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1  | INTRODUC TION

Migration and dispersal are important behaviors that drive evolution 
in many animal populations. In broad terms, migration is a seasonal 

two‐way movement usually associated with breeding sites, whereas 
dispersal is a one‐way movement often undertaken by sexually im‐
mature individuals (Moussy et al., 2013). Both types of movement 
can shape the genetic structure of populations via gene flow, which 
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Abstract
The Gambian epauletted fruit bat (Epomophorus gambianus) is an abundant species 
that roosts in both urban and rural settings. The possible role of E. gambianus as a 
reservoir host of zoonotic diseases underlines the need to better understand the 
species movement patterns. So far, neither observational nor phylogenetic studies 
have identified the dispersal range or behavior of this species. Comparative analyses 
of mitochondrial and nuclear markers from 20 localities across the known distribu‐
tion of E. gambianus showed population panmixia, except for the populations in 
Ethiopia	and	southern	Ghana	 (Accra	and	Ve‐Golokwati).	The	Ethiopian	population	
may be ancestral and is highly divergent to the species across the rest of its range, 
possibly reflecting isolation of an ancient colonization along an east–west axis. 
Mitochondrial	haplotypes	in	the	Accra	population	display	a	strong	signature	of	a	past	
bottleneck event; evidence of either an ancient or recent bottleneck using microsat‐
ellite data, however, was not detected. Demographic analyses identified population 
expansion	in	most	of	the	colonies,	except	in	the	female	line	of	descent	in	the	Accra	
population. The molecular analyses of the colonies from Ethiopia and southern Ghana 
show	 gender	 dispersal	 bias,	with	 the	mitochondrial	DNA	 fixation	 values	 over	 ten	
times those of the nuclear markers. These findings indicate free mixing of the species 
across great distances, which should inform future epidemiological studies.
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leads to a reduction in genetic variation between dispersed popu‐
lations. Gene flow in bat species can be greatly facilitated by the 
ability to perform true flight, with some bat populations showing 
panmixia, or near panmixia, across much of their geographical dis‐
tribution	(Chen	et	al.,	2010;	Moussy	et	al.,	2015;	Peel	et	al.,	2013;	
Petit	&	Mayer,	1999;	Russell,	Medellin,	&	McCracken,	2005;	Webb	&	
Tidemann,	1996).	However,	these	movements	can	also	be	markedly	
restricted (Entwistle, Racey, & Speakman, 2000; Rossiter, Jones, 
Ransome, & Barratt, 2000) or gender‐biased due to philopatric be‐
haviors, which are reflected as different degrees of genetic structur‐
ing.	For	example,	 sex‐biased	dispersal	 in	bat	 species	 is	mainly	due	
to female philopatry (Rossiter, Jones, Ransome, & Barratt, 2002; 
Rydell,	 1989).	 The	 opposite	 behavior	 has	 also	 been	 documented,	
that is, longer distances of female bat dispersal compared with males 
(Nagy, Gunther, Knornschild, & Mayer, 2013; Nagy, Heckel, Voigt, & 
Mayer, 2007).

Long‐distance	animal	movements	also	can	drive	the	transmis‐
sion of pathogens within and between species, shaping epidemio‐
logical	dynamics	among	wildlife	populations.	For	example,	Eidolon 
helvum,	 the	 most	 populous	 large	 fruit	 bat	 in	 sub‐Saharan	 Africa	
that	 is	 often	 found	 in	 urban	 areas	 including	megacities	 (DeFrees	
&	Wilson,	 1988;	 Hayman,	 McCrea,	 et	 al.,	 2012),	 has	 the	 largest	
panmictic population among terrestrial mammals, showing similar 
seroprevalences	against	henipaviruses	and	Lagos	bat	virus	among	
disparate	continental	African	countries	 (Peel	et	al.,	2013).	Animal	
dispersal may have important implications for public health, but the 
true role that these movement patterns play in pathogen transmis‐
sion	is	still	not	well	understood	(Suzán	et	al.,	2015).	For	example,	
although there is a generalized assumption that migratory animals 
increase	 pathogen	 dispersal	 (Figuerola	 &	 Green,	 2000;	 Rappole,	
Derrickson, & Hubalek, 2000; Reed, Meece, Henkel, & Shukla, 
2003), it has been suggested that in some circumstances, the oppo‐
site can be true, for example, migration can allow healthy hosts to 
escape infected habitats, reducing the impact of disease on a pop‐
ulation	(Altizer,	Bartel,	&	Han,	2011;	Hall,	Altizer,	&	Bartel,	2014).	
This highlights the need for accurate data and a better understand‐
ing of animal movement, particularly for potential reservoir species 
of zoonotic diseases.

Epomophorus gambianus	 (Figure	 1),	 commonly	 known	 as	 the	
Gambian epauletted fruit bat, is a potential reservoir host of Ebola 
virus	 (Hayman,	Yu,	et	al.,	2012).	Across	 its	distribution	 (Figure	2),	E. 
gambianus has been reported to roost in small colonies of up to 100 in‐
dividuals	(Boulay	&	Robbins,	1989).	It	is	described	as	a	lowland	species	
usually found below 500 meters above sea level (m a.s.l.), apart from 
in Ethiopia, where it has been reported to occur up to nearly 2,000 m 
a.s.l. (Mickelburgh, Hutson, & Bergmans, 2008). Epomophorus gambi‐
anus is a medium‐sized bat that has not been described previously 
as undergoing migration or long‐distance dispersal (Boulay & Robbins, 
1989;	Mickelburgh	et	 al.,	 2008).	Bats	which	 fly	 long	distances	have	
morphological characteristics (ecomorphology) that enable energy‐ef‐
ficient flight, such as a high aspect ratio (long, narrow wings), which 
favors aerodynamic efficiency and lower losses of energy in flight, 
and high wing loading (low wing area relative to body mass), which 

correlates with high speed flights but low maneuverability (Norberg & 
Rayner,	1987;	Olival,	2012).	Norberg	and	Rayner	(1987)	determined	
that E. gambianus has the characteristics of a fast, maneuverable and 
agile flyer (e.g., low aspect ratio, relatively short wingspan, high wing 
loading, and an average wingtip shape) that are not typical features for 
long‐distance flight.

Population	genetics	has	been	increasingly	used	to	elucidate	wild‐
life movement, particularly for species that are difficult to track di‐
rectly.	Mitochondrial	DNA	 (mtDNA)	has	historically	been	 selected	
as a molecular marker for phylogeographic studies and has also been 
widely used for the study of speciation (Boattini et al., 2013; Song, 
Lan,	&	Kohn,	2014;	Talbot,	Vonhof,	Broders,	Fenton,	&	Keyghobadi,	
2016).	For	example,	sequencing	of	the	mitochondrial	cytochrome	b	
gene (CYTB) revealed a polyphyletic relationship between E. gam‐
bianus and Micropteropus pusillus (species within the Epomophorini 
tribe).	Using	only	a	region	of	the	mtDNA,	however,	did	not	robustly	
identify introgression between these species (Nesi, Nakoune, 
Cruaud, & Hassanin, 2011). To assess this, either complete mito‐
chondrial	genomes	can	be	used	(Riesle‐Sbarbaro	et	al.,	2016)	or	the	
analysis can be complemented using biparentally inherited markers 
such	 as	 microsatellites.	 Microsatellites	 are	 nuclear	 DNA	 (ncDNA)	
markers commonly used in phylogeographic studies of populations 
(Goldstein	&	Pollock,	1997;	Hindley,	Graham,	Pulgarin,	&	Burg,	2018;	
Muriira,	Muchugi,	Yu,	Xu,	&	Liu,	2018;	Rossiter,	Benda,	Dietz,	Zhang,	
& Jones, 2007). So far, the population‐based phylogeography of E. 
gambianus has not been investigated. In this study, we aim to de‐
termine the genetic structure of this species across its range using 
both nuclear and mitochondrial markers, not only to increase the 
currently limited knowledge of the ecology and demographic history 
of this bat, but also to inform future epidemiological studies, by an‐
swering the following questions:

1. Is E. gambianus freely mixing across its entire geographic dis‐
tribution? If not, is there a pattern of isolation by distance or 
complete gene flow disruption?

2. What can be concluded about the demographic history of E. 
gambianus?

F I G U R E  1  Picture	of	a	female	specimen	of	Epomophorus 
gambianus flying into a mango tree, with a pup attached. 
Photograph	was	taken	in	Greater	Accra,	year	2015
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2  | MATERIAL S AND METHODS

2.1 | Sample collection

Tissue	samples	or	extracted	DNA	of	308	E. gambianus was collected 
from 20 localities from across the species geographical distribu‐
tion	 (IUCN,	2016)	along	a	 linear	east–west	axis	 (Figure	2;	Table	1).	
Eleven colonies were sampled within Ghana, 2013–2015, by the col‐
lection	of	3‐	to	4‐mm‐diameter	wing	membrane	biopsies	of	using	a	
biopsy punch (Henry Schein, UK), while tissue samples from Nigeria 
and	Ethiopia	and	extracted	DNA	samples	from	the	Central	African	
Republic were acquired from museum specimens (Table 1).

2.2 | Sequencing and genotyping

Genomic	DNA	was	extracted	using	the	DNeasy	Blood	and	Tissue	
Kit	(Qiagen	Ltd.,	UK).	Samples	obtained	from	museum	collections	
were	extracted	using	 the	QIAamp	DNA	FFPE	Tissue	Kit	 (Qiagen	
Ltd.,	UK).	Tissues	sampled	from	the	pectoral	muscle	were	digested	
overnight	(24	hr)	using	180	μl	of	ATL	buffer	and	40	μl of protein‐
ase	K.	A	paired‐end	Illumina	sequencing	library	was	constructed,	
as	 previously	 described	 (Riesle‐Sbarbaro	 et	 al.,	 2016),	 and	 the	
mitochondrial genome of E. gambianus was assembled and anno‐
tated.	 Primers	 for	 CYTB	 and	D‐loop	 regions	were	 selected	 (see	
Supporting	information,	Table	S1)	for	Sanger	sequencing,	and	DNA	
was amplified in 10 μl of reaction mix containing 2 ng of template 
DNA,	10	μM of forward and reverse primers, and 5 μl of MegaMix‐
Gold	 master	 mix.	 Touchdown	 PCR	 settings	 used	 to	 amplify	 the	
CYTB	 fragments	were	as	 follows:	5	min	at	95°C; followed by 12 
cycles	 of	 20	s	 at	 94°C,	 20	s	 at	 66°C (decreasing one degree per 
cycle), and 20 s at 72°C;	30	cycles	of	1	min	at	94°C,	1	min	at	54°C, 

and 1 min at 72°C; and a final extension of 7 min at 72°C; and 
for	D‐loop,	the	conditions	used	were	as	follows:	5	min	at	95°C;	40	
cycles	of	1	min	at	93°C,	90	s	at	55°C and 2 min at 72°C; and a final 
extension of 7 min at 72°C.	PCR	products	were	screened	using	2%	
agarose	gel	electrophoresis	and	purified	using	the	Exonuclease	I/
Shrimp	Alkaline	Phosphatase	Method	(ExoSAP‐IT	kit,	Affymetrix	
Ltd.,	UK).	PCR	products	were	Sanger	sequenced	externally	(Source	
Bioscience,	UK,	 Ltd.),	 and	Geneious	 v8.1	 software	was	 used	 for	
quality‐trimming and alignment of the sequences. Both CYTB 
and D‐loop sequences were realigned using the software Gblocks 
0.91b	(Castresana,	2000)	under	semistringent	parameters.	CYTB	
sequences were kept in two conserved alignment blocks retaining 
99%	of	the	original	alignment	(532	bp).	Due	to	the	high	variability	
of	D‐loop	sequences,	some	PCRs	failed	to	generate	unique	prod‐
ucts,	so	four	alignment	blocks	were	generated	using	only	75%	of	
the	original	sequence	information	(414	bp).

Microsatellite	 primers	 for	 nuclear	 DNA	 (ncDNA)	 were	 devel‐
oped using E. gambianus paired‐end reads (that passed the Illumina 
filters)	 imported	 to	 the	 “SSR_Pipeline”	 (Miller,	 Knaus,	 Mullins,	 &	
Haig, 2013), which was programmed to identify simple microsatellite 
markers	that	presented	at	least	9	repeats	of	dinucleotide	motifs	or	
at least 5 repeats for tetranucleotide motifs (Supporting informa‐
tion,	Table	S2).	From	this	output,	an	 initial	 selection	of	34	nuclear	
microsatellites was filtered to 20, according to the reproducibility 
of	scoring	and	heterozygosity	detected	in	20	bats.	Forward	primers	
were	extended	with	universal	primers	M13,	T7,	SP6,	and	T3	to	their	
5′	end	to	indirectly	label	them	with	fluorescent	dyes	(NED,	6‐FAM,	
VIC,	and	PET,	respectively).	PCRs	(total	of	15	μl mix) were amplified 
using	the	QIAGEN	multiplex	PCR	kit	(Qiagen	Ltd.,	UK)	with	the	fol‐
lowing	settings:	15	min	at	95°C;	30	cycles	of	30	s	at	94°C,	90	s	at	
60°C,	60	s	at	72°C;	and	an	extension	of	30	min	at	60°C. Genotyping 

F I G U R E  2   Map showing E. gambianus geographical distribution (extracted from IUCN and shown with an orange line) and sampling sites 
(circles).	Bubble	size	reflects	sample	size.	The	legend	shows	the	color‐coded	sampling	sites,	where	AC:	Greater	Accra,	VG:	Ve‐Golokwati,	
TSG:	Tanoboase	Sacred	Grove,	BYM:	Buoyem,	TA:	Tamale,	DG:	Damongo,	CH:	Charia,	JP:	Jirapa,	TU:	Tumu,	BG:	Bolgatanga,	YE:	Yendi,	CAR:	
Central	African	Republic,	NG:	Nigeria,	ET:	Ethiopia,	CAR†: CYTB sequences downloaded from GenBank
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was	outsourced	(Source	Bioscience,	UK,	Ltd.),	and	peaks	were	ana‐
lyzed using the Geneious version 8.1 software.

2.3 | Characterization of molecular markers

Samples from 308 bats were initially obtained for genotyping, but 
due	 to	 poor	 quality	 or	 low	 yield	 of	 DNA	 (reflected	 as	 ambiguous	
peaks	or	no	amplification	of	SSR),	277	bats	 (144	 females	and	133	
males) were included in subsequent analyses. The statistical power 
of	both	mtDNA	and	microsatellite	markers	in	the	dataset	to	detect	

significant population differentiation was tested using the software 
POWSIM	(Ryman	&	Palm,	2006).	A	thousand	simulations	were	run	
using	the	empirical	values	of	the	ncDNA	dataset,	detecting	FST val‐
ues from 0.001 to 0.01. To test the CYTB sequences, the dataset 
was	 adjusted	 for	 the	 organelle	 data	 (mtDNA)	 halving	 sample	 size	
(Larsson,	Charlier,	Laikre,	&	Ryman,	2008).

Null alleles and large allele dropout were checked using the 
software	 MICRO‐CHECKER	 (Van	 Oosterhout,	 Hutchinson,	 Wills,	
&	Shipley,	2004).	Each	locus	was	tested	for	heterozygosity	and	de‐
partures	of	Hardy–Weinberg	equilibrium	(HWE)	using	the	Adegenet	

TA B L E  1   Sampling details and number of E. gambianus genetic markers included in the analyses

Site ID LOCATION Longitude Latitude

Number of samples typed

Date SourceCYTB D‐loop SSR

AC Ghana,	Greater	Accra 0°11’03.2″W 5°35’13.6″N 25 25 25 2015 SRS

VG Ghana, Ve‐Golokwati 0°26’16.1″E 6°59’46.0″N 25 25 25 2015 SRS

TSG Ghana, Tanoboase 1°51’25.1″W 7°39’55.5″N 25 25 24 2015 SRS

BYM Ghana, Buoyem 1°57’00.0″W 7°40’00.0″N 47 25 27 2015 SRS

TA Ghana, Tamale 0°50’36.1″W 9°25’33.8″N 20 20 20 2015 SRS

DG Ghana, Damongo 1°48’45.4″W 9°05’07.8″N 17 17 17 2015 SRS

CH Ghana, Charia 2°34’34.0″W 10°06’46.6″N 25 25 25 2015 SRS

JP Ghana, Jirapa 2°42’01.3″W 10°31’59.1″N 25 25 25 2015 SRS

TU Ghana, Tumu 1°59’16.2″W 10°52’27.7″N 24 25 25 2015 SRS

BG Ghana, Bolgatanga 0°51’25.7″W 10°47’48.4″N 25 25 25 2015 SRS

YE Ghana, Yendi 0°00’24.1″W 9°26’22.5″N 18 18 18 2015 SRS

GO Nigeria, Gombe 10°57’8.5″E 9°59’12.4″N 3 3 2 1997 SFM

PL Nigeria,	Plateau 10°3’27.0″E 9°4’39.9″N 3 3 1 1997 SFM

SA CAR,	Sangba 20°8’24.9″E 7°48’26.1″N 9 8 5 1998 MNHN

BH CAR,	Bohou 22°2’51.5″E 6°44’20.6″N 4 3 3 1998 MNHN

KO CAR,	Koumbala 20°54’10.7″E 8°45’38.5″N 2 2 2 1998 MNHN

BA CAR,	Bangoran 20°20’35.3″E 8°4’55.6″N 2 2 2 1998 MNHN

BNE CAR,	Banguia 18°35’04.5″E 4°22’07.3″N 22 – – 2008 Nesi et al.   
(2011)

SI Ethiopia, Sidama 38°27’57.1″E 7°1’45.7″N 6 6 7 1973 SFM

DI Ethiopia, Didessa 36°9’7.7″E 9°1’51.6″N 3 3 – 1975 SFM

GH Ghana (AC	+	VG	+	TS	+	BYM	+	TA	+	DG	+	CH	+	JP	+	TU	+	BG	+	YE) 254 255 256

NG Nigeria (GO	+	PL) 6 6 3

CAR CAR (SA	+	BH	+	KO	+	BA	±	BNE) 39 15 11

ET Ethiopia (SI	+	DI) 9 9 7

WS West (GH	+	NG) 260 261 259

CT Central (GH	+	NG	+	CAR) 299 276 270

EG Total E. gambianus (All	locations) 308 285 277

OG Out‐group Epomops franqueti 19 21 – 2012 MNHN

OG1 Out‐group Rousettus aegyptiacus 1 1 – GenBankb 
AB205183

Notes.	Sampling	sites	are	color	coded	in	Figure	2.	Year	of	sample	collection	is	included	(Date),	and	source	of	samples	are	noted	as:	SRS	(first	author),	
SFM	(Senckenberg	Forschungsinstitut	Mammalogie),	and	MNHN	(Museum	National	d’Histoire	Naturelle,	Paris).
aCYTB	sequences	downloaded	from	GenBank.	Accession	number	 included	 in	Nesi	et	al.	 (2011).	bMitochondrial	DNA	sequences	downloaded	from	
GenBank.	Accession	number	included	in	Source.	



     |  5RIESLE‐SBARBARO Et AL.

package 2.0.0 (Jombart, 2008), correcting significance for multiple 
comparisons	using	the	false	discovery	rate	method	 (FDR)	with	the	
p.adjust	function	in	R	version	3.1.2	(R_Core_Team,	2014).	HWE	was	
tested with both the classical chi‐square test (based on the expected 
genotype frequencies) and an exact test based on Markov chain 
Monte Carlo (MCMC) permutations of alleles after 10,000 repeti‐
tions.	Microsatellites	that	departed	from	HWE	(L25,	L26,	and	L36)	
or	had	a	large	proportion	of	missing	peak	calls	(L23	and	L15)	were	
excluded from the analyses (Supporting information, Table S2), and 
HWE	equilibrium	of	 the	 colonies	was	 checked	 afterward.	 Linkage	
disequilibrium	 (LD)	was	 tested	using	 the	R	package	Adegenet	 and	
the	software	GENEPOP	version	4.2	(Rousset,	2008).	LD	was	tested	
using MCMC (100 replicates, 10,000 dememorization steps, and 
10,000	randomizations).	An	additional	verification	of	 these	results	
was	performed	using	the	software	FSTAT	version	2.9.3.2	 (Goudet,	
1995)	 and	GenoDive	 version	2.0b27	 (Meirmans	&	Van	Tienderen,	
2004).

2.4 | Genetic diversity and demographic statistics

After	selection	of	the	ncDNA	markers,	descriptive	statistics	of	each	
population and groups of populations were acquired by calculating 
the expected heterozygosity (HE), observed heterozygosity (Ho), 
and corrected heterozygosity for unknown alleles (H'T) using both 
GenoDive	software	and	the	Adegenet	package	 in	R.	The	software	
packages	 BOTTLENECK	 version	 1.2.02	 (Piry,	 Luikart,	 &	 Cornuet,	
1999)	and	M_P_Val	(Garza	&	Williamson,	2001)	were	used	to	detect	
recent	and	past	effective	population	size	reduction	from	the	ncDNA	
allele	data	of	17	 loci.	The	BOTTLENECK	analyses	were	calculated	
using	as	input	values	12%	of	variance	and	95%	of	single‐step	muta‐
tions,	as	suggested	by	Piry	et	al.	(1999),	for	5,000	replications.	The	M	
ratio analyses, which calculate the mean ratio of allele size per locus 
to the range of alleles sizes and compare it with simulated values ex‐
cepted	under	equilibrium	(significance	assumed	as	<5%	of	the	M	ra‐
tios generated below the observed value), were calculated assuming 
90%	of	stepwise	mutations	and	a	combination	of	increasing	values	
for ancestral theta = θ (1–10) and Δg (2.5 and 3.5). We also com‐
pared the empirical M value to the critical M (Mc) using θ =10 and 
Δg = 3.5 for 10,000 simulations of stable populations in the package 
Critical_M, which determines a past bottleneck when values lower 
than	the	Mc	are	detected.	A	graphical	test	of	the	distribution	of	al‐
leles was analyzed as another approach to test a bottleneck event 
(Luikart,	Allendorf,	Cornuet,	&	Sherwin,	1998).	In	doing	so,	alleles	of	
17 loci were grouped into 10 allele frequency classes and then plot‐
ted as a histogram using R version 3.1.2.

Indices of genetic diversity and demographic parameters based 
on	mitochondrial	DNA	were	obtained	using	the	CYTB	marker	(due	
to its greater quality). Calculation of genetic indices (number of hap‐
lotypes [h], haplotype diversity [Hd], nucleotide diversity [π], mean 
number of pairwise differences [k], number of polymorphic sites [S] 
and molecular diversity estimated from the number of polymorphic 
sites [θs], and Class I and II neutrality statistics [Tajima's D, Fu and Li's 
D* and F*,	Ramos‐Onsins	and	Rozas’	R2 and Fu's F]) was computed 

using	the	software	DNAsp	v5.10	(Rozas	&	Rozas,	1995).	p values and 
95%	confidence	intervals	were	obtained	by	coalescence	simulation	
over 5,000 replications. Haplotypic richness (HR), standardized to 
a	minimum	sample	size	 (6	bats),	was	calculated	using	a	rarefaction	
curve	using	the	software	Contrib	 (Petit,	Mousadik,	&	Pons,	2008).	
Class III statistics (mismatch distributions) were analyzed for both 
spatial	and	demographic	expansion	models	using	ARLEQUIN	version	
3.5	 (Excoffier,	Laval,	&	Schneider,	2005).	The	demographic	expan‐
sion	model	 did	 not	 converge	 for	 the	AC,	 YE,	 and	 ET	 populations;	
therefore, these indices and statistics are not shown for any colony. 
Bayesian skyline, constant size, and extended Bayesian skyline mod‐
els	(EBSP)	were	implemented	in	BEAST	2.4.8	software	(Bouckaert	et	
al.,	2014;	Heled	&	Drummond,	2008)	to	infer	demographic	history.	
For	this,	we	used	a	substitution	model	HKY,	selected	in	jModelTest	
version	2.1.7	(Posada,	2008),	using	strict	 linked	and	unlinked	clock	
models	with	the	concatenated	(CYTB	and	D‐loop)	mtDNA	fragment.	
The MCMC was run twice for 30 million generations, sampling 
every	10,000	generations,	discarding	10%	as	burn‐in	and	combined	
using	the	package	LogCombiner	2.4.8.	We	compared	models	using	
TRACER	1.7.1	 (Rambaut,	Drummond,	Xie,	Baele,	&	Suchard,	2018)	
and	 selected	 the	 ESBP	 linked	model	 as	 a	 better	 fit.	 The	 plot	was	
done in R.

2.5 | Phylogenetic analyses

A	best	nucleotide	substitution	model	for	the	CYTB	and	concatenated	
mtDNA	alignments	was	calculated	with	the	Akaike	information	cri‐
terion	 (AIC)	 and	 the	Bayesian	 information	 criterion	 in	 jModelTest.	
The	model	selected	for	the	CYTB	alignment	was	HKY	+	G,	and	for	
the	concatenated	fragment,	the	model	selected	was	HKY	+	I	+	G.	A	
gamma mixed model was also used for the latter. In order to quantify 
divergence times between the clades of E. gambianus, a CYTB substi‐
tution	clock	of	3%/My	was	initially	used	in	Mega5	software	(Hulva,	
Horacek,	Strelkov,	&	Benda,	2004;	Nabholz,	Glemin,	&	Galtier,	2008;	
Tamura et al., 2011). The resulting divergence time, presented as mil‐
lions of years ago (Mya), was checked and further calibrated against 
the best estimates of divergence time between the out‐group spe‐
cies (Rousettus aegyptiacus and Epomops franqueti) and E. gambianus 
(Hedges,	Dudley,	&	Kumar,	2006;	Hedges,	Marin,	Suleski,	Paymer,	
& Kumar, 2015). Haplotype alignments were generated using the 
software	 DNAsp	 v5.10	 for	 the	 processed	 fragments.	 Graphical	
representations of the interspecific relationships of the individuals 
were generated using tree‐like phylogenies and haplotype networks. 
Phylogenetic	trees	were	generated	using	both	maximum	likelihood	
in	 PhyML	 version	 3.0	 (Guindon	 et	 al.,	 2010)	 and	 Bayesian	 infer‐
ence in MrBayes version v3.2.5 (Ronquist & Huelsenbeck, 2003). 
Maximum‐likelihood	 trees	 (Supporting	 information,	Figure	S3B–D)	
were run with 1,000 bootstrap supports, and the Bayesian models 
were	 run	with	6	 simultaneous	 chains,	 sampled	 every	100	 genera‐
tions for 109 generations, or until the standard deviation split fre‐
quencies	reach	0.01.	The	first	25%	of	the	trees	were	discarded.	The	
output	 files	 were	 processed	 with	 FIGTREE	 (https://tree.bio.ed.ac.
uk/software/figtree/).	 The	 haplotype	 networks	 were	 constructed	

https://tree.bio.ed.ac.uk/software/figtree/
https://tree.bio.ed.ac.uk/software/figtree/
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with	the	software	NETWORK	version	5.0	(www.fluxus‐engineering.
com)	 using	 a	 Median‐Joining	 algorithm	 (Bandelt,	 Forster,	 &	 Röhl,	
1999).	To	decrease	the	complexity	of	the	reticulations	in	the	graph,	
mutations at a given nucleotide were weighted according to their 
frequency	(Supporting	information,	Table	S4),	increasing	number	of	
mutations on a particular position were deemed less informative and 
down‐weighted. Transversion changes were given three times the 
weight of transitions as the latter events are over 15 times more 
likely to occur in mammal mitochondria (Šnábel, 2012).

2.6 | Population structure

Gene flow disruption, evidenced as population structure, was as‐
sessed using pairwise F‐statistics, hierarchical differentiation of 
the	populations,	and	spatial‐genetic	distance	correlations.	Pairwise	
differentiation between populations was tested for both molecular 
analogues, using FST and ΦST	 statistics	 (Weir	&	Cockerham,	1984).	
Pairwise	 exact	 tests	 were	 performed	 with	 10,000	 steps	 in	 the	
Markov chain, 10,000 dememorization steps, and 10,000 randomi‐
zations in the permutations test. Corrections were made for multiple 
comparisons	using	the	FDR	method.	Specific	statistics	developed	for	
multiallelic data (GST, Nei's G'ST, Hedrick's G'ST and Jost's D) were calcu‐
lated using the GenoDive software. Hierarchical structure between 
groups of populations was also explored using molecular variance 
analyses	(AMOVA)	implemented	in	the	software	ARLEQUIN	version	
3.5 (Excoffier et al., 2005) under the same conditions. Isolation by dis‐
tance (IBD) between populations was explored, for both mitochon‐
drial and nuclear markers, by correlating the logarithmic geographical 
distances between colonies (kilometers) against Slatkin’s linearized 
FST and ΦST. Statistical significance was tested using a Mantel test 
with	10,000	permutations	in	both	ARLEQUIN	and	R	software.

To	demonstrate	population	structure	using	ncDNA,	a	Bayesian	
clustering method was implemented using the complete dataset (277 
bats,	15	loci)	and	the	software	STRUCTURE	version	2.3.2	(Pritchard,	
Stephens, & Donnelly, 2000). Due to prior knowledge of the spe‐
cies ecology and expected migratory patterns, an Admixture model, 
with	 correlated	 allele	 frequencies	 (Falush,	 Stephens,	 &	 Pritchard,	
2003),	was	selected.	Sampling	sites	were	used	as	priors	(LOCPRIOR)	
to	increase	the	power	of	the	analyses	(Hubisz,	Falush,	Stephens,	&	
Pritchard,	2009),	carrying	out	MCMC	runs	using	500,000	iterations	
as burn‐in, followed by 1,000,000 iterations. Sixteen groups were 
assigned (K = 1 to K	=	16)	for	each	run,	and	each	K analysis was rep‐
licated 15 times. Because STRUCTURE is sensitive to sample size 
differences, a second model was explored decreasing the number of 
samples	from	AC	and	VG	to	an	averaged	number	of	16	individuals	(to	
balance the small sample size of ET). The numbers of bats included 
from the other colonies were also reduced, but only to 20 individuals 
due to the previous model result showing low structure signal. The 
software	STRUCTURE	HARVESTER	web	v0.6.94	(Earl	&	vonHoldt,	
2011) was used to parse and format the replicated analyses. The 
best K that fitted the data based on the Evanno method (Evanno, 
Regnaut, & Goudet, 2005) was also explored with this software 
and verified using a discriminant analysis of principal components 

(DAPC,	Jombart,	Devillard,	&	Balloux,	2010)	in	the	Adegenet	pack‐
age	 in	 R.	 The	 pipeline	 CLUMPAK	 version	 1.1	 (Kopelman,	Mayzel,	
Jakobsson, Rosenberg, & Mayrose, 2015) was implemented, using a 
LargeGreedy algorithm, to align the samples of each K repetition and 
to graphically visualize it.

3  | RESULTS

3.1 | Indices of genetic diversity

From	the	total	number	of	CYTB	sequences	(n = 308) included in the 
analysis, 87 unique haplotypes (h) were found (Table 2). The hap‐
lotype diversity (Hd) of the entire sample set of E. gambianus (EG) 
was	high	(0.91).	Within	Ghanaian	colonies,	the	Hd was high overall 
(Hd over 0.87), but there was reduced Hd in the colonies sampled in 
Ve‐Golokwati (VG) town from the Volta region (Hd = 0.78) and par‐
ticularly	 in	Greater	Accra	 (AC,	Hd =	0.38).	The	bats	sampled	 in	AC	
presented the lowest haplotype diversity found in any of the colo‐
nies	sampled.	Outside	Ghana	(GH),	both	Nigerian	(NG)	and	Ethiopian	
(ET) colonies presented lower Hd than	average	 (0.60	and	0.72,	 re‐
spectively); however, these results are less robust due to having 
smaller sample sizes and collection from two separate colonies. In 
order to buffer the effect of uneven sample size between coun‐
tries, the haplotype richness standardized to the minimum sample 
size	(HR)	was	calculated.	Although	this	standardized	the	results,	AC	
maintained a particularly low diversity level (HR = 0.85) compared to 
the	average	(HR	=	3.47).

The genetic diversity indices of 277 E. gambianus genotyped at 
15 microsatellite loci (Table 2) show that the allelic richness (AR, al‐
lele numbers standardized by sample size) and observed heterozy‐
gosity (Ho) of the sampled colonies are similar across the localities, 
having an overall AR	value	of	5.4	and	Ho value of 0.81. Exceptions to 
this are NG (AR	=	3.6)	and	ET	(AR	=	4.0),	with	ET	having	the	lowest	
heterozygosity of the populations (Ho	=	0.65).	Even	though	the	AC	
colony has the lowest AR between the Ghanaian colonies, this value, 
along with Ho, was above average across the range.

3.2 | Demographic statistics

Neutrality statistics that use the mutation frequency spectrum (Class 
I) show a strong signature of population expansion in Ghana (Table 2), 
with	the	exception	of	the	southern	colonies	of	the	country	(AC	and	
VG). Tajima's D (DT) was significantly negative in YE (p < 0.01) and 
TSG (p < 0.05). Fu and Li's D* (D*) and F* (F*) presented significantly 
negative values in seven colonies within the country. Significant low 
positive	values	of	Ramos‐Onsins	and	Rozas’	R2, and high expansion 
coefficients (S/d) correlate with previous population growth, signa‐
tures seen in the northern colonies within Ghana (all Ghanaian colo‐
nies	except	for	AC	and	VG).	Both	AC	and	NG	colonies	have	the	lowest	
S/d values, which reflect a stable population size. However, no robust 
inferences can be made about the latter colony due to low sample size. 
The previous findings are corroborated by haplotype distribution sta‐
tistics (Class II Fu's F), where large and significant negative values are 

www.fluxus-engineering.com
www.fluxus-engineering.com
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shown for northern regions of the country, contrasting with the posi‐
tive	values	of	the	AC	and	NG	colonies	(5.54	and	1.02,	respectively).	
The pairwise distance statistics (Class III mismatch distributions) 
show	that	AC	and	NG	have	ragged	(rg > 0.03) bimodal distributions, 
which reflects constant population size over a long period of time, 
in contrast to all other colonies that have a smooth (rg < 0.03) uni‐
modal‐shaped distribution (reflecting rapid population growth). These 
results were also corroborated with coalescent extended Bayesian 

skyline analyses. Epomophorus gambianus show a rapid exponential 
population growth, displaying over an eightfold increase in the popu‐
lation	 in	 the	past	30	years	 (Figure	3).	Ghanaian	populations	show	a	
constant size after a rapid increase (17‐fold) in the last 200 years, ex‐
cept	for	the	colony	from	AC	(Supporting	information,	Figure	S5A,	B)	
where a constant population size over time could not be rejected (NG 
was not analyzed due to sample size). However, the weakness of this 
method to small sample size and genetic structuring is reflected by the 
incongruence between the y axes of the Ghanaian versus the entire 
E. gambianus population	ESBPs	(Grant,	Liu,	Gao,	&	Yanagimoto,	2012).	
Thus, accurate historical population sizes cannot be determined. The 
Ghanaian	population	 in	AC	 is	 the	only	colony	from	the	set	that	has	
positive values for DT, D*, and F* tests (none are significant). The com‐
bination of Class I and Class II (positive, nonsignificant values and a bi‐
modal mismatch distribution) in this colony is consistent with a female 
germ	line	bottleneck	event.	In	contrast	to	the	results	from	the	mtDNA	
analysis,	the	graphical	test	developed	by	Luikart	et	al.	 (1998)	shows	
a	normal	L‐shape	distribution	of	ncDNA	alleles,	which	 is	 consistent	
with	mutation‐drift	 equilibrium	 (Supporting	 information	 Figure	 S6).	
The	results	from	the	models	run	in	BOTTLENECK	(Table	3)	show	no	
evidence of a recent bottleneck event, but instead presented signifi‐
cant heterozygosity deficiency (p value = 0.002) in the Wilcoxon test 
of the strict one‐step mutation model (S.M.M.), which is a signature 
of population growth, and there was no significance in the two‐phase 
model	(T.P.M.).	Both	the	S.M.M.	and	T.P.M.	were	selected	due	to	their	
better analyzing microsatellite data compared to the infinite allele 
model	(I.A.M.).	The	results	of	the	M_P_Val	analyses	(Table	3)	show	that	
the average M ratio (0.75, SD	=	0.19)	was	above	the	critical	M	value	
(0.688),	reflecting	mutation‐drift	equilibrium.	However,	depending	on	
the input values selected, there was evidence of a past bottleneck 
event (Δg	≤	2.5	when	θ = 1–10, or Δg = 3.5 when θ = 1), which would 
be consistent with the low haplotype diversity in this colony.

F I G U R E  3   Extended Bayesian skyline plots using the 
concatenated	mtDNA	of	E. gambianus population (including all 
colonies sampled). The x axis is in units of years before 2015, 
and the y axis (log‐scale) is equal to Neτ (product of the effective 
population size and the generation time in years). The dashed line 
is	the	median	estimate,	and	the	gray	area	displays	the	95%	highest	
posterior density

TA B L E  3  Test	of	past	bottleneck	events	in	the	colony	of	Accra

BOTTLENECK M ratio

Test

Models

T.P.M. S.M.M. M ratio Mc

Signed‐rank test (N° of loci with 
heterozygosity excess)

0.75 0.68

Expected 10.06 10.03

Observed 8 4 Values of Δg

θ 2.5 3.5

Wilcoxon test

Heterozygosity deficiency 0.10345 0.00158 1 0.01 0.47

Heterozygosity excess 0.90495 0.99936 5 0.03 15.43

Heterozygosity excess or 
deficiency

0.20689 0.00316 10 0.78 37.45

Note.	Bottleneck	events	were	tested	using	the	software	BOTTLENECK,	viewing	two	models	of	mutation	and	showing	p values for Wilcoxon test; and 
M_P_Val:	assessing	the	M	ratio	(k/r),	the	critical	M (Mc) and a combination of θ and Δg input values (noted in italics) to assess the percentage in 10,000 
simulations that produced equilibrium M ratio values that were significantly lower than those expected under mutation‐drift equilibrium. Values that 
are statistically significant (p < 0.05) are shown in bold.
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3.3 | Exploring population structure using F‐
statistics

Genetic differentiation among populations was explored compar‐
ing pairwise FST and ΦST	values	(Table	4).	With	the	exception	of	the	
populations	from	ET,	AC,	VG,	and	YE,	the	FST/ΦST values of the stud‐
ied colonies were low (<0.07) and nonsignificant, indicating free mix‐
ing of E. gambianus between most of the population within Ghana 
and	as	far	as,	and	including,	the	Central	African	Republic.	There	was,	
however, a high differentiation between the Ethiopian bats and the 
rest	of	the	metapopulation.	Large	and	highly	significant	ΦST values 
ranged	 from	0.78	 to	 0.92.	 The	AC	 colony	 had	 significant	ΦST val‐
ues with all other colonies in the analysis, except for the relatively 
close VG colony. Significant values (p < 0.01) ranged from 0.25 to 
0.9,	showing	the	greatest	differentiation	with	the	ET	colonies.	The	
VG colony also presented significant differentiation from most 
of	 the	other	colonies.	However,	compared	to	AC,	ΦST values were 
overall lower (0.11–0.82) and in most cases not as highly significant 
(p < 0.05).

FST values were much lower than ΦST values; nevertheless, pair‐
wise FST values indicated the same structural pattern as did the ΦST 
estimates, except for the colony in Yendi. There is significant struc‐
ture	between	the	ET	colonies	and	the	others,	as	well	as	AC	and	all	
the	other	colonies	(Table	4).	Additionally,	VG	had	a	low	but	significant	
(p < 0.05) differentiation with several other Ghanaian populations.

A	hierarchical	AMOVA	was	 used	 to	 test	 the	 results	 for	 both	
ΦST and FST at the population and group levels (Table 5), further 
exploring	 the	 results	 from	 Table	 4.	When	Ghanaian	 populations	
were grouped separately from the rest of the bat colonies, the 
percentage of variation between populations decreased from 
27.2%	to	9.4%	(Table	5,	analyses 1 and 2).	When	both	AC	and	VG	
were	removed	from	the	Ghanaian	group	(rGHANA,	Table	5,	3), it 

resulted in the lowest ΦST value (0.02) obtained for any combi‐
nation tested, indicating panmixia among the remaining colonies. 
The	same	pattern	was	detected	among	rGHANA	populations	using	
microsatellite markers FST values, showing complete panmixia 
with	almost	100%	of	the	variability	explained	within	bat	colonies	
(Table 5, 3). The high fixation values (ΦST =	0.8)	among	ET,	CAR,	
and NG (Table 5, 4) were mostly explained by variation among 
the	grouped	colonies	(80%).	Supporting	this	result,	the	analysis	of	
grouped	CAR,	NG,	and	Ghanaian	colonies	against	ET	(Table	5,	7) 
revealed that the highest variation was explained among groups 
(ΦCT	=	0.79)	with	moderate	ΦSC values (structure among popula‐
tions within groups).

As	 previously	 described,	 our	 analysis	 of	 microsatellite	 mark‐
ers	 supports	 the	 mtDNA	 findings,	 although	 the	 differentiation	
between the groupings and the resulting FST values are not so 
decisive.	Particularly,	no	great	difference	is	detected	when	group‐
ing	Ghana	by	 itself	 against	NG,	CAR,	 and	ET	 combined,	 or	when	
grouping	Ghana	and	NG	combined	against	CAR	and	ET	combined	
(Table 5, analyses 5 and 6). This might be due to the very small ge‐
notyping sample size for the Nigerian colony. These results were 
explored with additional more sensitive statistics, which were con‐
sistent with the FST findings (Supporting information Table S7). In 
addition, to evaluate the bias produced by both the small sample 
size of NG and ET and the colonies geographical distance of separa‐
tion, analyses were run excluding the bats from NG and DI colonies. 
Results display equivalent structuring patterns (Supporting infor‐
mation Table S8).

To determine that the computed low ΦST or FST values were not a 
result of insufficient sample size, power calculations were conducted 
with FST values ranging from 0.001 to 0.01. This showed that the 
microsatellite	 dataset	 provided	 100%	 power	 to	 detect	 population	
structuring when FST	=	0.0035%,	and	82%	if	the	true	FST was 0.002. 

TA B L E  4   Molecular pairwise differences between populations of E. gambianus

CYTB AC VG TSG BYM TA DG CH JP TU BG YE CAR ET

AC 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.03 0.02 0.02 0.02 0.06

VG 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.04

TSG 0.34 0.19 0.00 0.00 0.00 −0.01 −0.01 0.00 0.00 −0.01 0.00 0.03

BYM 0.23 0.11 −0.01 0.00 0.00 0.00 −0.01 0.01 0.00 −0.01 0.00 0.03

TA 0.27 0.13 −0.02 −0.03 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.04

DG 0.20 0.07 0.05 0.02 0.02 −0.01 −0.01 0.00 0.00 −0.01 0.00 0.03

CH 0.16 0.05 0.04 0.01 0.01 −0.02 −0.01 0.00 −0.01 0.00 0.00 0.03

JP 0.25 0.12 0.05 0.04 0.03 −0.02 −0.01 0.00 0.00 −0.01 0.00 0.02

TU 0.28 0.14 0.00 −0.01 −0.01 0.00 0.00 0.00 0.00 −0.01 0.00 0.01

BG 0.35 0.19 −0.02 −0.01 −0.02 0.07 0.04 0.07 0.01 −0.01 0.00 0.03

YE 0.55 0.36 0.02 0.09 0.06 0.17 0.14 0.14 0.08 0.04 0.00 0.03

CAR 0.30 0.14 −0.01 −0.02 −0.03 0.02 0.01 0.04 −0.01 −0.01 0.07 0.04

ET 0.90 0.81 0.84 0.83 0.83 0.80 0.77 0.80 0.82 0.89 0.89 0.80

Notes.	Pairwise	mtDNA	(CYTB)	ΦST	values	are	shown	below	the	diagonal	and	pairwise	ncDNA	(microsatellite)	FST values are shown above the diagonal. 
p values are corrected for multiple testing, where p < 0.05 is denoted in bold and p	<	0.01	is	presented	in	bold	and	italicized	values.	Only	SI	samples	
were used for ET.
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Mitochondrial	markers	provided	100%	power	to	detect	population	
structure when the true ΦST	 value	 was	 0.005%,	 and	 81%	 when	
ΦST	=	0.003.	In	the	AMOVA	analyses,	the	minimum	ΦST and FST val‐
ues were 0.02 and 0.003, respectively, which should be detected 
with	<80%	power.	The	estimated	occurrence	of	 a	 type	1	error	 (α) 
in the dataset ranged from 0.05 to 0.07, which suggests acceptable 
performance.

3.4 | Isolation by distance

When analyzing the correlation between the logarithmic geographic 
distance and the genetic distance, either as linearized ΦST for the 
CYTB	(Supporting	information	Figure	S9A–E)	or	linearized	FST for the 
microsatellite	markers	(Supporting	information	Figure	S9F–J),	a	posi‐
tive significant correlation was detected when all the populations of 

TA B L E  5  Hierarchical	AMOVA	analysis	and	population	structure	using:	mtDNA	CYTB	(Φ‐statistics)	and	ncDNA	microsatellites	
(F‐statistics)

Structure tested % Variance Φ‐statistics p % Variance F‐statistics p

1.	One	group	(all	populations)

Among populations 27.2 1.5

Within populations 72.8 ΦST 0.27 0.00 98.5 FST 0.01 0.00

2.	One	group	(Ghanaian	populations)

Among populations 9.4 0.8

Within populations 90.6 ΦST 0.09 0.00 99.2 FST 0.01 0.00

3.	One	group	(Ghana	excluding	AC	and	VG)

Among populations 2.5 ΦST 0.02 0.01 0.3 0.01

Within populations 97.5 99.7 FST 0.00

4.	One	group	(NG	+	CAR	+	ET)

Among populations 80.1 11.6

Within populations 19.9 ΦST 0.80 0.00 88.4 FST 0.12 0.00

5.	Two	groups	(Ghana)	versus	(NG	+	CAR	+	ET)

Among groups 14.5 ΦCT 0.14 0.13 0.9 FCT 0.01 0.13

Among populations 21.0 ΦSC 0.25 0.00 1.3 FSC 0.01 0.00

Within populations 64.6 ΦST 0.35 0.00 97.8 FST 0.02 0.00

6.	Two	groups	(Ghana	+	NG)	versus	(CAR	+	ET)

Among groups 22.6 ΦCT 0.23 0.25 0.9 FCT 0.01 0.25

Among populations 18.1 ΦSC 0.23 0.00 1.33 FSC 0.01 0.00

Within populations 59.3 ΦST 0.41 0.00 97.77 FST 0.02 0.00

7.	Two	groups	(Ghana	+	NG	+	CAR)	versus	(ET)

Among groups 79.1 ΦCT 0.79 0.14 5.38 FCT 0.05 0.14

Among populations 1.9 ΦSC 0.09 0.00 1.1 FSC 0.01 0.00

Within populations 19.0 ΦST 0.81 0.00 93.52 FST 0.06 0.00

8.	Two	groups	(AC	+	VG)	versus	(rGHANA)

Among groups 18.1 ΦCT 0.18 0.02 0.96 FCT 0.01 0.02

Among populations 2.0 ΦSC 0.02 0.04 0.42 FSC 0.00 0.00

Within populations 79.9 ΦST 0.20 0.00 98.62 FST 0.01 0.00

9.	Three	groups	(Ghana)	versus	(NG	+	CAR)	versus	(ET)

Among groups 52.6 ΦCT 0.53 0.06 2.26 FCT 0.02 0.06

Among populations 4.4 ΦSC 0.09 0.00 1.07 FSC 0.01 0.00

Within populations 43.0 ΦST 0.57 0.00 96.67 FST 0.03 0.00

10.	Four	groups	(AC	+	VG)	versus	(rGHANA)	versus	(NG	+	CAR)	versus	(ET)

Among groups 41.0 ΦCT 0.41 0.00 1.45 FCT 0.02 0.02

Among populations 1.4 ΦSC 0.02 0.07 0.8 FSC 0.01 0.00

Within populations 57.6 ΦST 0.42 0.00 97.75 FST 0.02 0.00

Notes. p Values (p)	below	0.05	are	noted	in	bold.	rGHANA:	Ghanaian	colonies	excluding	AC	and	VG.	Note	the	small	sample	size	of	NG	and	populations	
of ET.
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E. gambianus	were	included	(mtDNA:	R2	=	0.4,	p	value	<0.05;	ncDNA:	
R2 = 0.2, p value <0.05). But after excluding the Ethiopian colony 
from the analyses, no correlations were detected. The same non‐
significant	result	was	found	after	removing	CAR	and/or	NG.	Within	
Ghanaian colonies, there was a significant positive correlation with 
both	mtDNA:	R2 = 0.2, p	value	<0.001	and	ncDNA:	R2 = 0.3, p value 
<0.01,	but	after	excluding	the	colonies	AC	and	VG	from	the	analysis,	
the	 significance	was	 lost.	However,	when	only	 excluding	AC	 from	
the Ghanaian colonies, significant values were still detected for both 
molecular markers.

3.5 | Exploring population structure using Bayesian 
clustering methods—ncDNA

All	models	and	datasets	that	were	tested	with	STRUCTURE	clus‐
tered	the	populations	from	AC,	VG,	and	ET	(Figure	4;	Supporting	
information	 Figure	 S10).	 The	 model	 using	 the	 averaged	 sample	
numbers	 (total	 of	 249	 bats)	 showed,	 in	 100%	 of	 the	 replicated	
alignments, a clear differentiation between ET and the rest of the 
colonies	 (K	=	2).	 By	 incrementing	 one	 more	 cluster,	 AC	 and	 VG	
emerged	as	a	separate	population	(Figure	4);	no	other	populations	
were robustly segregated with increasing values of K. Modeling 
the dataset with the total number of samples (Supporting informa‐
tion	Figure	S10,	277	bats),	AC	and	VG	segregate	at	K	=	2	in	90%	of	
the replicated alignments with ET emerging in the subsequent di‐
vision;	the	remaining	10%	resulted	in	ET	segregating	first,	follow‐
ing the previous model pattern. The highest number of clusters, 
selected by Delta K, that best explains the data for both models 
was K	=	4	(Supporting	information	Figure	S11).

3.6 | Exploring population structure using 
intraspecific phylogeny—mtDNA

The haplotype network of the CYTB fragment of E. gambianus 
(Figure	 5a)	 is	 characterized	 by	 two	 common	 “central”	 haplotypes	

(Hap2	and	Hap14),	a	few	less‐common	ones	and	a	large	number	of	
rare	“external”	haplotypes.	Population	expansion	can	be	inferred	by	
the distribution of the external haplotypes diverging in a star‐like 
topology from the central ones. Colonies grouped at the country‐
level	(Supporting	information	Figure	S12A)	better	demonstrate	the	
geographical extent of gene flow of CYTB haplotypes. In addition, 
the	D‐loop	haplotype	network	(Supporting	information	Figure	S12B)	
shows a consistent geographical pattern with CYTB at the colony 
level as well as the individual level (by the same specific bats). The 
important	features	of	the	CYTB	haplotype	network	(Figure	5a)	are	
as follows:

1.	 Far	 in	 the	 right	 lower	 corner	 (separated	 by	 16	 nucleotide	
substitutions),	 there	 are	 five	 “private”	 haplotypes,	 found	 only	
within the Ethiopian samples. Even though there is a likely 
significant bias caused by these heterochronous samples 
(42	years	 apart	 to	 Ghanaian	 sequences),	 this	 geographical	 di‐
vergence was not present in other museum‐acquired specimens 
(18 years apart, Table 1).

2. The two central haplotypes are formed by individuals from all the 
colonies sampled with the exception of ET, indicating relatively 
free mixing throughout the geographical range of E. gambianus 
apart from Ethiopia.

3.	 Accra	 bats	 are	 only	 represented	 in	 the	 two	 common	 “central”	
haplotypes	 (Hap2	 =24%,	 Hap14	 =76%).	 Interestingly,	 all	 of	 the	
colonies except for VG contain the two central haplotypes and 
only	Hap14	is	represented	in	both	AC	and	VG.

The intra‐ and interspecific relationships of E. gambianus populations 
and out‐group species (Epomops franqueti and Rousettus aegyptia‐
cus)	were	analyzed	using	an	alignment	of	94	CYTB	haplotypes	(with	
139	variable	sites)	found	in	the	328	sequences	aligned	and	of	200	
haplotypes	(267	variable	sites)	found	in	the	concatenated	fragment	
(from 301 sequences). These are shown using alternative substitu‐
tion	models,	both	for	the	CYTB	(Figure	5b;	Supporting	information	

F I G U R E  4   STRUCTURE analysis 
of	249	specimens	using	an	Admixture	
model, correlated allele frequencies, and 
LOCPRIOR.	Populations	are	separated	
with thick black lines and labeled at 
the bottom by the colony IDs stated 
previously in Table 1. NG inferences are 
not robust due to sample size
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Figure	 S3A)	 and	 concatenated	 alignment	 (Supporting	 information	
Figure	S13A,	B)	Bayesian	phylogenetic	trees,	as	well	as	for	the	CYTB	
maximum‐likelihood	 trees	 (Supporting	 information	Figure	S3B,	D).	
Consistent	with	previous	phylogeographic	classifications	 (Almeida,	
Giannini, DeSalle, & Simmons, 2011), both Rousettus aegyptiacus 
(used as the root of the tree) and Epomops franqueti are ancestral to 
E. gambianus. The intraspecific patterns shown in the phylogenetic 
tree corroborate the phylogeographic structure of the haplotype 
network: The Ethiopian bats (clade highlighted in black) are diver‐
gent from all other populations of E. gambianus	sampled.	A	further	
subdivision of the non‐Ethiopian E. gambianus is shown in the three 
trees,	separating	haplotypes	14	and	2.	However,	there	is	no	robust	
support for these branches. The estimated divergence time of the ET 
colonies and the rest of the E. gambianus population is approximately 
1.6–1.8	Mya	(Figure	5b).

4  | DISCUSSION

While several species of bat have been shown previously to be 
panmictic	 (Peel	 et	 al.,	 2013;	 Russell	 et	 al.,	 2005;	 Sinclair,	Webb,	
Marchant,	&	Tidemann,	 1996;	Webb	&	Tidemann,	 1996),	 genetic	
structuring within a species can vary due to various dispersal or 
migratory	behaviors	 (Fleming,	Murray,	&	Carstens,	2010;	Moussy	
et al., 2013). Several studies exemplify male, but not female, pan‐
mixia	 in	 bats	 (Kerth,	Mayer,	 &	 Petit,	 2002;	 Rossiter	 et	 al.,	 2002;	
Rydell,	 1989);	 however,	 female‐biased	 bat	 dispersal	 has	 been	 re‐
ported (Nagy et al., 2007). By comparing the fixation indices be‐
tween uniparental and biparental markers, it is possible to estimate 
the	extent	of	sex‐biased	dispersal	(Prugnolle	&	de	Meeus,	2002).	In	
the current study, we show that across most of the range of E. gam‐
bianus, there is congruent phylogeographic structuring between 
both maternally and biparentally inherited markers, which suggests 
long‐range dispersal of both sexes. Epomophorus gambianus con‐
nectivity and free mixing were demonstrated across the colonies 
sampled throughout most of its distribution. Besides the periph‐
eral	 Ethiopia,	Accra	 and,	 in	 some	degree,	Ve‐Golokwati	 colonies,	
there was no evidence of an IBD pattern of dispersal between the 
colonies. There is, however, a signal of genetic differentiation in the 
female line of descent, which is not explained by the expected con‐
flict	between	hemizygous	mtDNA	and	multiallelic	ncDNA	markers	
(Birky,	Maruyama,	&	Fuerst,	1983),	 indicating	 that	male	dispersal	
occurs	more	frequently	and/or	over	 longer	distances	than	female	

dispersal. It was also possible to infer past population expansions 
and bottleneck events.

The Ethiopian colony was consistently identified as a divergent 
population. These bats were surrounded by the Ethiopian highlands 
(over	3,000	m	asl)	and	lakes	with	over	129	km2 of surface (Ethiopian 
Mapping	Authority	 (EMA)	1988),	which	 likely	disrupted	gene	 flow	
between this colony and the rest of the E. gambianus population. 
Even though in some studies, mountains can be considered a weak 
obstacle for flying taxa (Demont, Blanckenhorn, Hosken, & Garner, 
2008;	Moussy	et	al.,	2015;	Petit	&	Mayer,	1999;	Xu	et	al.,	2010),	this	
distance combined with numerous water bodies seems an effective 
geographical barrier for this lowland bat species. In addition, the phy‐
logeny of E. gambianus revealed that the Ethiopian bats diverged over 
~1.6	Mya	to	the	rest;	however,	the	age	of	our	samples	is	likely	over‐
estimating	this	divergence.	 It	has	been	hypothesized	that	an	Asian	
ancestor	of	the	myonycterine‐epomophorine	clade	colonized	Africa	
through	the	forested	corridors	that	linked	Asia	and	Africa	(prior	to	
the rise of the mountains), with consequent evolutionary radiation 
(Juste	et	al.,	1999).	Therefore,	the	colonization	of	E. gambianus could 
have followed an east–west axis. However, other dispersal routes or 
vicariance events, that may explain this phylogenetic pattern, can‐
not	be	ruled	out.	Furthermore,	the	series	of	ice	ages	that	occurred	
during	the	Pleistocene	and	upper	Pliocene	(~3.5	Mya–12,000	years	
ago) were associated with processes of forest contraction and hab‐
itat fragmentation that shaped the vegetation and forest systems 
present	 in	ancient	Africa	 (Hamilton	&	Taylor,	1991;	Hewitt,	2000).	
During this era, the fragmented patches of refugia drove widespread 
speciation and divergence during three progressive climate shifts 
that	 increased	arid	conditions	 (deMenocal,	1995).	The	second	one	
(1.8–1.6	Mya),	associated	with	speciation	by	isolation	of	bat	species	
within the tribe Myonycterini (Nesi et al., 2013), could have influ‐
enced populations of E. gambianus, resulting in the strong genetic 
differentiation of the possibly ancestral Ethiopian lineage.

The	 southern	 colonies	within	Ghana	 (Accra	 and	Ve‐Golokwati)	
had moderate and predominantly female‐biased genetic structuring 
compared to the rest of the populations. While the flying capabili‐
ties of bats usually secure free dispersal, water bodies have disrupted 
gene flow in both insectivorous (Castella et al., 2000; García‐Mudarra, 
Ibáñez,	&	Juste,	2009)	and	frugivorous	(Peel	et	al.,	2013)	bat	species.	
The	Volta	River	and	Lake	Volta,	one	of	the	biggest	water	bodies	 in	
West	Africa	 (8,500	km2 of surface), are situated in the Volta basin, 
which	 lies	 to	 the	north	 and	 east	 of	Accra	 and	Ve‐Golokwati.	 Even	
though E. gambianus is likely to be able to fly across the Volta river, 

F I G U R E  5   Epomophorus gambianus systematics. (a) Median‐joining haplotype network. The circles represent unique haplotypes of CYTB 
sequences. Circle size is proportional to the frequency of specimens sharing that haplotype, and the color reflects the population of origin. 
The lines between two haplotypes show base substitutions, and its length is proportional to the number of point mutations. There is a clear 
spatial	clustering	between	the	Ethiopian	colony	(in	black)	and	the	rest	of	the	African	populations.	(b)	Bayesian	phylogeny	of	E. gambianus 
CYTB	haplotype	alignment.	Out‐group	species	are	labeled	in	red:	Rousettus aegyptiacus	(Hap	94)	and	Epomops franqueti (Hap 53–58). There 
are two distinct clades in the E. gambianus phylogeny, one monophyletic group generated by the Ethiopian population (black box) and the 
rest	(subdivisions	highlighted	with	colored	boxes).	Haplotypes	2	and	14	are	typed	in	blue.	Private	haplotypes	to	Nigeria	(†)	and	to	Central	
African	Republic	(‡)	are	denoted.	Posterior	probabilities	are	shown	above	the	main	nodes,	and	estimated	divergence	time	(Mya)	between	
clades is shown within brackets
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genetic divergence due to rivers (smaller in width than the bats’ aver‐
age foraging flight distance) has been reported for other bat species, 
including the insectivorous Eptesicus serotinus (Moussy et al., 2015) 
and the frugivorous Scotonycteris bergmansi (Hassanin et al., 2015).

The demographic history of E. gambianus shows both spatial 
and demographic expansion in most of its colonies, which is con‐
sistent with a sudden population growth after reduced population 
sizes	(Grant,	1998)	and	previously	recognized	expansion	signatures	
of	bats	after	colonizations	from	vicariance	periods	(Juste	et	al.,	1999;	
Petit	&	Mayer,	1999).	An	exception	is	the	colony	of	Accra,	where	the	
strong genetic signature reflects a past female germ line bottleneck. 
Here, E. gambianus coroosts with a conspicuous and large popula‐
tion of E. helvum. Bottleneck events can rapidly reduce variability 
in species, like E. gambianus, that have long generation lengths and 
low	reproductive	outputs	(O’Brien	&	Hayden,	2004).	However,	con‐
trary	to	the	mitochondrial	information,	nuclear	DNA	did	not	support	
a	 bottleneck	 event	 (Luikart	 et	 al.,	 1998).	Using	 the	BOTTLENECK	
software,	the	“standardized	differences	test”	and	the	I.A.M.	model	
were excluded due to their low statistical power and unsuitability for 
microsatellite data. The most powerful test to analyze less than 20 
loci	is	the	“Wilcoxon	signed‐rank	test,”	which	detected	a	significant	
heterozygosity deficiency in this dataset, suggesting population ex‐
pansion	instead	of	decline	(Cornuet	&	Luikart,	1996).	However,	the	
detected high frequency of a few alleles could suggest an ancient 
bottleneck and the heterozygosity deficiency could reflect inbreed‐
ing	(Wright,	1921),	nonrandom	sampling	of	family	members	(Luikart	
&	Cornuet,	1999)	or	 false	expansion	signals	often	detected	 in	 IBD	
structures	 (Leblois,	Estoup,	&	Streiff,	 2006).	The	M	 ratio	was	also	
analyzed, as it performs better at detecting past bottleneck events 
than	 the	 BOTTLENECK	 algorithm	 (Peery	 et	 al.,	 2012;	 Piry	 et	 al.,	
1999).	However,	no	ancient	bottleneck	signature	was	identified	with	
the parameters selected and the results obtained with a range of 
input values were inconsistent, likely due to the known sensibility 
of	this	model	to	the	parameter	assumptions	and	IBD	(Leblois	et	al.,	
2006).	This	conflict	between	markers	could	be	due	to	the	fourfold	
difference in effective population size from the haploid mitochon‐
dria,	 generating	bottleneck	 signatures	 in	 the	mtDNA	 from	 smaller	
reductions	of	the	population	size	and/or	an	ancient	brief	bottleneck	
event,	 which	 would	 not	 be	 evidenced	 otherwise	 by	 the	 ncDNA	
(Birky,	1991;	Wilson	et	al.,	1985).	Also,	as	the	nuclear	microsatellite	
markers have higher mutation rates, a bottleneck signal could have 
already	been	erased	 from	 them	 (Cornuet	&	Luikart,	1996;	Rogers,	
1995).	 Furthermore,	 selective	 sweeps	 (Maruyama	 &	 Birky,	 1991),	
founder	events	(Ashley	&	Wills,	1987),	stochastic	lineage	extinctions	
(Avise,	Neigel,	&	Arnold,	1984),	or	lack	of	power	for	detecting	recent	
bottlenecks	(Peery	et	al.,	2012)	cannot	be	ruled	out.

Likely	the	habitat	disturbance	due	to	the	rapidly	expanding	urban‐
ization	of	Accra	and/or	the	still	unknown	effects	that	social	dynamics	
with	conspecifics	have	to	roost	integrity	(Kunz	&	Fenton,	2003)	could	
have driven a decline (via migration, hunting, etc.) and genetic bottle‐
neck	in	the	Accra	population.	Furthermore,	there	is	a	clear	association	
between	the	Accra	and	Ve‐Golokwati	colonies,	perhaps	reflecting	se‐
lective connectedness due to the isolation with the other colonies 

due	to	an	extensive	forest	cover	loss	(Supporting	information	Figure	
S14;	Hansen	et	al.,	2013).	Nevertheless,	a	past	 founder	event	from	
Ve‐Golokwati or the continued connectedness between the colonies 
cannot	be	disregarded.	Fossil	evidence	dating	21,000–12,000	years	
ago shows that vegetation zones in lowland Ghana (below the Volta 
basin) were depressed at least for several hundred meters of altitude 
and the area presented major forest reduction at glacial maximum 
(Hamilton	&	Taylor,	1991).	This	forest	loss	and	fragmentation	possibly	
shaped	the	genetic	signatures	of	both	the	Accra	and	Ve‐Golokwati	
colonies.	The	extremely	limited	haplotype	richness	in	Accra	despite	a	
strong	central	continent	connectivity	(Supporting	information	Figure	
S15), however, suggests a more recent bottleneck or founder effect. 
As	the	time	of	divergence	was	assessed	with	general	clock	rates	of	
mammalian	mtDNA	used	at	the	speciation	level	and	the	substitution	
rates at the species level differ greatly to that of intraspecific diver‐
gence (Ho, Saarma, Barnett, Haile, & Shapiro, 2008), it was not pos‐
sible to accurately evaluate the time of recent demographic events, 
particularly of nearby colonies within Ghana.

5  | CONCLUSIONS

The results presented in this study confirm connectivity and free gene 
flow of E. gambianus	across	much	of	its	range.	Panmixia	was	demon‐
strated	throughout	the	Central	African	Republic	to	the	northern	and	
central regions of Ghana. Between these colonies, there was no evi‐
dence of population divergence due to geographical isolation or pref‐
erential breeding, although males seem to disperse longer distances 
or more frequently. In contrast, the Ethiopian colony of E. gambianus is 
genetically divergent from the rest of its population. Complementary 
studies using homochromous samples would greatly benefit the 
evaluation of the extent of this divergence. The Ghanaian lowland 
colonies sampled also show genetic differentiation from the rest of 
the other sampled colonies, with a strong genetic signature of a past 
bottleneck	in	the	female	line	of	descent	in	the	Greater	Accra	colony.	
Both the geographical landscape and the species ecology suggest that 
the geographical barriers (mountains and water bodies) and other en‐
vironmental developments (e.g., urbanization of megacities) evaluated 
in this research are likely drivers of the regional genetic divergences.
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