
Making Data-Driven Porting Decisions with Tuscan

Kareem Khazem
University College London

London, UK
karkhaz@karkhaz.com

Earl T. Barr
University College London

London, UK
e.barr@ucl.ac.uk

Petr Hosek
Google

Mountain View, CA, USA
phosek@google.com

ABSTRACT

Software typically outlives the platform that it was originally writ-
ten for. To smooth the transition to new tools and platforms, pro-
grams should depend on the underlying platform as little as possible.
In practice, however, software build processes are highly sensitive
to their build platform, notably the implementation of the com-
piler and standard library. This makes it difficult to port existing,
mature software to emerging platforms—web based runtimes like
WebAssembly, resource-constrained environments for Internet-of-
Things devices, or innovative new operating systems like Fuchsia.

We present Tuscan, a framework for conducting automatic,
deterministic, reproducible tests on build systems. Tuscan is the
first framework to solve the problem of reproducibly testing builds
cross-platform at massive scale. We also wrote a build wrapper, Red,
which hijacks builds to tolerate common failures that arise from
platform dependence, allowing the test harness to discover errors
later in the build. Authors of innovative platforms can use Tuscan
andRed to test the extent of unportability in the software ecosystem,
and to quantify the effort necessary to port legacy software.

We evaluated Tuscan by building an operating system distribu-
tion, consisting of 2,699 Red-wrapped programs, on four platforms,
yielding a ‘catalog’ of the most common portability errors. This cat-
alog informs data-driven porting decisions and motivates changes
to programs, build systems, and language standards; systematically
quantifies problems that platform writers have hitherto discovered
only on an ad-hoc basis; and forms the basis for a common substrate
of portability fixes that developers can apply to their software.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
Compilers; Reusability; Maintaining software; Software evolution;

KEYWORDS

build systems, portability, toolchains

ACM Reference Format:

Kareem Khazem, Earl T. Barr, and Petr Hosek. 2018. Making Data-Driven
Porting Decisions with Tuscan. In Proceedings of 27th ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis (ISSTA’18). ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3213846.3213855

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213855

1 INTRODUCTION

Under relentless social and technological pressure, our comput-
ing platforms have evolved rapidly. Nevertheless, the adoption of
tomorrow’s platforms is hindered by the assumptions of today:
programmers bake dependencies into their code, making porting
programs needlessly painful. The 32-bit timestamp-porting efforts
in the Linux kernel [Bergmann 2015; Corbet 2017] and glibc [Arib-
aud 2015] attest to these assumptions, as do the examples below. In
this paper, we concentrate on measuring a program’s dependence
on its build platform—consisting of the compiler, standard libraries,
and other components that we define in Section 2. We focus on the
portability of programs, not the correctness of the program after it
has been built for an alternative platform. This is because (1) the
portability of a program is prerequisite to correctly running the
program on multiple platforms, and (2) we wish to gain insight into
the state of portability of programs in the wild, at massive scale,
without restricting ourselves to per-program correctness checks.
We are motivated by the problem of porting programs to platforms
where these components differ from the ‘usual’ implementations
out of necessity, as in the following examples.

WebAssembly is a bytecode that executes inside a browser sand-
box. It heralds the combination of two thus-far distinct worlds:
desktops and embedded systems. WebAssembly is intended as a
platform to execute fully-fledged desktop applications, yet, for en-
hanced security and portability, its execution environment and build
toolchain resemble those used for embedded programs. This com-
bination violates assumptions that desktop developers have about
the platform. For example, WebAssembly programs are linked to a
minimal implementation of the C Standard Library (libc). One such
minimal libc is musl [Felker 2011], which differs from the more
extensive GNU C library despite being POSIX-compliant [Musl
2017]. These differences make porting codebases difficult, as with
the LibreSSL project’s porting experience [Devs 2014].

Fuchsia, a new operating system being developed at Google,
breaks platform-specific assumptions in a different way. Fuchsia
uses a microkernel that departs from several POSIX assumptions,
like “everything is a file”, so many existing applications will fail to
build or exhibit changes at runtime. The toolchain Fuchsia uses also
differs from the usual GNU/Linux toolchain, replacing GCC with
Clang. The issues caused by switching away from the ‘traditional’
toolchain are well-known anecdotally, as with the FreeBSD com-
munity’s effort [Davis 2012; FreeBSD 2017; Maste 2016] to switch
to a Clang and LLD-based build, or the effort to compile Linux with
Clang [Edge 2017; Hines et al. 2017; Webster et al. 2014].

Even ‘traditional’ platforms, like Linux distributions, grapple
with the redundance and maintenance cost of discovering and fix-
ing portability problems in an ad-hoc manner. Although standards
by interoperability bodies such as freedesktop.org have made it
easier to write cross-platform software, most Linux distributions

276

https://doi.org/10.1145/3213846.3213855
https://doi.org/10.1145/3213846.3213855

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Kareem Khazem, Earl T. Barr, and Petr Hosek

separately maintain additional patches to fix portability issues in
the software that they distribute. To evaluate the state of program
portability in the wild, we had to seek out distributions that explic-
itly refuse to maintain such patches, as we detail in Section 3.1.

These examples demonstrate that discovering porting problems
in a haphazard fashion, and fixing them as they arise, is not scalable
and duplicates effort across projects. To solve this problem, we
created Tuscan, a framework for testing portability issues that
scales up to thousands of programs and works fully automatically
and deterministically. Platform writers, application developers, and
researchers can use Tuscan to catalog the most common portability
issues across a wide range of software.

Tuscan builds programs and their dependencies, compiling them
to be run on a platform of the user’s choice. Software in the wild is
often written in an unportable manner, meaning it is desirable to (a)
understand why a program failed to build on a particular platform,
and (b) automatically intervene to tolerate a broken build, proceed-
ing with compilation while noting that it would have failed. While
we do not aim to have a general solution for automatically toler-
ating arbitrarily broken builds, we found that partially addressing
problem (b) allowed us to proceed further through a build before
failing, often even succeeding at a previously-failing build. This
increased the diversity of build failures that we were able to catalog.

To catalog build errors (problem a), we wrote Red, a build wrap-
per. Red monitors process spawns of a build to report on exactly
why that build failed. Through our tests of a large corpus of soft-
ware using Tuscan and Red, we gathered a detailed catalog1 of the
most common reasons for builds to fail—described in Section 4.3.

To automatically tolerate builds (problem b), Red can hijack the
build process and fix errors that match a pattern in the catalog. Red
helps to gather more data about build failures on different platforms,
because when Red ‘rescues’ a program’s build, Tuscan is then
able to build all of that program’s dependencies. When evaluating
Tuscan and Red, we used a corpus of software that, by design, was
configured to have a sparse dependency graph—again helping us
to learn about a large variety of build failures, since a failure to
build a single program did not prevent many other programs from
building. We elaborate on these design considerations in Section 3.

Contributions.

(1) We define and solve the cross-platform namespace collision prob-

lem, a prerequisite to building programs for arbitrary platforms
en-masse, in Section 2.
(2) We implement Red, a tool for (a) monitoring and logging the
build of a program, and (b) automatically repairing program builds
that are about to fail in one of several common failure modes. On
the platform on which we observed the most build failures, Red’s
intervention caused 48% of failing builds to succeed.
(3) We present Tuscan, a test harness for automatically building
programs on arbitrary platforms. Tuscan realizes our solution to
the cross-platform namespace collision problem, allowing devel-
opers and researchers to deterministically test build systems, and
enabling them to make data-driven porting decisions.
(4) We evaluate our work on a large corpus of programs. We obtain
a detailed catalog of portability problems in the wild. The catalog is
a living document that can be updated when the software ecosystem

1https://karkhaz.github.io/tuscan/

is updated to address the pervasive portability issues that we found;
it also informs and motivates the effort to fix these issues. The
source code for Tuscan and Red is available,2 as is the catalog and
the program corpus that we use for our evaluation.1

2 THE CROSS-PLATFORM NAMESPACE

COLLISION PROBLEM

We solve the problem of automatically building large numbers of
programs on arbitrary platforms to expose incompatibilities be-
tween programs and the build infrastructure used on each platform.
This has only been solved through significant ad-hoc, manual in-
tervention. We present our solution, cross-platform packages, after
formalizing several prerequisite concepts.

A toolchain is a sequence of programs that transforms a body of
source code into a binary object and then into a running process. For
C and C++ projects, the toolchain consists of (at least) a preprocessor,
compiler, linker, compiler runtime library, and the C and C++ standard

libraries, which build the source, and a dynamic linker, which loads
shared libraries at runtime. Some projects also require other binary
utilities (for manipulating object files). In this paper, we focus on
the build process; runtime behavior is out-of-scope.

In most projects, a build tool runs the toolchain to build the
codebase. A meta-build tool chooses which toolchain to use, and
generates a manifest for the build tool to run; together, these tools
form a build system. Although build systems are not part of the
toolchain, they are a large source of incompatibilities between
programs and toolchains. The toolchain lock-in problem is the de-
pendency of a program on a single toolchain. Porting locked-in
programs to newer toolchains requires costly manual intervention.

A build platform is the environment that a build executes in; it
comprises an architecture and a toolchain. A target platform is the
platform where a program will be installed. Programs are built on
a particular platform for execution on a target platform. Usually,
the build and target platforms are one and the same; our focus is
cross-platform builds where they differ. A change in one of the
components of the platform can cause a program to fail to build or
to run incorrectly, even when the program itself does not change.
Ideally, source code should build independent of the underlying
platform; Section 4 investigates the extent to which this holds.

Programs do not exist in isolation; they typically depend on other
programs and libraries, both to run and to be built from source. At
the same time, a single body of source code, when built, can yield
multiple related programs and libraries. The interactions between
these two notions—dependencies and multiple build outputs—are
captured by the software packages that operating system distribu-
tions provide to their users.

A package contains all installable components that a build sys-
tem generates from a body of source code for a single platform.
Installable components include programs, libraries, header files,
and configuration data. Inside the package, these components are
arranged in a file hierarchy that mirrors the filesystem where the
package will be installed. A package P also contains metadata that
specifies what other packages P depends on—either to build P from
source or to run the components that P installs. A package’s target
platform determines its contents. For example, the programs and

2https://github.com/karkhaz/tuscan

277

https://karkhaz.github.io/tuscan/
https://github.com/karkhaz/tuscan

Making Data-Driven Porting Decisions with Tuscan ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

libraries comprise object code that runs on the target platform’s
architecture. A package’s header files may also differ, due to the
evaluation of preprocessor macros that are conditioned on the tar-
get platform. Concretely, packages for platforms conforming to the
Filesystem Hierarchy Standard [FHS Group 2004] install programs
to /usr/bin, libraries to /usr/lib, and headers to /usr/include.
The layout of a package’s file hierarchy must match the platform
that it is to be installed on, not the platform where it was built.

Typically, packages are built for the same platform they target;
this is called a native build. For example, the Debian operating sys-
tem distribution is built for several platforms; the Debian project
provides hardware to developers so they can build their packages
natively [Debian 2017]. In some cases, however, the build platform
cannot be the same as the target platform. This may be because
the target platform is unavailable to the developers doing the build
or because the target platform is so resource-constrained that it
is impractical to build software on it. Building a package on one
platform for a different target platform is called cross-compiling.
Build tools such as Autoconf [Vaughan et al. 2000] support cross-
compilation through specifying the --build, --host and --target
flags. Cross-compilation subtly differs from a native build. For ex-
ample, Autoconf still attempts to compile test programs for the
target platform, but it does not attempt to run them, since the ma-
chine code for the target platform will typically not run on the
build platform. Unfortunately, build tools, such as Autoconf, rarely
explicitly identify every external program that a successful build
needs to run: builds may need to invoke a compiler, file and text
manipulation programs (e.g. sed, awk), and other tools. This mat-
ters because builds rely on the ability to run other programs from
dependent packages and those programs must run on the build

platform; at the same time, a cross-compile build must link against
dependent libraries that have been built for the target platform. We
formalize these constraints in the following definition.

Definition 1 (Cross-Platform Namespace Collision Prob-
lem). Let P ,Q be (not necessarily distinct) packages whose builds

depend on another package,D. Without loss of generality, let the build

of P need to execute a program provided by D, and let the build of Q
need to link against a library provided by D. To build P , programs

provided by D and built for the build platform must be installed on

the filesystem. To buildQ , libraries provided by D—but this time built

for the target platform—must be installed on the filesystem. The cross-
platform namespace collision problem is the namespace collision

that arises when the same artifacts, built for two different platforms,

must be installed on the same filesystem to proceed with a build.

Developers can work around the cross-platform namespace colli-
sion problem for a single package by manually placing the libraries
and programs in the locations that the package expects. Building
a program natively on the target hardware or in an emulator for
the target platform so that dependencies for the target platform
can be run, is another common workaround. This latter strategy is
used by Debian developers when building the entire distribution
from scratch for platforms where the hardware is hard to come by.
However, this relies on the availability of requisite hardware or
emulation environment for the target platform which is not always
the case (e.g. when building for WebAssembly). We solve the cross-
platform namespace collision problem through a generalization of

software packages. Our cross-platform packages allow the simulta-
neous, non-conflicting installation of both build and target software
components, making cross-platform builds possible without any
manual intervention.

A cross-platform package is one that segregates the binaries and
libraries of multiple build platforms from each other and from the
headers and libraries of target platforms into disjoint file hierar-
chies. A cross-platform package superimposes the builds of multiple
platforms. Concretely, the package contains binaries and libraries
for one or more build platforms B1, . . . ,Bn , as well as libraries and
headers for one or more target platforms T1, . . . ,Tn . Rather than
being installed under the default /usr directory, the components
for each platform are each installed in a custom directory beside
/usr. Namely, the binaries and libraries for each build platform
are installed in /B1/bin and /B1/lib, . . . , /Bn/bin and /Bn/lib;
and the libraries and headers for each target platform are installed
in /T1/include and /T1/lib, . . . , /Tn/include and /Tn/lib. The
target-platform libraries and headers are thus available for linking
and inclusion when building a dependent package for that platform.

Toolchain components can typically be built with a flag, usually
--with-sysroot, which specifies an alternatively-rooted file hier-
archy (as opposed to the default /usr). This means that toolchains
can be trivially configured to be aware of cross-platform packages,
without modifying the toolchain components’ source code.

3 DESIGN AND IMPLEMENTATION

We implemented Tuscan to test the portability of thousands of
programs for different target platforms, detailed in Section 4. To fix
the build problems Tuscan uncovers, we implemented Red, a build
environment that automatically fixes build problems that match
common patterns that Tuscan discovers. Tuscan creates a highly
isolated build environment; calculates the program dependency
graph; and invokes a Red-wrapped build of each program in its
own copy of the build environment, in topological order of the
dependency graph. The design of Tuscan and Red solve several
concrete challenges, which we summarize next.

3.1 Challenges and Solutions

Scale and Automation. A useful technique for performing auto-
mated builds on massive scale is to use the infrastructure provided
by operating system distributions, c.f. Kroening and Tautschnig’s
work (Section 5). Distributions provide a unified interface for in-
voking the plethora of build systems. One can run this interface for
each of the programs in the distribution, rather than manually issu-
ing the build incantations—ensuring scalability and determinism of
the overall process. We therefore used a distribution as a source of
programs and build metadata for our evaluation.

When running build experiments, one has a choice between
running at massive scale—investigating platform-dependence of
the software ecosystem on the whole—or building only a few pro-
grams and then ensuring that the build was correct, by invoking
make check if the program supplies a test suite. Tuscan can oper-
ate both ways—it can check that built packages run correctly by
invoking a test script after the build finishes. On the large program
corpus we used for this work, only 16% of programs supplied even
rudimentary tests for build correctness. Nevertheless, this work
focuses on program portability rather than build correctness; we

278

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Kareem Khazem, Earl T. Barr, and Petr Hosek

chose to scale rather than manually verifying the sanity of a small
number of builds.

Isolation and Reproducibility. It is vital that Tuscan emits the
same results on multiple runs over an identical program corpus.
Our results in Section 4.3 motivate improvements to programs and
the toolchains used to build them; Tuscan’s determinism gives
us confidence that a different result on updated programs is really
due to a change in those programs’ portability. However, subtle
changes in the environment between one build and another can
affect whether a build succeeds, as highlighted by Mytkowicz et al.
[2009]. Furthermore, machine configurations can cause results to
vary between users: different libraries being installed, scheduling
differences due to number of CPU cores, and different toolchain
versions can all cause a program build to differ. Finally, the artifacts
left behind from previous builds can change what gets built.

We overcome these challenges by using Docker containers as
an isolated build environment—Tuscan creates a new container
for each build, ensuring a clean initial state. Containers do not
‘save’ their state when they are torn down, so a subsequent run
of Tuscan proceeds in exactly the same way as any previous run.
Each container’s initial state is minimal, containing only the en-
vironment variables and programs that a build needs. Using a dis-
tribution means that we leverage that distrubution’s build system:
distributions configure the packages they ship to build without
any user intervention, and contribute to the effort to ensure that
packages build reproducibly [Cascadian et al. 2014]. The fact that
Tuscan builds packages without user intervention eliminates an-
other source of nondeterminism. Finally, Tuscan allocates a single
CPU core to each container and adds -j1 to builds’ $MAKEFLAGS
to avoid nondeterminism from scheduling and ensure that builds
proceed serially.

Dependency Domino Effect. Building a large number of programs
is a partially serial process, because some programs require that
other programs have been built before their build can begin. These
dependencies form the edges of a forest whose nodes are program
builds. The builds at each node of the forest depend on the transitive
closure of their children being successful; a ‘domino effect’ occurs
when a single build fails, since every program that transitively de-
pends it cannot then be built. An operating system distribution’s
dependency factor is the average size of the transitive closure of
a program’s children; higher dependency factors lead to a more
severe domino effect when a single program fails to build. Distri-
butions that supply a fully-fledged desktop environment with a
large number of pre-installed programs (like Debian, Fedora, or
Ubuntu) tend to have a high dependency factor. Distributions that
are intended to be configured from the ground up (like Arch Linux,
Alpine Linux, or Gentoo) have low dependency factors. Using such
a distribution leads to a larger diversity of build errors, as a larger
variety of programs can be built. This is because user-facing ap-
plications tend to be at the roots of the forest, while libraries are
nearer the leaves; build failures higher up the tree therefore prevent
a disproportionate amount of dependent user-facing programs from
building.

Vanilla Builds. Our aim is to measure the platform dependence
of programs in the wild. Distributions can frustrate this goal: to
support multiple platforms, they manually patch the programs that

they distribute. A manual search3 through Alpine Linux finds 150
patches specifically to fix dependency on the GNU C Library (rather
than the musl C library used by Alpine), while distributions that
support a large number of architectures (like Debian or Gentoo)
redundantly and separately maintain similar patches. In contrast,
Arch Linux “ships software as released by the original develop-
ers” [wiki 2016] and is only built for the x86_64 architecture with
a typical GNU toolchain (described in Section 4.2). We therefore
chose Arch Linux as our source of packages and build metadata.
The Docker containers that Tuscan uses are also based on Arch,
which does not limit the platforms that Tuscan can run on.

3.2 Individual Package Build Process

Tuscan’s main task is to build packages using a non-default target
platform. We describe the process of building a single package in
this section; the process is illustrated in Figure 1.

Tuscan creates a fresh Docker container for the build of each
package. Packages built by Tuscan are stored on the user’s filesys-
tem (outside of the container that built them), so that any packages
that depend on that package are able to use it later. In Figure 1, the
user’s filesystem is the dark gray region. It contains a repository
of all the packages that have been built so far; these will be cross-
platform packages, as described in Section 2. The container used
for building a single package is the white region in the center; data
is copied into and out of the container from the user’s filesystem.

If the cross-platform package repository contains all the depen-
dencies of a package P , then Tuscan starts building P . Referring to
Figure 1, Tuscan performs the following steps:
(1) copies and installs the dependencies of P into the container;
(2) installs the target toolchain binaries, headers and libraries;
(3) builds a target-platform package with the target toolchain;
(4) generates a cross-platform package by combining the target-

platform package with the build-platform package;
(5) copies the cross-platform package out of the container.

At step (1), as well as the build-platform components that are
installed into /usr/bin and /usr/lib, the cross-package depen-
dencies will install target-platform libraries and headers into the
lib and include directories—as mentioned in the remark on cross-
platform file layout (Section 2)—so that P can link against those
libraries. The hybrid package contains target-platform specific ver-
sions of tools and libraries; the build-platform versions of these
tools and libraries may already be installed in the container. At
step (2), Tuscan therefore installs the target-platform toolchain in
a location on the filesystem that is disjoint from the build-platform
components. It is a build error if P ’s build system attempts to in-
voke the build toolchain, as opposed to the target toolchain that we
wish to build with. Therefore, Tuscan leaves the build toolchain
installed in its usual location and uses Red to redirect invocations
to the target toolchain (see Section 3.4).

In step (3), Tuscan copies P ’s sources into the container and
builds themwith the target toolchain. The user will have configured
the appropriate environment variables ($CC, $LD_FLAGS etc.) so
that—if the package uses a well-behaved build system—it will build
using the target toolchain installed in step (2) and link against

3git clone git://git.alpinelinux.org/aports && find aports -name
"musl*.patch"

279

Making Data-Driven Porting Decisions with Tuscan ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Key:

A single

toolchain

Source files

for a single

package

Build

platform

package

Target

platform

package

Cross-

platform

package

Cross-

platform

packages

built so far

1. Dependencies installed to filesystem

copy

Host Container
Tuscan container

filesystem

usr
bin

lib

target-platform-root

include lib bin

2. Toolchain tools & libs

installed to filesystem

Toolchains

directory

copy

Sources for

all packages

copy

3. Package
built

from
source

using

target
toolchain

Repository of build platform packages

copy

4. build & platform

packages merged

into cross package

5. Package is copied

back onto host; pack-

ages that depend on

this one can now be

built in a new container.

Figure 1: How a single package is built, as described in Section 3.2. Tuscan runs on a single host computer (the gray-bordered
U -shape) and uses a container (the central region) to build the package. The host computer permanently stores the source code

and packages for all the packages that we want to build, as well as the toolchains that we build with; these files are copied into

a container whenever they are needed. The result of running a container is a cross-platform package, which is copied out of

the container onto the host—Tuscan then builds any packages that depend on that package, and the cycle starts again. Several

containers may be running in parallel all on the same host; this diagram shows what happens inside a single container.

the target-platform libraries installed in step (1). Many packages
do not in fact have well-behaved build systems or are unportable.
Wrapping the build with Red can mitigate some of these issues, but
in many cases, the build fails. If P fails to build, Tuscan halts the
container; builds that transitively depend on P will not be run.

In step (4), if a target platform package of P was successfully
built in step (3), Tuscan combines it with the build-platform ver-
sion of P to create a cross-platform package. The repository of
build-platform packages will have been downloaded at the same
time as the sources, as noted in Section 3.3. The cross-platform
package thus consists of two sets of files built from the same source:
some built with the build toolchain, and others built with the target
toolchain.

In step (5), Tuscan adds P to the repository of cross-platform
packages built so far. Tuscan also copies the build logs and data
from Red out of the container, ready for data analysis.

3.3 Inputs, Reproducibility, and Extensibility

To aid reproducibility of our results, Tuscan takes the following
four components as input. The source repository is a set of source
codebases, along with metadata describing the dependencies be-
tween those codebases. The build platform repository is a set of
packages that were built from the source repository to be run on
the build platform (i.e. the build and target platforms are the same).
The container is a Docker image of an environment that allows for
building one of the source packages from the source repository. The
toolchain script is a script that builds a toolchain into a container.

The first three items must be generated at the same time, because
not all software is forward-compatible. Tuscan allows both repro-
duction and repeatability of our results by supporting two options
for obtaining these four components: downloading them afresh,
or using previously-generated components. By default, Tuscan
downloads the latest version of the first two items (currently about
290 GB of data) and generate a matching Docker image. It also
downloads and builds the toolchain that the user specified. This
means that the study can be repeated in the future with updated
toolchains and programs. Tuscan caches data that were previously
downloaded so a run of Tuscan on a particular set of components
can be repeated. Our results can be reproduced by dropping the
code, images and toolchain that we used for this paper (or any other
run of Tuscan) into Tuscan’s top-level directory.

Tuscan is extensible and can be used for many different build-
related experiments: varying the compiler, C Standard Libary imple-
mentation, and architectures as we do for our evaluation (Section 4)
is just one possibility. Since Tuscan takes a toolchain script as in-
put, one can use Tuscan to measure the effects of varying different
aspects of the build toolchain: using static vs. dynamic linking,
comparing POSIX to non-POSIX toolchains, or experimenting with
building for exotic architectures.

3.4 Red—the Redirected Execution Dæmon

We implemented a stand-alone tool called Red to monitor and
automatically fix problems with the build of a single package. Red
wraps the invocation of a build process (e.g. make or Arch Linux’s

280

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Kareem Khazem, Earl T. Barr, and Petr Hosek

makepkg) and produces detailed diagnostics: the tree of processes
spawned by the build, the environment variables set at each of
those process spawns, and the invocation of key system calls.

Using Red to monitor builds revealed that there are several com-
mon categories of build failures that arise from unportability; we
detail these categories in Figure 6. We thus built Red to modify, as
well as merely monitor, the build process. Red modifies the build
by shadowing key system calls and C standard library functions
with custom implementations, e.g. the functions that are used to
spawn new processes on POSIX (the exec (3) and posix_spawn
(3) function families). Red injects these implementations into the
build process using the $LD_PRELOAD environment variable. This
functionality means that, by modifying incorrect build tool invo-
cations, we can sidestep known failures and continue running the
build—while logging that the build would have failed without Red’s
intervention. This allows us to collect more data on the extent of
program unportability in the wild. Since Red intercepts C standard
library calls that are invoked by all programs, no matter what lan-
guage they are written in, Red’s mitigations are agnostic of the
build system Red is wrapping. Examples of mitigations that Red
can apply include (1) correcting build-influencing environment vari-
ables like $CC and $PATH just before a process spawn; (2) checking
that files that are opened with fopen() actually exist, and syn-
thesizing stubs for them if they do not; and (3) rewriting process
spawns to ensure that the build system invokes the target platform
build tools rather than the build platform build tools. By applying
these mitigations, Red completely rescued some builds and allowed
others to run for longer before they failed (Figure 6).

Red is easily extensible with new mitigations. This means that
platform writers and application developers can continue to test
mitigations to new portability issues as they arise. A Redmitigation
is simply a function, written in C, that detects when a standard
library function is being invoked in a way that will break the build—
and then corrects that invocation so that the build can proceed
successfully. Together, Red and Tuscan engender a cycle of discov-
ery and mitigation of issues that block porting of programs to new
platforms. By running Red-wrapped builds of thousands of pro-
grams in Tuscan, developers can discover the most pressing build
issues that prevent the most programs from being easily ported; im-
plement mitigations for these issues in Red; and then test the builds
again, discovering new porting issues that manifest further down
the line. This data-driven approach allows the developers of inno-
vative new platforms—like the examples we noted in Section 1—to
discover, in advance, the obstacles to the adoption of their platform.
By systematically testing the portability of the software ecosystem,
platform authors can plan on writing compatibility ‘shims’ to allow
legacy software to build on new platforms, or quantify how much
work would be needed to resolve pervasive portability issues.

Red is derived from BEAR [Nagy 2016], which is used to gen-
erate compilation databases. BEAR uses $LD_PRELOAD to intercept
spawns of new processes so that it can print out their names. Red
extends this functionality by detecting patterns of incorrect invoca-
tions and repairing them as well as logging their names.

4 EVALUATION

In the previous section, we described the design of Tuscan—a
framework for testing toolchains by building programs en-masse.

We tested several toolchains, described in Section 4.2, with Tuscan,
on several thousand packages (described in Section 4.1).

Scope. We evaluate portability issues by varying the toolchain
across several axes: C standard library, compiler, and architecture.
By changing only a single factor each time we run the experiment,
we are able to pinpoint which build issues are caused by particular
parts of the toolchain. We do not vary other parts of the toolchain,
and our evaluation focuses on POSIX toolchains only—though Tus-
can works for any toolchain whose source code is available.

Tuscan can checkwhether a build yields a valid binary by calling
make check or similar (Section 3.1). However, only 16.1% of the
programs in our corpus have such a test suite. One can therefore
either evaluate build errors at scale or in detail. This evaluation
focuses on scale; we are the first to catalog build errors on a cross-
platform build of an operating system distribution at this scale.

4.1 Corpus

At time of writing, Arch Linux distributes 9,851 packages for the
x86_64 architecture. We do not attempt to build all of these pack-
ages, since many of them were involved in convoluted circular
dependency chains. Circular dependencies are an intrinsic aspect of
building software—see the comment about “toolchain build order”
on the Arch Linux build manifest for glibc [McRae 2017] noting that
glibc needs to be built in order to build itself. Tuscan implements
automatic dependency resolution, and does not attempt to build
packages that are involved in a circular dependency. In practice,
we found that the set of 2,699 packages that Tuscan does build
seems fairly representative. Of these, 1,534 are of interest due to
their containing C or C++ code; we built the remaining non-C/C++

packages to satisfy their dependencies. We were interested in C and
C++ codebases as these languages are the most platform-dependent,
and the build systems and configuration tools that those codebases
use are correspondingly prone to containing errors. Statistics [De-
bian 2018] indicate that these languages are the most commonly
used in a large operating system, so identifying and addressing
portability issues in such codebases is especially important.

Figure 2 shows the sizes of the programs that we built in lines of
code (LOC), in lieu of attempting to quantify the complexity of the
programs’ build systems. while metrics about build systems that
are more refined than LOC counts do exist (e.g. the one presented
by Martin and Cordy [2016]), the majority of the build scripts in the

0
200
400
600
800
1000

< 10 10 102 103 104 105 106 107#
of

pa
ck
ag
es

w
ith

LO
C

LOC of program (order of magnitude)

Distribution of program sizes—lines of code (LOC)

Figure 2: Most of the packages that we used for this study

are thousands or tens of thousands of lines long.

281

Making Data-Driven Porting Decisions with Tuscan ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

101

102

103

104

105

106

101 102 103 104 105 106 107

LO
C
of

M
ak
efi

le

LOC of program (order of magnitude)

Correlation between program and Makefile LOC

Figure 3: The area of a circle at coordinates x ,y shows the

number of programs having on the order of x lines of code,

and which use Makefiles on the order of y lines long.

programs we studied were generated rather than hand-written—
meaning that the complexity is correlated with the LOC count
anyway, as noted in that study. The packages that we tried to
build were written in 236 million lines4 of C and C++ code, with 36
million lines written in other languages. For programs that used
(or generated) Makefiles, we found that the number of lines of
Makefile were indeed loosely correlated with the executable LOC
(Figure 3). The data point at (101, 103) is an artifact of verbose,
machine-generated Makefiles; it represents 160 Perl libraries that
each export a small function, but use a large Perl-specific Makefile.

About 60% of the programs used a configure script, or the
cmake tool, as part of the build process. The majority of configure
scripts were generated by the GNU Autoconf tool. These scripts are
responsible for detecting the capabilities of the build environment,
searching for required libraries and headers, and then correctly
setting up the build process in light of these findings—so their
functionality is relevant to this study. We remark on how well these
tools handled the use of alternative toolchains in Section 4.3.

As well as building packages using the alternative platforms
described in Section 4.2, we attempted to build all the packages
on the default Arch Linux platform. This allows us to focus on
build issues that occur with packages that do build with the default
Arch platform, but fail to build with an alternative platform. In our
presentation of results, we only discuss such alternative-platform
broken packages, but we note here that we were surprised at the
number of packages—273 of the 1,534 C/C++ packages—that do not
even build successfully using the default platform. Since we can
only build a package if all of its dependencies have built, these 273
failures meant that we are unable to attempt a build of a further
170 dependent packages—a total of 443 failures with the default
platform. 140 of these failures are because the source code for the
packages5 was missing—including 87 that we wished to use for our
experiment. Other failures were genuine build errors, which have
been manually worked around by the package maintainers.

4All lines-of-code counts obtained using SLOCCount [Wheeler 2004].
5We reported these packages to the Arch Linux developers; they are listed at https:
//www.archlinux.org/todo/packages-with-missing-sources/.

4.2 Platforms Used for Building

We used four different platforms in our experiments. As a ‘control’
for our experiment, we use the same platform that Arch Linux—and
most other GNU/Linux—developers use for building packages: this
is the x86_64 architecture, with a toolchain comprising GCC, glibc
and libstdc++. Our second platform changes only the compiler (to
Clang); this is a platform similar to the one used by projects such as
LLVMLinux. The third platform we use builds on the second by also
changing the C standard library tomusl, and the C++ standard library
to libc++. This is a representative of ‘non-GNU’ toolchains as used by
WebAssembly or Fuchsia. Finally, we demonstrate Tuscan’s ability
to build programs for a different target architecture by using the
Android toolchain—comprising of GCC, Bionic and libstdc++—and
building for the ARM32 architecture rather than x86_64. Given
the popularity of Android, this is one of the most widely used
‘alternative’ toolchains used on Linux-based systems.

4.3 Results

Build systems are fragile: they exacerbate porting difficulties, slow-
ing the emergence of new platforms. This section quantifies the
extent of the problem, showing Tuscan and Red’s practical utility.
Tuscan collects and classifies build-related problems cheaply; here,
we present that data and how it can be used to resolve porting
problems. Red automatically fixes some of the problems Tuscan
identifies. We quantify how many problems Red fixes and leverage
the Tuscan results to prioritize future extensions to Red. In this
section, we present all our results relative to the GNU toolchain.

Few packages build successfully on a platform different from the
baseline; Figure 4 shows the number of packages that successfully
built on each platform. The platforms are arranged in increasing
order of divergence from the baseline: the second platform changes
the compiler, the third changes the compiler and standard C library,
and the last platform additionally changes the architecture. Each
deviation from the baseline causes an additional set of build failures.
In this section, we compare the build of each package on the build
platform and on an alternative target platform in order to discover
the root causes of any portability issues. We therefore do not con-
sider packages that fail to build on the build platform.

0
200
400
600
800
1000
1200

GCC +
glibc

Clang +
glibc

Clang
+ musl

Android
+ Bionic

N
um

be
ro

fp
ac
ka
ge
s

Platform

Successful builds per platform

Figure 4: The leftmost bar indicates the C/C++ programs that

built successfully on the baseline platform. The other bars

show how many of those baseline-successful C/C++ pack-

ages built successfully on other platforms. When wrapping

builds with Red (Section 3.4), Tuscan builds a much larger

number of packages successfully; see Figure 6.

282

https://www.archlinux.org/todo/packages-with-missing-sources/
https://www.archlinux.org/todo/packages-with-missing-sources/

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Kareem Khazem, Earl T. Barr, and Petr Hosek

0
50
100
150
200

u.t m.p l.e u.r m.h#
p
a
c
k
a
g
e
s
w
i
t
h
e
r
r
o
r

Type of error

Problems caused by incompatibilities with platforms

clang
musl

Android

Figure 5: The bars indicate the number of packages that

failed due to an error caused by incompatibility with a par-

ticular platform. The error types are described in the para-

graphs below: “Unknown Type,” “Malformed Path,” “Linker

Error,” “Undefined Reference,” and “Missing Header”.

Given the low rate of successful builds, we decided to investigate
what the most common causes of build breakage were. Figure 5
shows the five most common failures that broke the build, again
across the 1107 baseline-successful C and C++ programs.

Missing header. Platform-specific headers are included by 351
packages. The build of such packages throws a ‘missing header’
error when they are built on alternative target platforms; this ac-
counted for the majority of build errors. The largest culprits were
the gnu/stubs-32.h and libintl.h files, which together were
included 143 times; and various Linux-specific headers, such as
linux/types.h, which was included 104 times. Tuscan thus pro-
vides valuable data on what platform-specific features developers
rely on the most—in this case, architecture-specific typedefs for
various widths of integers. Developers of new platforms can use
these data to make empirically-driven decisions on what APIs to
support, for example by providing a compatibility ‘shim’ that al-
lows the many packages that include this header to build flaw-
lessly on the new platform. The exact platform-specific headers
that each of those 351 packages includes are detailed under the
missing_header entries in our catalog1.

Undefined references. This occurs when the code references sym-
bols inadvertantly exposed by glibc. Code that relies on such ref-
erences breaks when built on platforms that use a different libc;
this problem did not occur on the Clang+glibc platform. The most
common undefined symbol was rpl_malloc, which is a known bug
in GNU Autoconf when building for non-glibc platforms [Dickey
2003]. The discussion in that reference indicates that effort to fix
the bug was not forthcoming, but Tuscan provides a compelling
case for developers of new platforms to step up to the task—doing
so would encourage more seamless adoption of their platform.

Unknown type. This occurs when the code uses types inadver-
tently exposed by glibc; this failure caused 67 errors. For example,
musl intentionally does not define integer types that are BSD exten-
sions to the standard [Kreitman 2004] (e.g. u_int32_t, u_int64_t
as opposed to the standard uint32_t, uint64_t). Standards com-
mittees have, in the past, legitimized de facto implementations by
ratifying their interfaces in the official standard—examples include
the C committee adding flexible array members and zero-length

arrays to the C99 standard [ISO 1999], which had long been exten-
sions to GCC. We do not take a stance on whether the C language
standard should be extended to specify that conformant implemen-
tations must supply commonly-implemented typedefs. We note,
however, that Tuscan supplies concrete data about the usage of
these types in real-world codebases, informing decisions about
what common extensions ought to be added to the next version of
the standard.

Compiler error. There were only 5 compiler errors, all of which
were caused by command line flags supported by GCC but unsup-
ported by Clang (e.g. -Wlogical-op, -Woverride-init). This re-
sult highlights the mostly-successful effort to make Clang a drop-in
replacement for GCC. Tuscan demonstrates its utility by providing
Clang developers with the flags that Clang doesn’t support and that
are used in real codebases. Clang developers have been receptive
to the results on our catalog1, and we are working to patch Clang
to maintain command-line parity with GCC.

Linker error. Linker errors account for 59 failures. The root cause
of these errors is incorrectly-written Autoconf manifests; Autoconf
generates incorrect configure scripts from these manifests, which
then set the build tool up with the wrong include path. The difficulty
of writing Autoconf manifests is anecdotally known, but our catalog
concretely demonstrates that the most common consequence of
hastily put-together manifests is configure scripts that only work
accidentally, when the build and target platforms are the same.

Malformed path. There were 267 cases where the $PATH en-
vironment variable was incorrectly set when the build system
forked a subprocess. Many build tools rewrite $PATH in order to
include directories where language-specific tools live. For exam-
ple, we observed 599 instances where build tools needing access to
Perl programs rewrote the $PATH to include /usr/bin/site_perl,
/usr/bin/core_perl, and similar directories. Such build tools do
not respect values of the $PATH set by the user; therefore, it is not
possible to port programs using these tools to platforms where
custom $PATH needs to be specified.

The figures that we describe above relate to packages whose
builds were broken. However, Red was able to intercept and repair
several of these problems. Figure 6 shows how often Red recovered
a build that would otherwise have failed without Red’s intervention.

Frequently, builds under the Clang+glibc platform exhibited
problems that Red was able to correct and no other problems. Thus,
the black bars over ‘native invocation,’ ‘malformed path,’ and ‘empty
path’ in Figure 6 are quite tall for Clang+glibc . These bars represent
builds that would have broken under that platform if Red had not
intervened. The black bars on Figure 4 on page 7 for Clang+glibc
would have been twice as tall if we had included Red-rescued builds
in that graph: there were 1,000 successful builds for Clang+glibc,
and Figure 6 shows a total of 481 Red-recovered builds.

Red does not rescue as many complete builds for the other two
target platforms. This is because they have a much higher rate of
irrecoverable errors (such as the missing headers discussed previ-
ously). Red remains a useful tool for these platforms, as it allows the
build to proceed further than it would have before breaking. This
allows us to test more build problems than if the build had broken

283

Making Data-Driven Porting Decisions with Tuscan ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

800

600

400

200

0

200

400

600

800

to
ta
l

native invoc.

conf. error

malform. path

missing header

empty path

to
ta
l

native invoc.

conf. error

malform. path

missing header

empty path

to
ta
l

native invoc.

conf. error

malform. path

missing header

empty path

#
pa
ck
ag
es

en
co
un

te
rin

g
er
ro
r

Rates of Red error recovery by toolchain

Total # packages whose builds were recovered by Red
Total # packages whose builds could not be recovered
Packages where specified error was recovered by Red
Packages that failed with specified error despite Red

Clang+muslAndroidClang+glibc

Figure 6: Several build issues were common over multiple toolchains. Red is able to salvage the build in many cases where the

build makes an invocation to a native tool, or where the meta-build systemmangles or completely empties the $PATH variable.
The large number of failing builds that made native invocations on the Android and clang+musl toolchains failed after Red

had corrected the native invocation—meaning that the build got further before failing, allowing us to collect more data on

why builds break on those toolchains. The negative y-axis does not represent negative numbers of packages; rather, we use it

to juxtapose successful (black) with unsuccessful (gray) builds.

due to a Red-recoverable error. In fact, 34% of build-breaking errors
on Clang+musl happened after a Red-recovered error.

Red Limitations. There are many reasons why target platform
incompatibilities cause builds to break. Red therefore needs to be
taught about each type of build failure for it to rescue builds that
encounter that failure mode. While we implemented support for
rescuing the most common types of build failure that we observed,
Figure 6 shows that there are a large number of failures for other
reasons, especially when the Standard C Library implementation
varies from the baseline.

5 RELATEDWORK

Our work is related to efforts to model and empirically study build
systems, and work that builds large corpuses of software at scale—
either to analyze the software itself or to gain insight into the build.

Modeling and Studying Build Systems. There has been a growing
realization in academia that configuration and build systems are
worthy of study in their own right, either by actually running builds
or by parsing and modeling build scripts symbolically. Nadi and
Holt [2012] investigate the Linux kernel build system through the
latter technique, parsing the kernel’s build and configuration files
and running that representation through a SAT solver to detect in-
consistencies. They found that inconsistencies between the various
parts of the build system do exist, prompting a further study by Nadi
et al. [2013] on how these inconsistencies arise. Another work that
parses and analyses build files is [Zhou et al. 2015], which extracts
‘configuration knowledge’ from Makefiles to determine under what
conditions certain builds are possible. These approaches intrinsi-
cally provide precise information on problems or inconsistencies

with the build system under scrutiny, since the approach is tailored
to one particular build system. Our tool, Red, takes the opposite
approach by actually requiring that the build be run. This means
that Red can introspect on any build (controlled by Make, CMake
or some other future build tool) and provide insight into why the
build failed. Red’s error-reporting precision rests on its knowledge
of the toolchain rather than the build system, so its error catalog
carries over to new build systems. We designed Red to be extensible
with knowledge about new toolchains, so that it can be taught to
detect and intercept new ‘patterns’ of build failures.

An example of a tool that runs the build to glean information
about the build system is MAKAO [Adams et al. 2007b]. MAKAO
produces visualizations of a build and includes a query language to
search for events in the build log, e.g. errors, tool invocations and
output file generation. This work is valuable to understand the build
progress of a single codebase; Tuscan provides a framework for
automatically running such analyses on thousands of codebases in
a scalable way. TheMAKAO authors use the xtrace tool to monitor
spawned processes in the build. This is a more versatile approach
than the static parsing work in the previous paragraph, as xtrace
can wrap arbitrary build tools (not just Make). We also take this
approach: Red wraps around any build invocation, and operates
at a finer granularity than MAKAO, intercepting system calls as
well as process spawns. This granularity allows Red to repair the
build environment and redirect system calls during the build, which
process monitoring tools like xtrace or strace cannot do.

Adams et al. [2007a] use MAKAO to measure the evolution of a
single program (the Linux kernel), finding increases in complexity
and also giving an account of the maintenance pressures that drive
the evolution of the build system. McIntosh et al. [2011] also study

284

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Kareem Khazem, Earl T. Barr, and Petr Hosek

maintenance effort on several large codebases. Tuscan can help
researchers with this kind of study by allowing build wrappers
like MAKAO to reproducibly execute in an isolated environment.
Kerzazi et al. [2014] address the question of why builds break both
qualitatively and quantitatively, through interviewswith developers
and analyses on build failures. Their quantitative data is gleaned
from 6 months’ worth of build data of a web application, and they
advance several hypotheses about what circumstances cause builds
to break. An automated framework like Tuscan can help to confirm
these results in a reproducible way; Tuscan can be run repeatedly
on the same corpus of programs, or take new sets of software as
input to measure how build breakages change over time.

Building Code at Scale. Kroening and Tautschnig [2014] inspired
Tuscan: they were the first to build an entire Linux distribution on
an alternative toolchain. They ran a static analysis tool on every
program in the Debian operating system, using Debian’s package
metadata to provide a uniform build interface. Their ‘alternative
toolchain’ is the CBMC tool [Clarke et al. 2004], which emulates
GCC’s command-line interface. Their experiment also tackled plat-
form portability, because they compile to goto-binaries rather than
ELF object files. Following in their footsteps, Tuscan uses a distri-
bution to provide a uniform way of automatically building software.

Tuscan solves two problems that Kroening and Tautschnig did
not face: the cross-platform namespace collision problem and the
toolchain lock-in problem. goto-cc can output binaries that con-
tain both executable ELF data and goto-binary code, so they were
able to install goto-binaries in the usual location on the filesystem.
We have had to work with alternative architectures (such as Arm)
with a different machine code format, making it impossible to com-
bine build- and target-platform object code into the same binary.
Tuscan helps researchers to run similar large-scale experiments
even when their analysis tools do not emit such a hybrid-format
object. Kroening and Tautschnig did not face toolchain lock-in be-
cause goto-cc itself is a drop-in replacement for GCC, accepting
the same command-line flags and input language. Faithfully emulat-
ing a compiler’s flags and input language (a problem that Tuscan
also solves) consumed development time the CBMC authors could
have profitably spent working on the static analysis tool itself.

We hope that by solving the cross-platform build and toolchain
lock-in problems, Tuscan will pave the way for the research com-
munity to perform large-scale static analyses, similar to Kroening’s
and Tautschnig’s but without the engineering effort needed to make
static analysis tools drop-in replacements for GCC. One such ex-
periment would extend Red to permit the application of the Clang
Static Analyzer [Zaks 2017] to a large corpus of existing software.

Atlidakis et al. [2016] perform both static and dynamic analysis
to determine what abstractions and frameworks are being used by
POSIX applications on the Android, Ubuntu, and macOS platforms.
They find that POSIX is lacking in several frameworks that devel-
opers need, and that developers are thus writing to higher-level
frameworks than POSIX. Our empirical results in Section 4.3 high-
light the consequences of this divergence: packages that have to
rely on platform-specific APIs become tied to that API, making it
difficult to port those packages to new platforms and thus hindering
those platforms’ adoption. In contrast to Tuscan, Atlidakis et al.
only surveyed applications running on their native platform. Our

work goes further by quantifying how programs’ builds break when
ported to new platforms.

Mytkowicz et al. [2009] investigate the effects of seemingly-
innocuous changes in the environment on running programs; their
experiments bear some similarities to ours, and we designed Tus-
can to elide many of the sources of non-determinism that they
describe. They conducted their experiments on several different
physical machines as well as a virtual machine, taking care to man-
ually set up a minimal environment for their experiments. Such
a minimal environment is inherent to the Docker containers that
Tuscan uses, and we feel that Tuscan would be an ideal test bench
for investigations like theirs. Mytkowicz et al. use the $LD_PRELOAD
variable to instrument programs, as we do with Red.

Al-Kofahi et al. [2014] implement a tool, MkFault, for discovering
build issues specifically arising from errors in Makefiles. MkFault’s
domain-specific knowledge about GNU Make means that it can
track down the root cause of a Makefile-induced build failure to
a high degree of accuracy. By comparison, Red is a more general
purpose build wrapper. It can intercept the invocations of any
build system; by necessity, this means that it does not discern the
root cause of a build failure with the precision that MkFault can.
MkFault also seems targeted at discovering errors in the build logic
of a Makefile. By contrast, we focus on discovering errors that
stem from assumptions about the target platform, and which would
break the build even if the Makefile were written flawlessly.

6 CONCLUSION

With the growing importance of new toolchains and targets, soft-
ware portability is more important than ever. To determine the
current state of affairs, we built Tuscan, a framework for conduct-
ing controlled, deterministic tests on build systems at scale and Red,
a build wrapper to automatically identify and overcome problems
that prevent software from building for alternative target platforms.
Using these tools, we tested 1,551 C and C++ programs over three
toolchains and found out that the current situation is far from per-
fect: the least-compatible toolchain successfully built only 15% of
programs, while the most compatible toolchain managed 38%.

Red identified several root causes for build failures. By imple-
menting automatically-applied mitigations for some of these root
causes in Red, we were able to run our tests for longer, some-
times even completing the build successfully while logging what
would have broke the build in Red’s absence. While we wrote the
mitigations manually, we believe there is scope for research into
automatically-learned mitigations, e.g. using machine learning. Fur-
thermore, Red is easily extensible by practitioners who wish to
continue testing the portability of the software ecosystem. We hope
that platform authors and software developers will take up the
mantle of systematically testing and resolving portability issues,
undertaking to ensure that legacy software is portable to innovative
new platforms. In aid of this, Tuscan, Red, the program corpus
that we used for this study, our raw test results, and our catalog,
can all be found online1.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their construc-
tive comments, as well as Rich Felker, Sean Klein, Roland McGrath,
and Mark Seaborn for their suggestions and feedback.

285

Making Data-Driven Porting Decisions with Tuscan ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES

Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. 2007a. The
Evolution of the Linux Build System. ECEASST 8 (2007).

Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007b.
Design recovery and maintenance of build systems. In 23rd IEEE International

Conference on Software Maintenance (ICSM). IEEE, 114–123.
Jafar M. Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. 2014. Fault Localization

for Make-Based Build Crashes. In ICSME ’14. 526–530.
Albert Aribaud. 2015. Y2038 Proofness Design. (2015). https://sourceware.org/glibc/

wiki/Y2038ProofnessDesign Accessed: 2017-04-10.
Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and Jason

Nieh. 2016. POSIX abstractions in modern operating systems: the old, the new,
and the missing. In Proc. 11th European Conference on Computer Systems (EuroSys),
Cristian Cadar, Peter Pietzuch, Kimberly Keeton, and Rodrigo Rodrigues (Eds.).
ACM, 19:1–19:17.

Arnd Bergmann. 2015. Linux kernel patchset: “converting system calls to 64-bit time_t”’.
(2015). https://lwn.net/Articles/643407/

Vagrant Cascadian, Chris Lamb, Holger Levesen, and Lunar. 2014. Reproducible Builds.
(2014). https://reproducible-builds.org

Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking
ANSI-C Programs. In Tools and Algorithms for the Construction and Analysis of

Systems. 168–176.
Jonathan Corbet. 2017. 2038: only 21 years away. (2017). https://lwn.net/Articles/

717076/
Brooks Davis. 2012. Clang as default compiler November 4th. (2012). https://lists.

freebsd.org/pipermail/freebsd-current/2012-September/036480.html
Debian 2017. Debian ARM ports project. (2017). https://www.debian.org/ports/arm
Debian 2018. Debian Statistics: Historical Lines of code. (2018). https://sources.debian.

org/stats/#hist_sloc
Devs 2014. How compatible is LibreSSL. (2014). https://devsonacid.wordpress.com/

2014/07/12/how-compatible-is-libressl/
Thomas E. Dickey. 2003. Re:Why ismalloc being defined as rpl_malloc ?? (2003). http:

//lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161212/412152.htm
Jake Edge. 2017. Building the kernel with Clang. (2017). https://lwn.net/Articles/

734071/
Rich Felker. 2011. Musl libc. (2011). https://www.musl-libc.org
FHS Group 2004. Filesystem Heirarchy Standard. (2004). http://www.pathname.com/

fhs/pub/fhs-2.3.pdf
FreeBSD 2017. Ports and Clang—Build Failures with Fixes. (2017). https://wiki.freebsd.

org/PortsAndClang#Build_failures_with_fixes Accessed: 2017-04-10.
Stephen Hines, Nick Desaulniers, and Greg Hackmann. 2017. Compiling Android

userspace and Linux kernel with LLVM. In LLVM Developers’ Meeting, San Jose, CA,

USA. https://www.youtube.com/watch?v=6l4DtR5exwo
ISO 1999. International Standard ISO/IEC 9899:1999—Programming Languages—C.

(1999). https://www.iso.org/standard/29237.html

Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why Do Automated
Builds Break? An Empirical Study. In 30th IEEE International Conference on Software

Maintenance and Evolution. 41–50.
Struart Kreitman. 2004. u_int32_t vs uint32_t. (2004). https://lists.freedesktop.org/

archives/release-wranglers/2004-August/000923.html
Daniel Kroening and Michael Tautschnig. 2014. Automating Software Analysis at

Large Scale. In MEMICS ’14. 30–39.
Douglas H. Martin and James R. Cordy. 2016. On the maintenance complexity of

makefiles. In Proc. 7th International Workshop on Emerging Trends in Software

Metrics (WETSoM@ICSE). ACM, 50–56.
Ed Maste. 2016. Linking the FreeBSD base system with LLD – status update. (2016).

http://lists.llvm.org/pipermail/llvm-dev/2016-March/096449.html
Shane McIntosh, Bram Adams, Thanh H. D. Nguyen, Yasutaka Kamei, and Ahmed E.

Hassan. 2011. An empirical study of build maintenance effort. In Proc. 33rd Interna-

tional Conference on Software Engineering (ICSE), Richard N. Taylor, Harald C. Gall,
and Nenad Medvidovic (Eds.). ACM, 141–150.

Allan McRae. 2017. Glibc PKGBUILD manifest for Arch Linux. (2017). https://git.
archlinux.org/svntogit/packages.git/tree/trunk/PKGBUILD?h=packages/glibc

Musl 2017. Functional differences from glibc. (2017). wiki.musl-libc.org/wiki/
Functional_differences_from_glibc Accessed: 2017-04-10.

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009.
Producing wrong data without doing anything obviously wrong!. In ASPLOS ’09.

Sarah Nadi, Christian Dietrich, Reinhard Tartler, Richard C. Holt, and Daniel Lohmann.
2013. Linux variability anomalies: what causes them and how do they get fixed?.
In Proc. 10th Working Conference on Mining Software Repositories (MSR), Thomas
Zimmermann, Massimiliano Di Penta, and Sunghun Kim (Eds.). IEEE Computer
Society, 111–120.

Sarah Nadi and Richard C. Holt. 2012. Mining Kbuild to Detect Variability Anomalies
in Linux. In 16th European Conference on Software Maintenance and Reengineering

(CSMR), Tom Mens, Anthony Cleve, and Rudolf Ferenc (Eds.). IEEE Computer
Society, 107–116.

Làszlò Nagy. 2016. Build EAR. (2016). https://github.com/rizsotto/Bear
Gary V. Vaughan, Ben Elliston, Tom Tromey, and Ian Lance Taylor. 2000. GNUAutoconf,

Automake, and Libtool. Sams Publishing. https://www.sourceware.org/autobook/
autobook/autobook.html

Behan Webster, Jan-Simon Möller, Vinícius Tinti, and other contributors. 2014.
LlvmLinux. (2014). https://llvm.linuxfoundation.org/

David A. Wheeler. 2004. SLOCCount. (2004). http://www.dwheeler.com/sloccount/
Arch Linux wiki. 2016. Arch Linux (article on the official wiki). (2016). https:

//wiki.archlinux.org/index.php/Arch_Linux
Anna Zaks. 2017. Clang Static Analyzer. (2017). https://clang-analyzer.llvm.org
Shurui Zhou, Jafar M. Al-Kofahi, Tien N. Nguyen, Christian Kästner, and Sarah Nadi.

2015. Extracting Configuration Knowledge from Build Files with Symbolic Analysis.
In 3rd IEEE/ACM International Workshop on Release Engineering (RELENG), Bram
Adams, Stephany Bellomo, Christian Bird, Foutse Khomh, and Kim Moir (Eds.).
IEEE Computer Society, 20–23.

286

https://sourceware.org/glibc/wiki/Y2038ProofnessDesign
https://sourceware.org/glibc/wiki/Y2038ProofnessDesign
https://lwn.net/Articles/643407/
https://reproducible-builds.org
https://lwn.net/Articles/717076/
https://lwn.net/Articles/717076/
https://lists.freebsd.org/pipermail/freebsd-current/2012-September/036480.html
https://lists.freebsd.org/pipermail/freebsd-current/2012-September/036480.html
https://www.debian.org/ports/arm
https://sources.debian.org/stats/#hist_sloc
https://sources.debian.org/stats/#hist_sloc
https://devsonacid.wordpress.com/2014/07/12/how-compatible-is-libressl/
https://devsonacid.wordpress.com/2014/07/12/how-compatible-is-libressl/
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161212/412152.htm
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161212/412152.htm
https://lwn.net/Articles/734071/
https://lwn.net/Articles/734071/
https://www.musl-libc.org
http://www.pathname.com/fhs/pub/fhs-2.3.pdf
http://www.pathname.com/fhs/pub/fhs-2.3.pdf
https://wiki.freebsd.org/PortsAndClang#Build_failures_with_fixes
https://wiki.freebsd.org/PortsAndClang#Build_failures_with_fixes
https://www.youtube.com/watch?v=6l4DtR5exwo
https://www.iso.org/standard/29237.html
https://lists.freedesktop.org/archives/release-wranglers/2004-August/000923.html
https://lists.freedesktop.org/archives/release-wranglers/2004-August/000923.html
http://lists.llvm.org/pipermail/llvm-dev/2016-March/096449.html
https://git.archlinux.org/svntogit/packages.git/tree/trunk/PKGBUILD?h=packages/glibc
https://git.archlinux.org/svntogit/packages.git/tree/trunk/PKGBUILD?h=packages/glibc
wiki.musl-libc.org/wiki/Functional_differences_from_glibc
wiki.musl-libc.org/wiki/Functional_differences_from_glibc
https://github.com/rizsotto/Bear
https://www.sourceware.org/autobook/autobook/autobook.html
https://www.sourceware.org/autobook/autobook/autobook.html
https://llvm.linuxfoundation.org/
http://www.dwheeler.com/sloccount/
https://wiki.archlinux.org/index.php/Arch_Linux
https://wiki.archlinux.org/index.php/Arch_Linux
https://clang-analyzer.llvm.org

	Abstract
	1 Introduction
	2 The Cross-Platform Namespace Collision Problem
	3 Design and Implementation
	3.1 Challenges and Solutions
	3.2 Individual Package Build Process
	3.3 Inputs, Reproducibility, and Extensibility
	3.4 Red—the Redirected Execution Dæmon

	4 Evaluation
	4.1 Corpus
	4.2 Platforms Used for Building
	4.3 Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

