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Textual abstract: 

The optical properties and DFT calculations of Indian Yellow are here described and 

correlated to its chemical composition.   
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ABSTRACT  14 

The optical properties (photophysics and imaging) of Indian yellow were investigated both in solid 15 

state and in aqueous solution and correlated with its chemical composition. The analyses were 16 

corroborated by a theoretical study carried out on the different xanthone derivatives that comprise 17 

the pigment under investigation, both as isolated molecules and in a polar (protic) solvent, to help 18 

the assignment of the excited states involved in the photo-induced process. Knowledge of its 19 

relatively high photoluminescence quantum yield (PLQY 0.6%), excitation and emission spectra 20 

and lifetime decays enhances the potential for reliable identification using non-invasive photo-21 

induced luminescence imaging techniques. New insights into the chemical composition of the 22 

pigment, such as the identification of a sulphonate derivative of euxanthone, and its extensive 23 

occurrence on a 17th-century Indian wall painting are also reported for the first time in this study. 24 

Keywords: Indian yellow; Photoluminescence spectroscopy; Time-dependent Density Functional 25 

Theory Calculation; Photoluminescence imaging; Indian wall painting 26 
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1. INTRODUCTION 27 

 Indian yellow, a historic pigment produced in India until the end of the 19th / beginning of the 20th 28 

century, is characterised by its luminous yellow-orange colour and noticeable photoluminescence 29 

properties. The main colorant is based on the crystalline mixture of the magnesium and calcium 30 

salts of euxanthic acid, EA [1]. One of the most frequently cited accounts of its production method 31 

states that the pigment derives from the urine of cows fed solely on mango leaves, a process which 32 

allegedly caused their premature death and led to a ban on production [1-3]. Early chemical studies 33 

showed that euxanthone (C13H8O4), or its precursor present in mango leaves, can combine with 34 

glucuronic acid metabolised by mammals such as cows or rabbits and be excreted as a salt of EA 35 

(C19H16O10) [4, 5]. However, some scholars have questioned this production process and the 36 

reasons behind its discontinuation [6-9]. 37 

 Indian yellow has been identified on several miniature paintings dated between the 16th and 19th 38 

centuries that are attributed to the Mughal and Rajput schools [1, 10-12]. It was also used by artists 39 

in Europe and the United States [13-17]. However, its extensive occurrence on a monumental 40 

painting is reported for the first time in this study, following analyses of the yellow pigments used 41 

in the wall paintings decorating the Badal Mahal within Garh Palace in Bundi (Rajasthan, India). 42 

The painted scheme, dated to 1620–30, is one of the most significant within the palace complex. 43 

Depictions of courtly life, unfolding on the walls, are among the earliest and finest in Rajasthan. 44 

[18]. Other subject matters include a Ragmala series as well as scenes of Hindu mythology on the 45 

ceiling.  46 

 Light microscopy, XRD, SEM-EDX and FTIR were most commonly employed at the end of the 47 

20th century to identify Indian yellow on works of art [1, 12, 13, 17]. More recently, other micro-48 

destructive techniques such as NMR, HPLC-DAD [19] and LC-ESI/MS [15] have been applied to 49 

the identification of this unusual pigment. Non-invasive analytical techniques are now favoured for 50 

the preliminary study of artefacts and portable XRF and FTIR are more routinely used in the 51 

cultural heritage field [20-23]. While such techniques can be combined with imaging [20, 24], the 52 
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instruments commonly employed in museums or in the field provide only point analyses, thus 53 

limiting the information available on the distribution of pigments of interest over large areas. Photo-54 

induced luminescence (PL) imaging, using ultraviolet (UV) excitation and recording visible 55 

emission with a photographic camera, has been used since the late 1980s to highlight the possible 56 

presence of Indian yellow [1, 13, 25, 26]. However, several other organic colorants commonly 57 

encountered on Asian paintings also show comparable fluorescence when excited with UV 58 

radiation [27], thus limiting possible differentiation between original materials. Nonetheless, PL 59 

imaging using digital cameras offers an invaluable and affordable tool, which has been successfully 60 

applied to the characterisation of several pigments such as Egyptian blue, Han blue, manganese 61 

blue and cadmium-based pigments [28-30]. PL spectroscopy presents a necessary complementary 62 

technique to corroborate the results and inform PL imaging protocols. The luminescence properties 63 

of several pigments, such as lithopone [31], zinc oxide [32], zinc sulphide [33], manganese blue 64 

[29], Egyptian blue [34, 35] and cadmium-based pigments [36-38], have been investigated in recent 65 

years using both steady-state and time-resolved PL spectroscopy. However, the only published 66 

study on Indian yellow presents a limited view of its excitation and emission profiles, with data 67 

uncorrected for instrument response [1].    68 

 A complete understanding of the photophysical properties of Indian yellow is required for 69 

correct interpretation of results obtained with PL spectroscopy and imaging techniques. In this 70 

study, the organic chemical components of two samples, from a reference archive at the National 71 

Gallery, London (NG) and from the wall painting in Bundi (B64), were identified with HPLC-ESI-72 

Q-ToF. The optical properties of the Indian yellow reference sample, that is the absorbance (total 73 

reflection), excitation and emission profiles, as well as the lifetime decay were characterised both in 74 

the solid state (as powder) and in solution (water) and compared to the emission profile and lifetime 75 

decay of the wall painting sample. PL imaging, using a customised DSLR camera, xenon flashes 76 

and bandpass filters, aimed to characterise visible and infrared (IR) emission following UV 77 

excitation.  78 
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In an attempt to resolve the optical structure of the pigment, a theoretical study at the DFT 79 

level of theory was conducted on euxanthic acid (EA), 4-sulphonate euxantohne (SE) and 80 

euxanthone (E), both in the gas phase and in water, to support the experimental component. DFT 81 

calculations were also run for 1-hydroxy-7-methyl-xanthone (OH-CH3-X) and xanthone (X), to 82 

investigate the role of substituents on the UV/Vis spectra and to make a comparative analysis with 83 

previous results on X [39-42]. The chemical structures of all the compounds investigated are shown 84 

in Scheme1.   85 

 86 

Scheme 1. Chemical structure of a) xanthone (X), b) 1-hydroxy-7-methyl-xanthone (OH-CH3-X), 87 

c) euxanthone (E), d) 4-sulphonate-euxanthone (SE), and e) euxanthic acid (EA). 88 

 89 

2. EXPERIMENTAL 90 

2.1 Indian yellow samples 91 

A powdered sample (NG) of historic reference material was provided by the National 92 

Gallery, London. The wall painting sample (B64) was taken from a yellow paint layer on the south 93 

wall of the Badhal Mahal, in Garh Palace, Bundi (Rajasthan, India). An image of the area where the 94 

sample was taken and a detail of a cross-section are shown in Figure 1. Yellow paint layers are 95 

extensively used for the geometrical and floral patterns unfolding on the walls and for the garments 96 

of Krishna and the gopis engaged in a circular dance depicted on the ceiling.  97 
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 98 

Fig. 1 Location of sample B64 on the south wall of the Badal Mahal, Garh Palace, Bundi 99 

(Rajasthan, India). Inset: cross-section illustrating the stratigraphy of the paint layer composed of a 100 

white ground and a single yellow layer.  101 

2.2 HPLC-DAD-ESI-Q-ToF 102 

For analysis with High-Performance Liquid Chromatography coupled to Electrospray 103 

Ionisation and Quadropole Time-of-Flight, samples (c.100 µg) were admixed with 200 µL 104 

DMSO and heated at 80°C for 10 minutes. After centrifugation, the supernatant was 105 

transferred into another vial. The residue was admixed with 200 µL of 106 

methanol/acetone/water/0.5M oxalic acid 30:30:40:1 (v/v/v/v) and heated at 80°C for 15 107 

minutes. The solution was evaporated under N2 and reconstituted using 200 µL of MeOH/H2O 108 

1:1 (v/v). The DMSO extract was combined with the oxalic acid extract and the solution was 109 

centrifuged for 10 minutes. The supernatant was transferred to a fresh 250 µL insert and 5-10 110 

µL of the solution were injected into the HPLC system. 111 

Analyses were carried out using a 1260 Infinity HPLC (Agilent Technologies), coupled to a 112 

Quadrupole-Time of Flight tandem mass spectrometer 6530 Infinity Q-ToF detector (Agilent 113 

Technologies) by a Jet Stream ESI interface (Agilent Technologies). The HPLC conditions 114 

were: Zorbax Extend-C18 column (2.1 mm ⨯ 50 mm, 1.8 µm particle size); 0.4 mL/min flow 115 

rate; 5 µL injection volume for MS experiments and 10 µL for MSMS experiments; 40°C 116 
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column temperature. Separation was achieved using a gradient of water with 0.1% formic acid 117 

(eluent A) and acetonitrile with 0.1% formic acid (eluent B). The elution gradient was 118 

programmed as follows: initial conditions 95% A, followed by a linear gradient to 100% B in 119 

10 min, then held for 2 min. Re-equilibration time for each analysis was 10 min. The ESI 120 

operating conditions were: drying gas (N2, purity >98%): 350°C and 10 L/min; capillary 121 

voltage 4.0 kV; nebulizer gas 276 kPa; sheath gas (N2, purity >98%): 375°C and 11 L/min.  122 

High resolution MS and MS/MS spectra were acquired in negative mode in the range 123 

100-1700 m/z. The fragmentor was kept at 150 V, nozzle voltage 1000 V, skimmer 65 V, 124 

octapole RF 750 V. For the MS/MS experiments, different voltages in the collision cell were 125 

tested for Collision Induced Dissociation (CID), in order to maximise the information obtained 126 

from the fragmentation. The collision gas was nitrogen (purity 99.999%). The data were 127 

collected by targeted MS/MS acquisition with an MS scan rate of 1.0 spectra/sec and a MS/MS 128 

scan rate of 1.0 spectra/sec. MassHunter® Workstation Software was used to carry out mass 129 

spectrometer control, data acquisition, and data analysis 130 

2.3 Optical measurements 131 

The photophysical properties of Indian yellow, in both solid state and solution, were 132 

investigated using a Perkin-Elmer Lambda 1050 UV-Vis-NIR equipped with an integrating sphere 133 

(total reflection measurements). The emission and excitation spectra were recorded by an 134 

Edinburgh FLS980 spectrometer equipped with a Peltier-cooled Hamamatsu R928 photomultiplier 135 

tube (185-850 nm) and a xenon lamp (450 W) as light source. To determine the luminescence 136 

quantum yield, the method proposed by De Mello et al. was followed [43]. The emission lifetimes 137 

in the pico- to nanosecond timescale were measured using a single photon counting system 138 

(Edinburgh FLS980 spectrometer) with a 1 MHz laser diode as excitation source coupled with a 139 

Hamamatsu MCP R3809U-50, time resolution 20 ps, as detector. 140 

 141 

 142 
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2.4 Imaging 143 

The PL luminescence of the paintings in the Badal Mahal was recorded using a 144 

customised Nikon D7000. The removal of the camera’s internal IR blocking filter and 145 

replacement with a quartz filter, allows detection of emission from c.350-1100 nm. The 146 

excitation source consisted of two Quantum Instruments T5dR xenon flashes, equipped with 147 

Xnite 330C and Xnite CC1 bandpass filters (c.280-400 nm). The camera was fitted with a cut-148 

on Schott KV418 ultraviolet-blocking filter (50% transmission at 418 nm) and an IDAS-149 

UIBAR bandpass filter (c.400-700 nm) to record emission in the visible, and Xnite 715 filter 150 

(50% transmission at 715 nm) to record emission in the IR. A white board covering the entire 151 

field of view, a Gretag-Macbeth ColorChecker chart, and a set of lambertian  reflectance 152 

standards (Spectralon® 99, 75, 50 and 2%) were inserted in all images to allow for post-153 

capture processing and correction (light distribution, colour correction, removal of ambient 154 

stray light) using Nip2 software and following the protocol described in Dyers et al. [44]. 155 

 156 

2.5 Calculations 157 

In order to select the most suitable functional to gain meaningful results, the ground state 158 

geometries of EA, SE and E were optimised in the gas phase with the Gaussian09 suite of programs 159 

[45] at different hybrid and long-range corrected DFT functionals (namely, B3LYP [46], pure PBE 160 

[47], PBE0 [48], HSE06 [49], CAM-B3LYP [50] and LC-wPBE [51]) at the TZVP basis set level 161 

of theory. This set of functionals was selected to encompass a wide number of parameters, such as, 162 

corrections (or not) for dispersion effects and global or range-separated hybrids. Relative vertical 163 

electronic excitations, (transitions) dipole moments and oscillator strengths were obtained, at the 164 

corresponding level of theory, with the Time Dependent Density Function Theory (TDDFT) [52], 165 

generally used to reproduce the UV/Vis spectra of most organic [53-56] and inorganic dyes [57, 166 

58]. The energetic positions of the triplet states are here analogously investigated, since X and some 167 

of its analogues are largely used as triplet sensitizers.  168 
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To mimic the solvent environment, the CPCM polarisable conductor model implemented in 169 

Gaussian09 [59, 60] with the Pauling cavity set [61]  and combined with a TD-DFT scheme, has 170 

proven to be appropriate to reproduce the experimental absorption/excitation spectra for EA, SE 171 

and E in water, with a high level of accuracy. B3LYP/CPCM and TDDFT(B3LYP)/CPCM 172 

calculations were carried out to obtain optimised geometries and vertical excitation energies of EA, 173 

E and SE in water. 174 

Additional TDDFT calculations at the same level of theory were run on OH-CH3-X and X 175 

molecules to obtain complete information about the effect that substituents on the main xanthone 176 

structure have on the position of the absorption bands, and to compare results with previous 177 

literature data available on X. 178 

 179 

3. RESULTS AND DISCUSSION 180 

3.1 Chemical composition 181 

 HPLC-ESI-Q-ToF analysis revealed that both samples were composed of euxanthone (E) 182 

and euxanthic acid (EA), in agreement with the literature [15]. Nevertheless, a third component was 183 

also detected, and identified as a sulphonate derivative of euxanthone (SE), (C13H8O7S). The 184 

identification of SE was based on the high resolution mass data and the MSMS fragmentation 185 

spectrum. The mass obtained for the molecular ion was [M]- = 306.9922 uma and it showed a -1.21 186 

ppm difference from the calculated mass (calculated [M] - = 306.9918 uma). The MSMS spectrum 187 

showed a main fragmentation peak at m/z 227.0353, corresponding to euxanthone (ppm difference -188 

1.39) and derived from the loss of a SO3 moiety. Although the exact position of the sulphonate 189 

group was not ascertained, we hypothesise that the C4 position is that undergoing reaction, based on 190 

the structure of other natural sulphonated xanthones [62].  191 

 Semi-quantitative calculations were performed to evaluate differences in the distribution of E, 192 

EA and SE between sample S64 and the reference sample (NG). Chromatographic area ratios were 193 

calculated by considering the sum of the chromatographic areas of E, EA and SE as 100%. Using 194 
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this method the percentage areas were EA = 77.4 ± 0.8%, SE = 14.7 ± 0.6% and E = 7.9 ± 0.2% for 195 

sample NG and EA = 65.4 ± 0.4%, SE = 28.9 ± 0.4% and E = 5.6 ± 0.1% for sample S64 (standard 196 

deviation refer to triplicate measurements). It is important to underline that these values do not 197 

necessarily correspond to the actual percentage contents of the three components in the samples, 198 

because the ionisation yield of each compound may vary. Nevertheless, the results can be used to 199 

compare the samples and a higher relative abundance of SE was observed for sample B64 compared 200 

to NG.  201 

 Although Indian yellow has been characterised by LC-MS analysis previously [15], this work 202 

presents the first identification of euxanthone-4-sulphonate. Its presence in the wall painting sample 203 

(B64) makes it unlikely to result from a synthetic production process and would rather point 204 

towards a natural occurrence. In fact, sulphonation and glucoronidation are two competitive 205 

mechanisms in the metabolism of mammals, especially for phenolic molecules, and sulphonation 206 

usually occurs in parallel to glucoronidation, but to a lesser extent [63, 64]. This could be taken as 207 

further evidence that a metabolic pathway is involved in the production of the pigment, supporting 208 

the hypothesis of its manufacture through ingestion, digestion and urination by cows. However, 209 

sulphotransferase enzymes are also present in plants, and sulphonated xanthones [62] and flavonols 210 

[65] have been isolated. Accordingly, the identification of this compound cannot alone validate the 211 

animal-based production process described above.     212 

 213 

3.2 Photophysical properties  214 

 The absorbance spectrum of sample NG covers the range between c.250 and 550 nm, 215 

imparting the dark yellow colour to the powder. The bands in the UV region can be attributed to π-216 

π* transitions, while those at longer wavelengths (> 400 nm) are of n-> π* (S0 > S1) nature [39] (see 217 

also the TDDFT calculations in section 3.4). The excitation spectrum, obtained by monitoring the 218 

emission at 600 nm, closely matches the absorption profile, pointing to a lack of intermediate 219 

photo-induced processes between absorption and emission.  Both samples (NG and B64) emit in the 220 
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yellow-orange region with a maximum around 600 nm (Figure 2). The corresponding lifetime 221 

decays (Figure 2, inset) are in good accordance with a bi-exponential model (B64: τ1 = 510ps 222 

(73%), τ2 = 1.50 ns (27%); NG: τ1 = 530ps (75%); τ2 = 1.49ns (25%)), suggesting the presence of 223 

different packed domains (driven by the π-π stacking and hydrogen bonds), which commonly occur 224 

in solid-state organic samples [66]. For the first time, it was possible to measure the 225 

photoluminescence quantum yield (PLQY) of a solid sample of Indian yellow: PLQY(NG) = 0.6%. 226 

Unfortunately, the sub-millimetric sample from the wall panting was too small to measure its 227 

PLQY. The < 10 nm hypsochromic shift between the emission maxima of the two samples can be 228 

attributed to the different ratios of EA and E. 229 

 
230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

Fig. 2 Absorbance (total reflection, full line), excitation (dashed line, λem = 600 nm) and normalised 241 

emission (full line, λexc = 407 nm) spectra of powdered NG (dark green line) and B64 (dark red 242 

line). Inset: sample luminescence decays and instrument response (black full line).  243 

3.3 Imaging  244 

Figure 3 shows the visible (top), UV-induced visible (middle) and UV-induced IR (bottom) 245 
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luminescence images of the overall area from which sample B64 was taken (as illustrated in Figure 246 

1). Indian yellow is characterised by a yellow-orange fluorescence, in keeping with the emission 247 

maximum at 600 nm following excitation at 407 nm revealed by PL spectroscopy. The emission of 248 

Indian yellow also occurs in the IR range (c.700-800 nm range, Figure 2), and it can be observed in 249 

the UV-induced IR imaging (c.700-1000 nm range) as 'glowing white', against a grey-black 250 

background. Areas in the UV-induced visible image that show a paler yellow fluorescence may 251 

indicate the presence of other compounds and further investigation and analysis is ongoing. 252 

Because of the relatively high PLQY of Indian yellow, it was possible to image a large 253 

section (c.10 m2) of the ceiling in a single frame from a distance of about 5 m, by firing the flashes 254 

many times during a 30s exposure (Figure 4).  255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

Fig. 3 Area from which sample B64 was taken; visible image (top), UV-induced visible (middle) 269 

and UV-induced IR (bottom) luminescence images. Indian yellow is characterised by a yellow-270 

orange fluorescence. Areas showing a paler yellow fluorescence may contain other compounds. 271 
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 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

Fig. 4 Ceiling of the Badal Mahal, Garh Palace, Bundi (Rajasthan, India) depicting Krishna dancing 281 

with the gopis; (top) visible image and (bottom) UV-induced luminescence image, showing the 282 

yellow-orange emission of Indian yellow. Due to the distance between the camera and the ceiling, 283 

the use of a white board and Spectralon® reflectance standards was impossible, thus precluding 284 

correction for inhomogeneous light distribution and ambient stray light.  285 

3.4 TDDFT calculations 286 

Results of benchmarks of the present study for EA, SE and E are presented in Tables S1, S2 287 

and S3 in the Supplementary Material. Although pure PBE better estimates the positions of the first 288 

two singlet states for all the three species with respect to the experimental reference spectrum (dark 289 

green line in Figure 2), it gives a mismatch in the order of the lowest two singlet and four triplet 290 

states with respect to all the other functionals investigated and previous literature data on X, which 291 

found four triplet states below the optically-active S2, where the first triplet was determined to have 292 

a 3(nO ->πL*) character in a vacuum [39]. Long-range corrected hybrid functionals, known to give a 293 
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good and consistent description of low-lying excited state energies for most organics dyes [67], 294 

show computed wavelengths systematically lower than those found experimentally. The B3LYP 295 

functional combined with the TZVP basis set provides the best computational performance with 296 

respect to the experimental excitation/absorption profile. It is, however, recognised that results 297 

obtained with hybrid functionals tend to be in better agreement with experimental trends than the 298 

values computed with pure functionals. 299 

The lowest excited singlet state of EA, SE and E at the B3LYP/TZVP level of calculation, 300 

in a vacuum, is found to be a dark 1(nOπL*) state, as for X, a chromophore well known for its 301 

different solvent- and temperature-dependent photophysical properties [39-42], [68-72]. The lowest 302 

state in the triplet manifold has a 3(πH-πL*) character, which is different to X in the gas phase [39] 303 

(see Table 1): although the two lowest triplet states are energetically close in EA (∆E = 0.09 eV), 304 

they are quite well separated in SE and E (0.19 eV and 0.26 eV, respectively).  305 

A comprehensive comparison shown in Table 1 between the lowest triplet and singlet states 306 

in a vacuum, obtained at TDDFT(B3LYP)/TZVP level of theory for: i) EA, ii) SE, iii) E, iv) OH-307 

CH3-X and v) X, allows the identification of a bathochromic effect induced by hydroxyl groups and 308 

glucuronic acid added to the benzene rings in X to form E and EA, respectively, leading to a final 309 

excitation spectrum of EA moderately red-shifted with respect to X. The presence of the sulphonate 310 

substituent in SE barely affects the absorption spectrum profile with respect to EA, as expected. 311 

The bathochromic shift observed in the solid state optical response for both the S1 and S2 312 

state energies, with respect to the calculated absorption wavelengths in a vacuum, can be ascribed to 313 

a combined effect of intermolecular interactions (π-π stacking and hydrogen bonds) occurring 314 

between packed molecules. The deprotonation of the hydroxyl group, with the resulting formation 315 

of calcium and magnesium salts, could be also partially responsible for the spectral red shift.  316 

 317 

Table 2 lists the principal TDDFT(B3LYP)/CPCM singlet vertical excitation energies (in 318 

nm) calculated in water, with their electronic structure characterisation, for EA, SE and E, 319 
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compared with the corresponding experimental main peaks (in nm). Figure 5 shows a comparison 320 

between the experimental absorption spectrum (solid black line) and theoretical stick spectra 321 

obtained in water for EA (solid red lines), SE (solid green line) and E (solid blue line), scaled for 322 

their relative abundance in the NG sample (see Section 3.1) and, also, with their convoluted 323 

Gaussian spectrum (FWHM of 0.05 eV), as a solid thin grey line. The related frontier orbitals 324 

involved in the main vertical transitions are depicted in Figures S1, S2 and S3 for EA, SE and E. As 325 

shown in Table 2, the molecular orbital analysis of the DFT (B3LYP) electronic wavefunction 326 

reveals, in agreement with the literature, electronic transition assignments identified for the X 327 

moiety, with the order of the first two singlet states 1(nO ->πL*) and 1(πH ->πL*) inverted between 328 

vacuum and water, due to the solvatochromic effect of the polar solvent. Indeed, in water, the 329 

combined effects of polarity and hydrogen bond formation become strong enough to trigger a 330 

reversal of the order of singlet states with respect to a vacuum. In our calculations, the 1(nO->πL*) 331 

state experiences a blue shift of about 0.34 eV, with respect to a moderate red shift of about 0.28 eV 332 

of the 1(πH->πL*) state for EA. As can be easily seen in the diagram in Figure S4, this variation in 333 

the energy leads to a crossing between the two singlet states. The energy blue shifts of the 1(nO-334 

>πL*) state observed in water for SE and E are 0.30 eV and 0.10 eV, respectively, while, the 335 

corresponding red shifts of the 1(πH->πL*) state are 0.19 eV and 0.17 eV. Moreover, the order of the 336 

lowest 3(nO -> πL*) and 3(πH->πL*) triplet states found in water for EA, SE and E by the 337 

TDDFT(B3LYP) calculations is in agreement with the results of Rai-Constapel et al. for X in water 338 

[39].  339 

Our TDDFT(B3LYP) vertical excitation energies calculated on X both in the gas phase and in water 340 

are in good agreement with previous theoretical and experimental data, as shown in Table 3, 341 

although TDDFT predicts the lowest state in the triplet manifold with a 3(πH-πL*) character in 342 

water, which differs from the DFT/MRCI results reported by Rai-Constapel et al. [39].  343 

Furthermore, TDDFT(B3LYP) optimisations of the first two triplet states of X, 3(πH-πL*) and 344 

3(nOπL*), in a vacuum, provide adiabatic excitation energies of, respectively, 433 and 428 nm, in 345 
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agreement with experimental phosphorescence data in 3-methylpentane [68] or in hexane solution 346 

at room temperature [69]. 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

        356 

 357 

Fig. 5 The experimental absorption spectrum (solid black tick line) in water of NG Indian yellow, 358 

with stick theoretical TD-B3LYP/TZVP/CPCM spectra for EA (red line), SE (green line) and E 359 

(blue line) calculated in water and scaled for their relative abundance in the NG sample and their 360 

corresponding Gaussian convoluted theoretical spectrum, with FWHM of 0.05 eV (grey solid thin 361 

line).  362 

 363 

Table 1. TDDFT(B3LYP/TZVP) lowest singlet and triplet vertical excitation energies, nm, in a 364 

vacuum for euxanthic acid (EA), 4-sulphonate-euxanthone (SE), euxanthone (E), 1-hydroxy-7-365 

methyl-xanthone (OH-CH3-X) and xanthone (X) molecules. 366 

State Electronic 
structure 

TDDFT(B3LYP/TZVP ) ∆E (nm)   

(EA) (SE) (E) (OH-CH3-X) (X) 

S0  ground state 0 0 0 0 0 
S1  nO ->πL*  352  351 349 353 341  
S2  πH -> πL*  336  340 343 348 315 
T1 πH -> πL* 412  425 431 433 394  
T2  nO ->πL*  400  399 396 401 384  
T3  (πH-1->πL*)

a; 369  368 370 370 359  
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(πH-2->πL*)
b; 

(πH-3 ->πL*) c 

(πH-4 ->πL*)d 
T4  (πH-4 -> πL*) e; 

(πH-2 -> πL*) f 

(πH-3 ->πL*) g 

358 357 356 361 353  

a E and OH-CH3-X; b EA; c X; d SE  e E, OH-CH3-X, EA; f X, g SE 367 

 368 

Table 2. TDDFT(B3LYP/TZVP)/CPCM principal singlet vertical excitation energies of euxanthic 369 

acid (EA) 4-sulphonate-euxanthone (SE) and euxanthone (E), nm, in water, oscillator strengths, 370 

corresponding electronic structure and experimental main peaks in water, nm. 371 

Elect. structure 

TDDFT(B3LYP/TZVP)/CP
CM ∆E (nm) 

Osc. Strength Exp. maximum 
peaks (nm) 

EA SE E EA SE E  
1(πH -> πL*)

a,b,c 363 359 360 0.1329 0.1235 0.1260 376 
1(nO ->πL*)

a,b,c 321 323 339 0.0001 0.0000 0.0000  
1(πH -1-> πL*)

a,b,c 301 296 299 0.0156 0.0158 0.0086  
1(πH -2->πL*)

a;1(πH -> 
πL+1*)

a,b,c; 
1(πH -3->πL*)

b,c 
279 278 277 0.0564 0.0185 0.0033 287 

1(πH-4->πL*)
a;1(πH -> 

πL+1*)
a,b,c; 1(πH-3-

>πL*)
c 1(πH-2 -> πL*)

a 
259 266 257 0.6741 0.3956 0.6489 256 

1(πH-4 -> πL*)
a 

1(πH -> πL+2*)
b 

255 259  0.2157 0.3259   
1(πH-5 -> πL*)

a; 
1(πH-4 -> πL*)

b,c 
251 252 251 0.0547 0.1503 0.0429  

1(πH ->πL+2*)
a,c;1(πH-1 -

> πL+2*)
b 

240 231 239 0.1276 0.0980 0.4190  
1(πH -> πL+3)

a,b,c 239 224 221 0.3156 0.1948 0.0176 230 
1(πH-1 -> πL+1*)

b;1(πH-

1-> πL+2*)
b  223   0.1512   

1(πH-3 -> πL+1*)
b  213   0.1129   

1(πH -> πL+5*)
b 

  204   0.1734   
1(πH-4 -> πL+1*)

a,c;1(πH-

2-> πL+1*)
a 

202  206 0.2155  0.0614  
1(πH-4 -> πL+2*)

b;1(πH-4 

-> πL+1*)
c  201 201  0.2342 0.3700  

1(πH-4 -> πL+2*)
b; 

1(πH-1-> πL+3*)
c  201 192  0.1611 0.2090  

1(πH-1 -> πL+4*)
a 

 193   0.1264    
1(πH-5 -> πL+3*)

a 

 186   0.1924    
        

a electronic configuration ef EA, b electronic configuration of SE, c electronic configuration of E 372 

 373 
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Table 3. Vertical lowest singlet and triplet excitation energies, nm, from the ground state of 374 

xanthone in a vacuum and in water calculated at the TDDFT(B3LYP)/CPCM level of theory with 375 

TZVP basis set, compared with available theoretical (DFT/MRCI) and experimental literature data.  376 

state Electronic 
structure 

TDDFT(B3LYP/TZVP) 
∆E (nm) 

DFT/MRCI ∆E 
(nm) literature a 

Experimental 
literature 
(b),(c),(d) 

vacuum water vacuum water  
S0 ground state 0.00 0.00 0.00 0.00  
S1 nO ->πL* 341 315 360 307 371b), 361 (c), 

360 (d) 
S2 πH -> πL* 315 331 319 337 325 (b), 339 (c), 

336 (d) 
T1 nO ->πL* 394 410 380 319 387 (b), 393 (c), 

385 (d) 
T2 πH -> πL*; πH-2 -> πL*  384 347 373 396 386 (c) 

 
T3 Multiconfigurational 

triplet state 
359 359 346 348  

T4 Multiconfigurational 
triplet state 

353 358 338 348  

a Ref. 39; b Ref. 40 c Ref. 42 d Ref. 41  377 

 378 

CONCLUSION 379 

For the first time the optical properties of Indian yellow were determined quantitatively in the solid 380 

state and correlated with its chemical composition. Although the main components of the pigment − 381 

euxanthic acid and euxanthone − were known, the presence of a sulphonate derivative of 382 

euxanthone (C13H8O7S) was identified for the first time in both samples analysed in this study.  A 383 

theoretical analysis carried out on euxanthic acid, 4-sulphonate-euxanthone and euxanthone, both as 384 

isolated molecules and in a polar (protic) solvent, helped assign the origin of the excited states 385 

involved in the photo-induced processes and their electronic configurations. Additional calculations 386 

on differently substituted xanthone molecules provide information on the role of substituents in the 387 

absorption band positions. In depth characterisation of the photophysical properties of pigments 388 

with PL spectroscopy and confirmation by theoretical calculations allow a more reliable 389 

interpretation of PL imaging results and the selection of optimum excitation and emission 390 
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wavebands to differentiate pigments based on their luminescence properties. Further research on the 391 

topic is ongoing and will be reported in more detail in due course. The extent to which this pigment 392 

was used on a wall painting was previously unknown. The widespread occurrence of organic 393 

pigments and colorants on Asian murals remains overlooked. Such materials are inherently 394 

susceptible to damage during conservation interventions and when exposed to unfavourable 395 

environmental conditions, including exposure to electromagnetic radiation or pollution, and 396 

changes in relative humidity. Therefore, spatial information on their presence in works of art is of 397 

paramount importance for the effective design, implementation and monitoring of appropriate 398 

conservation management plans. 399 
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- Correlation between optical properties and chemical composition.  

- Identification of a sulphonate derivative of euxanthone in 17th-century Indian wall painting. 

 


