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Abstract

Concerns about climate change have spurred governments to reduce carbon emissions by supporting

adoption of renewable energy (RE) technologies. Due to the intermittent and location-specific

nature of RE technologies, energy storage has become important because it could be used to smooth

out temporal disparities in residual demand. Thus, carbon policy has made storage-enabled RE

generation more critical to the power sector, and this enhanced position could be exploited by

firms to exert market power. Using an equilibrium model, we examine the implications of policy

interventions and technological change on the marginal value of energy storage in a power market

with RE and thermal generation. In particular, we specify the market conditions under which RE

producers with storage strategically shift deployment of their resource to the off-peak period and

outline its implications for the marginal value of RE storage. Moreover, we find that even price-

taking RE producers may actually increase off-peak RE production as storage efficiency increases.

Consequently, the RE producer’s profit decreases with storage efficiency, which conflicts with the

social objective of improving storage efficiency. These private and social incentives can be better

aligned via a carbon tax, however. Hence, our results may inform the regulatory process governing

market design of a power sector with increasing capacities of RE generation and storage.

Keywords: Energy storage, market power, carbon policy, renewable energy

1. Introduction

In response to the threat of climate change, several jurisdictions have adopted legally binding

targets for renewable energy (RE) technologies. Among these are the European Union’s objective
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of obtaining 20% of energy from RE technologies by the year 2020 with more ambitious targets for

2030 (European Commission, 2009) and California’s 33% target for RE technologies by the year

2020 with a subsequent increase to 50% by 2030 as part of Senate Bill No. 350 (California Legisla-

tive Information, 2015). Consequently, the power sector is undergoing a profound transformation

intended to bolster its sustainability by reducing generation from conventional thermal plants that

emit CO2 and other greenhouse gases.

While these policy measures have incentivised investment in and operation of RE technologies,

the intermittency of wind and solar power has also introduced a need for variation management, e.g.,

energy storage and transmission capacity. For example, in Germany, the share of RE in the power

sector increased to 30% in 2014 as compared to less than 5% in 1990 due to policy measures such as

feed-in tariffs (von Hirschhausen, 2014). However, absent network reinforcement, the intermittent

and location-specific nature of RE technologies could cause congestion management costs to triple

in Germany between 2015 and 2020 (Kunz, 2013). Likewise, energy storage has become important

because it could be used to smooth out temporal disparities in residual demand. Using stylised

equilibrium models, Sioshansi (2010) and Sioshansi (2014) investigate the welfare implications of

storage ownership and device efficiency under perfect and imperfect competition. The rationale for

the latter investigation is that the enhanced need for storage provides storage operators with the

potential to exert additional market power.

A similar perspective has been taken in the literature on strategic hydropower production in

a deregulated electricity industry. Focusing on a numerical study of the California power sector,

Bushnell (2003) uses an equilibrium approach to illustrate how producers with market power have

the incentive to withhold hydropower generation during peak hours and to move it to off-peak hours

instead. Thus, the marginal value of water is lower in an industry with market power and may

even be negative as posited by Crampes and Moreaux (2001). The welfare implications of greater

resource stocks in the presence of market power are also investigated in the resource economics

literature (Benchekroun et al., 2010). Indeed, restructuring of the electricity industry has provoked

interest in how hydropower producers’ incentives to shift generation between peak and off-peak

periods are affected (Mathiesen et al., 2011), but a comprehensive analysis of carbon policy, RE

resource availability, and storage efficiency on producers’ incentives and the value of storage has been

lacking. For example, Førsund (2015) develops fundamental modelling principles for hydropower

by accounting for pumped hydro storage and intermittency, but his treatment of market power is

limited to a single dominant firm. Other works focus on uncertainty in water inflows by modelling

the emissions-constrained hydro-thermal scheduling problem but without any strategic analysis

(Rebennack et al., 2012). Indeed, a survey of the literature by Steegel et al. (2014) points out

that there are relatively few models on hydropower strategic behaviour. This is in contrast to other

energy markets, e.g., the natural gas one, in which it is typical to investigate strategic behaviour with

storage and interactions with other fuels (Abada et al., 2013; Gabriel et al., 2013). Moreover, recent

studies that do investigate strategic equilibria with a conventional-wind-storage system typically

do not incorporate the effects of carbon policy or permit analytical solutions (Shahmohammadi et
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al., 2018). In this paper, we address how carbon policy and strategic behaviour in an electricity

industry interact in order to formalise the conditions under which RE producers with storage behave

strategically and its implications for the marginal value of RE storage.

We develop a two-period equilibrium model with an RE and a thermal producer. Focusing on

interior solutions under both perfect competition and Cournot oligopoly, we first prove analytically

that the main result of Bushnell (2003), i.e., more off-peak RE production under Cournot oligopoly

vis-à-vis perfect competition, holds without a carbon tax. However, once the carbon tax exceeds a

certain threshold, the incentive of the RE producer to generate more in the off-peak period under

Cournot oligopoly is mitigated by the fact that the marginal value of RE storage increases with the

carbon tax. Carbon taxation unambiguously decreases thermal generation in both periods under

Cournot oligopoly. Yet, somewhat counterintuitively, a carbon tax may increase peak thermal

generation under perfect competition. Thus, the carbon tax depresses peak RE production less

under Cournot oligopoly than under perfect competition, which means that the main finding of

Bushnell (2003) may not hold with a carbon tax and in the presence of a generic storage device that

is not 100% efficient. Investigating RE resource availability, we find that it decreases the marginal

value of RE storage, which leads to more (less) RE (thermal) output with a greater impact in the

peak period under both perfect competition and Cournot oligopoly. Finally, less efficient RE storage

has contrasting effects on the marginal value of RE storage under perfect competition and Cournot

oligopoly. A ceteris paribus degradation in efficiency monotonically increases the marginal value of

RE storage under Cournot oligopoly as there is less (more) off-peak RE (thermal) production in

order to preserve the RE resource for the peak. Under perfect competition, this result holds only

if RE storage is relatively efficient, i.e., if RE storage is relatively inefficient, then a ceteris paribus

degradation in its efficiency actually increases (decreases) off-peak RE (thermal) production and

lowers storage value as it is not worthwhile to preserve the RE resource. Consequently, the RE

producer’s profit is non-monotonic in storage efficiency, i.e., the RE producer may actually be hurt

by an infinitesimal increase in storage efficiency, which is in conflict with the social desirability of

more efficient storage. We demonstrate that carbon policy may be used in this respect to align

private and social incentives better.

The structure of this paper is as follows. Section 2 lays out the assumptions of our modelling

framework and analytically solves for the industry equilibrium under the conjectures of perfect

competition and Cournot oligopoly. Next, Section 3 conducts comparative statics of the solutions

with respect to carbon policy, RE availability, and storage efficiency. Section 4 provides numerical

examples to illustrate key results and to compare outcomes under perfect competition and Cournot

oligopoly. Finally, Section 5 summarises the paper’s contributions and indicates directions for future

research. Appendices A–D contain the necessary and sufficient conditions for interior solutions

(Downward et al., 2010), proofs of lemmata and propositions, a closed-loop Cournot analysis to

assess the impact of dynamic decision making, and an investigation of a quadratic emission function,

respectively.
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2. Problem Formulation and Interior Solutions

2.1. Assumptions

We assume a deterministic single-node, two-period power market with two types of profit-

maximising producers, RE and thermal, with output xj [in MWh] and yj [in MWh], respectively,

in each representative period, j = 1, 2. Each period, e.g., an hour, has inverse-demand function

Pj(xj + yj) = Aj − (xj + yj) [in $/MWh], where A2 > A1 > 0, i.e., the price in period 2 is always

greater than that in period 1 for a given total production level. The thermal producer has gen-

eration cost function 1
2Cy

2
j [in $/MWh], where C > 0 [in $/MWh2] with emission rate R > 0 [in

t/MWh].1 Thermal production must pay a carbon tax of T ≥ 0 [in $/t]. Note that “t” here is the

SI abbreviation for “metric ton.” By contrast, the RE producer has no cost of production and does

not produce emissions from generation. However, its available stock of RE capacity is D ≥ 0 [in

MWh], which must be fully used over the two periods. This assumption is similar to the one made

for a hydropower producer by Bushnell (2003) because it cannot be seen to be “spilling” water

by the regulator. Thus, the RE producer must determine xj , i.e., how to allocate its stock, D, in

each period. Unlike Bushnell (2003) and Crampes and Moreaux (2001), we allow for storage losses

in order to reflect the characteristics of any resource-based RE output and not just hydropower

(Sioshansi, 2014). In particular, the parameter F ≥ 1 denotes the inefficiency of RE storage, i.e.,

generating 1 MWh of RE output in period 2 requires a stock equivalent to F MWh of resource

in period 1. Or, equivalently put, 1
F represents the efficiency of storage, i.e., every 1 MWh of the

RE resource not used in period 1 yields 1
F MWh of energy in period 2. Finally, in order to rule

out corner solutions without RE or thermal generation in one or both periods, we further assume

A2 > FA1 and C > 3− 2
√

2 ≈ 0.17.

The assumption A2 > FA1 implies that period 2 is the peak period, which determines the

sequencing of when RE is available and when peak consumption occurs. Indeed, in general, RE

availability does not coincide with consumption, which necessitates the use of (inefficient) storage.

This could represent a medium-term horizon if RE is hydropower with resource availability (water

inflow) during the spring (off-peak) season and evaporation (losses) during the summer (peak)

season (Førsund, 2015). Likewise, considering the short-term intraday patterns of solar availability,

energy collected during the afternoon (off-peak) net load period needs to meet the peak net load

in the evening, viz., the CAISO “duck curve” (CAISO, 2016). In terms of wind power, Germany

experiences a similar intraday pattern in resource availability and consumption with more wind

production during off-peak (early-morning) hours of a day (Rintamäki et al., 2017).

1Increasing marginal cost of production is not necessarily concomitant with an increasing marginal emission rate.
For example, typical supply stacks for ERCOT in July 2015 (Global CCS Institute, 2011) and the U.K. during 2013–
2014 (Timera Energy, 2013) are ordered nuclear, coal, natural gas, and oil, which exhibit increasing marginal costs
but not necessarily increasing marginal emission rates. Nevertheless, we investigate the implication of an increasing
marginal emission rate for the effects of a carbon tax in Appendix D.
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2.2. Interior Solutions

The RE producer’s problem is to maximise its profit over the two periods consisting of revenue

from sales subject to its resource availability:

Maximisexj≥0 [A1 − (x1 + y1)]x1 + [A2 − (x2 + y2)]x2 (1)

s.t. x1 + Fx2 = D : µ (2)

Here, µ [in $/MWh] is the dual variable on the RE resource constraint representing the marginal

value of RE storage. Since (1)–(2) is a convex optimisation problem, it may be replaced by its

Karush-Kuhn-Tucker (KKT) conditions for optimality:

0 ≤ x1 ⊥ − [A1 − (2x1 + y1)] + µ ≥ 0 (3)

0 ≤ x2 ⊥ − [A2 − (2x2 + y2)] + Fµ ≥ 0 (4)

µ free D − x1 − Fx2 = 0 (5)

Note that if the RE producer is a price taker as in perfect competition (PC), then it treats the

price, Pj (xj + yj), as given, thereby modifying KKT conditions (3)–(4) as follows:

0 ≤ x1 ⊥ − [A1 − (x1 + y1)] + µ ≥ 0 (6)

0 ≤ x2 ⊥ − [A2 − (x2 + y2)] + Fµ ≥ 0 (7)

Likewise, the thermal producer’s problem is to maximise its total profit, which consists of sales

revenue, generation cost, and CO2 taxes:

Maximiseyj≥0 [A1 − (x1 + y1)] y1 + [A2 − (x2 + y2)] y2 −
1

2
C
(
y2

1 + y2
2

)
− TR (y1 + y2) (8)

Since (8) is a convex optimisation problem, it may be replaced by its KKT conditions for optimality:

0 ≤ y1 ⊥ − [A1 − (2y1 + x1)] + Cy1 + TR ≥ 0 (9)

0 ≤ y2 ⊥ − [A2 − (2y2 + x2)] + Cy2 + TR ≥ 0 (10)

Note from (9)–(10) that the carbon tax shifts the thermal producer’s marginal cost curve up. Under

PC, a price-taking thermal producer’s KKT conditions become the following instead of (9)–(10):

0 ≤ y1 ⊥ − [A1 − (y1 + x1)] + Cy1 + TR ≥ 0 (11)

0 ≤ y2 ⊥ − [A2 − (y2 + x2)] + Cy2 + TR ≥ 0 (12)
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In case of PC, we obtain the following interior solutions to (5)–(7) and (11)–(12):2

xPC1 =
F (FA1 −A2) +D + F (F − 1)RT/C

1 + F 2
(13)

xPC2 =
A2 − FA1 + FD − (F − 1)RT/C

1 + F 2
(14)

yPC1 =
A1 + FA2 −D − F (F − 1)RT/C −

(
1 + F 2

)
RT

(1 + F 2) (C + 1)
(15)

yPC2 =
F (A1 + FA2 −D) + (F − 1)RT/C −

(
1 + F 2

)
RT

(1 + F 2) (C + 1)
(16)

µPC =
C (A1 + FA2 −D) + (F + 1)RT

(1 + F 2) (C + 1)
(17)

Otherwise, under an open-loop Cournot oligopoly (CO), (3)–(5) and (9)–(10) yield the following

interior solutions:

xCO1 =
F (FA1 −A2) (C + 1) + F (F − 1)RT

(1 + F 2) (2C + 3)
+

D

1 + F 2
(18)

xCO2 =
(A2 − FA1) (C + 1)− (F − 1)RT

(1 + F 2) (2C + 3)
+

FD

1 + F 2
(19)

yCO1 =
(2C + 3)A1 + F 2 (C + 2)A1 + F (C + 1)A2 − (2C + 3)D

(1 + F 2) (C + 2) (2C + 3)

−
[
2C + 3− F + F 2 (2C + 4)

]
RT

(1 + F 2) (C + 2) (2C + 3)
(20)

yCO2 =
F (C + 1)A1 + (C + 2)A2 + F 2 (2C + 3)A2 − F (2C + 3)D

(1 + F 2) (C + 2) (2C + 3)

−
[
2C + 4− F + F 2 (2C + 3)

]
RT

(1 + F 2) (C + 2) (2C + 3)
(21)

µCO =
(C + 1)A1 + F (C + 1)A2 − (2C + 3)D + (F + 1)RT

(1 + F 2) (C + 2)
(22)

Here, both off-peak and peak production decisions are treated as if they were made together,

which means that there are no first- and second-stage decision variables. By contrast, a closed-loop

(CL) Cournot framework takes into account the response of the thermal producer in period 2 due

to any transfer of RE resource from period 1 to period 2 (Crampes and Moreaux, 2001). In order

to examine the consequences of dynamic decision making, e.g., necessitated by (possibly random)

shocks to the RE stock, D, for our general findings, we formulate in Appendix C a CL Cournot

framework, i.e., a subgame perfect Nash equilibrium, with first- and second-stage decisions.

2Sufficient conditions for the equilibria to be interior are provided in Appendix A.
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3. Comparative Statics

3.1. Impact of Carbon Policy

We first analyse the impact of carbon policy, T , on interior solutions under PC as summarised

by the following proposition:3

Proposition 1. Differentiating (13)–(17) with respect to T , we find that the following results are

unconditional for any interior solution:

∂xPC1

∂T
> 0,

∂xPC2

∂T
< 0,

∣∣∣∣∂xPC1

∂T

∣∣∣∣ > ∣∣∣∣∂xPC2

∂T

∣∣∣∣ , ∂yPC1

∂T
< 0,

∂µPC

∂T
> 0.

Meanwhile, the following finding for any interior solution is conditional on the value of C:

∂yPC2

∂T
> 0 if C <

F − 1

1 + F 2
.

Overall, the results are generally intuitive since the carbon tax increases the marginal cost of thermal

production, which increases the marginal value of RE and shifts RE production to period 1 and

curbs overall thermal output. However, increasing the carbon tax may have the counterproductive

effect of increasing peak carbon-intensive production. This effect holds if the thermal marginal

cost is relatively low with respect to the storage efficiency of the carbon-free resource, i.e., the

upper bound on C is necessary only for the somewhat counterintuitive finding in Proposition 1.

In other words, if the tax applies to a baseload type of plant, e.g., combined-cycle gas turbines

or coal-fired power plants, and storage is relatively inefficient, then a carbon policy provides the

counterproductive incentive to increase thermal generation during the peak period.4

In order to explain why a carbon tax may increase period-2 thermal generation, we perform a

decomposition of the comparative statics at equilibrium (Bulow et al., 1985). Specifically, we start

with the optimality conditions for perfect competition, where each (implicit) variable is a function

of the other (explicit) variables as obtained from KKT conditions (5)–(7) and (11)–(12):

XPC
1 (y1, y2) = A1 − y1 −MPC (y1, y2) (23)

XPC
2 (y1, y2) = A2 − y2 − FMPC (y1, y2) (24)

Y PC
1 (x1) =

A1 − TR− x1

C + 1
(25)

Y PC
2 (x2) =

A2 − TR− x2

C + 1
(26)

MPC (y1, y2) =
A1 − y1 + FA2 − Fy2 −D

1 + F 2
(27)

3All proofs are in Appendix B.
4Given the assumption C > 3−2

√
2, for

∂yPC
2
∂T

to be positive, it is necessary that F−1
1+F2 > 3−2

√
2. This inequality

implies that F ∈
(

1−
√

56
√
2−79

2(3−2
√

2)
,

1+
√

56
√

2−79

2(3−2
√
2)

)
≈ (1.6, 4.2).
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In (23)–(27), implicit variables such as XPC
1 and XPC

2 depend directly on y1 and y2 as well as on

µ, which also depends on y1 and y2. Thus, in order to trace the total impact of a change in T on

xPC1 , we must account for (i) the direct effect of T on xPC1 , (ii) the indirect effect of T on xPC1

via y1, and (iii) the indirect effect of T on xPC1 via µ. Indeed, this is the purpose of the following

decomposition conducted by differentiating these functions with respect to T and evaluating the

resulting expressions at the equilibrium of the explicit variables, ΩPC :


1 0 1 0 1

0 1 0 1 F
1

C+1 0 1 0 0

0 1
C+1 0 1 0

0 0 1
1+F 2

F
1+F 2 1





∂XPC
1
∂T

∣∣∣
ΩPC

∂XPC
2
∂T

∣∣∣
ΩPC

∂Y PC1
∂T

∣∣∣
ΩPC

∂Y PC2
∂T

∣∣∣
ΩPC

∂MPC

∂T

∣∣∣
ΩPC


=


0

0

− R
C+1

− R
C+1

0

 (28)

In (28), the vector on the right-hand side comprises the direct effects of the carbon tax, which impact

only thermal production. The matrix on the left-hand side contains all of the indirect effects of the

carbon tax.

Intuitively, an increase in the carbon tax directly affects thermal generation by increasing its

marginal cost of production as observed in the third and fourth entries of the right-hand side vector

in (28). This change in market conditions has the indirect effect of increasing the residual demand

faced by the RE producer in both periods, thereby inducing an increase in its generation in the

short term. However, there is also an intertemporal indirect effect, which stems from the higher

marginal value of the renewable resource and leads to lower RE output. Overall, the short-term

indirect effect dominates, thereby leading to an increase in period-1 RE output and a corresponding

decrease in period-2 RE output. Consequently, the possibility of an increase in period-2 thermal

production due to the carbon tax depends on both the relative inefficiency of RE storage (F high)

and the efficiency of thermal production (C low). Indeed, the indirect effect of the carbon tax in

shifting RE production to period 1 is intensified if F is high, which increases the price in period 2

drastically. At the same time, increasing thermal generation at low cost in period 2 as a response to

an increase in the marginal value of RE may lead to the somewhat perverse outcome that thermal

generation may actually increase overall in period 2.

We likewise investigate the role of the carbon tax on CO production decisions and the RE storage

value:

Proposition 2. Differentiating (18)–(22) with respect to T , we obtain the following unconditional

results for any interior solution:

∂xCO1

∂T
> 0,

∂xCO2

∂T
< 0,

∣∣∣∣∂xCO1

∂T

∣∣∣∣ > ∣∣∣∣∂xCO2

∂T

∣∣∣∣ , ∂yCO1

∂T
<
∂yCO2

∂T
< 0,

∂µCO

∂T
> 0.

These findings are intuitive and mirror those from PC except that period-2 thermal output unam-

biguously decreases with the carbon tax. Overall, period-1 RE production increases by more than
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period-2 RE production decreases, and the impact of the carbon tax is more severe on period-1

thermal output than that in period 2. Finally, by increasing the RE storage value, the carbon tax

alleviates the propensity of µCO to become negative, thereby potentially reversing the Bushnell

(2003) finding.

We decompose the comparative statics for CO via the same steps as those for PC where each

(implicit) variable is a function of the other (explicit) variables as obtained from the KKT conditions

(3)–(5) and (9)–(10):

XCO
1 (y1, y2) =

A1 − y1 −MCO (y1, y2)

2
(29)

XCO
2 (y1, y2) =

A2 − y2 − FMCO (y1, y2)

2
(30)

Y CO
1 (x1) =

A1 − TR− x1

C + 2
(31)

Y CO
2 (x2) =

A2 − TR− x2

C + 2
(32)

MCO (y1, y2) =
A1 − y1 + FA2 − Fy2 − 2D

1 + F 2
(33)

We next differentiate these functions with respect to T and evaluate the resulting expressions at

the equilibrium of the explicit variables, ΩCO:


1 0 1

2 0 1
2

0 1 0 1
2

F
2

1
C+2 0 1 0 0

0 1
C+2 0 1 0

0 0 1
1+F 2

F
1+F 2 1





∂XCO
1
∂T

∣∣∣
ΩCO

∂XCO
2
∂T

∣∣∣
ΩCO

∂Y CO1
∂T

∣∣∣
ΩCO

∂Y CO2
∂T

∣∣∣
ΩCO

∂MCO

∂T

∣∣∣
ΩCO


=


0

0

− R
C+2

− R
C+2

0

 (34)

Above a certain carbon-tax threshold, the RE producer’s incentive to generate more in period 1

under CO vis-à-vis PC is mitigated by the fact that the marginal value of RE storage increases with

the carbon tax (Proposition 2). This unambiguously decreases thermal generation in both periods

under CO but makes it possible for period-2 thermal generation to increase under PC. Indeed, under

CO, the thermal producer optimally sets its marginal cost equal to the marginal revenue instead of

to the price and exercises a price markup by withholding generation even during the peak period.

Consequently, the carbon tax depresses period-2 RE production more under PC than under CO,

which means that the main finding of Bushnell (2003), i.e., that market power induces more off-peak

RE resource allocation than under PC, may not hold under a relatively high carbon tax.

Proposition 3. Comparing (18) and (13), off-peak RE generation under CO exceeds that under

PC only if T < (A2−FA1)(C+2)C
R(F−1)(C+3) for any interior solution.
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3.2. Impact of Storage Capacity

We now investigate how PC solutions are affected by RE storage capacity (or, equivalently,

RE availability), D, which is likely to be a factor as policies to support RE will similarly spur

development of energy storage:

Proposition 4. Differentiating (13)–(17) with respect to D, we obtain the following unconditional

results for any interior solution:

∂xPC2

∂D
>
∂xPC1

∂D
> 0,

∂yPC2

∂D
<
∂yPC1

∂D
< 0,

∂µPC

∂D
< 0.

The results are generally intuitive: more RE resource availability increases RE output in both

periods, decreases thermal output in both periods, and lowers the RE storage value. Moreover, RE

output increases more in period 2 than it does in period 1, while thermal output decreases more

in period 2 than it does in period 1. Finally, the increase in RE output in each period more than

offsets the corresponding reduction in thermal generation.

In order to decompose these findings, we next differentiate (23)–(27) with respect to D and

evaluate the resulting expressions at the equilibrium of the explicit variables:


1 0 1 0 1

0 1 0 1 F
1

C+1 0 1 0 0

0 1
C+1 0 1 0

0 0 1
1+F 2

F
1+F 2 1





∂XPC
1

∂D

∣∣∣
ΩPC

∂XPC
2

∂D

∣∣∣
ΩPC

∂Y PC1
∂D

∣∣∣
ΩPC

∂Y PC2
∂D

∣∣∣
ΩPC

∂MPC

∂D

∣∣∣
ΩPC


=


0

0

0

0

− 1
1+F 2

 (35)

The direct effect of increasing the stored RE is to reduce RE’s shadow price, which is the final entry

of the right-hand side vector in (35). This has the short-term indirect effect of reducing thermal

generation (increasing RE output) as given by the first and second entries in the third and fourth

rows (third and fourth entries in the first and second rows), respectively, of the left-hand side matrix

in (35). In turn, the intertemporal impact of higher D, i.e., a lower shadow price, further expands

RE output, which is reflected in the final entries of the first and second rows of the left-hand side

matrix in (35).

Turning to the impact of RE resource availability under CO, we have:

Proposition 5. Differentiating (18)–(22) with respect to D, we obtain the following unconditional

results for any interior solution:

∂xCO2

∂D
>
∂xCO1

∂D
> 0,

∂yCO2

∂D
<
∂yCO1

∂D
< 0,

∂µCO

∂D
< 0.

Again, the results here follow on from those under PC. In fact, the impact of D on RE production,
∂xCO1
∂D and

∂xCO2
∂D , is the same under CO as under PC with a greater impact on period-2 production.

10



The magnitudes for the impact of D on thermal production,
∂yCO1
∂D and

∂yCO2
∂D , are lower than under

PC because thermal generation was already restricted due to the exertion of market power. As

under PC, there is a greater impact on period-2 thermal production. Likewise, the reduction in

each period’s thermal generation is more than offset by the corresponding increase in RE output.

Finally, although more RE resource availability reduces the shadow price of RE storage, ∂µCO

∂D , its

impact is stronger under CO than under PC due to the RE producer’s desire to reduce output.

We next differentiate (29)–(33) with respect to D and evaluate the resulting expressions at the

equilibrium of the explicit variables in order to decompose the comparative statics:


1 0 1

2 0 1
2

0 1 0 1
2

F
2

1
C+2 0 1 0 0

0 1
C+2 0 1 0

0 0 1
1+F 2

F
1+F 2 1





∂XCO
1

∂D

∣∣∣
ΩCO

∂XCO
2

∂D

∣∣∣
ΩCO

∂Y CO1
∂D

∣∣∣
ΩCO

∂Y CO2
∂D

∣∣∣
ΩCO

∂MCO

∂D

∣∣∣
ΩCO


=


0

0

0

0

− 2
1+F 2

 (36)

It may be observed that the direct effect of D on the marginal value of RE is stronger under CO

than under PC (final entry of the right-hand side vector in (36)). Conversely, the intertemporal

effects of D on RE output are lower under CO than under PC (final entries in the first and second

rows of the left-hand side matrix in (36)).

3.3. Impact of Storage Efficiency

As more energy storage is deployed, the efficiency of new devices is likely to improve. At

the same time, the need for storage may encourage owners of superannuated devices to continue

their operation, which could cause a degradation of storage efficiency. We, therefore, conduct

comparative statics first on the effects of F on the PC solution under the assumption of T = 0 and

any D ∈ SPC ∩ SCOµ :5

Proposition 6. Differentiating (13)–(17) with respect to F for T = 0, we obtain the following

unconditional results for any interior solution:

∂xPC2

∂F
< 0,

∂yPC2

∂F
> 0.

Meanwhile, the following findings for T = 0 are all conditional on the value of F for any interior

solution:

∂xPC1

∂F
< 0,

∂yPC1

∂F
> 0,

∂µPC

∂F
> 0 if F <

(D −A1) +
√
A2

2 + (D −A1)2

A2
.

5This effectively means D ∈
[
max{F (A2 − FA1), (A1+FA2)(C+1)

2C+3
}, A1(C+2)(F2+1)+(A1+FA2)(C+1)

2C+3

]
from (A-5a) and

(A-5b).
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The signs for
∂xPC1
∂F ,

∂yPC1
∂F , and ∂µPC

∂F are negative, positive, and positive, respectively, as long as

F <
(D−A1)+

√
A2

2+(D−A1)2

A2
. Thus, if RE storage is not “too inefficient,” then a ceteris paribus

degradation of storage efficiency will lead to less (more) period-1 RE (thermal) production and a

higher storage value in order to preserve the RE resource for period 2. By contrast, for relatively high

F , i.e., “inefficient storage,” degradation of RE storage efficiency will actually increase (decrease)

period-1 RE (thermal) production and lower the storage value as it is not worthwhile to preserve the

RE resource for period 2. The critical threshold for this effect is F >
(D−A1)+

√
A2

2+(D−A1)2

A2
. Finally,

from (B-27) and (B-29), degradation of RE storage efficiency decreases period-2 RE production and

increases period-2 thermal production, respectively.

We next differentiate (23)–(27) with respect to F for T = 0 and evaluate the resulting expressions

at the equilibrium of the explicit variables in order to explain these comparative statics further:


1 0 1 0 1

0 1 0 1 F
1

C+1 0 1 0 0

0 1
C+1 0 1 0

0 0 1
1+F 2

F
1+F 2 1





∂XPC
1
∂F

∣∣∣
ΩPC

∂XPC
2
∂F

∣∣∣
ΩPC

∂Y PC1
∂F

∣∣∣
ΩPC

∂Y PC2
∂F

∣∣∣
ΩPC

∂MPC

∂F

∣∣∣
ΩPC


=



0

−MPC

0

0
(A2−FA1)−F (FA2+A1)+2FD+2FY PC1 +(F 2−1)Y PC2

(1+F 2)2


(37)

If RE storage is not “too inefficient,” then the direct effect of decreasing the efficiency of RE storage

is to increase RE’s shadow price, which is the last term of the right-hand side vector of (37). This

has the short-term indirect effect of reducing RE generation (increasing thermal output) as given

by the third and fourth entries in the first and second rows (the first and second entries in the

third and fourth rows), respectively, of the left-hand side matrix in (37). In turn, the intertemporal

impact of higher F further decreases RE output, which is reflected in the final terms of the first

and second rows of the left-hand side matrix in (37) as well as the RE shadow price as given in

the third and fourth terms of the final row of the left-hand side matrix in (37). Intuitively, the

opportunity cost of RE storage increases overall with storage inefficiency when period-2 demand is

relatively large because the RE producer would like to sell more period-2 energy but is unable to

do so due to efficiency losses. Hence, if RE storage is relatively inefficient, then a ceteris paribus

degradation in its efficiency actually increases (decreases) period-1 RE (thermal) production and

lowers RE storage value as it is not worthwhile to preserve the RE resource.

Moving on to the CO case, we obtain the following result concerning the impact of F :

Proposition 7. Differentiating (18)–(22) with respect to F for T = 0, we obtain the following

unconditional results for any interior solution:

∂xCO1

∂F
< 0,

∂xCO2

∂F
< 0,

∂yCO1

∂F
> 0,

∂yCO2

∂F
> 0,

∂µCO

∂F
> 0.

Thus, a ceteris paribus degradation of storage efficiency leads to less (more) period-1 RE (thermal)

12



production and a higher storage value in order to preserve the RE resource for period 2. This

mirrors the PC outcome for relatively efficient RE storage. Indeed, with production withholding

due to market power, the marginal value of RE storage strictly decreases with greater storage

efficiency.

We next differentiate (29)–(33) with respect to F for T = 0 and evaluate the resulting expressions

at the equilibrium of the explicit variables in order to decompose the comparative statics:


1 0 1

2 0 1
2

0 1 0 1
2

F
2

1
C+2 0 1 0 0

0 1
C+2 0 1 0

0 0 1
1+F 2

F
1+F 2 1





∂XCO
1
∂F

∣∣∣
ΩCO

∂XCO
2
∂F

∣∣∣
ΩCO

∂Y CO1
∂F

∣∣∣
ΩCO

∂Y CO2
∂F

∣∣∣
ΩCO

∂MCO

∂F

∣∣∣
ΩCO


=



0

−1
2M

CO

0

0
(A2−FA1)−F (FA2+A1)+4FD+2FY CO1 +(F 2−1)Y CO2

(1+F 2)2


(38)

The direct effect of efficiency degradation is stronger under CO as opposed to PC. However, the

intertemporal effects are lower in magnitude. Finally, a ceteris paribus degradation in efficiency

monotonically increases the marginal value of RE storage under Cournot oligopoly as there is less

(more) period-1 RE (thermal) production and a higher RE storage value in order to preserve the

RE resource for period 2.

4. Numerical Examples

We illustrate the analytical results from Sections 2 and 3 by performing numerical examples

using the base-case data in Table 1. These parameter values are selected to be in the set of interior

solutions, S, as defined in Lemma 3 and are varied with respect to T , D, and F in order to gain

insights about these parameters’ effects on industry equilibrium, the potential for the exercise of

market power, and the marginal value of RE.

Table 1: Data for numerical examples

Parameter Value

A1 125
A2 250
D 250
C 0.18
F 1.80
R 1.0
T 20

4.1. Impact of Carbon Tax

We first investigate the impact of the carbon tax by letting it vary between $0/t and $25/t.

First, we note in Figure 1 that a ceteris paribus increase in T increases the marginal value of RE

13



under both PC and CO as indicated in Propositions 1 and 2. Moreover, if the carbon tax were

higher than $57.68/t as indicated by (A-4a) in Lemma 2, then µCO would no longer be negative, i.e.,

reversing the result of Bushnell (2003). Next, Figure 2 sketches out the results of Propositions 1 and

2 concerning RE generation. Note that the main finding of Bushnell (2003) regarding xCO1 > xPC1

is reversed when T exceeds $3.86/t as indicated in Proposition 3.

0 5 10 15 20 25
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-10

0
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30

Figure 1: Impact of carbon tax on RE marginal value
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80

100

120

Figure 2: Impact of carbon tax on RE production

Figure 3 illustrates the behaviour of thermal generation as shown in Propositions 1 and 2. The

somewhat surprising result that yPC2 may actually increase with T is shown here and holds as long

as C < 0.1887. Finally, Figures 4-6 illustrate the generally intuitive findings concerning the impact

of carbon taxation on producers’ profit, carbon emissions, and social welfare.6
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Figure 3: Impact of carbon tax on thermal production
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Figure 4: Impact of carbon tax on profit

4.2. Impact of RE Availability

Next, we explore the impact of RE availability by letting it vary between 220 MWh and 300

MWh. Figure 7 demonstrates that a ceteris paribus increase in D decreases the marginal value of RE

under both PC and CO as indicated in Propositions 4 and 5. A value of RE availability lower than

6We numerically investigate the robustness of the findings in Propositions 1 and 3 with respect to a quadratic
emission function in Appendix D.
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Figure 5: Impact of carbon tax on carbon emissions
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Figure 6: Impact of carbon tax on social welfare

218.60 MWh (as indicated by (A-4a) in Lemma 2) would render µCO non-negative contrary to the

finding of Bushnell (2003). Figure 8 sketches out the results of Propositions 4 and 5 concerning RE

generation, i.e., more RE availability leads to more RE generation. Likewise, more RE availability

lowers thermal production, increases (decreases) the profit of the RE producer (thermal producer),

decreases emissions, and increases social welfare as indicated in Figures 9–12.
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Figure 7: Impact of RE availability on RE marginal value

220 240 260 280 300
40

60

80

100

120

140

Figure 8: Impact of RE availability on RE production

4.3. Impact of RE Storage Efficiency

Given the expected development of energy storage technologies in order to back up RE deploy-

ment mandated by policy, an investigation of storage efficiency on market equilibria is desirable to

support regulatory authorities. Here, we illustrate numerically the analytical comparative statics

derived for T = 0 in Section 3.3 when F varies from 1 to 2, i.e., between 50% and 100% efficiency.

Furthermore, we also sketch out the behaviour of key variables for T = 20 in order to gain insights

that are not possible to obtain analytically.

First, Figure 13 demonstrates that for T = 0, µPC behaves non-monotonically as proven in

Proposition 6: a degradation in storage efficiency initially increases the marginal value of RE storage

but then causes it to diminish. The critical point is at F =
(D−A1)+

√
A2

2+(D−A1)2

A2
, which is 1.618 for

our parameter values. Intuitively, storage capacity is worth expanding in response to an infinitesimal
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Figure 9: Impact of RE availability on thermal production
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Figure 10: Impact of RE availability on profit
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Figure 11: Impact of RE availability on carbon emissions
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Figure 12: Impact of RE availability on social welfare

loss in efficiency only if the device is still relatively efficient. The same figure reveals a similar pattern

in µPC ’s behaviour with respect to F even for T > 0. However, the “turning point” occurs for a

much lower value of F = 1.05. In effect, the RE producer is willing to tolerate a much narrower

range in RE storage efficiency for which its marginal valuation is positive with respect to F as the

carbon tax already forces it to shift its stock to period 1, i.e., the need to expand storage is obviated

by carbon policy. By contrast, Figure 14 indicates the monotonic behaviour of µCO with respect to

F for both T = 0 (as indicated by Proposition 7) and T > 0. The only difference between the two

curves is that the imposition of a carbon tax increases the marginal value of RE storage.

Next, Figures 15 and 16 illustrate how RE production is affected by storage degradation for T = 0

and T = 20, respectively. Again, the analytical results of Propositions 6 and 7 are revealed to hold

for T > 0 including the non-monotonic behaviour of xPC1 : indeed, for F < 1.618, it decreases with F

for T = 0 before increasing (Figure 15). The explanation for this non-monotonicity is similar to that

for µPC : without a carbon tax and for relatively low F , an infinitesimal loss in RE storage efficiency

prompts a perfectly competitive RE producer to put more value on storage, i.e., by preserving more

of the RE resource for period 2. However, a relatively inefficient storage device renders this strategy

ineffective, thereby inducing more use of the RE resource in period 1. With a carbon tax, only for

F < 1.05 does the RE producer shift its RE stock to period 1 (Figure 16). Likewise, Figures 17 and

18 trace out the analytical results of Propositions 6 and 7 for thermal production. As emphasised
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Figure 13: Impact of RE storage efficiency on RE marginal
value under PC
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Figure 14: Impact of RE storage efficiency on RE marginal
value under CO

above and in Proposition 6, there is an increase in period-1 thermal production in response to an

infinitesimal loss in storage efficiency for T = 0 only if storage is relatively efficient. Indeed, a very

inefficient storage device would not be worth reinforcing by shifting the RE resource from periods

1 to 2 with a countervailing increase in period-1 thermal production.
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Figure 15: Impact of RE storage efficiency on RE produc-
tion without a carbon tax (T = $0/t)
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Figure 16: Impact of RE storage efficiency on RE produc-
tion (T = $20/t)

Figures 19 and 20 reveal how producers’ incentives are affected by a degradation in RE storage

efficiency under carbon taxes of $0/t and $20/t, respectively. As expected, the thermal producer

benefits from a relatively less efficient competitor. However, the impact of F on the RE producer’s

profit is non-monotonic regardless of the level of carbon tax: under PC, its profit actually increases

with a less-efficient storage device for F < 1.618 if T = 0 (F < 1.05 if T = 20) as the marginal value

of RE storage increases and more RE resource is preserved for the peak period. The RE producer’s

profit under CO exhibits a similar non-monotonicity as there is a “turning point” at F = 1.51 if

T = 0 (F = 1.36 if T = 20).

Finally, Figures 21 and 22 indicate that carbon emissions decrease and social welfare increases

if storage efficiency is improved, i.e., a decrease in F . Although these results are intuitive, they

may pose a challenge for policymakers when considering the conflicting private incentives of RE

producers in Figures 19 and 20. These latter two figures suggest that RE producers (whether
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Figure 17: Impact of RE storage efficiency on thermal pro-
duction without a carbon tax (T = $0/t)
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Figure 18: Impact of RE storage efficiency on thermal pro-
duction (T = $20/t)
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Figure 19: Impact of RE storage efficiency on profit (T =
$0/t)
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Figure 20: Impact of RE storage efficiency on profit (T =
$20/t)

perfectly competitive or not) may actually be hurt by an infinitesimal increase in storage efficiency,

which is related to the “turning point” discussed in the preceding two paragraphs. In this sense,

carbon policy may help to align private and social incentives as the critical value of F at which the

“turning point” occurs is lower under a carbon tax, i.e., only a very efficient device would deter an

RE producer from wanting to increase its efficiency further. This conclusion is supported by Figure

13 in which the marginal willingness to pay for more RE storage capacity increases as F decreases

for a wider range of F when T > 0. On the other hand, the inherent aversion to more production

under CO as revealed in Figure 14 means that it is more challenging to align private and social

incentives using carbon policy when RE producers have market power.7

5. Conclusions

Traditionally, electricity was treated as a non-storable product in the literature due to limited

possibilities for its storage apart from hydropower reservoirs and pumped-hydro storage. However,

7We numerically investigate the robustness of the findings about the conflict between private and social incentives
with respect to dynamic decisions in Appendix C and with respect to a quadratic emission function in Appendix D.
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Figure 21: Impact of RE storage efficiency on carbon emis-
sions (T = $20/t)
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Figure 22: Impact of RE storage efficiency on social welfare
(T = $20/t)

government policy in the past decade has incentivised the adoption and operation of intermittent

RE technologies as part of its mitigation strategy against climate change. As a consequence, this

development has spurred a complementary interest in energy storage, and technologies such as

lithium ion, lead acid, and sodium sulfur have seen increases in installation as their capacity costs

have decreased. More widespread adoption of energy storage in tandem with greater RE penetration

also changes the incentives of power producers. In particular, storage may be deployed not only in

a socially optimal manner but also in order to increase profits, e.g., through the exercise of market

power. Indeed, the need for more flexible generation and storage engendered by the sustainable-

energy transition may strengthen the position of firms that own such technologies.

In order to examine how carbon policy, RE resource availability, and storage efficiency affect

producers’ incentives and the value of storage, we develop a market-equilibrium model with ineffi-

cient storage. Such a framework enables us to address these aspects, and we subsequently specify

the conditions under which RE producers with storage are inclined to shift deployment of the RE

resource and its implications for the marginal value of RE storage. We are, thus, able to formalise

the conditions under which results observed in the hydropower literature, viz., the shifting of the

RE resource to off-peak periods and negative marginal values in the presence of market power, may

not hold. Our comparative statics with respect to the carbon tax, resource availability (or storage

capacity), and storage efficiency provide relevant policy and technological insights. In particular,

we are able to explain why private RE storage owners may not welcome an exogenous improvement

in storage efficiency and how private incentives for storage investment may be better aligned with

social ones via carbon policy.

Future work in this area could directly tackle the storage-investment decision by taking a bi-level

approach to investigate the RE producer’s incentive to modify installed capacity in the presence

of a more stringent carbon policy or higher RE storage efficiency (Siddiqui et al., 2016). An

analysis in the presence of transmission constraints would also be pertinent given the extent to

which transmission and storage can be considered as variation-management tools by shifting RE

stocks both spatially and temporally in response to policy and technological changes (Sauma and

Oren, 2009). Alternatively, the extent to which the findings here carry over to a more realistic
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setting, e.g., as in either Bushnell (2003) or Virasjoki et al. (2016), would also be worthwhile to

explore in terms of the impacts of ownership structures and variability in RE output.

Acknowledgements

This work has been supported by funding received from the Social Sciences and Humanities Re-

search Council (SSHRC) of Canada under grant number 435-2017-0068 and HEC Montréal’s Chair
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Appendix A. Equilibrium Characterisation

As in Borenstein et al. (2000), Crampes and Moreaux (2001), and related work, we restrict our

analysis to interior solutions with µCO < 0 as in Bushnell (2003) defined as follows:

Definition 1. The interior solution set for perfect competition is defined as

SPC =
{

(x,y)PC ∈ R4
+

∣∣ xPCj > 0, yPCj > 0, j = 1, 2
}

(A-1)

where (x,y)PC =
(
xPC1 , xPC2 , yPC1 , yPC2

)
.

Definition 2. The interior solution set for Cournot oligopoly with µ < 0 is defined as

SCOµ =
{

(x,y)COµ ∈ R4
+

∣∣ µCO < 0, xCOj > 0, yCOj > 0, j = 1, 2
}

(A-2)

An interior solution is ensured only if parameters are contained within some interval. This

calibration is the objective of the following lemma8 for PC:

Lemma 1. SPC is non-empty if and only if

(i) D > F

(
A2 − FA1 − (F − 1)

RT

C

)
if RT ≤ C(A2 − FA1)

F − 1
(A-3a)

(ii) D >
−A2 + FA1 + (F − 1)RT/C

F
if RT >

C(A2 − FA1)

F − 1
(A-3b)

(iii) D < A1 + FA2 − F (F − 1)
RT

C
− (1 + F 2)RT (A-3c)

(iv) RT < min

{
A1,

A2

F + F−1
C

}
. (A-3d)

Furthermore, µPC > 0 is in SPC .

Figures A.23–A.24 display all of the necessary information to characterise SPC with respect to D

and RT . The dashed lines represent the bounds for which each variable is interior, marked by the

side on which the variable is written. The binding conditions described in Lemma 1 are put between

parentheses on the corresponding cutting planes. Note that this set shrinks considerably depending

on the relative size of A2 with respect to A1.

8Proofs of all lemmata and propositions are in Appendix B.
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C
>
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y P
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0

(A-3c): y PC
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C(A2−FA1)
F−1

F (A2 − FA1) A1 + FA2

A1

F
(
A2 − A1

(
F + F−1

C

))

Figure A.23: Interior solution set under perfect competition if A2 > A1

(
F + F−1

C

)
Similar to Lemma 1, the following one provides conditions on parameters to ensure interior

solutions under CO with µCO < 0:

Lemma 2. SCOµ is non-empty if and only if

(i) D >
(C + 1)(A1 + FA2) +RT (1 + F )

2C + 3
(A-4a)

(ii) D <
A1(C + 2)(1 + F 2) + (A1 + FA2)(C + 1)−RT

[
(2C + 3)(1 + F 2) + F (F − 1)

]
2C + 3

(A-4b)

(iii) RT <
A1

2
. (A-4c)

A sketch of the interior solution set for CO is indicated in Figure A.25.

Given the characterisation of the PC and CO interior solution sets, their intersection is defined

as S ≡ SPC ∩ SCOµ . This leads to the following result about the conditions for the existence of S:
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Figure A.24: Interior solution set under perfect competition if A2 < A1
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)
Lemma 3. The intersection of the two interior solution sets, S, is defined such that

(i)The lower bound on D is:

D ≡


(A-4a) if


A2

A1
< F + (1+F 2)(C+1)

F (C+2) for any RT < A1

2

A2

A1
∈
[
F + (1+F 2)(C+1)

F (C+2) , 2C+3
C+2

(
F + 1

2F

)
+ F−1+C

2C(C+2)

]
for RT ∈

[
γ, A1

2

)
(A-3a) if A2

A1
> 2C+3

C+2

(
F + 1

2F

)
+ F−1+C

2C(C+2) and RT < min {γ, δ+}
(A-5a)

(ii)The upper bound on D is:

D ≡


(A-4b) if

A2

A1
≥ F + (F−1)(C+3)

2C(C+2) for any RT < A1

2

A2

A1
< F + (F−1)(C+3)

2C(C+2) for RT ≤ α

(A-3c) otherwise and RT < β

(A-5b)
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Figure A.25: Interior solution set under Cournot oligopoly

where

α =
(C + 2)(A2 − FA1)

(F − 1)
(
1 + 3

C

)
β =

(C + 2)(A1 + FA2)

2(C + 2)(1 + F 2) + F (F − 1)
(
1 + 3

C

)
γ =

F (C + 2)(A2 − FA1)−A1(1 + F 2)(C + 1)

1 + F
[
1 + F−1

C (2C + 3)
]

δ+ =
A1(2C + 3)(1 + F 2)− F (C + 2)(A2 − FA1)

(2C + 3)(1 + F 2)− F (F − 1)
(
1 + 3

C

) > 0, or does not apply.

Note that in Lemma 3, A1
2 , α, β, γ, and δ+ are the potential vertices of S for T > 0, i.e.,9

• RT = A1
2 is where the interior constraints on yCO1 > 0 and µCO < 0 cross,

• RT = α is for the crossing of yCO1 > 0 and yPC1 > 0,

• RT = β is for the crossing of yPC1 > 0 and µCO < 0,

9In addition, the crossing of the interior constraints on xPC1 > 0 and yPC1 > 0 is for RT = A1, which is always
outside S since SCOµ is defined only for RT < A1

2
. Furthermore, the crossing of the interior constraints on xPC2 > 0

and µCO < 0 is outside S for C > 3− 2
√

2.
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• RT = γ is for the crossing of xPC1 > 0 and µCO < 0, and

• RT = δ+ is for the crossing of xPC1 > 0 and yCO1 > 0.

Appendix B. Proofs of Lemmata and Propositions

Proof of Lemma 1

1. yPCj > 0 ∀j ⇐⇒ D < A1 + FA2 − F (F − 1)RT/C − (1 + F 2)RT , thereby yielding (A-3c) as

in part (iii) of Lemma 1.

(a) yPC1 > 0 ⇐⇒ D < A1 + FA2 − F (F − 1)RT/C − (1 + F 2)RT from (15).

(b) yPC2 > 0 ⇐⇒ D < A1 + FA2 + F (F − 1)RT/FC − (1 + F 2)RT/F from (16).

(c) Comparing the two, yPC1 > 0 =⇒ yPC2 > 0 because (1 + F 2)(1/F − 1) ≤ 0 ≤ (F −
1)(1/F + F ).

2. The conditions for yPCj > 0 ∀j imply that µPC > 0 from (17).

3. xPCj > 0 ⇐⇒ D > max {F (A2 − FA1 − (F − 1)RT/C), (−A2 + FA1 + (F − 1)RT/C)/F},
∀j, thereby yielding (A-3a) or (A-3b) accordingly. These correspond to parts (i) and (ii) of

Lemma 1. The first term is greater for RT ≤ C(A2 − FA1)/(F − 1):

(a) xPC1 > 0 ⇐⇒ D > F (A2 − FA1 − (F − 1)RT/C) in (13),

(b) xPC2 > 0 for any D > (−A2 + FA1 + (F − 1)RT/C)/F in (14).

(c) Comparing the two, F (A2 − FA1 − (F − 1)RT/C) ≥ (−A2 + FA1 + (F − 1)RT/C)/F ,

and, thus, xPC1 > 0 =⇒ xPC2 > 0 ⇐⇒ RT ≤ C(A2 − FA1)/(F − 1), and vice versa.

4. Comparing the upper bound in each case, the interval is non-empty only if A2 > A1

(
F + F−1

C

)
and RT < A1, or

if A2 < A1

(
F + F−1

C

)
and RT < A2

F+F−1
C

,

thereby yielding (A-3d) in part (iv) of Lemma 1 since RT has to be less than both A1 and
A2

F+F−1
C

.

(a) If RT ≤ C (A2 − FA1) / (F − 1), then we compare Case 1 with Case 3(a), i.e., en-

sure that the upper bound on D defined by (A-3c) is greater than the lower bound

on D defined by (A-3a). The interval defined by these two bounds is non-empty if

F (A2 − FA1 − (F − 1)RT/C) < A1 + FA2 − F (F − 1)RT/C −
(
1 + F 2

)
RT , which

leads to RT < A1. This bound is binding if A1 < C (A2 − FA1) / (F − 1), i.e., if
A2
A1

> F + F−1
C .
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(b) If RT > C (A2 − FA1) / (F − 1), then we compare Case 1 with Case 3(b), i.e., ensure that

the upper bound on D defined by (A-3c) is greater than the lower bound on D defined

by (A-3b). The interval is non-empty if (−A2 + FA1 + (F − 1)RT/C) /F < A1 +FA2−
F (F − 1)RT/C−

(
1 + F 2

)
RT , which leads to RT < A2

F+F−1
C

. For this case to be feasible,

i.e., for A2

F+F−1
C

> C(A2−FA1)
F−1 , it must be the case that A2 >

C(A2−FA1)
F−1

(
F + F−1

C

)
, i.e.,

if A2
A1

< F + F−1
C .

Proof of Lemma 2

1. µCO < 0 ⇐⇒ D > (C+1)(A1+FA2)+RT (1+F )
2C+3 from (22), thereby yielding (A-4a).

2. µCO < 0 =⇒ xCOj > 0 ∀j. This is easily verifiable by comparing (22) with (18)–(19).

3. yCOj > 0 ∀j ⇐⇒ D <
A1(C+2)(1+F 2)+(A1+FA2)(C+1)−RT [(2C+3)(1+F 2)+F (F−1)]

2C+3 , thereby yield-

ing (A-4b):

(a) yCO1 > 0 if and only if from (20)D <
A1(C+2)(1+F 2)+(A1+FA2)(C+1)−RT [(2C+3)(1+F 2)+F (F−1)]

2C+3 .

(b) yCO2 > 0 if and only if from (21)D <
A2(C+2)(1+F 2)+F (A1+FA2)(C+1)−RT [(2C+3)(1+F 2)+1−F ]

F (2C+3) .

(c) Comparing the two, (C + 2)(1 + F 2)(FA1 − A2 − 2(F − 1)RT ) < 0, and, hence, yCO1 >

0 =⇒ yCO2 > 0.

4. The two bounds on D define a non-empty set only if F [(C + 1)(A1 + FA2) +RT (1 + F )] <

A2(C+2)(1+F 2)+F (A1 +FA2)(C+1)−RT
[
(2C + 3)(1 + F 2) + 1− F

]
, i.e., if RT < A1/2,

thereby yielding (A-4c).

Proof of Lemma 3 We identify conditions under which SCOµ is contained in SPC by pairwise

comparison of the bounds for interior solutions in both PC and CO cases. First, we compare lower

bounds between themselves to characterise the conditions for which one is binding for S. Next, we

complete the characterisation of S by comparing each lower bound with each upper bound in order

to define the potential vertices of S.

A. Checking for the lower bound on D with respect to µCO < 0 and xPC1 > 0, i.e., comparing

(A-4a) and (A-3a):

(a) SCOµ is more binding than SPC , i.e., the right-hand side of (A-4a) is lower than the

right-hand side of (A-3a), if and only if RT > F (C+2)(A2−FA1)−A1(1+F 2)(C+1)

1+F 2+F (F−1)(1+ 3
C )

≡ γ.

(b) The threshold γ is lower than zero, i.e., SCOµ is always more binding than SPC , if A2
A1

<

F + (1+F 2)(C+1)
F (C+2) .
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(c) The threshold γ is higher than A1
2 , i.e., SCOµ is never more binding than SPC , if

A2

A1
> F +

2C + 3 + 2F 2(C + 1) + F
(
F−1
C + 1

)
2F (C + 2)

, (B-1)

thereby yielding the first case for D in (A-5a).

A’. Checking for the lower bound on D with respect to µCO < 0 and xPC2 > 0, i.e., comparing

(A-4a) and (A-3b):

(a) SCOµ is more binding than SPC , i.e., the right-hand side of (A-4a) is lower than the

right-hand side of (A-3b), if and only if

(C + 2)(A2 − FA1) +A2(1 + F 2)(C + 1) > RT

[
F − 1

C
(2C + 3)− F (1 + F )

]
. (B-2)

While the left-hand side of (B-2) is strictly positive, the right-hand side may be non-

positive. In this case, SCOµ is always more binding than SPC .

(b) Assuming that the right-hand side is positive, we obtain an upper bound on RT under

which SCOµ is always more binding than SPC . We compare the obtained upper bound

on RT with the upper bound in SCOµ , i.e., SCOµ is more binding than SPC if A1
2 <

(C+2)(A2−FA1)+A2(1+F 2)(C+1)
(F−1)
C

(2C+3)−F (1+F )
.

(c) Rearranging the latter expression, we obtain a ratio A2
A1

>
(2C+3)(F+F−1

C )−F 2

2[2C+3+F 2(C+1)]
. If this

threshold is not greater than F , then this bound is not binding such that SCOµ is more

binding than SPC , i.e.,

(2C + 3)
(
F + F−1

C

)
− F 2

2 [2C + 3 + F 2(C + 1)]
≤ F ⇐⇒ F 2C − F (1− C) + 1 ≥ 0. (B-3)

It is immediate that for any C ≥ 1, this polynomial is positive. The corresponding

discriminant with respect to F of this polynomial is:

∆F = C2 − 6C + 1 ≤ 0 ⇐⇒ C ∈ [3− 2
√

2, 3 + 2
√

2]. (B-4)

(d) Since (B-3) describes a quadratic convex function, it has a unique minimum, which is

equal to zero for the bounds described in (B-4), and limF→+∞ = +∞ due to the positive

term on F 2 in (B-3). Hence, if (B-3) does not change sign, then it must be positive.

(e) If C = 3 + 2
√

2 > 1, then (B-3) > 0 for any F .

(f) For the lower bound on C, the minimum at zero is attained for F = (
√

2− 1)/(3− 2
√

2).

For any C above this threshold, the sign of (B-3) does not vary and must be positive

for any F since its limit in F is positive. Below this lower bound, (B-3) has two roots,

which implies that is negative for some F .
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(g) Hence, the assumption C > 3 − 2
√

2 is necessary and sufficient to ensure that µCO <

0 =⇒ xPC2 > 0 for all F > 1.

B. Checking for the condition on the upper bound of D with respect to yPC1 > 0 and yCO1 , i.e.,

comparing (A-3c) and (A-4b):

(a) SCOµ is more binding than SPC , i.e., the right-hand side of (A-3c) is greater than that

of (A-4b), for any RT < (C+2)(A2−FA1)

(F−1)(1+ 3
C )

≡ α. Provided that SCOµ is defined such that

RT <A1
2 , this implies the following bounds on A2

A1
:

A1

2
<

(C + 2)(A2 − FA1)

(F − 1)
(
1 + 3

C

) ⇐⇒ A2

A1
> F +

(F − 1)(C + 3)

2C(C + 2)

thereby yielding the first case for D in (A-5b).

(b) Otherwise, (A-3c) is the binding bound.

Finally, we complete the characterisation of S by checking the upper bounds on RT , i.e., assessing

under which conditions on RT the lower and upper bounds cross each other:

1. Checking whether the constraints yPC1 > 0 and xPC1 > 0 may constitute a vertex of S, i.e.,

comparing (A-3c) with (A-3a), in S. From Lemma 1, the right-hand side of (A-3a) crosses

with that of (A-3c) for RT = A1, which is outside SCOµ as defined in Lemma 2. Hence, such

a crossing is not defined within S.

2. Checking whether the constraints yPC1 > 0 and µCO < 0 may constitute a vertex of S, i.e., com-

paring (A-3c) with (A-4a), in S. Such a crossing occurs at RT = (C+2)(A1+FA2)

2(C+2)(F 2+1)+F (F−1)(1+ 3
C )
≡

β. For this crossing to be a vertex of S, it must take place when yPC1 > 0 is the binding

condition defining S, i.e., β < A1
2 . This implies that A2

A1
< F +

(F−1)(1+ 3
C )

2(C+2) , thereby yielding

the second case for D in (A-5b).

3. Checking whether the constraints yCO1 > 0 and xPC1 > 0 may constitute a vertex of S, i.e., com-

paring (A-4b) with (A-3a), in S. Such a crossing occurs atRT = A1(2C+3)(1+F 2)−F (C+2)(A2−FA1)

(2C+3)(1+F 2)−F (F−1)(1+ 3
C )

≡

δ. In order for this crossing to be in S, it must take place when xPC1 > 0 is the binding con-

dition defining S, i.e., δ < γ. This implies that

A2

A1
> F +

(2C + 3)(F 2 + 1) + F (F − 1)
(
1 + 3

C

)
2F (C + 2)

(B-5)

The lower bound in (B-5) is implied by (B-1), thereby yielding the second case for D in (A-5a).

Proof of Proposition 1 The results and signs are evident upon partial differentiation of the
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interior solutions for PC in SPC , xPCj , yPCj , j = 1, 2, µPC , in (13)–(17) with respect to T :

∂xPC1

∂T
=

F (F − 1)R

C (1 + F 2)
> 0 (B-6)

∂xPC2

∂T
=
−(F − 1)R

C (1 + F 2)
< 0 (B-7)

∂yPC1

∂T
= − R

(C + 1)

[
1 +

F (F − 1)

C (1 + F 2)

]
< 0 (B-8)

∂yPC2

∂T
= − R

(C + 1)

[
1− (F − 1)

C (1 + F 2)

]
> 0 if C <

F − 1

1 + F 2
(B-9)

∂µPC

∂T
=

(F + 1)R

(C + 1) (1 + F 2)
> 0 (B-10)

Proof of Proposition 2 The results and signs are evident upon partial differentiation of the

interior solutions for CO in SCOµ , xCOj , yCOj , j = 1, 2, µCO, in (18)–(22) with respect to T :

∂xCO1

∂T
=

F (F − 1)R

(2C + 3) (1 + F 2)
> 0 (B-11)

∂xCO2

∂T
=

−(F − 1)R

(2C + 3) (1 + F 2)
< 0 (B-12)

∂yCO1

∂T
= − R

(C + 2)

[
1 +

F (F − 1)

(2C + 3) (1 + F 2)

]
< 0 (B-13)

∂yCO2

∂T
= − R

(C + 2)

[
1− (F − 1)

(2C + 3) (1 + F 2)

]
< 0 (B-14)

∂µCO

∂T
=

(F + 1)R

(C + 2) (1 + F 2)
> 0 (B-15)

Proof of Proposition 3 The result follows from comparison of (18) and (13).

Proof of Proposition 4 The results and signs are evident upon partial differentiation of the

interior solutions for PC in SPC , xPCj , yPCj , j = 1, 2, µPC , in (13)–(17) with respect to D:

∂xPC1

∂D
=

1

1 + F 2
> 0 (B-16)

∂xPC2

∂D
=

F

1 + F 2
> 0 (B-17)

∂yPC1

∂D
= − 1

(C + 1) (1 + F 2)
< 0 (B-18)

∂yPC2

∂D
= − F

(C + 1) (1 + F 2)
< 0 (B-19)

∂µPC

∂D
= − C

(C + 1) (1 + F 2)
< 0 (B-20)
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Proof of Proposition 5 The results and signs are evident upon partial differentiation of the

interior solutions for CO in SCOµ , xCOj , yCOj , j = 1, 2, µCO, in (18)–(22) with respect to D:

∂xCO1

∂D
=

1

1 + F 2
> 0 (B-21)

∂xCO2

∂D
=

F

1 + F 2
> 0 (B-22)

∂yCO1

∂D
= − 1

(C + 2) (1 + F 2)
< 0 (B-23)

∂yCO2

∂D
= − F

(C + 2) (1 + F 2)
< 0 (B-24)

∂µCO

∂D
= − (2C + 3)

(C + 2) (1 + F 2)
< 0 (B-25)

Proof of Proposition 6 The results and signs are evident upon partial differentiation of the

interior solutions for PC in SPC , xPCj , yPCj , j = 1, 2, µPC , in (13)–(17) with respect to F while

setting T = 0:

∂xPC1

∂F
=
−(A2 − FA1) + F (FA2 +A1)− 2FD

(1 + F 2)2 (B-26)

∂xPC2

∂F
=
−F (A2 − FA1)− (FA2 +A1) +

(
1− F 2

)
D

(1 + F 2)2 < 0 (B-27)

∂yPC1

∂F
=

(A2 − FA1)− F (FA2 +A1) + 2FD

(C + 1) (1 + F 2)2 (B-28)

∂yPC2

∂F
=

F (A2 − FA1) + (FA2 +A1) +
(
F 2 − 1

)
D

(C + 1) (1 + F 2)2 > 0 (B-29)

∂µPC

∂F
=

C [(A2 − FA1)− F (FA2 +A1) + 2FD]

(C + 1) (1 + F 2)2 (B-30)

The signs of (B-26), (B-28), and (B-30) are negative, positive, and positive, respectively, if F <
(D−A1)+

√
A2

2+(D−A1)2

A2
.

Proof of Proposition 7 The results are evident upon partial differentiation of the interior

solutions for CO in SCOµ , xCOj , yCOj , j = 1, 2, µCO, in (18)–(22) with respect to F while setting
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T = 0:

∂xCO1

∂F
=

[(2FA1 −A2)(C + 1)] (1 + F 2)

(2C + 3) (1 + F 2)2

−2F [F (FA1 −A2)(C + 1) + (2C + 3)D]

(2C + 3) (1 + F 2)2 < 0 (B-31)

∂xCO2

∂F
=

[−A1(C + 1) + (2C + 3)D] (1 + F 2)

(2C + 3) (1 + F 2)2

−2F [(A2 − FA1)(C + 1) + (2C + 3)FD]

(2C + 3) (1 + F 2)2 < 0 (B-32)

∂yCO1

∂F
=

[2FA1(C + 2) +A2(C + 1)] (1 + F 2)

(C + 2) (2C + 3) (1 + F 2)2

−
2F
[
A1

(
F 2(C + 2) + 2C + 3

)
+ FA2(C + 1)− (2C + 3)D

]
(C + 2) (2C + 3) (1 + F 2)2 > 0 (B-33)

∂yCO2

∂F
=

[A1(C + 1) + 2FA2(2C + 3)− (2C + 3)D] (1 + F 2)

(C + 2) (2C + 3) (1 + F 2)2

−
2F
[
FA1(C + 1) +A2

(
C + 2 + F 2(2C + 3)

)
− (2C + 3)FD

]
(C + 2) (2C + 3) (1 + F 2)2 > 0 (B-34)

∂µCO

∂F
=

[A2(C + 1)] (1 + F 2)− 2F [A1(C + 1) + FA2(C + 1)− (2C + 3)D]

(2C + 3) (1 + F 2)2 > 0 (B-35)

The signs for (B-32) and (B-34) follow because −(C + 1) [A1 + FA2 + F (A2 − FA1)] − (F 2 −
1)(2C + 3)D < 0. Likewise, the signs for (B-31), (B-33), and (B-35) follow because (2C +

3)D > (A1 + FA2)(C + 1) (stemming from the negativity of µCO), which implies 2F (2C + 3)D >

2F [(A1 + FA2)(C + 1)] > (C + 1)
[(
F 2 + 1

)
(2FA1 −A2)− 2F 2 (FA1 −A2)

]
.

Appendix C. Closed-Loop Cournot Equilibrium

When the RE producer’s problem is dynamic, we solve it recursively to obtain a subgame perfect

Cournot-Nash equilibrium, i.e., a closed-loop (CL) Cournot equilibrium. In effect, each producer

acts as a Stackelberg leader in anticipating the impact of second-stage reactions when making first-

stage decisions. Starting in period 2, (5) implies x2 = (D − x1)/F . Assuming an interior solution

for y2, KKT condition (10) implies:

y2 =
1

(2 + C)

(
A2 −RT −

(D − x1)

F

)
(C-1)

Assuming an interior solution, the total production in period 2 is:

x2 + y2 =
1

(2 + C)

(
A2 −RT +

(D − x1)

F
(1 + C)

)
(C-2)
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Inserting these relationships into (1), we obtain

Maximisex1≥0 x1 [A1 − (x1 + y1)] +
(D − x1)

F (2 + C)

[(
A2 −

(D − x1)

F

)
(1 + C) +RT

]
(C-3)

Assuming an interior solution, we obtain xCL1 (y1) as the reaction function from the first-order

necessary condition of (C-3),

xCL1 (y1) =
(A1 − y1)F 2(2 + C)− F (A2(1 + C) +RT ) + 2D(1 + C)

2((1 + F 2)(1 + C) + F 2)
(C-4)

Using KKT condition (9) for the thermal producer, we obtain the closed-form solution for x1:

xCL1 =
2D(1 + C)− F (1 + C)(A2 − FA1) + F (F − 1)RT

2(1 + C) + F 2(3 + 2C)
(C-5)

Inserting (C-5) in (4), (9), and (10), we obtain, respectively:

xCL2 = FD(3+2C)+(1+C)(A2−FA1)−(F−1)RT
2(1+C)+F 2(3+2C)

(C-6)

yCL1 = A1(F 2(2+C)+2(1+C))+FA2(1+C)−2D(1+C)−RT (2F 2(2+C)+2(1+C)−F )
(2+C)(2(1+C)+F 2(3+2C))

(C-7)

yCL2 = A2(F 2(3+2C)+1+C)+FA1(1+C)−FD(3+2C)−RT ((1+F 2)(3+2C)−F )
(2+C)(2(1+C)+F 2(3+2C))

(C-8)

Solving for µ in (3), we obtain:

µCL =
2A1(1 + C)2 + (1 + C)(3 + 2C)(FA2 − 2D) +RT (F (3 + 2C) + 2(1 + C))

(2 + C)(2(1 + C) + F 2(3 + 2C))
(C-9)

Through this CL Cournot model, we can assess the impact of new information available in a later

stage, e.g., due to (possibly random) shocks to RE availability. As stated in Crampes and Moreaux

(2001), “. . . closed-loop equilibrium . . . would result in a lower period 1 supply and a higher period

2 supply as compared with the open-loop equilibrium. . . ” for the RE producer. The CL Cournot

equilibrium takes into account the response of the thermal producer in period 2 due to any transfer

of RE resource from period 1 to period 2, thereby putting more weight on period-2 production.

Thus, the possibility of being able to “wait and see” in response to a shock to the RE stock, D,

would have a similar effect. Towards that end, we observe that the main qualitative finding about

the non-monotonic impact of storage efficiency, F , on the RE producer’s profit still holds even

when the producer has the possibility to anticipate second-stage decisions (see Figures C.26–C.29

and compare with Figures 19, 20, and 22 earlier). Hence, our implementation of a subgame perfect

Nash equilibrium tackles the issue of whether the possibility of revising decisions over time changes

the general conclusions (with the finding that it does not).
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Figure C.26: Impact of RE storage efficiency on profit with
CL (T = $0/t)
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Figure C.27: Impact of RE storage efficiency on profit with
CL (T = $20/t)
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Figure C.28: Impact of RE storage efficiency on social wel-
fare with CL (T = $0/t)
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Figure C.29: Impact of RE storage efficiency on social wel-
fare with CL (T = $20/t)

Appendix D. PC and CO Equilibria with a Quadratic Emission Function

The RE producer’s problem is still (1)–(2) and leads to the same KKT conditions (5)–(7) or

(3)–(5). Under a quadratic emission function, the thermal producer’s problem is now:

Maximiseyj≥0 [A1 − (x1 + y1)] y1 + [A2 − (x2 + y2)] y2 −
1

2
(C + TR)

(
y2

1 + y2
2

)
(D-1)

The KKT conditions under CO are:

0 ≤ y1 ⊥ − [A1 − (2y1 + x1)] + (C + TR)y1 ≥ 0 (D-2)

0 ≤ y2 ⊥ − [A2 − (2y2 + x2)] + (C + TR)y2 ≥ 0 (D-3)

Likewise, the KKT conditions under PC are:

0 ≤ y1 ⊥ − [A1 − (y1 + x1)] + (C + TR)y1 ≥ 0 (D-4)

0 ≤ y2 ⊥ − [A2 − (y2 + x2)] + (C + TR)y2 ≥ 0 (D-5)
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Under PC, the interior solutions to (5)–(7) and (D-4)–(D-5) become:

xPC1 =
F (FA1 −A2) +D

1 + F 2
(D-6)

xPC2 =
A2 − FA1 + FD

1 + F 2
(D-7)

yPC1 =
A1 + FA2 −D

(1 + F 2) (1 + C +RT )
(D-8)

yPC2 =
F (A1 + FA2 −D)

(1 + F 2) (1 + C + TR)
(D-9)

µPC =
(A1 + FA2 −D) (C + TR)

(1 + F 2) (1 + C + TR)
(D-10)

Likewise, the interior solutions to (3)–(5) and (D-2)–(D-3) under CO are:

xCO1 =
F (FA1 −A2) (1 + C + TR)

(1 + F 2) (3 + 2(C + TR))
+

D

1 + F 2
(D-11)

xCO2 =
(A2 − FA1) (1 + C + TR)

(1 + F 2) (3 + 2(C + TR))
+

FD

1 + F 2
(D-12)

yCO1 =

[
A1(2 + F 2) + FA2 − 2D

]
(1 + C + TR) +A1(1 + F 2)−D

(1 + F 2) (2 + C + TR) (3 + 2(C + TR))
(D-13)

yCO2 =

[
FA1 +A2(2F 2 + 1)− 2FD

]
(1 + C + TR) +A2(1 + F 2)− FD

(1 + F 2) (2 + C + TR) (3 + 2(C + TR))
(D-14)

µCO =
(A1 + FA2) (1 + C + TR)−D (3 + 2(C + TR))

(1 + F 2) (2 + C + TR)
(D-15)

Since the closed-form expressions are not easily amenable to analytical comparative statics, we

investigate the robustness of the results in Propositions 1 and 3 numerically. In particular, we would

like to know if a carbon tax under PC may actually increase peak thermal output and whether a

carbon tax induces the RE producer to generate more during the off-peak period under PC than

CO with a quadratic emission function. From Figures D.30–D.31, we cannot show that these results

hold with a quadratic emission function for the given parameters (cf. Figures 2 and 3). This reversal

of the previous results here with a quadratic emission function stems from the simple fact that the

quadratic emission term effectively increases the value of the marginal cost, C, and removes the

linear carbon tax, RT . Thus, Proposition 3 does not make sense in such a case.

By contrast as shown in Figures D.32–D.35, the counterintuitive results pertaining to RE storage

efficiency in Proposition 6, F , still hold, viz., F has a non-monotonic impact on the RE marginal

value under PC even with a quadratic emission function (cf. Figure 13). As a result, there are

“turning points” in the RE producer’s off-peak production decisions (cf. Figure 16) and profit (cf.

Figure 20). Hence, a conflict remains between private and public welfare due to the impact of F ,

even with a quadratic emission function as social welfare monotonically increases as RE storage

efficiency increases (cf. Figure 22).
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Figure D.30: Impact of carbon tax on RE production with
a quadratic emission function
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Figure D.31: Impact of carbon tax on thermal production
with a quadratic emission function
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Figure D.32: Impact of RE storage efficiency on RE
marginal value under PC with a quadratic emission func-
tion
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Figure D.33: Impact of RE storage efficiency on RE pro-
duction with a quadratic emission function (T = $20/t)
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Figure D.34: Impact of RE storage efficiency on profit with
a quadratic emission function (T = $20/t)
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Figure D.35: Impact of RE storage efficiency on social wel-
fare with a quadratic emission function (T = $20/t)
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