among BRI countries.  420 

The number relates to the 14 invasion hotspots described in the main text. See Figure 421 

S3 for further details of invasion hotspots under different prediction scenarios.422 

 423 

  424 



 425 

STAR METHODS 426 

CONTACT FOR REAGENT AND RESOURCE SHARING 427 

Further information and requests for resources should be directed to and will be 428 

fulfilled by the Lead Contact, Yiming Li (liym@ioz.ac.cn). 429 

METHOD DETAILS 430 

Quantifying introduction risk 431 

Preventing species introduction is considered to be the most effective strategy for 432 

IAS management as eradicating aliens following establishment is at best costly and at 433 

worst impossible [23]. Introduction risk may be quantified by the value of trade and 434 

the capacity of different introduction vectors [9]. Trade can not only represent the 435 

probability of intentional and accidental alien species introductions as stowaways, 436 

contaminants, pests and pathogens with international commodities [24], but also can 437 

act as a proxy for propagule pressure, which is a key determinant of population 438 

establishment after introduction [17]. In addition to trade, the probability of species 439 

introduction is also correlated with the quantity of various transport vectors such as 440 

air passenger numbers, and air and sea cargo volumes [9]. We therefore assess the 441 

role of four main introduction vectors (trade value, air passenger numbers, air cargo 442 

volume, sea cargo volume) on the introduction risk of exotic terrestrial vertebrates.  443 



As trade and transport data are only available at the country, airport or seaport 444 

level, we apply a framework termed as the “introduction epicentre” [9] to quantify the 445 

introduction risk for grid cells at a resolution of 0.5° for the BRI region. This method 446 

assumes that although there may be a higher likelihood of animals escaping in areas 447 

where airports and seaports are located, the spatial distribution of introduction risk is 448 

mainly dependent on the final destinations of traded goods and arriving passengers, 449 

and therefore is associated with the distribution of local human population density [9, 450 

25]. To achieve this, per capita values of import trade, air passenger numbers, air 451 

cargo volumes and sea cargo volumes were first calculated by dividing the total 452 

quantity of each introduction vector by total human population size for each BRI 453 

country, and then calculating the introduction epicentre by multiplying the per capita 454 

value by the human population density of each grid cell [9]. The grid cell resolution of 455 

0.5° here is widely used and is a reasonable resolution at which biosecurity and 456 

management decisions can be practically made at large spatial scales [9, 16]. 457 

The trade data were collected as the mean annual U.S. dollar value of all goods 458 

imported from the years 2007-2016 for each country (except Timor-Leste, Palestine, 459 

Somali,and Chad, for which trade data are not available) from the United Nations 460 

Commodity Trade Statistics database (Comtrade; http://comtrade.un.org, accessed on 461 

December 5, 2018). Previous studies suggest that the pet trade may be more pervasive 462 

for terrestrial vertebrates [26]. We detected a highly significant correlation between 463 

overall trade and live terrestrial vertebrate trade after excluding farm livestock 464 

http://comtrade.un.org/


(Spearman correlation coefficient r = 0.769, P < 0.001). Therefore, we present 465 

analyses using overall trade in the main text as it not only can reflect deliberate trade, 466 

but also can capture unintentional introductions such as illegal trade, which is 467 

increasingly regarded as an important introduction pathway for alien vertebrates [27]; 468 

we present analysis based on the live terrestrial vertebrate trade in the supporting 469 

material (Figure S3). The average annual total human population data from the years 470 

2007 to 2016 for each country were obtained from the World Bank Open Data 471 

(https://data.worldbank.org/indicator/SP.POP.TOTL, accessed on March 21, 2018). 472 

Human population density data from the year 2015 at 0.5° resolution were obtained 473 

from the Gridded Population of the World (GPW, v4) database from the 474 

Socioeconomic Data and Applications Center in NASA's Earth Observing System 475 

Data and Information System (EOSDIS) hosted by CIESIN at Columbia University 476 

(http://sedac.ciesin.columbia.edu/data/collection/gpw-v4, accessed on May 8, 2018). 477 

We calculated the average annual total number of air passengers (unit: million 478 

passenger-km), volume of air cargo (unit: million ton-km) and volume of sea cargo 479 

(unit: TEU, 20 foot equivalent units) from the years 2007-2016, for each country 480 

(except Guinea, Djibouti, Burundi, Grenada, and Dominica for which air passenger 481 

data are not available, Guinea, Djibouti, and Burundi for which air cargo data are not 482 

available, and Bolivia, Cape Verde, Chad, Burundi, Rwanda, Seychelles, Somalia, 483 

Uganda, Zambia and Zimbabwe for which sea cargo data are not available) from the 484 

World Bank Open Data (see Key Resources Table, accessed on December 5, 2018). 485 

https://data.worldbank.org/indicator/SP.POP.TOTL


The air passenger and cargo data were based not only on international airports, but 486 

also included domestic airports as species can be secondarily introduced into more 487 

regions within a country after arrival, on which the introduction epicentre 488 

quantification framework was based [9]. 489 

Habitat suitability predictions 490 

Study species and occurrence data 491 

The study species list is based on widely used databases (see Key resource table 492 

in STAR methods) on global reptile and amphibian introductions [28] with a recent 493 

update [29], the global alien bird invasion database from the Global Avian Invasions 494 

Atlas (GAVIA) [30], which is a comprehensive database on establishment status and 495 

spatial distributions of global bird invasions, and a global alien mammal species 496 

dataset [31] and a recent update [32]. We only used data for those resident species that 497 

have established populations in non-native ranges [12]. Furthermore, we excluded 498 

species without exact native range information, species re-introduced into their native 499 

range, species released within their native ranges, species experimentally introduced 500 

to small islets, and data that represented questionable introductions without robust 501 

evidence. We obtained native and alien range information for amphibians and reptiles 502 

from the International Union for Conservation of Nature (IUCN, www.IUCN.org, 503 

accessed on Januray 12, 2018), the Global Invasive Species Database (GISD, 504 

http://www.iucngisd.org/gisd/, accessed on January 13, 2018), and the global reptile 505 

and amphibian introduction dataset [28, 29]. The native and alien range information 506 

http://www.iucngisd.org/gisd/


for non-native bird species was obtained from the BirdLife International & 507 

NatureServe geodatabase (BLINS, available at 508 

http://datazone.birdlife.org/species/requestdis, accessed on January 12, 2018) 509 

describing the presence, origin and breeding seasonality of bird species around the 510 

world, and the GAVIA database [30]. We collected native and alien range information 511 

for invasive mammal species from the IUCN database, and the global alien mammal 512 

species dataset [31]. 513 

Occurrence data on alien terrestrial vertebrates (amphibians, reptiles, birds and 514 

mammals) established worldwide in both their native and invaded ranges were 515 

collected from a variety of databases (see Key resource table in STAR methods) and 516 

an intensive review of published references (Data S1). For those comprehensive 517 

geodatabases providing species spatial distributions such as BLINS and GAVIA for 518 

birds, we obtained occurrence data by digitizing breeding bird distribution maps at a 519 

0.5° resolution for further SDM analyses [16]. We paid particular attention to 520 

reviewing relevant references to collect supplementary occurrence data for those 521 

species distribute in undeveloped and developing BRI territories such as China, which 522 

may be underestimated in the public database (Data S1). Most of our collected records 523 

have explicit geographic coordinates. For a small fraction of records with only a text 524 

description of the sampling locations, we inferred geographic coordinates using 525 

mapping tools including Google Maps (http://maps.google.com), Global Gazetteer 526 

(Falling Rain Genomics, Palo Alto, USA) and MapQuest (MapQuest Inc., Denver, 527 

http://datazone.birdlife.org/species/requestdis


USA). We carefully checked geographic and taxonomic accuracy for each species and 528 

excluded those species without exact native range information or precise occurrence 529 

data based on validations of different authority databases across taxa (amphibians and 530 

reptiles: [28, 29], birds: BLINS and GAVIA dataset [30], and mammals: [31, 32]), 531 

and those locations occupied by migratory species during non-breeding seasons. For 532 

analyses, we used only those species occurring in more than 15 grid cells because 533 

some algorithms in SDMs may have a limited ability to cope with species with low 534 

occurrence data [18, 19, 33]. These criteria resulted in a total of 816 species including 535 

98 amphibians, 177 reptiles, 391 birds and 150 mammals. 536 

 537 

Environmental predictor variables 538 

Climate is one fundamental factor explaining species distributions and is widely 539 

used in predicting species potential distributions. Nevertheless, habitat factors may 540 

also directly and indirectly affect species distributions by influencing food 541 

availability, reproduction and biotic interactions. Therefore, we used two sets of 542 

environmental predictor variables. First, we used climatic factors alone based on 543 

different climate predictors representing the known physiological constraints for 544 

different taxa. For amphibians and reptiles, we used a total of eight temperature and 545 

precipitation variables: annual average temperature and precipitation, seasonal 546 

temperature and precipitation, the minimum temperate of the coldest month, the 547 

highest temperature of the warmest month, and the precipitation of the wettest and the 548 



driest quarters [34]. For birds, we used six bioclimatic variables: temperature 549 

seasonality, maximum temperature of warmest month, minimum temperature of 550 

coldest month, precipitation of wettest month, precipitation of the driest month and 551 

precipitation seasonality [16, 35, 36]. For mammals, we used a total of 10 bioclimatic 552 

variables based on previous studies of mammal species distribution modelling at large 553 

spatial scales [37]: annual mean temperature, mean temperature of the wettest quarter, 554 

mean temperature of the driest quarter, mean temperature of the warmest quarter, 555 

mean temperature of the coldest quarter, annual precipitation, precipitation of the 556 

wettest quarter, precipitation of the driest quarter, precipitation of the warmest 557 

quarter, and precipitation of coldest quarter. These climatic variables were obtained 558 

from the WorldClim database [38] and were rescaled to the 0.5° resolution using a 559 

bilinear function, which is considered more realistic than the simpler nearest-560 

neighbour method [39]. Pairwise Pearson rank correlation analyses showed that the 561 

coefficients of these climatic predictors for each taxon were all < 0.75 (Table S1), a 562 

cutoff frequently used for evaluating climatic collinearity in modelling climate effects 563 

on alien species large-scale distribution patterns (e.g., [20]), indicating that these 564 

selected predictor variables lack significant multi-collinearity problems. 565 

As well as climate factors, we also conducted supplementary analyses by 566 

including two habitat factors – vegetation and water availability – which are key 567 

factors influencing species reproduction and food availability [36] (Figure S3). They 568 

may also reflect the quality of microhabitat primary productivity, and are regarded as 569 



useful surrogates for biotic interactions, which are recognised to be important in 570 

species distribution modelling [15]. For the vegetation variable, we calculated the 571 

annual normalized difference vegetation index (NDVI) for each grid cell based on the 572 

monthly data covering years of 2001-2005 (http://neo.sci.gsfc.nasa.gov/, accessed on 573 

February 4, 2018). NDVI is a remote sensing measurement of earth vegetation 574 

coverage closely related to net primary productivity and biomass, and is widely used 575 

in macroecology and conservation science when direct measurement of productivity is 576 

not available [40]. For water resources, we extracted the open waters from the Global 577 

Lakes and Wetlands Database (GLWD, http://www.wwfus.org/science/data.cfm, 578 

accessed on August 9, 2017) including lakes, reservoirs, and rivers with areas more 579 

than 0.1 km2, after removing saltwater lakes based on the information from the Saline 580 

Lakes Database (http://lakes.chebucto.org/saline1.html). We derived a raster dataset 581 

for SDMs by calculating the percentage area of open water within each 0.5° grid cell.  582 

 583 

Habitat suitability prediction 584 

Species distribution models (SDMs) are a commonly used and powerful tool to 585 

identify suitable habitats for potential invaders [13]. We predicted suitable habitats of 586 

the 816 alien terrestrial vertebrates by applying an ensemble of five different 587 

algorithms that have been widely used and demonstrated to have good performance in 588 

SDMs [16, 41]: generalized additive models (GAM), boosted regression trees (BRT), 589 

classification tree analysis (CTA), multiple adaptive regression splines (MARS) and 590 

http://neo.sci.gsfc.nasa.gov/
http://www.wwfus.org/science/data.cfm
http://lakes.chebucto.org/saline1.html


random forest (RF). We conducted model analyses in the biomod2 package in R 3.2.3 591 

using the default settings of each algorithm [42]. These algorithms fit statistical 592 

relationships between the species’ current native and invaded geographic distributions 593 

and the corresponding climatic or climatic plus habitat predictors, with a higher 594 

habitat suitability value for a given grid cell indicating a higher relative probability of 595 

species’ presence. 596 

We developed the SDMs using occurrence data from both species native and 597 

invaded ranges in order to avoid underestimating a species’ entire occupied niche, 598 

because alien terrestrial vertebrates may be able to invade novel realized niches in 599 

new ranges [43-45]. SDMs are regarded as quite sensitive to sampling bias in species 600 

occurrence data [33]. Thus, we applied a target-group method to minimize potential 601 

sampling bias on our results [31]. We used all occurrence data from the Global 602 

Biodiversity Information facility (GBIF, http://www.gbif.org) for each taxon as the 603 

background data representing available sampling areas to account for the distribution 604 

of sampling effort for each taxon across the globe [46]. This approach allows 605 

background data having the same sampling bias as the species occurrence data, which 606 

has been widely used and shown a good performance to deal with sampling bias issue 607 

in SDMs [47]. As there are different sample sizes among taxa, ranging from relatively 608 

small range sizes for herpetofauna to wider distributional ranges for mammals and 609 

birds, we randomly chose 30,000 background data points for amphibians and reptiles, 610 

70,000 background data for mammals, and 100,000 for birds to run each simulation 611 

http://www.gbif.org/


[35]. Equal weights were given to presence data and background points (i.e., 50% 612 

balancing the weights of presences and background points to a prevalence of 0.5) [13, 613 

35]. We calibrated models and evaluated their performances using 70% of the dataset 614 

as training data, and projected onto the remaining 30% as test data. We conducted a 615 

fivefold cross-validation of the models using random training data each time. Model 616 

performance was measured using two methods: the area under the receiver operating 617 

characteristic curves (AUC) and true skill statistic (TSS). AUC values range from 0.5 618 

to 1, with values of 0.7 - 0.9 indicative of good model performance, and values > 0.9 619 

of excellent performance [33]. TSS considers omission and commission errors by 620 

summing sensitivity and specificity minus one. It ranges from -1 to 1, with values < 621 

0.4 indicating poor model performance, 0.4 - 0.8 fair to good performance, and > 0.8 622 

excellent performance [48] (Figure S2).  623 

When SDMs are projected to new geographic regions, there are usually non-624 

analogous climates – regions where at least one climatic variable has a value outside 625 

its range in the training region – which can lead to uncertainties in model predictions 626 

[49]. In order to make conservative predictions and minimize such uncertainties, we 627 

restricted our model projections onto those analogous climates that can be sampled by 628 

occurrence and background records in both native and invaded ranges. However, we 629 

also conducted supplementary analyses by incorporating non-analogous climates 630 

(Figure S3). 631 



We applied an ensemble approach to reduce prediction variations by different 632 

SDM algorithms [50]. In order to increase model prediction accuracy, we excluded 633 

those models with AUC < 0.8 or TSS < 0.6 from the final ensemble prediction [13]. 634 

We assigned weights to each model based on their TSS values and constructed 635 

ensemble models by calculating the weighted mean of environmental suitability 636 

across the predictions [13].  637 

The prediction results based on presence-background SDMs always generated 638 

continuous environmental suitability, which are difficult to compare across species. 639 

Therefore, we followed previous studies using a threshold maximizing TSS method to 640 

convert continuous SDM outputs into species presence (1) and absence (0) 641 

predictions, and then estimated the total number of species for each grid cell by 642 

summing the resultant presence-absence maps [16].  643 

  644 

Identifying combined invasion hotspots 645 

We defined grid cells with the top 10% highest trade value, air passenger 646 

numbers, air cargo volumes and sea cargo volumes as high introduction risk areas for 647 

each of the four vectors. We then identified areas with overall high introduction risk 648 

according to the highest level of risk posed by any one of the vectors assuming that 649 

the four vectors are not additive [9]. Regions with high habitat suitability were 650 

defined as those grid cells with the top 10% highest projected number of species. We 651 

finally investigated the spatial overlap of introduction risk and habitat suitability, and 652 



quantified grid cells as combined invasion hotspots when both introduction risk and 653 

habitat suitability are high [9]. To avoid uncertainty from the threshold choice in 654 

defining high introduction risk and habitat suitability, we also used 20% and 25% cut-655 

offs to assess the consistency of our results (Figure S3). 656 

 657 

Data file titles 658 

Data S1. The databases and literatures used for the collection of occurrence data 659 

of 816 global alien amphibian, reptile, bird and mammal species. Related to 660 

STAR Methods. 661 

Data S2. Projected distributions of 816 global alien terrestrial vertebrate species 662 

in 121 BRI countries based on analogous climate variables. Related to Figure 2. 663 



  

Figure S1. Relative contributions of each single introduction vector and different vector combinations to overall introduction risk and their corresponding 

geographical locations along BRI countries. Related to Figure 2.  

ap: air passenger numbers, ac: air cargo volumes, sc: sea cargo volumes.   



 

 

 

Figure S2. Model performance for all five calibrated models using AUC and TSS based on climate 

variables only (A) and based on climate and habitat variables together (B). Related to STAR Methods.  

Dashed lines indicate thresholds used in our ensemble approach. The black line inside the box indicates the 

median. The bottom and top boarders represent the first and third quartiles. The upper whisker extends from 

the upper border to the highest value that is within 1.5 times of inter quartile range (distance between the first 

and third quartiles) from the third quartile. The lower whisker extends from the lower border to the lowest 

value within 1.5 times of inter quartile range of the first quartile.  



 

 

Figure S3. Combined invasion hotspots based on areas with high introduction risks and high habitat 

suitability under different prediction scenarios. Related to Figure 3.  

(A) introduction hotspots using live vertebrate trade; (B) species richness projected using climate only 

variables when the projections are extrapolated to non-analogue conditions; (C) species richness projected 

using climate and habitat variables together; (D) species richness projected using climate and habitat 

variables when the projections are extrapolated to non-analogue conditions; (E) invasion hotspots were 

defined as the top 20% highest introduction and habitat factors; and (F) invasion hotspots were defined as 

the top 25% highest introduction and habitat factors. 



 

Table S1. Pearson correlation coefficients among climatic predictor variables used for species 

distribution modeling among different taxa. Related to STAR Methods.  

bio1: Annual Mean Temperature, bio4: Temperature Seasonality (standard deviation *100), bio5: Max 

Temperature of Warmest Month, bio6: Min Temperature of Coldest Month, bio8: Mean Temperature of 

Wettest Quarter, bio9: Mean Temperature of Driest Quarter, bio10: Mean Temperature of Warmest Quarter, 

bio11: Mean Temperature of Coldest Quarter, bio12: Annual Precipitation, bio13: Precipitation of Wettest 

Month, bio14: Precipitation of Driest Month, bio15: Precipitation Seasonality (Coefficient of Variation). bio16: 

Precipitation of Wettest Quarter, bio17: Precipitation of Driest Quarter, bio18: Precipitation of Warmest 

Quarter. 

Amphibian

bio4 bio5 bio6 bio12 bio15 bio16 bio17

bio1 -0.536 0.725 0.737 0.529 0.508 0.586 0.179

bio4 0.167 -0.870 -0.295 -0.046 -0.338 -0.053

bio5 0.304 0.347 0.566 0.379 0.137

bio6 0.480 0.274 0.524 0.159

bio12 0.180 0.720 0.713

bio15 0.451 -0.368

bio16 0.414

Reptile

bio4 bio5 bio6 bio12 bio15 bio16 bio17

bio1 -0.203 0.712 0.730 0.502 0.657 0.575 0.169

bio4 0.382 -0.725 -0.255 -0.032 -0.304 -0.025

bio5 0.318 0.298 0.610 0.341 0.115

bio6 0.530 0.416 0.589 0.183

bio12 0.122 0.716 0.740

bio15 0.390 -0.345

bio16 0.444

Bird

bio5 bio6 bio13 bio14 bio15

bio4 -0.229 -0.736 -0.218 0.180 0.109

bio5 0.653 0.353 -0.117 0.519

bio6 0.407 -0.106 0.164

bio13 0.483 0.288

bio14 -0.457

Mammal

bio8 bio9 bio10 bio11 bio12 bio16 bio17 bio18 bio19

bio1 0.741 0.746 0.724 0.736 0.404 0.480 0.062 0.328 0.194

bio8 0.461 0.738 0.644 0.311 0.409 0.044 0.461 -0.013

bio9 0.731 0.902 0.325 0.375 0.014 0.109 0.279

bio10 0.763 0.287 0.368 0.018 0.278 0.115

bio11 0.337 0.412 -0.031 0.225 0.128

bio12 0.735 0.732 0.725 0.728

bio16 0.574 0.715 0.621

bio17 0.652 0.714

bio18 0.470
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