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Abstract

In this thesis, we develop algorithms for automatic trading and execution strate-

gies for institutional investors. In the first part, we develop optimal execution strate-

gies for traders who trade continuously using only market orders and account for

stochastic trading impact. There are a great variety of impacts in the electronic

trading market which may affect the performance of trading strategies in a direct or

indirect manner. To understand the way of measuring and taking control of the ef-

fects potentially caused by these impacts, some of traders opt to simulate the impacts

by using mathematical models such as stochastic control theories. These attempts

help traders to find solutions, such as how to develop an optimal execution strategy

by solving Hamilton-Jacobi-Bellman equations and how these strategies affect trad-

ing. In the second part, we focus on a new market, the cryptocurrencies’ market,

and find out the pairs trading strategies for the buy-side investors.

We introduce the traditional trading model, Almgren-Chriss model in Chapter 2,

and use it to benchmark the performance of the strategies we proposed. Chapters 3

and 4 illustrate how agents or sell-side traders interact in the market when stochastic

market impacts and latency impact are modelled. We also explore the numerical

methods and closed-form expression to obtain the optimal execution strategy. In

Chapter 5, we analyse how to execute by using co-integrated pairs trading as a buy-
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side trader in the cryptocurrencies’ market. We consider how to trade ‘BTC/USD’

and ‘ETH/USD’ by using the quantitative trading methods and find out the optimal

weight for each cryptocurrency.

This thesis was completed under the supervision of Professor Álvaro Cartea.
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Chapter 1

Introduction

1.1 Background

With the enormous development in computing technology, it is both necessary

and unavoidable for the financial industry to apply mathematical models and com-

puter science technologies to pricing financial products, trading underlying assets

and managing risks. For example, computer science technology has already been

employed in NASDAQ electronic exchange to execute orders. Due to its simplicity

and low requirement of computer equipment, time-weighted average price (TWAP)

and volume-weighted average price (VWAP) strategies can no longer satisfy the de-

mand of the agents who expect more complicated models to implement.

Also, market participants are required to implement stress tests in line with

BASEL III and MiFID II. Therefore, to better understand how the black box of

algorithmic trading and the trading impacts work, it is necessary for us to define

and differentiate quantitative trading, algorithmic trading (AT) and high frequency

trading (HFT).

Here, I define the trading as three types:

• Quantitative trading: Using the mathematical or statistical models to price the

derivatives and decide the hedging ratio. It is normally used to deal with the
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Chapter 1. Introduction 2

problem in a static form.

• Algorithmic trading: Buying or selling the underlying assets via the algorithm

solved by dynamic methods. We set up an objective function to measure

the trading performance and decide execution direction (long/short), time,

frequency and volume. Regarding frequency, it can either be low or high.

• High-frequency trading: Trading in high-frequency to seek opportunities based

on the algorithmic trading theories. These trading opportunities cannot be

realised by simply buying low and selling high. Actually it requires the par-

ticipants to make a quick response to the market change. In that case, the

agents will post orders to the limit order books (LOBs) more frequently than

their counterparts or post several marker orders (MOs) in a very short time

interval.

There are two fundamental types of orders in an order driven electronic market:

Market orders (MOs) and Limit Orders (LOs). A market order is an order to acquire

or liquidate shares immediately at the best price available at the moment when the

order is received by the trading system. It is widely used by agents whose primary

concern is to get the trade done immediately regardless of the price to be executed

at. In short, a market order guarantees the order’s immediate execution instead of a

particular price. For those agents who intend to capture a specific price or a better

price observed from the order book, they may choose another type of order called

‘limit orders’. By using a limit order, agents can set maximum or minimum price

at which they are willing to buy or sell shares, which means the orders can only be

executed when the price satisfies the conditions set beforehand by the agents. In this

regard, a limit order is unlikely to be executed if the price fails to touch the threshold

throughout the trading period. To put it in a nutshell, a limit order, contrary to

a market order, is a passive type of order that can guarantee a price instead of the
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execution.

In this thesis, we assume that the agents use only MOs to do the execution and

discuss the price impact as a result of executing MOs. If we ignore price impact, it

is likely that it can significantly influence the performance of the algorithmic trading

strategies. Specifically, market impact refers to the immediate changes in price and

the change in near future as a reaction of the market to an incoming order. In other

words, it describes the ‘causality’ between the incoming order and the subsequent

price change. Here, we consider two price impacts: temporary price impact and

permanent price impact. The temporary price impact is caused by market depth,

which refers to the available volume posted at different levels of the LOBs. The

permanent price impact is related to the downward (upward) pressure on the price

of the stock when agents liquidate (acquire) a large volume of shares.

Apart from the price impacts mentioned above, the agents have to face latency

impact as a result of different physical venues and computer devices. In this thesis,

we use the stochastic differential equations to model the impacts and determine the

corresponding optimal execution strategies.

This thesis looks at the pairs trading strategies in cryptocurrencies’ market, a new

market which tends to disrupt the existing ways of fund-raising and the secondary

markets.

1.2 Literature Review

Here is a brief review of studies on general algorithmic trading and optimal ex-

ecutions. The detailed reviews are followed in the specific chapters, including those

of the price impacts, latency impact and pairs trading.

Our study on optimal execution strategies starts with the basic elements of elec-

tronic markets and the main ways through which people participate in and interact



Chapter 1. Introduction 4

with the market. Technological improvements enable average agents to arrive at

informed decisions based on their trading ideas by making use of state-of-the-art

trading algorithms and quantitative analysis. The trading algorithms designed by

mathematical tools can accurately map a diachronical market behavior and be used

by agents as an empirical indicator of future results while making decisions [28]. Such

change in the ways of trading is largely driven by technology evolution which has

enabled algorithmic and high-frequency trading and the modernization of financial

market. Hence, more attention has been given to the studies on market microstruc-

ture and market impact on the price formation process and optimal trading strate-

gies [20]. Traders can also enjoy considerable benefits delivered by the algorithmic

execution as it has become an inseparable part of today’s financial market, includ-

ing the lower volatility and execution costs, as well as higher market stability and

transparency [4]. In terms of execution, despite the explosion of various derivative

orders types, two core order types are still most frequently used in today’s electronic

market: limit order and market order [1]. The orders are managed by a matching

engine and a limit order book (LOB) following price-time priority, also known as the

first-in-first-out (FIFO) execution schedule. LOB keeps a record of incoming and

outgoing orders received by the trading system, while the matching engine triggers

their execution by using predefined algorithms. The codes and instructions are em-

bedded in the algorithms. Each code or instruction targets a specific goal, such as

establishing when a possible execution can take place and what conditions need to

be satisfied when selecting the orders which will be executed [4]. Although there

are a wide variety of trading algorithms which are evolving in a similar fashion to

electronic trading, they can be generally categorized into three main types, namely

impact-driven algorithms, cost-driven algorithms and opportunistic algorithms, with

the aims to minimize the overall market impact, to reduce the overall trading costs

and to take advantage of the favorable market conditions respectively [19]. The most
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common impact algorithms are named time weighted average price (TWAP) and vol-

ume weighted average price (VWAP). The cost-driven algorithms do not take into

account market impact, timing risk, and other related factors such as the measures

of benchmarking and implementation shortfall. The design of a proper opportunistic

algorithm should take into account the following: (1) the fee structure associated

to each trading venue; (2) the latency, which in this case represents the time lag

between orders sent and processed from each single venue; and (3) the probability of

execution associated to each trading venue [19].

The algorithms designed for optimal execution in the electronic market are based

on numerous sophisticated mathematical analysis and modelling tools. To find out

optimal strategies with mean-reverting price, Leung and Li delve into three important

mean-reverting models: Ornstein-Uhlenbeck (OU), exponential Ornstein-Uhlenbeck

(XOU), and Cox-Ingersoll-Ross (CIR) models [22]. Because of their tractability

and interpretability, all these models are widely used in describing and estimating

mean reversion in asset prices. Apart from the mean-reverting processes, the modern

probability theory and ergodic theory of stationary stochastic processes are also used

in HFT by agents believing in technical analysis [32]. Mean reversion and stationarity

are considered as two equivalent ways of examining the same type of price series.

Although only few price series are found to be mean reverting, we can create more

by combining two or more individual price series that are not mean reverting into

a portfolio whose price turns out to be mean reverting [11]. ØKsendal and Sulem

provides Hamilton-Jacobi-Bellman (HJB) Equation with a solution through dynamic

programming method, which is the most important and useful solution method of

stochastic control problems that can be set about when developing optimal execution

strategies [27]. We mainly use their method to figure out the problems we propose

in this thesis.

A lot of scholars have also studied optimal execution strategies in the context
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of algorithm trading. The ‘optimal execution problem’ is encountered by investors

who seek to execute large orders over a given trading horizon and whose actions

give rise to impacts on the market price. The problem is mainly concerned with

how to develop a trading strategy that maximize an appropriate objective function,

and its key issue is to model the price impact of share trading [16]. Among these,

the breakthrough outcome of Almgren and Chriss’s study was regarded as the first

example to directly address the issue of permanent and temporary market impact

in a continuous time setting, and the thesis is considered as one of the milestones

within the literature spectrum of high frequency optimal execution [2]. Since then,

this area have attracted considerable attention, and numerous extensions have been

added to the Almgren-Chriss execution strategy. Álvaro Cartea incorporated the

permanent impact of market order-flow in an close-form execution strategy, which

consists of an Almgren-Chriss execution strategy adjusted by a weighted-average of

the future expected net order-flow [7].

1.3 Main Results & Outline

This thesis mainly focuses on the mathematical aspects of algorithmic trading.

It establishes mathematical frameworks for optimal execution strategies. It serves as

an specification for agents when they encounter various types of impacts during their

trading. The main theoretical tools employed are mean reverting process, numerical

analysis and stochastic optimal control theory.

In Chapter 2, the Almgren-Chriss (AC) execution strategy is introduced, which

we employ as a benchmark.

Chapter 3 discusses the model for price impacts and how the agents balance price

risk and price impacts. When the agents execute a large number of shares via MOs,

they will leave sustained price impacts. MOs produce two types of impacts on mid-



Chapter 1. Introduction 7

prices. Temporary impact refers to the order walking through the different levels of

the limit order books (LOBs), and after a period of time (milliseconds) the LOBs

can be replenished, depending of the elasticity of the price-formation process due to

liquidity (average, instantaneous, hidden). Permanent impact refers to the enduring

changes in the mid-prices due to the information conveyed by the MOs which are

impounded in the price of the asset. Chapter 3 assumes that they are modelled as

a stochastic process. We also analyse the optimal execution strategies when price

impacts are stochastic, then compare the results to the benchmark in Chapter 2.

We estimate model parameters by using historical NASDAQ millisecond-stamped

messages and show the performance of strategies developed here.

In Chapter 4, we define latency as the delay time between a signal and a re-

sponse because of the time it takes for the signal to travel inside the automated

trading system. This latency concerns traders since the quoted price of the asset

may fluctuate within this period, making the price initially captured by the trader

the moment he/she triggered the order different from the one when the order was

eventually received and executed by the exchange. The difference between the ob-

served price and execution price is referred to as latency impact. Latency impact is

a stochastic value affecting the trader’s trading behaviours. We provide an explicit

closed-form strategy for traders who seek to optimally liquidate or acquire shares

with the stochastic impact of latency taken into account. We assume the latency to

be an Ornstein-Uhlenbeck (OU) type process with jumps and employ an OU process

to formulate latency impact as it follows an auto-regression model in the discrete

form. The optimal trading speed in our strategy is generated by a dynamic pro-

gramming problem and is found to be affected by latency impact in a linear form.

We use historical data to calibrate the parameters in our strategy and we compare

its performance with that of the benchmark in Chapter 2.

In Chapter 5, we develop a pairing price model for the existed mainstream cryp-
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tocurrencies, including Bitcoin (BTC) and Ethereum (ETH). We introduce a short-

term alpha, which is the co-integrated factor between the pairs of ‘BTC/USD’ and

‘ETH/USD’. Base on the this stochastic factor, we set the objective function is ex-

ponential utility of the agent’s terminal wealth. Finally, we find an optimal closed

form amount for each underlying asset in this pair and compare the results based on

the simulations of different levels of the risk aversion.

The models in Chapter 3 and Chapter 4 derive from the models designed by

Álvaro Cartea in his book [4]. I make improvements on this basis. The model

in Chapter 5 was independently proposed by me. What Álvaro Cartea mentioned

in [8] is a high-order model, and I applied the most basic situation of this model to

cryptocurrencies.



Chapter 2

Methodology and Benchmark

2.1 Stochastic Control Problem

This section focuses on methodology and the problems we are trying to solve.

With reference to Cartea’s book [4], stochastic control problems are reflected and

applied in many aspects of financial modeling, for example, the optimal investment

in continuous time proposed and solved by Merton [24], which is regarded as one

of the classic applications of the stochastic control problems. There are also many

other applications, such as optimal dividend setting, optimal entry and exit prob-

lems, utility indifference evaluation and so on. Despite the broad applications in

different aspects, the core goal of the stochastic control problems is to maximize (or

minimize) certain expected profit (cost) functions by adjusting their own strategies

that influence the dynamics of the underlying stochastic system. Find the strategy

to reach the maximum (or minimum).

The agent’s wealth is affected by her behaviour on one hand and modulated by

the uncertain dynamics in the traded assets in a stochastic manner on the other

hand, while the resulting optimal strategies tied to the dynamics of the assets may

also give effects on the wealth. It is worth noting that, the optimal strategies turn

out to become Markov in the underlying state variables in many cases, even though

9
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the agent has already taken non-Markovian controls into consideration which may

depend on the entire history of the system.

The dynamic programming principle (DPP) and the related non-linear partial

differential equation (PDE) known as the Hamilton-Jacobi-Bellman (HJB) equation

- also called the dynamic programming equation (DPE), is a key tool frequently

used to solve the stochastic control problems.

2.1.1 The Optimal Liquidation Problem

We imagine a scenario where the agent holds a large amount of shares N of an

asset at the price of St, and it is no longer a value investment for her to hold based

on her fundamental analysis on the assets. As a result, the agent seeks to liquidate

the shares by the end of day (defined as time T in this case). However, the agent is

high likely to obtain poor prices if she tries to liquidate all the shares immediately

since market cannot provide ample liquidity to absorb a large sell order at the best

available price. In this case, a usual action that an agent may take to address the

issue is to spread this out over time and solve a stochastic control problem. Also,

the agent may be urgent to get rid of these shares by penalizing holding inventories

different from zero in the whole strategy. it νt denotes the rate at which the agent

sells her shares at time t, then the agent seeks the value function

H(x, S, q)ν = sup
ν∈A′,T

E

 Xν
T︸︷︷︸

Ternimal Cash

+Qν
T (SνT − αQν

T )︸ ︷︷ ︸
Terminal Execution

−φ
ˆ T

t

(Qν
s)2ds︸ ︷︷ ︸

Inventory Penalty

 , (2.1)

and the resulting optimal liquidation trading strategy ν∗, where,

dQν
t = −νt dt , qν0 = N , agent’s inventory, (2.2)

dSνt = −g(νt) dt+ σdWt , Sν0 = S , fundamental asset price, (2.3)
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Ŝνt = Sνt − f(νt) Ŝν0 = S , execution price, (2.4)

dXν
t = νt Ŝ

ν
t dt Xν

0 = x , agent’s cash. (2.5)

In the above,

• ν = (νt)0≤t≤T is the trading speed, which is the variable that agent controls

to liquidate or acquire shares in the optimization problem and ν∗t denotes the

optimal rate,

• Qν = (Qν
t )0≤t≤T is the agent’s inventory, which is affected by how fast the agent

trades,

• W = (Wt)0≤t≤T is a Brownian motion,

• Sν = (Sνt )0≤t≤T is bid-price process, and is affected primarily by the trading

rate as well,

• Ŝν = (Ŝνt )0≤t≤T is the execution price process, which the agent can sell by

walking the LOB,

• Xν = (Xν
t )0≤t≤T is cash process resulting from the agent’s execution strategy.

• g, f : R → R+ denote the permanent and temporary (negative) price im-

pact functions that agent’s trading action has on the fundamental price and

execution price respectively,

• At,T is the admissible set of strategies: F - predictable non-negative bounded

strategies.
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2.1.2 Dynamic Programming Equation / Hamilton-Jacobi-

Bellman Equation

As the agent always seeks to maximise the value function, we define the perfor-

mance criteria as follows,

H(t, x) := sup
u∈At,T

Hu(t, x) , and

Hu(t, x) := Et,x
[
G(Xu

T ) +
ˆ T

t

F (s,Xu
s , us)ds

]
,

where the notion Et,x[·] represents expectation conditional on Xu
t = x. These

two objects are the time indexed analog of the original control problem and the

performance criteria.

Theorem 2.1.1 Dynamic Programming Principle (DPP). The value function 2.1.2

satisfies the DPP

H(t, x) = sup
u∈At,T

Et,x
[
H(τ,Xu

τ ) +
ˆ τ

t

F (s,Xu
s , us)ds

]
, (2.6)

for all (t, x) ∈ [0, T ]× Rn and all stopping times τ ≤ T .

This equation is really a sequence of equations that tie the value function to its future

expected value, plus the running reward/penalty. And the DPE is an infinitesimal

version of the DPP. There are two key ideas involved:

• Setting the stopping time τ in the DPP to be the minimum between (a) the

time it takes the process Xu
t to exit a ball of size ε around its starting point,

and (b) a fixed (small) time h - all while keeping it bounded by T .

• Writing the value function (for an arbitrary admissible control u) at the stop-

ping time τ in terms of the value function at t using Itô’s lemma. Specifically,
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assuming enough regularity of the value function, we can write

H(τ,Xu
τ ) = H(t, x)+

ˆ τ

t

(∂t+Lus )H(s,Xu
s )ds+

ˆ τ

t

DxH(s,Xu
s )′σus dWs , (2.7)

where σut := σ(t,Xu
t , ut) for compactness, Lut represents the infinitesimal gen-

erator of Xu
t , and DxH(·) denotes the vector of partial derivatives with com-

ponents [DxH(·)]i = ∂xiH(·). For example, in the one-dimensional case,

Lut = µut ∂x + 1
2(σut )2∂xx

= µ(t, x, u)∂x + 1
2σ

2(t, x, u)∂xx

Suppose that u∗is an optimal control, then from Equation 2.6, we have

H(t, x) = sup
u∈At,T

Et,x
[
H(τ,Xu∗

τ ) +
ˆ τ

t

F (s,Xu∗

s , u
∗
s)ds

]
. (2.8)

By applying Itô’s lemma to write H(τ,Xu∗

τ) ) in term of H(t, x) plus the integral of

its increments, taking expectations, and then the limit as h↘ 0, we find that

∂tH(t, x) + Lu∗t H(t, x) + F (t, x, u∗) = 0 . (2.9)

We finally arrive at the DPE (also known in this context as the Hamilton-Jacobi-

Bellman)

∂tH(t, x) + sup
u∈A

(LutH(t, x) + F (t, x, u)) = 0 ,

H(T, x) = G(x) .

The terminal condition above follows from the definition of the value function in

Equation 2.1.2 from which we see that the running reward/penalty drops out an

G(Xu
T ) is FT measurable.
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2.1.3 Riccati Equation

In most cases, we need to solve the Riccati equation, named after Jacopo Riccati,

to find out the solution of the DPE. A Riccati equation is any first-order ordinary

differential equation that is quadratic in the unknown function, i.e. an equation of

the form

h′(t) = q0(t) + q1(t)h(t) + q2(t)h2(t) , (2.10)

where h is a function of t and h′ is the first order derivative. The function q0(t) 6= 0

and q2(t) 6= 0. If q0(t) = 0 the equation reduces to a Bernoulli equation, while if

q2(t) = 0 the equation becomes a first order linear ordinary differential equation.

Normally, we will have a terminal condition for the value function at time T , i.e.

one particular solution h∗ can be found. Then the general solution is obtained as

h(t) = h∗ + u(t). Substituting this into the Riccati equation, we have

h′∗ + u′ = q0 + q1 · (h∗ + u) + q2 · (h∗ + u)2 . (2.11)

Since

h′∗ = q0 + q1 h∗ + q1 h
2
∗ , (2.12)

u′ = q1 u+ 2q2 h∗ u+ q2 u
2 , (2.13)

i.e. there is only one Bernoulli equation left, which is

u′ = −(q1 + 2q2 h∗)u = q2 u
2 . (2.14)

To solve this equation, we set a new substitution v(t) = 1
u(t) , then Equation 2.14

changes to

v′ = −(q1 + 2q2 h∗) v = −q2 . (2.15)
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A set of solutions to the Riccati equation is then given by

h(t) = h∗ + 1
v(t) , (2.16)

where v is the general solution to the aforementioned linear Equation 2.15.

2.2 Almgren-Chriss Model

In this section, the classical Almegren-Chriss execution model is introduced as a

benchmark of our model. The agent (trader) only uses MOs to liquidate (acquire)

a large quantity of N > 0 shares, but he/she will be faced with both a temporary

price impact and a permanent price impact. As mentioned before, both impacts are

deterministic and assumed to be linear with respect to the quantity traded.

Supposing Q0 = N amount of shares is liquidated over the time period [0, T ], and

MOs are send at speed νt, then the inventory denoted by Qν
t , follows

dQν
t = ± νt dt , Qν

0 = N . (2.17)

The agent controls the rate ν.

In the equation 2.17, the sign ± depends on whether the problem is liquidating

(−) or acquiring (+) shares.

The trading process will be exposed to the temporary and permanent price impact

as follows.

2.2.1 Optimal Execution with Constant Price Impact

Here, we only focus on the problem of liquidating the asset, while acquiring the

asset is similar. The bid price (ask price in the case of acquisition) satisfies the SDE
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with a constant permanent price impact

dSνt = −bC νt dt+ σ dWt , (2.18)

where Sνt is the bid price process, which is affected by the trading rate νt. bC is the

constant, linear permanent impact that the agent’s trading action made on the price,

σ is the volatility component and Wt is a standard Brownian motion.

The execution price Ŝt also has a constant, linear temporary impact kC ≥ 0, i.e.,

Ŝt = Sνt − kC νt , (2.19)

where kC denotes the temporary price impact that the agent’s trading action made

on the price they can execute the trade at.

The agent’s cash process Xν
t satisfies the SDE

dXν
t = (Sνt − kC νt) νt dt (2.20)

We assume that the agent’s performance criterion is given by

Hν(t, x, S, q) = Et,x,S,q

 XT︸︷︷︸
Ternimal Cash

+QT (ST − αQT )︸ ︷︷ ︸
Terminal Execution

− φ
ˆ T

t

(Qν
u)2du︸ ︷︷ ︸

Inventory Penalty

 ,

and the expectation is conditional on Xt = x, Sνt = S, and Qt = q. The terminal

execution penalty coefficient is α ≥ 0 and the inventory penalty coefficient is φ ≥ 0.

The agent’s value function is

H(t, x, S, q) = sup
ν∈A

Hν(t, x, S, q) ,

where A is the set of admissible strategies: F -predictable non-negative bounded
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strategies.

2.2.2 Hamilton-Jacobi-Bellman (HJB) equation and its

solution

Applying the dynamic programming principle (DPP), the value function satisfies

the dynamic programming equation (DPE):

0 = ∂tH + 1
2σ

2∂SSH − φ q2 + sup
ν

[
(S − kC ν) ν∂xH − bC ν ∂SH − ν ∂qH

]
, (2.21)

subject to the terminal condition

H(T, x, S, q) = XT + qT ST − α q2
T . (2.22)

The solution has been originally proposed by Almgren and Chriss. Here, I confirm

it by providing a detailed derivation process.

Proposition 2.2.1 The DPE (2.21) admits the solution

H(t, x, S, q) = x+ q S + h(t) q2 , (2.23)

where

h(t) =
√
kC φ

1 + ζ e2 γ(T−t)

1− ζ e2 γ(T−t) −
1
2 b

C ,

with γ =
√

φ
kC

and ζ = α− 1
2 b

C+
√
kC φ

α− 1
2 b

C−
√
kC φ

.

Proof. To solve the DPE (2.21), we need to find the initial optimal trading speed

first

ν∗ = 1
2 kC

(S∂x − bC∂S − ∂q)H
∂xH

. (2.24)
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Then by substituting the ansatz into (2.21), we get the non-linear PDE

0 = (∂th− φ) q2 + 1
4k [b q + 2 q h(t)]2 . (2.25)

Dividing q2, we can get the coefficient who satisfies the non-linear ODE

0 = ∂th− φ+ 1
k

[
h(t) + 1

2 b
]2

, (2.26)

which is a Riccati type and can be integrated directly. Let h(t) = χ(t) − 1
2 b, we

obtain
∂tχ

k φ− χ2 = 1
k
, (2.27)

subject to χ(T ) = −α+ 1
bC

Then after integrating both sides of the above from t to

T , we will get the solution

χ(t) =
√
kC φ

1 + ζ e2 γ(T−t)

1− ζ e2 γ(T−t) , (2.28)

where γ =
√

φ
kC

and ζ = α− 1
2 b

C+
√
kC φ

α− 1
2 b

C−
√
kC φ

. �

Theorem 2.2.2 Verification. The function provided in Proposition 2.2.1 is the classic

solution of the DPE in equation (2.21). And the trading rate is given by

ν∗t = γ
ζ eγ(T−t) + e−γ(T−t)

ζ eγ(T−t) − e−γ(T−t) q
ν∗

t , (2.29)

where γ and ζ is defined in Proposition 2.2.1.

Proof. Function (2.23) is the first and second order differentiable to its variable t,

x, S and q. It also satisfies the DPE (2.21). We also verify the optimal strategy ν∗

constructed from the admissible solution set, i.e.
´ T

0 | ν
∗ | dt <∞, which means the

strategy is obviously integrable. �



Chapter 3

Stochastic Price Impacts

3.1 Introduction

As we mentioned in Chapter 1, in electronic trading markets, agents may often

find themselves in a situation where they need to buy or sell a great quantity of

shares, more than the current available liquidity in the LOB. In such scenario, the

parent order needs to be sliced into smaller, child orders, and the trader needs to

assess the effect of his early orders on the later orders. The amount of shares we are

referring to is too large to execute in one trade [4].

Thus ‘optimal execution problem’ in this chapter is an issue encountered by in-

vestors who seek to execute a large order over a given trading horizon and whose

actions give rise to impacts on the market price. If the agent executes large orders,

he/she will bear direct and indirect cost. The indirect cost includes the price im-

pact, which is quite difficult to quantify. In this chapter, we define the price impact

from two perspectives, namely temporary impact and permanent impact. Tempo-

rary impact refers to the order walking through the different levels of the limit order

books (LOBs). The LOBs may be replenished after a period of time (milliseconds),

otherwise it contributes to the permanent impact.

Permanent impact refers to changes in the prices that are generated over a pe-

19
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riod of five minutes as a result of the information conveyed by the Market Orders

(MOs) which are impounded in the price of the asset [4]. We assume that the two

impacts are both Ornstein-Uhlenbeck (OU) type stochastic process since we think

the instantaneous impact impact has a bit of noise around a deterministic value or

average. We explain how the agent would balance the price risk and price impacts

when he/she executes a large number of shares by using MOs. The optimal execu-

tion strategies with the stochastic price impacts are compared with the results of

our benchmark, which is the Almgren-Chriss strategy. We estimate model parame-

ters by using the historical NASDAQ millisecond-stamped messages, and show the

performance of strategies.

The breakthrough made by Almgren and Chriss in [2] was regarded as the first

one to directly address the issue of permanent and temporary market impact in a

continuous time setting, and here Chapter 3 is considered as one of the milestones

within the spectrum of high frequency optimal execution study. Since then, the area

has attracted consirable attention and numerous extensions have been added to the

Almgren-Chriss execution strategy [7]. Cartea’s model incorporated the permanent

impact of market order-flow in an close-form execution strategy, which consists of

an Almgren-Chriss execution strategy adjusted by a weighted-average of the future

expected net order-flow [7]. Here, we applied the technique developed by Cartea to

solve the new problem of stochastic price impacts.

The rest of this chapter is organised as follows. Section 3.2 gives an overview

of order flow and price impacts. Through the empirical data, we show the cross

effects between temporary and permanent price impact. In section 3.3, we develop

the model for the execution strategy, present the general stochastic process with the

order flow and price impacts, and derive the optimal execution strategy. We estimate

the parameters in the model and show the performance of the strategy in section 3.4

and conclude in section 3.5.
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3.2 Order Flow and Price Impacts

It is generally undesirable to execute large orders in a very limited timespan,

because large orders walk the LOB, and as such the average execution price is worse

than the best quote posted in the book. A widespread strategy to avoid price impact

when executing large orders is to split the order into smaller blocks which are then

executed over a time window. This strategy reduces the price impact of the trades

to complete the large order, but is exposed to price risk due to fluctuations of the

asset’s price over the execution window. The risk in price movements may be against

the investor’s trade direction, upward (resp. downward) pressure in prices if investor

is buying (resp. selling), as a result of the one-sided pressure of her MOs over the

execution window.

Hypothetically, all market participants’ MOs have both temporary and perma-

nent effects on prices. It will be assumed later that both of them are stochastic. In

the remaining part of this section, we present statistics and parameter estimated for

permanent and temporary price impact for stocks traded in NASDAQ in 2017, as

in [10].

Permanent Price Impact

It is supposed that a linear relation between net order-flow which is defined as

the difference between the volume of buy and sell MOs and changes in the price.

Thus, every trading day we perform the regression

∆Sn = b µn + εn , (3.1)

where ∆Sn = Snτ − S(n−1)τ is the change in the mid price, µn is net order-flow we

defined as the difference between the volume of buy and sell MOs during the time
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interval [(n − 1)τ, nτ ], εn is the error term, and b is the permanent price impact

parameter that we wish to estimate. In empirical analysis we choose τ = 5 min, dur-

ing which interval 99% price change were within the range [−0.1, 0.1] with reference

to [4].

See [3] for a discussion on linear market impact using proprietary execution data.

The first row in Table 3.1 shows the mean and standard deviation of the daily

estimate for b by removing the upper and lower 0.5% tails of the data (i.e. winsorize

the data) at first and then carrying out a robust linear regression on model (3.1).

Shape of LOB and temporary price impact

FARO INTC NTAP ORCL SMH

b̂ 1.42× 10−4 6.17× 10−7 5.96× 10−6 1.82× 10−6 5.48× 10−6

(1.00× 10−4) (2.28× 10−7) (2.35× 10−6) (7.40× 10−7) (4.47× 10−6)
k̂ 4.25× 10−4 3.61× 10−7 3.23× 10−5 1.20× 10−6 6.49× 10−6

(2.88× 10−3) (7.40× 10−7) (3.52× 10−4) (3.90× 10−6) (8.68× 10−5)
b̂
k 0.82 2.18 1.711.1 2.00 6.90

(0.65) (0.63) (0.72) (0.70) (5.60)
Midprice 40.55 23.04 38.33 33.67 37.90
σ 15.1% 3.9% 7.8% 5.4% 6.7%
λ+ 17.00 336.35 305.36 349.44 47.84

(10.01) (143.11) (163.27) (166.31) (30.15)
E[η+] 144.40 136.35 309.19 748.57 380.37

(22.14) (324.86) (55.15) (196.32) (135.87)
λ− 17.88 324.99 298.33 336.40 46.76

(11.58) (147.24) (153.46) (175.46) (28.92)
E[η−] 104.21 1464.90 313.48 790.67 383.71

(22.60) (325.82) (52.63) (197.57) (134.84)

Table 3.1: Permanent and temporary price impact (sell side) parameters for NAS-
DAQ stocks, average volume of MOs, average midprice, σ volatility (annualized) of
price returns, hourly mean arrival of MOs λ±, and average volume of MOs E[η±].
The standard deviation of the estimate is shown in parentheses. Data are from

NASDAQ 2017.

Changes in liquidity posted in the LOB are common and unpredictable. There are

a number of factors that affect the shape and dynamics of the LOB, including arrival

and processing of news, idiosyncratic reasons that prompt market participants to

supply liquidity, and how market participants reshuffle their LOs due to the changes
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in the LOB and the arrival of MOs. Consequently, liquidity takers cannot predict

how their MOs will walk the LOB nor can they quantify (ex-ante) the price impact

of their MOs. In this subsection we employ trade data to propose a model of the

price impact that MOs have on the book.

We define the price impact generated from walking the LOB as the difference

between the cash an investor received from liquidating shares by using an MO and

the best bid (the best ask for acquiring shares). We denote the amount of shares sold

by the investor at time t by ∆Qt (i.e. the change in the inventory Qt), and we assume

that the price impact is linear in the size of the order. Specifically, the difference

between the best bid and the cash received by the investor is the temporary price

impact of kt ∆Qt, where kt is the temporary price impact parameter.

To estimate kt throughout the trading day, we take a snapshot of the buy side

of the LOB per second, determine the price per share for various volumes of an MO

that walks the LOB, compute the difference between the average price per share and

the best bid at that time, and perform a linear regression. The slope of the linear

regression is an estimate of the temporary price impact per share. We do this each

second of each trading day. Figure 3.1 shows the estimation of the temporary impact

parameter for ORCL on 12 April 2017. The left panel shows the entire day and the

right panel is a five-minute window of the same day from 11.00 a.m. to 11.05 a.m.
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Figure 3.1: An illustration of temporary impacts estimated from the snapshots of the
LOBs using ORCL on 12th April, 2017. The right panel shows the estimation of the
parameter between 9.30 a.m. and 4.00 p.m. The right panel shows the estimation of

the impact parameter impacts from 11.00 a.m. to 11.05 a.m.
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The second row in Table 3.1 reports the mean and standard deviation of these

daily estimations after we excluded the first and last half-hour of the trading day, and

removed the upper and lower 0.5% tails of the data. As discussed in [10], including

both sides of the LOB to estimate the impact parameter k does not affect the results;

the order of magnitude of the estimated k is statistically the same for both sides of

the book.

Table 3.1 also reports the average mid-price, and the (annualized) volatility (σ)

of price returns calculated using open-to-close prices and employing five-minute win-

dows (to remove any excess spurious volatility due to micro-structure noise), the same

setting as Álvaro Cartea used in his model [4]. Additionally, the average (hourly)

number of buy and sell MOs, which is denoted by λ+ and λ− respectively, is also

reported, as well as the mean volume of MOs, which is denoted by E[η+] and E[η−]

respectively. For example, in NASDAQ, INTC receives 439 market buy orders on an

hourly basis, with an average of 1, 049 shares per order. For both sides of the LOB,

the parameter estimations of MO arrival and mean volume are statistically the same.

And it is expected to remain for a long time. There could be days or periods of the

day where there are more activities on the buy side or sell side, but in the long run

buy and sell MOs will be symmetric.

3.2.1 Cross Effects: Temporary and Permanent Price

Impact

The analysis above looks at temporary and permanent effects separately, but

their joint dynamics are a relevant quantity in execution algorithms. The trade-

off between costs that stem from walking the book and permanent impact is taken

into account in liquidation and acquisition strategies. Intuitively, increasing (resp.

decreasing) execution speeds can expose the strategy to costs from walking the LOB,



Chapter 3. Stochastic Price Impacts 25

but it also can lessen (resp. exacerbates) the effect of future adverse price trends

caused by the investor’s one-sided pressure on prices.

When both types of impact are linear in rates of trading, this trade-off is partly

captured by the ratio b/k. For example, the work of [10] shows how to optimally

execute positions when mid-prices are affected by order-flow. The authors show

that the optimal speed of execution consists of a deterministic Almgren-Chriss-like

strategy plus a term that accounts for expected order-flow, which is proportional to

the ratio b/k. A similar result is obtained in [9], which shows how to execute orders

that target VWAP (volume-weighted-average-price).
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Figure 3.2: Price Impact INTC using daily observations for 2017.

On the left side of Figure 3.2, we show a scatter plot of the daily pair (k, b) for

INTC. It is clear that there is a positive relation between temporary and permanent

impact. Usually, high (low) permanent impact days are those in which MOs of the

same volume must deplete more (less) levels of the book. The right side of the figure

depicts a histogram of b/k, which shows that this ratio ranges between 0.5 and 5 and

is symmetric around 2.5 approximately.

Finally, Table 3.2 shows the correlation between b and k, and their skewness.

Since b/k is rather positive, it is safe to assume b and k have the same sign. Intu-

itively, one expects these two impacts to be correlated because execution algorithms

will trade off permanent and temporary impact.
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FARO INTC NTAP ORCL SMH
corr(b, k) -0.0532 0.1072 0.0035 -0.0244 -0.0616
skew(b) 1.38 1.00 0.69 0.58 1.28
skew(k) 15.14 10.30 13.69 15.21 15.73
Table 3.2: Skewness of b and k and their correlation.

3.3 Optimal Execution with Stochastic Price

Impact

The investor must choose the speed at which he/she sends MOs to liquidate N > 0

shares over a trading horizon T > 0. Here we focus on the liquidation problem – the

setup for the acquisition problem is similar. We denote the liquidation speed, which

is controlled by the investor, by ν = (νt){0≤t≤T}, and denote the controlled inventory

by Qν = (Qν
t ){0≤t≤T}, which is affected by how fast he/she trades, and satisfies

dQν
t = −νt dt , Qν

0 = N . (3.2)

Mid-price dynamics and price impact. The mid-price process Sν = (Sνt ){0≤t≤T}

satisfies the SDE

dSνt = bt (µt − νt) dt+ σ dW 1
t , Sν0 = S , (3.3)

where µt = µ+
t − µ−t is the net order flow of market participants. The participants

buy MOs at speed µ+ = {µ+
t }0≤t≤T and sell MOs at speed µ− = {µ−t }0≤t≤T , which

exclude the investor’s own trading rate. They are jointly assumed Markov, cadlag

and bounded P−a.s.

The shocks to the mid-price are represented by the standard Brownian motion

W 1 = (W 1
t ){0≤t≤T}, and we assume that the buy and sell order flows µ± are inde-

pendent of W 1. The process b = (bt){0≤t≤T} represents the permanent price impact

that order-flow has on mid-prices, which we will provide further details below.
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The execution price received by the investor is

Ŝνt = Sνt −
(

1
2∆ + kt νt

)
, (3.4)

where ∆ ≥ 0 is the bid-ask spread, which is assumed to be invariable. Here we only

consider the problem of liquidating the assets, thus we set ∆ = 0 and let Sνt be the

bid-price. We assume the bid-price have the same dynamic as the mid-price. The

temporary price impact process k = (kt){0≤t≤T} satisfies the stochastic differential

equation (SDE)

dkt = β (ξ − kt) dt+ σk dW
2
t + d

Nt∑
i=1

ηi . (3.5)

The parameters β > 0, σk > 0, and ξ ≥ 0, are all constants, W 2 = (W 2
t ){0≤t≤T} is

a standard Brownian motion, N = (Nt){0≤t≤T} is a Poisson process with intensity

λk, and {η} i.i.d.∼ F , where F is a distribution function with support on [0,∞) and

E[η] = η0 <∞, where E[ · ] denotes the expectation operator.

We assume the permanent price impact parameter b = (bt){0≤t≤T} satisfies

bt = `1 + `2 kt , (3.6)

where `1 and `2 are constants, see Figure 3.2 and analysis therein.

The processes N , W 1, W 2, µ±, and random variable η are all independent of each

other.

Performance criterion and value function. The investor’s objective is to maxi-

mize the cash proceeds from selling the shares. We denote the controlled cash process

by Xν = (Xν
t ){0≤t≤T}, which satisfies the SDE

dXν
t = Ŝνt νt dt , Xν

0 = x . (3.7)
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The investor’s performance criterion is

Hν(t, x, S, b, k,µ, q) = Et,x,S,b,k,µ,q
[
XT +Qν

T

(
SνT − 1

2∆− αQν
T

)
− φ
ˆ T

t

(Qν
u)2 du

]
,

(3.8)

where µ = {µ+, µ−}, and the operator Et,x,S,k,b,µ,q[ · ] represents expectation in the

condition (with a slight abuse of notation) of Xt = x, St− = S, bt− = b, kt− = k,

µ+
t− = µ+, µ−t− = µ− and Qt = q, and its value function is

H(t, x, S, b, k,µ, q) = sup
ν∈A

Hν(t, x, S, b, k,µ, q) , (3.9)

where A is the set of admissible strategies consisting of F -predictable processes such

that
´ T

0 |νu| du < +∞, P− a.s..

The right side of the performance criterion (3.8) contains three terms. The first

term XT is the investor’s terminal cash from liquidating the shares throughout the

trading horizon. The second term is the proceeds received by the investor from

liquidating any remaining inventory Qν
T at the end of the strategy. This leftover

inventory is liquidated at bid-price SνT , then pays the costs associated with crossing

the spread, liquidity taking fees, and market impact. All these costs are captured by

the liquidation penalty parameter α ≥ 0.

Finally, the third term is the running penalty φ
´ T
t

(Qν
u)2 du where φ ≥ 0 is the

inventory penalty parameter. This penalty does not affect the investor’s revenues,

but affects the optimal liquidation rate. When the value of the inventory penalty

parameter φ is high then carrying inventory becomes very expensive from the utility

point of view. As such, the liquidation speed will be higher. Therefore, this param-

eter could be interpreted as an urgency parameter. Involving the running inventory

penalty is also justified in a setting where the agent considers model uncertainty,

i.e. he/she is ambiguity aversion. Álvaro Cartea shows that including the running

penalty is equivalent to the agent considering alternative models with stochastic
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drifts [6]. But it penalizes those models using relative entropy. Under that circum-

stance, the higher the value of φ is, the less confident about the trend of the bid-price

the agent will be.

3.3.1 Dynamic Programming Equation

The dynamic programming equation associated with the optimal control problem

(3.9) suggests that the value function H(t, x, S, b, k,µ, q) is the unique solution of

the Hamilton-Jacobi-Bellman (HJB) equation:

∂tH + 1
2σ

2 ∂SSH − φ q2 + LµH + LkH + bµ ∂SH

+ sup
ν

[(S − k ν) ν∂xH − b ν ∂SH − ν ∂qH] = 0 , (3.10)

where

LkH = β (ξ − k) ∂kH + 1
2 σ

2
k ∂kkH + λE {[H(t, x, S, k + η, q)−H(t, x, S, k, q)]} ,

and Lµ is the generator of the process µ.

Upon taking the sumpremum in the HJB (3.10), we obtain the optimal speed of

trading in feedback form as:

ν∗ = S

2k −
b ∂SH + ∂qH

2 k ∂xH
,

and the HJB becomes

∂tH+1
2σ

2 ∂SSH−φ q2+LµH+LkH+bµ ∂SH+ 1
4k ∂xH

[S ∂xH − (b ∂SH + ∂qH)]2 = 0 .

(3.11)

Since in closed-form the HJB (3.10) is not able to be solved, we will employ nu-

merical methods to obtain the investor’s optimal liquidation speed. Correspondingly
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we assume the ansatz:

H(t, x, S, b, k,µ, q) = x+ q S + h0(t, b, k,µ) + h1(t, b, k,µ) q + h2(t, b, k,µ) q2 ,

subject to terminal conditions h0(T, b, k,µ) = h1(T, b, k,µ) = 0 and h2(T, b, k,µ) =

−α. And the optimal liquidation speed in the feedback form is

ν∗ = −b q + h1 + 2h2 q

2 k . (3.12)

Upon substituting it back into the HJB (3.10) we obtain:

(
∂t + Lµ + Lk

)
h0 +

(
∂t + Lµ + Lk

)
h1 q +

(
∂t + Lµ + Lk

)
h2 q

2

−φ q2 + bµ q + 1
4k (b q + h1 + 2h2 q)2 = 0 .(3.13)

Recalling that bt = `1 + `2 kt and collecting like terms in q leads to the following

coupled system of PIDEs:

(
∂t + Lµ + Lk

)
h0 + 1

4k h
2
1 = 0 , (3.14)(

∂t + Lµ + Lk
)
h1 + (`1 + `2 k)µ+ 1

2k h1 (`1 + `2 k + 2h2) = 0 , (3.15)(
∂t + Lµ + Lk

)
h2 − φ+ 1

4k (`1 + `2 k + 2h2)2 = 0 . (3.16)

We show the numerical scheme that we employed to solve this coupled system of

PIDEs. See Appendix 7.1. However, note that if

β = ξ = 0, σk = 0 , λk = 0 ,

in the temporary price impact model (3.5), and in the meanwhile we assume the
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temporary and permanent impact parameters are constants to find a solution, i.e.

kt = kC , and bt = `1 + `2 k
C = bC . (3.17)

In this case, the coupled system of PIDEs becomes

(∂t + Lµ)h0 + 1
4 kC h

2
1 = 0 , (3.18)

(∂t + Lµ)h1 + bC µ+ 1
2 kC h1 (bC + 2h2) = 0 , (3.19)

(∂t + Lµ)h2 − φ+ 1
4 kC

(
bC + 2h2

)2
= 0 , (3.20)

with the terminal conditions h0(T,µ) = h1(T,µ) = 0 and h2(T,µ) = −α, which can

be solved in closed-form.

To solve h2, we note that equation (3.20) is of Riccati type without source terms

in µ, and its terminal condition is independent of µ, hence the solution must be

independent of µ. Accordingly, equation (3.20) can be integrated accurately. First,

let h2(t) = χ(t)− 1
2 b

C , then rearranging equation (3.20). We obtain

∂tχ

k φ− χ2 = 1
k
, (3.21)

subject to χ(T ) = −α + 1
kC

.

Next, integrate both sides of the above from t to T :

χ(t) =
√
kC φ

1 + ζ e2 γ(T−t)

1− ζ e2 γ(T−t) , (3.22)

where γ =
√

φ
kC

and ζ = α− 1
2 k

C+
√
kC φ

α− 1
2 k

C−
√
kC φ

.

Recalling that h2(t) = χ(t)− 1
2 b

C and substituting the equation (3.22) back into

it, we find

h2(t) =
√
kC φ

1 + ζ e2 γ(T−t)

1− ζ e2 γ(T−t) −
1
2 b

C , (3.23)
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where γ and ζ are defined as above.

We then move on to solve (3.19), which is a linear PIDE satisfied by h1, where

bC µ is a source term and h2 + 1
2 b

C acts as an effective discount rate. The solution

of this PIDE equation can be derived by Feynman-Kac, thus

ht(t,µ) = bEt,µ
[ˆ T

t

exp
{

1
k

ˆ u

t

(
h2(s) + 1

2 b
)
ds

}
µudu

]
,

which can be simplified to

h1(t,µ) = b

ˆ T

t

(
e−γ(T−u) − ζ eγ(T−u)

e−γ(T−t) − ζ eγ(T−t)

)
Et,µ[µu]du . (3.24)

Similarly, by the Feynman-Kac theorem

h0(t,µ) = 1
4 k

ˆ T

t

Et,µ[h2
1(t,µu)] du . (3.25)

Putting the above results together, we find that the optimal trading speed is

given by

ν∗t = γ
ζ eγ(T−t) + e−γ(T−t)

ζ eγ(T−t) − e−γ(T−t) Q
ν∗

t −
bC

2 kC

ˆ T

t

(
ζ eγ(T−u) − e−γ(T−u)

ζ eγ(T−t) − e−γ(T−t)

)
E[µu | F

µ
t ] du ,

(3.26)

which is also the optimal liquidation speed derived in [10]. Here Fµt denotes the

natural filtration generated by µ. If we have ζ → 1, and the optimal trading speed

simplifies to

lim
ζ→1

ν∗t = γ
cosh(γ(T − t))
sinh(γ(T − t)) Q

ν∗

t −
bC

2 kC

ˆ T

t

(
sinh(γ(T − u))
sinh γ(T − t))

)
E[µu | F

µ
t ] du , (3.27)
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3.4 Performance of Strategy

In this section we employ simulations to illustrate the performance of the exe-

cution strategy. To this end, in subsection 3.4.1 we estimate the model parameters

for price impact, which is followed by subsection 3.4.2. In that part, we will discuss

the performance of the strategy and compare it to the Almgren-Chriss (AC) optimal

execution strategy.

3.4.1 Estimation of Model Parameters

We employ a Maximum Likelihood Estimation (MLE) to estimate the parameters

of the temporary price impact which appears in the SDE (3.5). We minimize the

negative of the log-likelihood

logL = −
∑{

log
[
λ∆t φ

(
ζ1,t,

√
η2 + σ2)

)
+ (1− λ∆t)φ (ζ2,t, σ)

]}
,

where the processes γ1,t and γ2,t are defined as

ζ1,t = ∆kt − β (ξ − kt−1)− ηt , (when a jump occurs) ,

ζ2,t = ∆kt − β (ξ − kt−1) , (when no jump occurs) .

To obtain the initial values that we employ in the MLE above, we assume that

there are no jumps in the temporary impact parameter. Consequently, (3.5) becomes

a standard Orstein-Uhlenbeck process. And using standard MLE methods, we will

obtain an (initial) estimate of the parameters β, ξ, and σk. Next, to obtain the initial

value for the mean jump size used in the MLE we assume any increase in the impact

parameter kt is caused by a jump, and employ these observations to calculate an

initial average jump size.

Once we obtained the parameters of the SDE satisfied by k, we would use ordinary
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least squares to estimate the parameters of the model for b.

Table 3.3 shows the results of the parameter estimates. First, the daily average

temporary and permanent impact we got indicate a hidden linear relation, which is

the estimation of ̂̀1 and ̂̀
2. Then, in each trading day, we have an estimation set of

β̂, ξ̂, σ̂k, η̂0 and λ̂k. The number showed in the first part of the table (first five rows)

is the mean and standard deviation of each trading day during one year respectively.

FARO INTC NTAP ORCL SMH

β̂ 459.91 759.29 1610.71 2418.90 5004.40
(252.19) (468.45) (1054.57) (1958.69) (6215.44)

ξ̂ 1.86× 10−4 5.66× 10−7 2.81× 10−5 1.83× 10−6 2.74× 10−6

(1.17× 10−4) (2.65× 10−6) (3.82× 10−4) (1.19× 10−5) (2.50× 10−5)
σ̂k 4.50× 10−3 1.29× 10−5 2.65× 10−4 6.63× 10−5 1.62× 10−4

(2.70× 10−3) (7.12× 10−5) (1.92× 10−4) (4.82× 10−45) (4.38× 10−4)
η̂0 6.22× 10−5 1.85× 10−8 5.16× 10−7 8.39× 10−8 3.00× 10−7

(6.63× 10−5) (3.73× 10−8) (7.23× 10−7) (4.09× 10−8) (1.04× 10−6)
λ̂k 1100 7238 6336 6937 2617

(358.84) (881.40) (944.36) (987.79) (824.79)

̂̀
1 1.42× 10−4 6.05× 10−7 5.96× 10−6 1.82× 10−6 5.51× 10−6

(6.38× 10−6) (1.59× 10−8) (1.49× 10−7) (4.89× 10−8) (2.83× 10−7)̂̀
2 −1.85× 10−3 0.0330 2.33× 10−5 −4.63× 10−3 −3.18× 10−3

(2.20× 10−3) (0.0194) (4.23× 10−4) (0.012) (3.26× 10−3)

Table 3.3: Parameter estimates for temporary and price impact models. Data are
from all trading days in NASDAQ 2017.

3.4.2 Simulations of the Strategy with Both Impacts

In this section, we perform simulations to show the behaviour of the optimal

strategy by using our model. We use the data of INTC as an example. The perfor-

mance of other stocks can be found in the Appendix 7.2. Using the linear regression

results shown in the table 3.3, it can be seen that the relation between temporary

and permanent impacts is

bt = 6.05× 10−7 + 0.033 kt , (3.28)
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i.e. ̂̀1 = 6.05×10−7 and ̂̀
2 = 0.033. Meanwhile, we set the price of the trading asset

at the starting point as S0 = 23.04 and its volatility as σ = 0.039. Set the other

parameters as follows.

β = 759.29 , ξ = 5.66× 10−7 , σk = 1.29× 10−5 , λk = 7238 ,

E[η] = η0 = 1.85× 10−8 , α = 103 ξ , φ = 103 ξ .

Presumably the investor must liquidate N = 1000 shares of the stock INTC over

T = 1 day. And we set the net order flow as zero for short, i.e µ = 0.

If the net order flow is zero, the optimal strategy in (3.26) will change to the

Almgren-Chriss strategy in Chapter 2.

We use this trading rate as our comparison benchmark, and compare the financial

performance of the strategy developed here with that of an agent who employs the

Almgren-Chriss liquidation strategy without incorporating stochastic temporary and

permanent price impacts. The temporary price impact in the benchmark is kC = ξ

(recall that ξ is the long term level of kt, see (3.5)). Meanwhile, the permanent

impact in the benchmark is bC = `1 + `2 k
C . And we perform 10,000 simulations.

3.4.3 Performance comparison of Both Stochastic Im-

pacts

The top panel of Figure 3.3 shows two paths of temporary and permanent impact.

The bottom panel shows one simulation path for inventory and liquidation speed.

Here, we show such a changing path compared with the Almgren-Chriss strategy.

We can see that when the temporary impact is big, the trading speed will be slow

and the inventory will reduce more smoothly. The trading speed decreases as the

inventory gets smaller and smaller.
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Figure 3.3: Optimal trading with stochastic temporary and permanent impact

The top panel of Figure 3.3 shows two paths of temporary and permanent impact.

The bottom panel shows one simulation path for inventory and liquidation speed

during the first 78 minutes after market opening (0.2 day = 0.2 * (16 - 9.5) * 60 = 78

minutes). Here, we show such a changing path compared with the Almgren-Chriss

strategy. We can see that when the temporary impact is big, the trading speed will

be slow and the inventory will reduce more smoothly in the bottom right figure. The

trading speed decreases as the inventory gets smaller and smaller.

To compare the performance of the strategy with the performance obtained by

employing Almgren-Chriss, we measured this value by basis points using

Xν∗
T −XAC

T

XAC
T

× 104 , (3.29)

where Xv∗
T and XAC

T mean our terminal cash and the one using Almgren-Chriss,

which are obtained by the agent in the end. These values include the penalty.

We calculate the mean and the percentage of the runs where the strategy of
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stochastic temporary impact underperforms those of constant impact. We list the

results in the Figure 3.4 and Table 3.4.

With stochastic impacts, the performance is expected to be better than that of

a constant case. The mean of the performance is 13.8281. And no runs show that

the strategy with stochastic impacts underperforms the strategy in a constant case.

The mean of the performance shows us that in both scenarios, the terminal cash in

the stochastic case tends to be larger than that in the constant ones. According to

Table 3.4, the non-constant strategy outperforms the constant one in 100% of the

simulations.
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Figure 3.4: The savings per share measured in basis points

mean 13.8210
stdev 0.0897
5% 12.7048
25% 13.3643
50% 13.8278
75% 14.2824
95% 14.9475

Xv∗
T < XC

T 0%
Table 3.4: Quantiles of relative performance in basis points

3.4.4 Different levels of running inventory penalty

In the previous comparison, we set up the inventory penalty as φ = 103 ξ. Next,

we will list some different levels of running inventory penalty to check whether it
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can influence the performance. Table 3.5 shows that as the penalty increases, the

mean of performance will grow too, at a rather impressive speed. The penalty helps

to improve the performance and decrease the standard deviation, which means the

Sharpe ratio increases.

φ FARO INTC NTAP ORCL SMH

10ξ 0.9688 1.2207 1.3893 1.4424 1.4479
(0.4384) (0.2232) (0.0632) (0.0079) (0.0022)

102ξ 3.7165 4.3678 4.8294 4.9712 4.9866
(0.4030) (0.1459) (0.0406) (0.0060) (0.0015)

103ξ 11.7752 13.8210 15.2839 15.7334 15.7817
(0.3162) (0.0897) (0.0259) (0.0049) (0.0023)

104ξ 37.3033 43.8171 48.4373 49.8660 50.0197
(0.2317) (0.0456) (0.0181) (0.0056) (0.0043)

105ξ 118.5907 139.4379 154.2430 158.8259 159.3188
(0.1619) (0.0258) (0.0156) (0.0081) (0.0079)

Table 3.5: Performance comparison with different levels of In-
ventory Penalty

3.5 Chapter Conclusions

We propose a model that captures the dynamics of temporary and permanent

price impact. In this case, temporary price impact refers to a process where MOs

walk through the different levels of LOBs which will subsequently be replenished

after certain timespan (milliseconds). With regard to permanent price impact, it

refers to changes in the permanent bid-price due to the information conveyed by the

MOs which are impounded in the price of the asset.

Data from the NASDAQ exchange are employed to motivate a Ornstein-Uhlenback

type model which has a jump diffusion. In this model, jumps are achieved according

to a Poisson counting process. Meanwhile, the impacts decay to a ‘long term’ level.

We use this to pose an optimal execution problem and employ numerical methods

to solve the HJB equation related.
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We illustrate the performance of the strategy through taking in simulations and

comparing its results with those of the classical Almgren-Chriss model. Particularly,

we estimate the model parameters by analysing NASDAQ millisecond-stamped mes-

sages for FARO, INTC, NTAP, ORCL, SMH and examine the performance of the

strategies through simulations under different scenarios. And it shows that account-

ing for the stochastic nature of price impact can improve the performance of trading

algorithms.



Chapter 4

Stochastic Latency Impact

4.1 Problem Introduction

In this chapter we define latency as the delay time between the submission of the

signal and the receipt of the electronic exchange response to that signal, or in another

way the time it takes for the signal to travel in the automated trading system. A

trader who seeks to optimally liquidate or acquire shares in the electronic exchange

will inevitably encounter the latency regardless of the nature of the trading. Latency

is vital to traders, as it has an impact on the execution price. This price impact is

stochastic because the price of the asset fluctuates during the period of the latency,

making the price that was initially observed by the trader different from the one that

was ultimately received and executed by the trading system, even though the period

of latency can be as short as thousandths and millionths of seconds.

According to our definition, latency is mainly attributed to the limitation of the

exchange technology. Here, we do not discuss how to reduce the latency impact,

but rather we look for an optimal execution strategy for traders, with stochastic

latency impact taken into account. To this end, we assume that all traders are in the

same technical environment, and latency is a stochastic factor that always exists in

the system. We also assume that traders only use Market Orders (MOs) to do the

40
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execution so as to avoid extra price risk.

Latency may give rise to stochastic fluctuations, making the execution price

higher or lower than the observed price that a trader intends to capture when he/she

submits the order.

We model latency as Ornstein-Uhlenbeck (OU) type process with jumps, and

we employ another OU process to formulate the latency impact as it follows an

auto-regression model in the discrete form. We will provide an explicit closed-form

expression for the optimal execution strategy, taking stochastic latency into account.

The optimal trading speed in our strategy is generated by a dynamic programming

problem and is found to be affected by the latency impact in a linear form. Here, we

again employ the technique mentioned in Chapter 2 and use it to solve the problem.

The rest of the chapter is organised as follows: Section 4.2 defines the latency

in detail. In section 4.3, we set up a model for the execution strategy with the

latency impact formulated as an OU process, then we derive the optimal execution

strategy, accompanied with stochastic latency, from the model. Finally, in section

4.4, we employ simulations to showcase the performance of the strategy and section

4.5 concludes the chapter.

4.2 Latency and Latency Impact

4.2.1 Latency Impact

We symbolise the price that a trader observes in the the market as St. However,

the price received eventually by the exchange is different from St due to latency.

We label the price received by the exchange market as S̃t. In this section, we will

present the expected difference between the submission of the observed price St and
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the execution price S̃t+ , which we define as the latency impact ηt:

ηt = Et
[
St − S̃t+|Ft

]
, (4.1)

where ηt is an Ft-adapted process based on a filtered probability space(Ω ,F , {Ft}t≥0,P).

Meanwhile, ηt can be positive or negative, depending on the direction of the price

fluctuation.

4.2.2 Stochastic Latency

Based on the definition of latency, namely the delay time between the signal and

the response time it takes for the signal to travel in the automated trading system, we

make the assumption that latency is given by the stochastic process L = (Lt){0≤t≤T}.

It is a stochastic process that satisfies the stochastic differential equation (SDE)

dLt = ψ (θ − Lt) dt+ d
Nt∑
i=0

Ji , (4.2)

where θ is the mean value of delay time, ψ is the speed at which latency reverts

to its mean level, J are i., i.e. random variables which denote the jump size and

follow a uniform distribution U(0, Jmax), N = (Nt){0≤t≤T} is a homogeneous Poisson

counting process with arrival intensity λ, independent of J .

Based on this delay time, we simulate latency impact using real data and the

Alphabet Inc. stock (GOOG) as an example. When we use a high frequency trading

strategy which means trading is executed in every 20ms, and we assume that the

best condition is 10ms delay for getting the signal. Here, the best condition means

that we need 10ms to send the signal at least due to the objective factors. Therefore,

we set ψ = 0.9, θ = 10, λ = 1 and Jmax = 20.
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Figure 4.1: The Figure on the left shows the delay time. The center and right figures
illustrate the latency impact ηt during one day and a 10000ms time window.

The first graph in the Figure 4.1 is a simulation of the delay time in a 100ms

period. We find that jumps close to 20ms present a longer delay time. The shortest

duration is 10ms delay time. The graph in the middle shows the latency impact

during a single trading day (12th April, 2017). The graph on the right zooms in

the latency impact during a 10000ms period. We observed that the behaviour of the

latency impact looked like an OU process. This fact encourages us to use an OU

type model to describe the latency impact.

4.2.3 Latency Impact Auto-regression Test

The process of latency impact appears to behave like an OU process. We then

run the Augmented Dickey-Fuller(ADF) test to check whether the latency series fits

the AR(1) model or not.

We write the latency process in discrete form

ηt = ω ηt−1 + εt , (4.3)

where ω is auto-regression lag one term coefficient and εt is a white noise process.

We make the null hypothesis that ω = 0 against the alternative hypothesis that

ω 6= 0. The test statistic is

DFt = ω̂ − 1
SE(ω̂) . (4.4)
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Ticker AAPL AMZN FB GOOG INTC MSFT NFLX NVDA TSLA
mean(ηt) 2.6e-5 9.2e-5 7.3e-6 -1.5e-4 -5.6e-6 1.6e-5 2.2e-6 2.8e-5 -2.5e-4
Std(ηt) 0.0058 0.0673 0.0058 0.0685 0.0035 0.0042 0.0089 0.0080 0.0416
ω̂ 0.1228 0.0830 0.1314 0.0660 0.1285 0.1459 0.0900 0.1033 0.831

(3.4e-5) (0.0045) (3.3e-5) (0.0447) (1.2e-5) (1.7e-5) (7.9e-5) (6.3e-5) (0.0018)
DFt 1 1 1 1 1 1 1 1 1

Table 4.1: Latency Data Description: This is the case of ψ = 0.9, θ = 10, λ = 1 and
Jmax = 20 in the delay time model. All of the parameters are estimated by using the
nine stocks traded in NASDAQ. All of the data are taken from 12th April, 2017, in

the high frequency form.

If DFt = 1, we reject the null hypothesis, i.e. we conclude that the series is an

auto-regressive process.

In Table 4.1, we trade every 10ms as above. We observe the mean of latency

impact is very close to zero although the standard deviations are more significant.

Here we use the Yule-Walker Method to do the auto regression for the latency impact.

The estimated parameters for ω can be found in the table. The numbers in brackets

are the mean square errors (MSE) of ω̂.

The results of the ADF test shows that we should reject the null hypothesis for

every ticker. Hence, the latency impact is not a white noise series; there exists auto

correlation in the series itself. This leads us to use an OU process to model the

latency impact.

We also explore the Brownian Motion case of the stock price, i.e. we test whether

the latency impact still fits the AR(1) model in the event that the stock follows a

Brownian motion and whether the delay time is based on model 4.2. And we find it

still fits the Brownian price. More details can be found in the Appendix.

4.2.4 Robustness Test of Delay Time Model

Here, we check how different values of θ impose influence to the latency impact.

The parameter θ depends on the travel distance of the signal. By the lowest latency,

trading engines are located physically closer to the exchanges, or even in the same
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building (co-location) to further reduce latency. These investors may gain the ‘ultra

low latency’, which means the delay time is below 1ms. In this case, we set θ = 0

to show the best location condition. Normally speaking, the trading engine down

the road from the exchange with a distance of 100 miles will have around 1ms of the

delay time. For example, the investors in Chicago (around 800 miles to NY) and Los

Angeles (around 2800 miles to NY) who both want to trade the stocks on the NYSE

will suffer different delay times.

In this section, we keep the other parameter constantly, i.e. ψ = 0.9, λ = 1 and

Jmax = 20. We choose θ = 0, θ = 5, θ = 10 and θ = 15 to see whether the latency

impact still fits the AR(1) model.

Ticker: GOOG θ = 0 θ = 5 θ = 10 θ = 15
mean(ηt) -1.3432e-04 -4.5941e-5 -1.4868e-04 -8.3804e-5
Std(ηt) 0.0504 0.0617 0.0685 0.0734
ω̂ 0.0571 0.0616 0.0660 0.0882

(0.0025) (0.0038) (0.0447) (0.0053)
DFt 1 1 1 1

Table 4.2: Different Levels of θ

From table 4.2, we confirm that the latency impact fits AR(1) model. When θ

increases, the mean of the latency impact will not change much although volatility

of latency will increase. Longer average delay time leads to more uncertainties of the

execution price.

4.3 The Model

4.3.1 Stochastic Latency Impact Model

We have the basic model setup for the bid-price (for the liquidation problem, and

bid-price for the acquisition problem)of an underlying asset. We adapt this model

by including a stochastic impact from the latency. This latency impact follows the

OU process with mean zero, which means we do not take the location factor into



Chapter 4. Stochastic Latency Impact 46

consideration and assume that the investors’ trading engines here are placed in the

same premises as an exchange server. We call this co-location and denote this best

condition as the ultra low latency.

dSt = σ dWt , (4.5)

Ŝνtt = St + ηt − k νt , (4.6)

dηt = −β ηt dt+ ση dW
η
t , (4.7)

where d [W,W η]t = ρ dt is the relation between the underlying price fluctuation and

the latency impact is ρ, which is assumed to be constant.

Here, the underlying price follows a standard Brownian motion with volatility σ,

and the execution price will be influenced by two facts: the temporary impact caused

by walking the limit order book and the latency. Here, we assume the temporary

impact only depends on the investors’ trading speed. The parameter k is constant

and fixed in our model.

The latency impacts we sustain depend on the market conditions mentioned pre-

viously, and the impacts can be either negative or positive. In the latency model,

the mean is zero, and β is the speed of the mean reversion, while ση is the volatility

of the latency impact.

We use the parameter set ψ = 0.9, θ = 0, λ = 1 and Jmax = 10 in the delay

time model with reference to [4]. The reason why we set θ = 0 is that we make the

assumption that there exists an ideal situation where delay time can be dispelled.

We then calibrate the parameters in our model accordingly and get the following

results. The value in the brackets is the MSE of the estimation.
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Ticker AAPL AMZN FB GOOG INTC MSFT NFLX NVDA TSLA
β̂ 1.0143 1.1100 1.1502 1.0727 0.1481 1.1664 1.0693 1.1174 1.0813

(2.4e-5) (0.0031) (2.4e-5) (0.0031) (8.8e-6) (1.2e-5) (5.4e-5) (4.4e-5) (0.0012)
σ̂η 0.0143 0.1575 0.0148 0.1616 0.0092 0.0108 0.0207 0.0187 0.1029

(0.0028) (0.0629) (0.0029) (0.0538) (0.0011) (0.0014) (0.0072) (0.0060) (0.0276)
Table 4.3: Coefficients in the Stochastic Latency Impact Model: This is the case
where ψ = 0.9, θ = 0, λ = 1 and Jmax = 10 in the delay time model. All the
parameters are estimated by using the nine stocks in NASDAQ. All the data are

taken from 12th April, 2017, in the HF form.

4.3.2 Performance criterion and value function.

Suppose we have a large quantity of N shares to be liquidated. We denote the

liquidation speed which is under the control of the investor, i.e. ν = (νt){0≤t≤T}, and

denote the inventory by Qν = (Qν
t ){0≤t≤T}. This is affected by how fast the investor

trades, and satisfies

dQν
t = −νt dt , Qν

0 = N . (4.8)

The investor’s objective is to maximize the cash proceeds from selling shares. We

denote the cash process by Xν = (Xν
t ){0≤t≤T}. This satisfies the SDE

dXν
t = Ŝνt νt dt , Xν

0 = x . (4.9)

The investor’s performance criterion is

Hν(t, x, S, η, q) = Et,x,S,η,q
[
XT +Qν

T (SνT − αQν
T )− φ

ˆ T

t

(Qν
u)2 du

]
, (4.10)

where the operator Et,x,S,η,q[ · ] represents the expectation when (with a slight abuse

of notation) Xt = x, St = S, ηt = η and Qt = q. Here α is the terminal penalty for

the final execution and φ is the inventory penalty. Its value function is

H(t, x, S, η, q) = sup
ν∈A

Hν(t, x, S, η, q) , (4.11)
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where A is the set of admissible strategies consisting of F -predictable processes such

that
´ T

0 |νu| du < +∞, P−a.s..

4.3.3 Dynamic Programming Equation

The dynamic programming equation that we want to solve is given by

∂tH + 1
2 σ

2∂SSH + 1
2 σ

2
η∂ηηH + ρ σ ση∂SηH − φ q2 − β η ∂ηH

+ sup
ν∈A
{(S + η − k ν) ν ∂νH − ν ∂qH} = 0 , (4.12)

with terminal condition H(T, x, S, η, q) = XT +QT (ST − αQT ).

The first order condition gives us the initial optimal liquidation speed as

ν∗ = S + η

2 k − ∂qH

2k ∂xH
. (4.13)

From looking at the terminal condition, and the way q enters into the DPE, we

assume that the value function can be written as a quadratic function in q,

H(t, x, S, η, q) = x+ q S + h0(t, η) + h1(t, η) q + h2(t) q2 , (4.14)

with the terminal condition h2(T ) = −α and h1(T, η) = h0(T, η) = 0.

Then the supremum part is rewritten as

sup
ν∈A
{(S + η − k ν) ν ∂νH − ν ∂qH} = 1

4k (η − h1 − 2h2q)2 . (4.15)

Since we set the ansatz in the form (4.14), the cross term of the second derivative

of H is zero, i.e. ∂SηH = 0. As a result, we do not need to account for the correlation

between the underlying price and latency impact.

Moreover, upon applying the ansatz to the above non-linear PDE (4.12), we find
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that

q2
(
∂th2 − φ+ 1

k
h2

2

)
+ q

(
∂th1 − β η ∂ηh1 + 1

2ση
2∂ηηh1 + 1

k
h1 h2 −

1
k
η h2

)
+

[
∂th0 − β η∂ηh0 + 1

2ση
2∂ηηh0 + 1

4k (η − h1)2
]

= 0 . (4.16)

4.3.4 Solving the PDE System

Since the equation in (4.16) must be valid for each q > 0, each term in brackets

must be individually vanished. This provides us with the PDE system in h0, h1 and

h2 as follows:

∂th2 − φ+ 1
k
h2

2 = 0, h2(T ) = −α ,(4.17)

∂th1 − β η ∂ηh1 + 1
2ση

2∂ηηh1 + 1
k
h1 h2 −

1
k
η h2 = 0, h1(T, η) = 0 ,(4.18)

∂th0 − β η∂ηh0 + 1
2ση

2∂ηηh0 + 1
4k (η − h1)2 = 0, h0(T, η) = 0 .(4.19)

The first equation in (4.17) is a Ricatti type equation. See details in Chapter 2.

We rearrange the equation as follows.

∂th2√
kφ− h2

+ ∂th2√
kφ+ h2

= 2
√
φ

k
, (4.20)

Integrating both sides from t to T, with the terminal condition h2(T ) = −α, we can

find the solution.

We rewrite (4.18) into a linear equation in η, i.e. h1(t, η) = l0(t) + l1(t) η, where

l0(T ) = l1(T ) = 0. This gives

η
(
∂tl1 − β l1 + 1

k
l1 h2 −

1
k
h2

)
+
(
∂tl0 + h2

k
l0

)
= 0 . (4.21)
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We have two ODEs,


∂tl1 − β l1 + 1

k
l1 h2 − 1

k
h2 = 0 ,

∂tl0 + h2
k
l0 = 0 .

(4.22)

Multiplying by the integral factor e−(β−h2
k

) t gives

ˆ T

t

e−(β−h2
k

) s l1(s)ds =
ˆ T

t

e−(β−h2
k

) sh2

k
ds , (4.23)

Then we obtain the solution l1(t) = −
´ T
t
e−(β−h2(s)

k
)(s−t) h2(s)

k
ds.

Since l0(T ) = 0, we see that l0(t) = 0.

Finally, we rewrite (4.19) in the form h0(t, η) = m0(t) +m1(t) η+m2(t) η2, where

m0(T ) = m1(T ) = m2(T ) = 0. This gives

η2
(
∂tm2 − 2 β m2(t) + 1

4k

)
+η

(
∂tm1 − β m1(t)− 1

2k h1

)
+
(
∂tm0 + ση2 m2(t) + 1

4kh
2
1

)
= 0 .

(4.24)

The solution of it is

m2(t) = − 1
8 kβ

(
e−2β(T−t) − 1

)
, (4.25)

m1(t) = − 1
2k

ˆ T

t

e−β(s−t)h1(s,η) ds , (4.26)

m0(t) = 1
4k

ˆ T

t

(
ση

2 m2(s) + 1
4kh1(s, η)2

)
ds . (4.27)

Based on the calculation mentioned above, we obtain the final solution of h2, h1

and h0 as follows:

h2(t) =
√
k φ

1 + ζ e2γ(T−t)

1− ζ e2γ(T−t) , (4.28)

h1(t, η) = −η
ˆ T

t

e−(β−h2
k

)(s−t) h2

k
ds , (4.29)
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h0(t, η) = 1
4k

ˆ T

t

(
ση

2 m2 + 1
4kh

2
1

)
ds− η

2k

ˆ T

t

e−β (s−t)h1 ds− η2 m2(t) .(4.30)

where γ =
√

φ
k
, ζ = α+

√
k φ

α−
√
k φ

and m2(t) = − 1
8 kβ

(
e−2β(T−t) − 1

)
.

Theorem 4.3.1 Verification. Based on the value function in (4.11), we find the op-

timal trading speed is given by

ν∗t = 1
2k

[
ηt−

(
1−
ˆ T

t

e−(β−h2
k

)(s−t) h2

k
ds

)
− 2h2 q

]
, (4.31)

where h2(t) =
√
k φ 1+ζ e2γ(T−t)

1−ζ e2γ(T−t) , γ =
√

φ
k

and ζ = α+
√
k φ

α−
√
k φ

, which is the optimal control

we seek. Here, ηt− is the latency impact we capture from the previous trading period.

Proof. Since x+ q S+h0(t, η) +h1(t, η) q+h2(t) q2 is clearly a classical solution, and

the standard results imply that it suffices to confirm that this control is indeed an

admissible strategy. Meanwhile, from the form of the optimal control in (4.13), we

have

ν∗ = 1
2 k (η − h1 − 2h2 q) , (4.32)

and the explicit form of h2(t) and h1(t, η), thus we obtain the expansion form of ν∗

above. �

4.4 Simulations of the Strategy with Stochas-

tic Latency Impact

4.4.1 Optimal Strategy

In this section, we perform the simulation to show the behaviour of the optimal

liquidation provided in (4.31). We assume that the trader will liquidate 1,000 shares

of GOOG, i.e. N = 1000.
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We use the GOOG data on 12th April, 2017, as an example. The coefficients

we use here are the coefficients of the delay time model in the previous section, i.e.

ψ = 0.9, θ = 0, λ = 1 and Jmax = 10. We also make some assumptions for the

parameters as follows:

k = 0.001 , φ = 0.1 , α = 10

Here T = 1 means we focus on a single trading day, i.e. intraday trading. The other

parameters such as β = 1.0727 and ση = 0.1616 can be found in Table 4.3.1.
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Figure 4.2: Sample path of underlying Stock Price, latency impact, Optimal Inven-
tory and trading speed. The data is from GOOG on 12th April, 2017.

4.4.2 Simulations of Latency Impact

We run 1,000 times of the simulations of the latency impact and compare the

performance with that in the Almgren-Chriss model. The optimal liquidation speed

in the Almgren-Chriss model is

νACt = γ
ζ eγ(T−t) + e−γ(T−t)

ζ eγ(T−t) − e−γ(T−t) q
ν
t , (4.33)
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where γ and ζ are defined as in the equation (4.28).

We use the following measurement to evaluate the performance

Xν∗
T −XAC

T

XAC
T

× 104 . (4.34)

The unit here is basis points (bps).
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Figure 4.3: The simulation results and performance.

Figure 4.3 shows the simulation results. The first two are the heatmaps of the

optimal inventory and the trading speed. From the figures, we see the strategy

is very close to the Almgren-Chriss one, especially the mean of our strategy. The

performance saving per share is always positive. The dashed red lines indicate the

5%, 25%, 50%, 75% and 95% quantiles moving from left to right.

4.4.3 Performance of the Strategy

Using the method elaborated in the last section, we show the performance of each

stock as in Table . Here, µP and σP represent the mean and the standard deviation

of the performance from 1000 simulated results, and the percentage represents the

quantile of the performance.
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Ticker AAPL AMZN FB GOOG INTC MSFT NFLX NVDA TSLA
µP 0.2134 0.2180 0.2141 0.2120 0.2134 0.2148 0.2151 0.2101 0.2081
σP 0.0016 0.0030 0.0012 0.0026 0.0022 0.0016 0.0024 0.0031 0.0039
5% 0.2105 0.2134 0.2121 0.2074 0.2098 0.2122 0.2112 0.2049 0.2013
25% 0.2126 0.2161 0.2134 0.2103 0.2118 0.2136 0.2135 0.2079 0.2054
50% 0.2135 0.2178 0.2141 0.2124 0.2136 0.2148 0.2150 0.2100 0.2083
75% 0.2144 0.2199 0.2149 0.2138 0.2151 0.2157 0.2168 0.2123 0.2110
95% 0.2158 0.2236 0.2161 0.2158 0.2168 0.2180 0.2194 0.2155 0.2144

Table 4.4: Performance of the Strategy (in basis points).

4.5 Chapter Conclusions

We show the existence of latency impact by empirical evidence and employ an

OU type process to model it, which follows the AR model in the discrete form. We

then provide a closed form trading strategy to deal with this latency impact as it

is encountered in the context of electronic trading system. The strategy discussed

in this paper is established on the basis of general assumptions that are widely

recognized in high frequency trading, for example, where MO are posted in every

10ms, while particularly, we add a stochastic delay time into the strategy to simulate

the interval period caused by the travelling of eh signals.

For the delay time model, we discussed different levels of the lowest latency, which

is the mean in the model. It is confirmed that there exists the autocorrelation in the

latency impact, encouraging us to use the OU type process.

The optimal strategy is a linear form of latency impact. The improvement is not

great, if it is at least statistically significant. However, if we focus on the market

micro-structure and perform the simulation, we can detect the improvement based

on the real data from nine stocks in nice NASDAQ stocks. The results show the

improved performance when considering latency impact. To further improve the

performance in future, we can set price that is not Brownian and execute a lager

buy/sell orders.



Chapter 5

Pairs Trading of Cryptocurrencies

5.1 Introduction

A cryptocurrency is a digital asset designed to work as a medium of exchange, us-

ing cryptocurrency to secure the transactions and to control the creation of additional

units of the currency [12]. Cryptocurrencies are also referred to as digital currency,

token, cryptocoin, and e-money. Bitcoin was the first cryptocurrency traded in the

market. It started to be traded in 2009 and its supply is limited to the total of

21,000,000 coins. Currently around 16,000,000 coins are in circulation.1 The supply

of Bitcoin increases when the activity that the so-called miners verify that the Bit-

coin transactions are genuinely happens. Therefore, new Bitcoins are issued to pay

for the mining service.

Nowadays, over 1,500 cryptocurrencies can be traded in different cryptocurrency

exchanges that operate 7 days a week, 24 hours a day.2 In traditional electronic

foreign exchange (FX) markets and cryptocurrency exchanges, agents can buy or

sell cryptocurrency pairs. Most cryptocurrency exchanges are electronic and the

trade is done via a limit order book. The cryptocurrency pairs consist of either two

cryptocoins or a cryptocoin and one of the major currencies, including USD, GPB,
1https://coinmarketcap.com/.
2Ibid.

55
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Euros, JPY.

In this chapter we develop a ‘Pairs Trading’ strategy to take positions in two

cryptocurrency pairs. As an application, we show the performance of the strategy

for BTC/USD and ETH/USD. Here the quote currency for both pairs is the USD

(US dollar), and the base currencies are Bitcoin (BTC) and Ethereum (ETH). Pairs

Trading is a classic strategy which makes the most of the predictability of the joint,

rather than the individual behaviour of the two financial instruments, which in this

paper are cryptocurrency pairs. Pairs Trading algorithms profit from betting on the

empirical fact that spread deviations tend to return to their historical or predictable

level.

In our model, the spread between the two currency pairs is modelled by a co-

integrating factor. However, finding pairs or collection of financial instruments that

are co-integrated is not straightforward. In many cases a collection of assets, such

as currencies and interest rates, may exhibit dynamics that are co-integrated, but

within a short period of time the co-integration structure breaks down.

Co-integration, different from correlation, analyzes the movements in prices and

identifies the degree to which two values are sensitive to the same mean or average

price over a given time period. It doesn’t indicate the direction that the pairs will

move towards. Co-integration only measures whether or not the distance between

them remains stable over time, i.e. if two cryptocurrency pairs are co-integrated then

it is possible to form a stationary pair from some linear combination of crypto-pair

A and crypto-pair B.

There are few of academic literatures on cryptocurrencies and their statistical

properties. However, there are a large number of papers that probe into pairs trading

strategies. Their contribution is either on the statistical aspects or the modelling

of the relationship between pairs of assets, whilst a few of others look at how to

dynamically take positions in the pairs. For example, [14] proposes a mean-reverting
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Gaussian Markov chain model for the spread of a pair of assets. [13] puts forward a

model for co-integrated asset prices and focuses on the valuation of options.

One of the previous papers which employs stochastic control techniques to trade

pairs of co-integrated assets is that of [25]. The authors model the log-relationship

between a pair of stock prices as an Ornstein-Uhlenbeck process and use it to formu-

late a portfolio stochastic control problem. More recently, [22] studies the optimal

timing strategies for trading a mean-reverting price spread. The authors formulate

an optimal double stopping problem to analyze the timing to start and subsequently

liquidate the position subject to transaction costs. [21] analyzes a multiple entry-exit

problem on a pair of co-integrated assets. The authors recast the sequence of optimal

stopping problems as variational inequalities and performs extensive numerical sim-

ulations (as well as calibrate to a pair of dual-listed Chinese stocks) to illustrate how

the optimal strategy behaves. The work of [26] considers two correlated assets whose

spread is modelled by a mean-reverting process with stochastic volatility and show

how the investor switches between holding no stocks, longing one stock shorting the

other, and vice-versa.

[30] develops an optimal portfolio strategy to invest in two risky assets as well

as the money market account, assume that log-prices are co-integrated, and find, in

closed-form, the dynamic trading strategy maximizes the investor’s expected util-

ity of wealth. [25] models the log-relationship between a pair of stock prices as an

Ornstein-Uhlenbeck (OU) process and solve a portfolio optimization based prob-

lem. The work of [17] analyses a cointegration-based statistical arbitrage model

and applies the mean variance utility to measure the performance of their trading

strategies. [31] establishes the portfolio which consists of a bank account and two

co-integrated stocks and the objective is to maximize for a fixed time horizon, the

expected terminal utility of wealth. Our paper is very close to this work, but with

different model setup and underlying assets. [8] assumes that the drift of asset re-
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turns consists of an idiosyncratic and a common drift component and generalise the

model to allow the investor to trade in m co-integrated assets. [23] focuses on a multi-

dimensional version of the model of [30]. Their underlying assets is the Bitcoins in

the different exchanges, which are Bitstamp, BTC-e and itBit. However, what we

will focus in this thesis is that we will only probe into the trading strategies of dif-

ferent cryptocurrency pairs in one exchange. In this Chapter, we continue to apply

the methodology created by Cartea [4] to the two dimensions to solve the problem

of cryptocurrencies.

The rest of the chapter is organised as follows: Section 2 presents the dynamics of

the co-integrated assets and lists the empirical evidence of the co-integrated factor.

Section 3 develops the investor’s optimal control problem and derives in closed-form

the optimal trading strategy. In Section 4, we employ high-frequency data of BTC

and ETH to simulate the strategy and analyse the profit and loss (P&L) and conclude

in Section 5.

5.2 Empirical Evidence

5.2.1 Co-integration test

Here, we use Johansen co-integration test to verify whether the co-integrated

factors continuously exist between the underlying assets, [18] and [15]. Johansen

test can be treated as a multivariate generalisation of the augmented Dickey-Fuller

test. The generalisation is the examination of linear combinations of variables for

unit roots, which can be used for the multi-variables. According to Johansen co-

integration test, we suppose Π is the product of the vector of adjustment parameters

β for the series itself and the vector of co-integrating vectors α as

Π = β′ α , (5.1)
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If the matrix Π equals a matrix of zeroes, that is, Π = 0, then we can say that the

variables are not co-integrated.

We use the matlab routine jcitest. We employ Apple, Inc. (AAPL) and Face-

book, Inc. (FB) as the stock market’s examples, and Bitcoin (BTC), Ethereum

(ETH) and Litecoin (LTC) as the cryptocurrency market’s examples. We run the

Johansen test and get the results as follows. The data we use are all last trade price,

picked in every 10 minutes for stocks and every 15 minutes for cryptocurrencies.

Table 5.1 shows the test statistics and their p-values in parenthesis. Here the

null hypothesis is that the co-integrated factor is zero. If we set the confidence at

95%, then the stock pairs of AAPL& FB and AMZN & FB fail to reject the null

hypothesis on 14th and 15th June, which means the co-integration is weak on these

two days. And the cryptocurrency pair BTC & ETH shows co-integration with each

other during this period.

Pairs/Date 12th June 13th June 14th June 15th June 16th June
AAPL & AMZN 20.9153 19.0932 11.0111 15.4948 11.3147

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
AAPL & FB 9.8339 11.2344 2.9326 2.9120 10.0247

(0.0023) (0.0010) (0.0868) (0.0880) (0.0021)
AMZN & FB 9.8867 14.9904 2.8654 3.3207 18.9225

(0.0023) (0.0010) (0.0905) (0.0685) (0.0010)
BTC & ETH 4.6135 19.0237 10.9866 4.6651 5.1798

(0.0318) (0.0010) (0.0010) (0.0308) (0.0230)
BTC & LTC 15.5892 22.0198 9.7561 5.7328 3.7312

(0.0102) (0.0010) (0.0393) (0.2421) (0.3242)
ETH & LTC 17.2376 27.6714 15.6473 3.2198 19.7824

(0.0113) (0.0010) (0.0010) (0.8022) (0.0233)

Table 5.1: Johansen test for AAPL & AMZN, AAPL & FB, AMZN &
FB and BTC & ETH from 12th June to 16th June, 2017. Estimated

p-values are shown in parenthesis.

Table 5.2 is the intraday Johansen test for these stocks and cryptocurrency pairs

on 16th June. We took this date as an example, and the other days are similar.

Compared with Table 5.1, although all of these pairs show that they are co-integrated,

these relationship may change during that day.
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Pairs/Time 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00
AAPL & AMZN 6.9004 8.8327 12.8229 7.3661 5.9426 3.6536

(0.0089) (0.0037) (0.0010) (0.0071) (0.0148) (0.0560)
AAPL & FB 5.1895 3.6299 12.4434 6.1947 5.8930 5.6696

(0.0229) (0.0568) (0.0010) (0.0131) (0.0152) (0.0174)
AMZN & FB 6.4322 4.4216 13.7305 14.5327 10.6357 7.0158

(0.0114) (0.0355) (0.0010) (0.0010) (0.0013) (0.0085)
Pairs/Time 0:00-4:00 4:00-8:00 8:00-12:00 12:00-16:00 16:00-20:00 20:00-24:00
BTC & ETH 7.1441 6.1554 6.0357 7.7783 18.1351 7.9289

(0.0080) (0.0133) (0.0142) (0.0054) (0.0010) (0.0049)
BTC & LTC 7.1441 6.1554 6.0357 7.7783 18.1351 7.9289

(0.0080) (0.0133) (0.0142) (0.0054) (0.0010) (0.0049)
ETH & LTC 7.1441 6.1554 6.0357 7.7783 18.1351 7.9289

(0.0080) (0.0133) (0.0142) (0.0054) (0.0010) (0.0049)

Table 5.2: Johansen test for AAPL & AMZN, AAPL & FB, AMZN & FB and BTC &
ETH on 16th June, 2017

Here, we divide one trading day into 6 pieces. For the stock market is from 10am

to 4pm, while the cryptocurrencies change in every four hours. We can find that

AAPL & AMZN breaks the link from 3pm to 4pm and AAPL & FB fails to pass

Johansen test from 11am to 12pm.

Table 5.3 shows the trading volume for the stocks and cryptocurrencies discussed

in the Table 5.1 and 5.2. There are more than 500 cryptocurrencies’ exchanges

trading BTC and ETH, and Kraken is one of the top 10 exchanges all over the world.

We can use market order (MO) or limit order book (LOB) to trade on Kraken.

Pairs/Date 12th June 13th June 14th June 15th June 16th June
AAPL 72,307,300 34,165,400 31,531,200 32,165,400 50,361,100
AMZN 9,447,200 4,580,000 3,974,900 5,373,900 11,472,700
FB 33,170,200 20,483,400 20,808,800 18,994,200 22,882,400
BTC 2,569,530,000 1,781,200,000 1,696,560,000 2,026,260,000 1,195,190,000
ETH 2,882,650,000 1,717,380,000 1,272,580,000 2,463,450,000 1,096,280,000

Table 5.3: Trading volume of AAPL, AMZN, FB, BTC and ETH from 12th June
to 16th June, 2017 (USD)

Meanwhile, in the common exchange procedure of cryptocurrencies, we can fig-

ure out the exchange rate of BTC/USD, ETH/USD and ETH/BTC, with the last

one offering us the foundation to obtain the co-integrated factor between the two

underlying assets.
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5.2.2 Relationship between BTC and ETH

Different from the stock market, we can find various pairs in the cryptocurrencies’

market, such as BTC/USD, ETH/USD and ETH/BTC. By collecting the price data

in every 15 minutes, Table 5.2 shows BTC and ETH price and their trend on 16th

June, 2017.
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Figure 5.1: Date: 16th June, 2017. Top left: BTC/USD. Top right: ETH/USD.
Bottom left: ETH/BTC. Bottom right: Scaled BTC (0.1415 BTC) and ETH.

We scale the BTC/USD to compare with ETH/USD in the bottom right of the

figure. In order to get this scaled rate, we assume that the pair of ETH/BTC follows

the AR(1) model, making Xt denote the ETH/BTC rate and Xt as follows:

Xt+1 = φ0 + φ1 Xt + ε , (5.2)

where φ0 and φ1 is the parameter of lag one term. Here we use the matlab rou-

tine arima to estimate the parameter in the AR(1) model. By fitting the data of

ETH/BTC on 15th June. We get the results as follows:
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Parameter Estimation t Statistic P-value
φ0 0.000221422 4.02508 2.8575e-5
φ1 0.998375 2477.46 1e-10

Table 5.4: Estimation of the AR(1) for
ETH/BTC on 15th June

Based on 5.2, we can also change it into the continuous form

dXt = κx (θx −Xt) dt+ σx dWt , (5.3)

where κx = 1 − φ1 = 0.0016, θx = φ0
1−φ1

= 0.1363 and σx is the standard derivation

of the residual of regression in equation 5.2, which is 0.0253.

Since the mean reverting speed is very slow, we use the matlab routine forecast

to forecast ‘ETH/BTC’ rate in every 15 minutes on 16th June. And then we take

the average rate of these forecasting rates, 0.1415, as the scaled rate of BTC. Finally,

we can reach to the difference between these co-movement pairs for the evidence of

co-integrated factor.
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Figure 5.2: Difference between 0.1415
BTC and 1 ETH

In Figure 5.1, we already show the ex-
change rate of ETH/BTC, which means
we can use this rate of BTC to exchange
ONE ETH at that day that time. And we
also have BTC and ETH in the same fig-
ure for comparison. Figure 5.2 shows the
difference between them.



Chapter 5. Pairs Trading of Cryptocurrencies 63

5.3 Co-integrated Log Prices with Short-Term

Alpha

In this section, we explain the co-integrated factor attached in the pair of two

underlying digital assets and find statistical evidence to confirm that the two assets

are co-integrated with each other.

5.3.1 Co-integrated Factor

We assume the underlying cryptocurrencies S1 and S2 follow the SDEs whose drift

of asset returns consists of a common component. One of them is the infrastructure

token, i.e. BTC, etc. The other is ETH or any altcoin which can be exchanged by

BTC, etc., via ICO. Thus, we have a pair of stochastic differential equations (SDEs)

as follows:

dS1,t

S1,t
= αt dt+ σ1 dW1,t , (5.4)

dS2,t

S2,t
= −αt dt+ σ2 dW2,t (5.5)

and (W1,W2) = (W1,t, W2,t)0≤t≤T are standard correlated Brownian motions with

instantaneous correlation ρ.

What needs to be noted here is that when αt = 0, both S1 and S2 are geometric

Brownian motions with zero drift, hence they are martingales for t ≤ T . In general,

however, αt will be non-zero representing short-term deviations from martingale

behaviour, and might be considered as a ‘short-term alpha’ affecting both underlying

cryptocurrencies.

More specifically, we set this common component as below:

αt = a1 logS1,t + a2 logS2,t , (5.6)
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where a1 and a2 are constant, it becomes a linear relationship between the pair.

Here, we derive the log price to satisfy the SDEs straightforward, i.e.

d logS1,t =
(
αt −

1
2 σ

2
1

)
dt+ σ1 dW1,t , and (5.7)

d logS2,t =
(
−αt −

1
2 σ

2
2

)
dt+ σ2 dW2,t . (5.8)

Thus, the SDE for the short-term alpha can be found, applying Ito’s lemma, i.e.

dαt = κ (θ − αt) dt+ η dWt , (5.9)

where

Wt = a1 σ1

η
W1,t + a2 σ2

η
W2,t ,

is a standard Brownian motion and the constants

κ = a2 − a1, θ = −1
2
a1 σ

2
1 + a2 σ

2
2

a2 − a1
, η =

√
a2

1 σ
2
1 + 2a1 a2 σ1σ2 ρ+ a2

2 σ
2
2,

represent the mean-reversion rate, level of the short-term alpha process and the

diffusion coefficient, respectively. We assume that a2 > a1 so that the process αt is

a mean-reverting process (as opposed to a mean-avoiding process).

5.4 Optimal Pairs Trading Problem

Once the pair of the underlying is found, we need to figure out a way to set the

optimal trading rate for the pair. Assuming that there is no impact of the trading

and we consider how to optimise the agent’s utility of the expected wealth.

We use m = (mt)0≤t≤T and n = (nt)0≤t≤T to denote the inventory in the under-

lying S1 and S2 respectively, and denote X = (Xt)0≤t≤T to the cash process of an
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agent’s wealth which satisfies the SDE

dXm,n
t = mt dS1,t + nt dS2,t .

Assuming that the trading is intraday, we set the risk free rate at zero.

The controlled system of SDEs is

dXm,n
t = αt(mtS1,t − ntS2,t)dt+mt σ1 S1,tdW1,t + nt σ2 S2,tdW2,t ,

d logS1,t =
(
αt −

1
2 σ

2
1

)
dt+ σ1 dW1,t ,

d logS2,t =
(
−αt −

1
2 σ

2
2

)
dt+ σ2 dW2,t ,

with d [W1,t,W2,t] = ρ dt.

The agent will optimise his/her position in the assets directly, rather than the

rate of trading, and has exponential utility function u(x) = −e−γx, for a constant

coefficient of risk aversion γ. In our analysis we were not able to find a closed form

solution for other types of utility functions. The agents’ performance criterion is

Hm,n(t, x, y, z) = Et,x,y,z [− exp{−γ Xm,n
T }] ,

where Xt = x, logS1,t = y, logS2,t = z, mt = m and nt = n. His/her value function

is therefore

H(t, x, y, z) = sup
m,n∈A

Hm,n(t, x, y, z) ,

where the set of admissible strategies A contains strategies such that

E
[ˆ T

0

[
(mu S1,u)2 + (nu S2,u)2

]
du

]
<∞ .

Alternatively, we can enforce the condition that mt and nt are P-a.s. bounded.
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5.4.1 The DPE and its solution

Employing the dynamic programming principle leads to the dynamic program-

ming equation (DPE), and the value function should satisfy the following Hamilton-

Jacobi-Bellman (HJB) equation

0 = Ht +
(
αt −

1
2 σ

2
1

)
Hy + σ1σ2 ρHyz +

(
−αt −

1
2 σ

2
2

)
Hz + 1

2 σ
2
1 Hyy + 1

2 σ
2
2 Hzz

+ sup
m,n

{
[αt(my − nz)]Hx + 1

2 ω
′ΣωHxx + ω′Σ1Hxy + ω′Σ2 Hxz}

}
, (5.10)

subject to H(T, x, y, z) = −e−γ x, where H• and H• • mean the first and partial

derivatives, respectively. And the matrix for the amount of each underlying asset

is ω =

my
nz

 and the volatility matrices are Σ =

 σ2
1 σ1 σ2 ρ

σ1 σ2 ρ σ2
2

, Σ1 =

 σ2
1

σ1 σ2 ρ



and Σ2 =

 σ2
2

σ1 σ2 ρ

.

Due to the presence of the co-integration factor, we expect that the value function

depends on short term alpha instead of a combination of prices of both cryptocur-

rencies. Thus, we propose the trial solution H(t, x, y, z) = −e−γx h(t, α), where the

state variable αt = α = a1 y + a2 z. Then the DPE becomes

ht = sup
m,n

{[
α (my − nz)γ h− 1

2γ
2
(
m2 σ2

1 y
2 + 2mnσ1σ2 yz ρ+ n2 σ2

2 z
2
)]
h

−
[
(a1 − a2)α− 1

2(a1 σ
2
1 + a2 σ

2
2)− (my σ2

1 + nzσ1σ2ρ)γ a1 − (nz σ2
2 +my σ1σ2 ρ)γ a2

]
hα

− 1
2
(
σ2

1 a
2
1 + 2σ1σ2ρ a1a2 + σ2

2 a
2
2

)
hαα

}
, (5.11)

with the terminal condition h(T, α) = 1.

It is straightforward to show that the initial optimal control (m∗, n∗) in the feed-
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back form is

m∗ = α

γ σ2
1 y (1− ρ2) + α ρ

γ σ1σ2 y (1− ρ2) + a1

γ y

hα
h
, (5.12)

n∗ = − α

γ σ2
2 z (1− ρ2) −

α ρ

γ σ1σ2 z (1− ρ2) + a2

γ y

hα
h
. (5.13)

Proposition 5.4.1 Let the agent’s value function satisfy equation (5.10). Then the

optimal amount for each underlying is

m∗t S1,t = αt
γ σ2

1 (1− ρ2) + αt ρ

γ σ1σ2 (1− ρ2) + a1

γ

hα
h
, (5.14)

n∗t S2,t = − αt
γ σ2

2 (1− ρ2) −
αt ρ

γ σ1σ2 (1− ρ2) + a2

γ

hα
h
. (5.15)

Substitute this pair of amount into the HJB equation (5.11) above, the DPE reduces

to the non-linear partial differential equation as follows:

ht = α2ρ

σ1σ2 (1− ρ2)h− α (a1 − a2)hα + 1
2σ

2
1 a1 hα + 1

2σ
2
2 a2 hα

+ 1
2h

(
σ2

1 a
2
1 + 2σ1σ2ρ a1 a2 + σ2

2 a
2
2

)
h2
α

−1
2
(
σ2

1 a
2
1 + 2σ1σ2ρ a1a2 + σ2

2 a
2
2

)
hαα . (5.16)

5.4.1.1 Solving the DPE

To solve this non-linear PDE, we set a new function g(t, α) = − log h(t, α), with

the terminal condition g(T, α) = 0. Then the equation (5.16) transforms into the

linear PDE as follows:

∂tg +
[
α (a1 − a2)− 1

2(σ2
1 a1 + σ2

2 a2)
]
∂αg

+ 1
2
(
σ2

1 a
2
1 + 2σ1σ2 ρ a1 a2 + σ2

2 a
2
2

)
∂ααg + α2 ρ

σ1σ2 (1− ρ2) = 0 . (5.17)

Propose ansatz g(t, α) = k2(t)α2 + k1(t)α + k0(t); so that the equation (5.16)
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becomes

0 =
[
∂tk2 + 2k2 (a1 − a2) + ρ

σ1 σ2 (1− ρ2)

]
α2

+
[
∂tk1 + k1 (a1 − a2)− k2(σ2

1 a1 + σ2
2 a2)

]
α

+ ∂tk0 −
k1

2
(
σ2

2a1 + σ2
2a2

)
+ k2

(
σ2

1 a
2
1 + 2σ1 σ2 ρ a1 a2 + σ2

2 a
2
2

)
, (5.18)

which leads to the following couple system of ODEs.

∂tk2 + 2k2 (a1 − a2) + ρ

σ1σ2 (1− ρ2) = 0 (5.19)

∂tk1 + k1 (a1 − a2)− k2(σ2
1 a1 + σ2

2 a2) = 0 (5.20)

∂tk0 −
k1

2
(
σ2

2a1 + σ2
2a2

)
+ k2

(
σ2

1 a
2
1 + 2σ1 σ2 ρ a1 a2 + σ2

2 a
2
2

)
= 0 . (5.21)

Dealing with these ODEs with the final condition k2(T ) = k1(T ) = k0(T ) = 0,

we have

k2(t) = ρ

2 (a1 − a2)σ1 σ2 (1− ρ2)
[
e2 (a1−a2) (T−t) − 1

]
, (5.22)

k1(t) = (σ2
1 a1 + σ2

2 a2)ρ
2 (a1 − a2)2 σ1 σ2 (1− ρ2)

[
2 e(a1−a2) (T−t) − e2 (a1−a2) (T−t) − 1

]
, (5.23)

k0(t) = (σ2
1 a1 + σ2

2 a2)2ρ

4 (a1 − a2)2 σ1σ2 (1− ρ2)

{ 2
a1 − a2

[
1− e(a1−a2) (T−t)

]
− 1

2 (a1 − a2)
[
1− e2 (a1−a2) (T−t)

]
+ (T − t)

}

− (σ2
1 a

2
1 + 2σ1σ2 ρ a1 a2 + σ2

2 a
2
2) ρ

2 (a1 − a2)σ1σ2 (1− ρ2)

{
1

2 (a1 − a2)
[
1− e2 (a1−a2) (T−t)

]
+ (T − t)

}
.(5.24)

Recalling h(t, α) = e−g(t,α), it is not difficult to find h(t, α) = e−[k2(t)α2+k1(t)α+k0(t)].

Theorem 5.4.2 Verification. Based on the value function in (5.10), we find that the

optimal trading amount for each underlying is given by

m∗t = 1
S1,t

{
αt

γ σ2
1 (1− ρ2) + αt ρ

γ σ1 σ2 (1− ρ2) −
1
γ
a1 [2 k2(t)αt + k1(t)]

}
,(5.25)
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n∗t = 1
S2,t

{
− αt
γ σ2

2 (1− ρ2) −
αt ρ

γ σ1 σ2 (1− ρ2) −
1
γ
a2 [2 k2(t)αt + k1(t)]

}
,(5.26)

where k2(t) and k1(t) is defined as in equation (5.22) and (5.23).

Proof. Since −e−{γ x+[k2(t)α2+k1(t)α+k0(t)]} is clearly a explicit solution of equation

(5.10), and the standard results imply that it suffices to check that this control is

indeed an admissible strategy. Meanwhile, from the form of the optimal control in

(5.12) and (5.13), we also get the explicit form of hα
h

= −∂αg, i.e.

∂αg(t, α) = 2 k2(t)α + k1(t) . (5.27)

Thus, we obtain the expansion form of m∗t and n∗t above. �

In this section, we find the optimal amount of both cryptocurrencies. If we want

to identify the amount of money invested in each underlying asset, we should multiple

the price respectively, i.e. (m∗t S1,t)0≤t≤T and (n∗t S2,t)0≤t≤T are the optimal amount

of cash flow into each cryptocurrency in the pair.

5.5 Simulations Performance of Strategy

5.5.1 Simulations of Co-integrated Factor

We have already showed the optimal strategy of the pairs traded in the last sec-

tion. Here, we will consider a real case whose pair consisting of two cryptocurrencies–

Bitcoin (BTC) and Ethereum (ETH).

We verify the co-integrated factor between these two cryptocurrencies in section

5.3, which is the in-sample path of the short term alpha. And we choose ‘BTC/USD’

and ‘ETH/USD’ on 16th June, 2017 to make the simulation and compare the results.

By recalling the SDE in (5.9), we can simulate the co-integrated factor on this trading
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day.

Assuming that we do the intraday trading, i.e. T = 1, the frequency of the exe-

cution is in every four seconds. As mentioned in the previous section, the exchanges

of cryptocurrency are normally decentralized and open 7 days 24 hours. So, in our

simulation the intraday trading period means 24 hours.

We set a2 = 1, and find out other parameters in the model (5.6), (5.7) and (5.8)

as follows by using ordinary least squares method.

Cryptocurrency a σ
BTC/USD -0.1415 0.1293
ETH/USD 1 0.1872

Table 5.5: Parameters in the SDE of
co-integrated factor.

Before running the simulation, we suppose that the coefficient of risk aversion is

γ = 0.5. The results for other values of γ can be found in Table 5.6. Moreover, since

κ > 0 the the process αt is indeed mean-reverting. We also assume that the agent

begins the day with exactly ONE Dollar, $ 1(beginning of the day).

5.5.2 Performance

We employ cryptocurrency price data on 16th June, 2017 to analyse the perfor-

mance of the trading strategy. We substitute the parameters in the last subsection

and run 10,000 simulation of co-integrated factor αt to find the amount of each

cryptocurrency and to record the cash process of each run.

Here, we presume that the trading frequency is in every 4 seconds, which means

we can trade 21,600 times every day. In Figure 5.3, the top left is one of the 10,000

simulation paths of short term alpha. The top right is the paired optimal amount of

each cryptocurrency, mt for BTC and nt for ETH. This paired value is based on one

simulation of the αt.
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The bottom left one is the cash process of wealth in USD unit. We made an

assumption that our initial cash is $1 in last section and the price value we used is

the real price of BTC and ETH on 16th June, 2017, as shown in Figure 5.1. This

cash flow path is one of the simulation paths as well. Among all these paths, we

find that the terminal cash values are either positive or negative. Then we check

the performance of ‘ETH/BTC’ in the bottom right. In this figure, we show the

histogram of P&L of all these simulations. We also use the red dash line to show the

mean of the performance, i.e. µR mean of all return. Here, µR = 0.4846 USD. Since

the initial cash is $1, it is equivalent to the percentage, which means the average

return rate is 48.46%. And the yellow dash line stands for the return of ETH/BTC

on 16th June, 2017, i.e. rETH/BTC = 0.002039. ETH/BTC is exchanging BTC to

ETH, i.e. long ETH and short BTC. This means that by following a buy-and-hold

strategy on ETH/BTC from the beginning to the end of the day, you will have

0.2039% return.
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Figure 5.3: Top left: a simulation path of αt on 16th June, 2017. Top right: the
optimal amount of each cryptocurrencies in one simulation. Bottom left: the agent’s
cash process based on the path of short term alpha. Bottom right: the histogram of

the profit & loss over 1,000 runs with normal distribution fitting.
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5.5.3 Different Level of Risk Aversion Rate

In the last subsection, it is not difficult to find that the average performance

is better than the one that only takes the long position in ETH/BTC. Here, we

illustrate how the different levels of the risk aversion rate γ affects the performance

of the trading.

γ 0.1 0.3 0.5 0.9
µR 2.4231 1.4541 0.4846 0.2692
σR 255.6527 153.3951 51.1305 28.4059
5% -420.9126 -246.4685 -83.0892 -46.7405
25% -169.5613 -100.12491 -33.2124 -18.7255
50% 4.2621 2.0874 0.9262 0.2744
75% 176.1892 104.8950 34.0796 19.7511
95% 412.2887 249.7608 84.2535 46.5861

Table 5.6: The performance based on the different γ.

If we calculate the performance based on the same simulation paths of the co-

integrated factor with different risk aversion rate, we can find that the average perfor-

mance µR decreases linearly when the γ increases. The variance of the performance

can be found in the Table 5.6. It also shows the decay trend when γ becomes larger.

This result is consistent with the principle of the investment. To put it in another

way, the higher risk aversion is, the lower expected return can be.

5.6 Chapter Conclusion

We propose a model for the paired cryptocurrencies trading in this chapter and

lay out the evidence that the stocks are not the good underlying asset to run the

pairs trading strategy. The reason we choose the cryptocurrency is that it provides

a perfect pair via the co-integrated factor between the icos’ tokens.

In our model, we take Ethereum (ETH) as an example, to show the exchange

between ETH and BTC. We establish the paired underlying asset price model for
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these two cryptocurrencies. We use the empirical evidence to confirm that they are

the good pair and there exists the co-integrated factor between the two. This short

term alpha is in an OU type as assumed.

Finally, we use the historical data to estimate the parameters in the model and

simulate 10,000 times of the co-integrated factor. Based on these simulations, we

find out the optimal amount and the cash process. We compare the simulation

performance with the return of simple long ETH short BTC, i.e. ‘ETH/BTC’, and

confirm that the expected performance is better than direct trading ‘ETH/BTC’.

We also discuss the impact of choosing different risk aversion rate on the trading

performance.



Chapter 6

Conclusions and Future Work

6.1 Final Conclusions

Trading impacts is the main topic of this thesis. We first go through the classic

model, Almgren Chriss Model, for the benchmark. This model gives us the hint to

upgrade the constant impact into a stochastic one. Then we introduce three problems

that agents or traders will encounter in the process of trading. Here, we only consider

that we use the MOs for the execution instead of LOBs, ignoring the price execution

risk. And we use the HJB equation to solve the maximum utility problem in order

to obtain the optimal control factors.

Optimal Execution with Stochastic Price Impact

In Chapter 3, we introduce the problem of the stochastic price impact. In the

AC model, the price impact is constant. Here, we distinguish the temporary price

impacts from the permanent ones, assume the linear correlation between these two

impacts and use MLE to estimate the parameters for the stochastic model of price

impacts. Based on the dynamic programming principle for the maximum utility

function, we find out numerically the optimal trading strategies for the agents who

want to liquidate a large number of shares without subject to significant price impact

of large orders in a certain duration.

74
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Optimal Execution with Stochastic Latency Impact

Chapter 4 shows the problem of the trading with stochastic latency impact. This

impact is very common which means the delay time between the submission of the

signal and the receipt of the order execution. We quantify the expectation of the

difference between the submission price and the execution price, model this latency

into the OU type process and then find the closed form solution to this optimal

execution problem. For both problems, we upgrade the constant impacts into the

stochastic form and compare the two results with the benchmark strategy. We find

that if we model the impacts into a stochastic form, both will be more effective to

help us to obtain better performing trading strategies.

Optimal Pairs Trading with Co-integrated impact for the cryptocurrencies

Chapter 5 presents a newly-emerging market of cryptocurrencies. Due to the na-

ture of cryptocurrencies, new cryptocurrencies are introduced into the market with a

pairing price with the existed mainstream cryptocurrencies, including Bitcoin (BTC)

and Ethereum (ETH). As a result, being distinct from the traditional stock market

where company shares in the same industry are expected to be correlated with each

other and exposed to macro-economics and industry-related factors, cryptocurrencies

are considered as co-integrated, thanks to the pairing price of their initial offering.

Therefore, this study emphasizes on the myth, and the result is surprising. According

to the result from the stochastic model of the short-term alpha and the co-integrated

factor, we find an optimal closed form amount for both pairs of ‘BTC/USD’ and

‘ETH/USD’.

6.2 Future Work

The thesis takes mathematical as well as empirical sides into consideration. For

the future work, there are a number of directions that may lead the correspondent
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researches. We will lay out some of the possibilities here.

• When we consider the optimal trading with the stochastic price impacts, we

only use MOs in the thesis. In the real-world case, however, we also need to

think about whether there is a dark pool for the agents to put their larger

orders in or not. If the problem is faced with both lit and dark market, we

need to take into account how deep the dark market is and how much we should

post in the lit pool with the optimal trading speed.

• As illustrated in Chapter 3, we assume that the relationship between tempo-

rary and permanent impact is linear. Moreover, we can also try some non-linear

models to link each other. This non-linear form may influence the entire exe-

cution strategy and further researches might be done on figuring out whether

the influence is positive or negative, or even deeper. Our expectation is that

the non-linear form will improve the trading performance since the assumption

of non-linear relationship is more realistic. Or we model these two impacts

respectively as two independent variables. We have only considered the cryp-

tocurrencies as our underlying assets in the present study.

• In Chapter 5, what should be attached attention to is that combining cryp-

tocurrencies and stocks in one model would be more practical because we have

noticed the importance of hedging strategy through the process, which might

instruct us to explore new trading strategies and derivative for cryptocurrencies

in the future.
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Appendix

7.1 Numerical Explicit Scheme in Chapter 3

Here we assume µ = 0, which means the order flow is approximately symmetric

for buy and sell side. So the net order flow is close to zero.

To solve the system of PIDEs, we first consider (3.16), and then (3.14) and

(3.15) which will become simple ODEs if we get the value of (3.16). We introduce

the explicit scheme for this finite difference. By using backward Euler for the time

horizon and forward Euler for the temporary impact factor, we obtain

h2(t, k)− h2(t−∆t, k)
∆t + β (ξ − k) h2(t, k + ∆k)− h2(t, k)

∆k − φ

+ λk E [h2(t, k + η)− h2(t, k)] + [(`1 + `2 k) + 2h2(t, k)]2

4k = 0.(7.1)

We employ backward Euler scheme for finite time horizon because we have the

terminal condition for h2, i.e. h2(T, k) = −α. We also require a boundary condition

to employ an effective grid, thus we choose

∂kh2(t, k̄) = 0 .

77
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Here, k̄ is the a maximum value for k, we discuss how to choose this k̄ later. In

this condition, when k is enormous, the value of h2 will be independent of k. The

backward finite difference form for this boundary condition is

h2(t, k̄) = h2(t, k̄ −∆k) .

Let the domain of (t, k) be [0, T ] ×
[
k, k̄

]
then we choose the minimum and

maximum value of k as follows. From equation (3.5), the solution of k is

kt = (k0 − ξ) e−β t + ξ +
ˆ t

0
σk e

−β (t−s) dWs +
ˆ t

0
η1+Ns−e

−β (t−s)dN̂s . (7.2)

When t→∞, the expected value and variance of kt are

E [kt] = ξ + λE[η]
β

, (7.3)

V [kt] = E

(ˆ t

0
σk e

−βk (t−s) dWs

)2

+
(ˆ t

0
η1+Ns−e

−βk (t−s)dN̂s

)2


= σ2
k + λE[η2]

2 β . (7.4)

When we run the numerical scheme, we need to set up a reasonable boundary

for the impacts so as to contain as much possibility as possible. Hence, we fix the

minimum value of kt to half of the long term mean ξ, while the maximum value is

fixed to ξ plus 3 times the standard deviation, i.e.

k = ξ

2 ,

k̄ = ξ + 3

√√√√σ2
k + λE[η2]

2 β .

From the terminal condition, we can obtain h0(t, b, k) = h1(t, b, k) = 0 and

h2(t, b, k). We get the surface of g2(t, b, k) = − (`1+`2 k)+2h2(t,k)
2 k with different time
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Figure 7.1: Surface of function g2

and permanent impact in Figure 7.1. Here, we use the parameters of stock INTC

which is estimated from the section 3.4.
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7.2 Simualtion and Performance of other stocks

in Chapter 3

The simulation and performance listed below is based on the common parameter

set for the terminal execution penalty and inventory penalty, i.e. α = 103 ξ, φ = 103 ξ.

7.2.1 Optimal execution for FARO in Figure 7.2
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Figure 7.2: Optimal trading with stochastic temporary and permanent impact for
FARO
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Figure 7.3: Optimal trading with stochastic temporary and permanent impact for
NTAP
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Figure 7.4: Optimal trading with stochastic temporary and permanent impact for
ORCL
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Figure 7.5: Optimal trading with stochastic temporary and permanent impact for
SMH

7.2.2 Optimal execution for NTAP in Figure 7.3

7.2.3 Optimal execution for ORCL in Figure 7.4

7.2.4 Optimal execution for SMH in Figure 7.5

7.2.5 Performance of different stocks

Figure 7.6 shows the histogram of the savings per share in basis points for different

stocks.

Table 7.1 shows the percentile value of each simulation performance for different

stocks.
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Figure 7.6: The savings per share measure in basis points for different stocks

FARO NTAP ORCL SMH
mean 11.7752 15.2839 15.7334 15.7817
stdev 0.3162 0.0259 0.0049 0.0023
5% 11.2683 15.2418 15.7252 15.7780
25% 11.6097 15.2681 15.7303 15.7805
50% 11.7736 15.2837 15.7334 15.7817
75% 11.9453 15.2991 15.7365 15.7830
95% 12.2880 15.3270 15.7414 15.7854

Xv∗
T < XC

T 0% 0% 0% 0%
Table 7.1: Relative performance of the strategy in basis points for different stocks



Chapter 7. Appendix 84

7.3 Latency impacts for continuous Brownian

Motion case in Chapter 4

Here, we simulate a Brownian Motion case to show the pattern of latency. Set

σ = 0.4 for the Brownian Motion. We consider that the continuous case and this

volatility value is the annualised volatility of the underlying asset.

We also assume that there are 250 trading days during a year and 6 trading hours

per day. We post the market orders in every 20ms, and the delay time follows the

model in equation (4.2). Keep the same parameter set with ψ = 0.9, θ = 10, λ = 1

and Jmax = 20.
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Figure 7.7: Continuous Case: the left one shows the underlying price. The middle
one shows latency impacts during one trading day. The right one shows the latency

impacts in the first 4000ms.

In Figure 7.7, the right plot looks very similar to an OU process. We find the

result of ADF test also equals to 1, which means that we reject the null hypothesis.

This tells us that latency impact is an auto correlated series for the continuous

Brownian Motion case.
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[8] Álvaro Cartea and Sebastian Jaimungal. Algorithmic trading of co-integrated as-

sets. International Journal of Theoretical and Applied Finance, 19(06):1650038,

2016.
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