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Introduction 

2017 represents the 200th anniversary of the publication of The Shaking Palsy by James Parkinson and the 

20th anniversary of the discovery of the first unequivocal cause of Parkinson disease (PD) – a mutation in 

the α-synuclein gene (Polymeropoulos et al. 1997). These two anniversaries reflect the accelerating pace 

of progress in understanding the causes of and developing new treatments for this and other 

neurodegenerative diseases, particularly given that over 20 Parkinson-related genes have been described 

just in the last 20 years. This review focuses on a recent and exciting observation that mutations in the 

glucocerebrosidase (GBA) gene are the most common genetic association with PD and dementia with 

Lewy bodies. We have attempted to provide a brief overview of clinical features, epidemiology and 

pathology of PD in order to provide a background to provide a detailed review of the contribution of GBA 

gene mutations to PD and how our understanding of this relationship is providing invaluable insights into 

the design of novel therapies that might be used to slow the progress of PD. 

PD: CLINICAL OVERVIEW 

PD is a complex neurodegenerative disease characterised by a broad range of motor and non-motor 

features (Table 1).  



Motor features 

The cardinal motor symptoms are tremor, bradykinesia/hypokinesia/akinesia, rigidity and postural 

instability.  

The majority of PD patients develop tremor; 4-6 Hz rest tremor is the most common and characteristic 

form of tremor in PD, it is usually unilateral or at least asymmetrical and more evident in the distal 

extremities of limbs, but it can also occur in the lips, chin, jaw and legs. Other types of tremor such as 

postural (“re-emergent”) or kinetic tremor can be detected. Sometimes patients refer an “internal 

tremor”, which is not detectable with neurological examination.  

Bradykinesia, hypokinesia and akinesia are commonly used synonymously, even though they refer to 

different disturbances of voluntary movement execution and they don’t always coexist in individual 

patients. Bradykinesia can simplistically be defined as slowness in movements (especially repetitive ones) 

with progressive reduction in amplitude and speed, with the loss of the fluidity of voluntary movements 

- although PD patients can show difficulties not only in executing but also in planning and initiating 

movement.  

Rigidity refers to an increased resistance to passive movements, due to a continuous and uniform increase 

in muscle tone. Two types of parkinsonian rigidity are classically recognized: the “lead pipe” rigidity, which 

is uniform throughout range of movement and is not dependent on passive movement velocity, and the 

“cog-wheel” rigidity, in which the rigidity is regularly interrupted by tremor during passive movements. 

Rigidity must be differentiated from other forms of hypertonia, such as spasticity and paratonia.  

Postural instability usually occurs in the later stages of the disease; it is one of the strongest determinants 

of quality of life, disability and risk of falls and fractures, and consequently morbidity and mortality, in PD. 

Postural instability is determined by different causes such as: impaired postural reflexes, lack of control 

of voluntary movements, orthostatic hypotension, age related sensory changes and weakening of leg 



muscles and dyskinesias and other parkinsonian symptoms.  

PD is characterised by other motor features, such as postural abnormalities (camptocormia and Pisa 

syndrome), freezing of gait, festination, micrographia, hypomimia, alteration of blinking and eye 

movements and others.  

Non-motor features 

Even if motor symptoms have historically been recognised as the defining features of PD, non-motor 

symptoms (NMS) are an integral part of the clinical picture (Chaudhuri et al. 2006; Schapira et al. 2017). 

NMS in PD cover a wide variety of manifestations, including autonomic, gastro-intestinal, sleep, sensory, 

cognitive, and neuropsychiatric disturbances, disturbances of speech, dysphagia and sialorrhoea; their 

frequency and/or severity usually increase in later stages of the disease, but they can also appear in early 

stages. NMS may be misdiagnosed, but when properly assessed they are found to affect the majority of 

PD patients and have a severe impact on health-related quality of life and disability. Some NMS might 

arise before the emergence of motor symptoms: depression, constipation and rapid eye movement 

behaviour sleep disorder (RBD) can precede PD diagnosis and are therefore called “prodromal” or 

“premotor” symptoms.   

EPIDEMIOLOGY AND RISK FACTORS 

PD is the second most common neurodegenerative disease in the general population (de Rijk et al. 1997). 

In industrialised countries, its prevalence is estimated to be 0.3 % in the general population and to be 3 

fold and 10 fold higher in the over-60 and over-80 year old populations respectively. The incidence rates 

range between 8 and 18 per 100,000 person-year, rising up to 121 cases/100,000 person-years in people 

aged 40-85 and 200-per 100,000 in people aged 60-84 years (Lee and Gilbert 2016).  Age is considered to 



be the most important risk factor for PD. Men have a higher risk of developing PD, have an earlier onset 

and show different clinical features (Gillies et al. 2014). Different risk/protective factors have been linked 

to PD: their mechanism of action will be further explained in specific sections of this article. Risk factors 

include pesticides, herbicides, insecticides, fungicides or paraquat exposure, rural living, farming and well-

water consumption (Breckenridge et al. 2016); exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) and annonacin have been found as causative factors in two particular forms of parkinsonism 

(Langston and Palfreman 1996; Champy et al. 2004).  Protective factors include caffeine consumption, 

cigarette smoking, use of calcium channel blockers and statins, while contrasting evidence is available 

regarding use of NSAIDS, uric acid levels or gout (Kalia and Lang 2015). 

PATHOLOGY  

Loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) with the accumulation of α-

synuclein in Lewy bodies (LB) and Lewy neurites are the pathological hallmarks of PD (Fig.1a). It is 

suggested that at the time of motor symptoms and diagnosis dopaminergic neurons in the SNc are 

reduced up to 60% (Marsden 1990). LB are composed of more than 90 different proteins, of which the 

most abundant is α-synuclein (Spillantini et al. 1997; Wakabayashi et al. 2013). Besides the SNc, LB are 

widely distributed in different structures of the central nervous system; it has been proposed that LB and 

α -synuclein accumulation follow a sequential pattern of deposition, starting in the dorsal motor nucleus 

of the glossopharyngeal and vagal nerves and anterior olfactory nucleus and progressively spread to the 

brain stem. In later stages, the involvement spreads to the cortex, firstly to the mesocortex and allocortex 

and finally to the neocortex (Fig.1b) (Braak et al. 2003) . 

α-synuclein pathology in PD has been found in structures other than the brain: LB-like aggregates have 

been found in the olfactory epithelium, in dorsal root ganglia, cranial and spinal nerves, in the enteric 



nervous system, the adrenal gland, in skin nerves and other structures; however, LB-like structures are 

also found in peripheral structures in healthy elderly subjects (Longhena et al. 2017).  

The deposition of LB and α-synuclein is accompanied by microglial activation and elevation of 

inflammatory cytokines levels, suggesting that inflammation could contribute to neurodegeneration: a 

current hypothesis is that there is a positive feedback loop between microglia activation, neuro-

inflammation and α-synuclein deposition which contributes to neurodegeneration (Zhang et al. 2017).  

PATHOGENESIS 

α-synuclein 

α-synuclein is a 140 amino acid presynaptic protein, whose main role is thought related to 

neurotransmitter release through the SNARE complex (Burré et al. 2010). The pathogenicity of α-synuclein 

seems to be related to its accumulation, misfolding and aggregation more than a loss of function. 

Knockout or depletion of the α-synuclein gene (SNCA) in animal models do not cause a parkinsonian 

phenotype (Abeliovich et al. 2000), although there is an impairment in vesicle trafficking (Murphy et al. 

2000); SNCA knock-out has been shown to be protective against PD-related neurodegeneration (Luk et al. 

2012).   

The pathogenicity of α-synuclein relies on its tendency to misfold and accumulate. In its native state, α-

synuclein is a folded tetramer of 58 kDa (Bartels et al. 2011; Wang et al. 2011), but it can acquire 

oligomeric and aggregated conformations, which are the most abundant forms in LB. The accumulation 

and aggregation of α-synuclein is a stepwise process: misfolded monomers aggregate firstly into dimers 

and then in oligomers that are stabilized by beta-sheet-like interactions; these aggregates become 

insoluble protofibrils and finally amyloid-like structures.  

The oligomeric and protofibrillar forms are considered more toxic than the β-sheet-rich amyloid 



aggregate, their toxicity is mediated through a number of mechanisms including mitochondrial (Hsu et al. 

2000), lysosomal (Chu et al. 2009) and proteasomal (Snyder et al. 2003) dysfunction, damage to biological 

membranes (Danzer et al. 2007) and the cytoskeleton (Alim et al. 2004) and the disruption of synaptic 

function (Scott et al. 2010).  It has been suggested that LB may represent an attempt to limit the toxicity 

of these forms, thereby constituting a neuroprotective factor and an epiphenomenon to 

neurodegeneration more than a factor contributing to it (Ding et al. 2002; Lashuel, Hartley, et al. 2002; 

Lashuel, Petre, et al. 2002). 

The first insight to the role of α-synuclein in the pathogenesis of PD came from the discovery of its 

mutation (A53T) in an autosomal dominant form of PD (Polymeropoulos et al. 1997): this mutation, results 

in more rapid oligomerization than the wild-type (Conway et al. 2000); other pathogenic mutations of 

SNCA affect the quantity of α-synuclein, such as duplications (Chartier-Harlin et al. 2004; Ibáñez et al. 

2004), triplications (Singleton et al. 2003), and mutations in promoter regions (Pals et al. 2004); moreover, 

higher levels of α-synuclein mRNA have been found in sporadic PD (Chiba-Falek et al. 2006). However, it’s 

not only the production of α-synuclein that determines its accumulation: other mechanisms, such as 

changes in its turnover via the ubiquination-proteasome pathway and autophagy, can contribute -as will 

be discussed in the following section of this review. Oligomeric or fibrillar α-synuclein has the ability to 

spread to other cells: it was found in grafted neurons in the brains of PD patients that had received fetal 

implants; this finding was reproduced in vitro and in vivo and then α-synuclein has been demonstrated to 

spread also when inoculated in the absence of other pathogenic circumstances (Brundin et al. 2016). 

ENDOPLASMIC RETICULUM STRESS 

The accumulation of misfolded proteins in the cell leads to a condition known as endoplasmic reticulum 

(ER) stress: when misfolded proteins accumulate in the ER, a feedback mechanism up-regulates the 



transcription of chaperones and other stress-induced proteins; this process is called unfolded protein 

response (UPR) and in both physiological and pathological conditions, it maintains the homeostasis of the 

ER and recycles the unfolded proteins through ER-associated degradation (ERAD): misfolded or 

unassembled polypeptides are retro-translocated into the cytosol for degradation by the ubiquitin 

proteasomal or lysosomal systems (Zhang and Ye 2014); however, if the misfolded protein load and ER 

stress are irreversible, the apoptosis pathway is activated (Hetz 2012). As well for other 

neurodegenerative diseases (Matus et al. 2011), an increase in ER stress is thought to be linked with PD 

pathogenesis: ER stress markers (Colla, Coune, et al. 2012) together with α-synuclein deposition in the ER 

(Colla, Jensen, et al. 2012) have been found both in in-vivo and autoptical studies (Hoozemans et al. 2007).  

One of the genes implicated in PD pathogenesis plays a regulatory role in ER stress and associated 

neurodegeneration (Yuan et al. 2011): mutations in LRKK2 cause a familial form of PD, characterized by 

relatively late onset, variable penetrance and pleomorphic pathological features (Funayama et al. 2002). 

The physiological role of this protein is still debated, and may include protection of the cell in the case of 

ER stress (Dächsel et al. 2010).  

DISTURBANCES OF AUTOPHAGY AND LYSOSOMAL FUNCTION 

There is increasing evidence that defects in autophagy and lysosomal pathways play a key role in the 

pathogenesis of PD. 

Autophagy is a process that allows the cell to degrade and recycle, through the lysosomes, cytosolic 

molecules or organelles. It is enhanced in response to cell injury, starvation or hormonal signalling; 

alternatively, autophagy can prime cell death. Three different kind of autophagy are known: 

microautophagy, macroautophagy and chaperone-mediated autophagy; even though the three pathways 

are distinct, they all culminate in the lysosome (Galluzzi et al. 2017).  In macro-autophagy (autophagy) the 



cargo to be directed to the lysosome is transported in a double-membrane vesicle (autophagosome). The 

autophagosome then fuses its membrane with the lysosome forming the autolysosome or, in case of 

convergence with the endocytic pathway, an amphisome; after degradation, all the products of this 

process are transferred back to the cytosol to be recycled for energy production or biosynthesis of cell 

components. The term microautophagy refers to a process where cytosolic molecules are sequestered 

directly by the lysosomal membrane into intra-lysosomal vesicles, it is constitutively active and regulates 

the turnover cell components; however, the details about the regulation of this mechanism still have to 

be outlined. In chaperone-mediated autophagy (CMA), proteins that are “marked” by a specific peptide 

sequence (KFERQ-like) are transported to the lysosome by a cytosolic chaperone (HSC70) though a 

receptor in the lysosomal membrane, the lysosome-associated membrane protein (LAMP) type 2A. 

Besides of alterations in α-synuclein production and folding, disturbances in its degradation and/or 

clearance can determine its accumulations (Cuervo et al. 2004). Wild-type α-synuclein is degraded by both 

by autophagy and by the CMA pathway; it contains the pentapeptide sequence 95VKKDQ99 , which is 

recognised by the CMA pathway as well as by the proteasome (Webb et al. 2003)(Webb, Ravikumar, 

Atkins, Skepper, and Rubinsztein 2003)(Webb et al. 2003). Upregulation or inhibition of autophagy 

processes respectively decrease or increase the level of α-synuclein in cells. In contrast, mutant (A30P and 

A53T) α-synuclein are not only not efficiently degraded by this pathway, but inhibit it, with toxic 

consequences for the cell. 

LRKK2 has been implicated in this network: physiologically, LRKK2 is degraded by CMA; the degradation 

of mutated forms interferes with CMA, as mutant LRRK2 blocks LAMP-2A oligomerization and slows α-

synuclein degradation, contributing to neurodegeneration in PD (Orenstein et al. 2013; Yue and Yang 

2013).  

Other genes that are more clearly linked to autophagy pathways have been associated with PD. 



Mutations in ATP13A2 (PARK9) cause Kufor-Rakeb syndrome, which is an autosomal recessive form of 

early-onset parkinsonism with pyramidal degeneration and dementia (Ramirez et al. 2006). ATP132A is a 

lysosomal ATPase (Schultheis et al. 2004), which is highly expressed in the brain, and in particular in the 

substantia nigra. In idiopathic PD, its expression is up-regulated in surviving dopaminergic neurons, 

suggesting a role in protective mechanisms (Ramirez et al. 2006). Its mutation causes lysosomal 

dysfunction (Dehay et al. 2012; Usenovic et al. 2012) and results in parkinsonism and a lysosomal storage 

disorder (Bras et al. 2012). In case of LRKK2 mutations and consequent lysosomal dysfunction, ATP13A2 

is up-regulated, showing a potential “rescue” system activated by the cell (Henry et al. 2015).  ATP13A2 

shows a close relationship with α-synuclein metabolism: it regulates its exosomal-secretion, 

accumulation, aggregation and has been demonstrated to be protective in case of α-synuclein 

overexpression (Usenovic et al. 2012; Kong et al. 2014; Tsunemi et al. 2014; Lopes da Fonseca et al. 2016) 

.  

ATP13A2 is linked with other PD pathogenic mechanisms: patients with mutations in ATP13A2 show 

mitochondrial dysfunction (Grünewald et al. 2012; Park et al. 2014), while its over-expression reduces 

oxidative stress in rotenone-induced mitochondrial damage (Holemans et al. 2015). 

Other autophagy-related genes have been linked to PD (Fig.2) (Gan-Or, Dion, et al. 2015): mutations of 

VPS35, which encodes for a subunit of the retromer complex, have been linked to familial forms of PD 

with autosomal heritance and low penetrance (Vilariño-Güell et al. 2011: 35; Zimprich et al. 2011: 35); the 

same gene has also been linked to Alzheimer disease (Small et al. 2005; Wen et al. 2011). The retromer 

complex recycles trans-membrane receptors from the endosome via the trans-Golgi network (Pfeffer 

2001), and it is implicated in the homeostasis between protein degradation and accumulation. In PD 

dopaminergic neurons with mutations of VPS35 both a poor retrieval of LAMP2A and accumulation of α-

synuclein have been demonstrated (Tang et al. 2015). 



The most important discovery in PD research linking aetiology and pathogenesis to lysosomal function is 

the recognition that mutations of the gene for glucocerebrosidase represent the most important risk 

factor identified to date for the development of PD. This relationship will be the main focus of the present 

review. 

MITOCHONDRIA DYSFUNCTION 

A direct link between mitochondrial dysfunction and PD came with the discovery of a specific reduction 

of mitochondrial complex I activity in PD SN (Schapira et al. 1989). Subsequent to this discovery, mutations 

of genes linked to mitochondrial function and homeostasis were identified in familial forms of PD. Given 

their fundamental role and the potential for cell damage as a result of mitochondrial dysfunction, 

“mitochondrial quality” is governed by multiple control pathways, and parts of mitochondria are 

constantly replaced even under physiological circumstances. The main mechanism for the clearance of 

damaged mitochondria is mitophagy, a specific form of autophagy (Fig.3). Mutations of PINK1 and parkin 

are causes of autosomal recessive PD (Valente et al. 2004) and these proteins play important roles in 

mitochondria quality control. When a mitochondrion is damaged, its membrane is depolarized; at this 

point PINK1, a serine/threonine kinase, accumulates on the outer membrane to “mark it for degradation” 

and activate the mitophagy pathway through the recruitment of Parkin, which is an E3 ubiquitin ligase. 

This catalyses the polyubiquitination and initiates the degradation through the autophagosome-lysosome 

pathway; other proteins that interact with mitochondria (eg Mitofusin and Miro) are also involved in this 

process (Ashrafi and Schwarz 2013).  

FBXO7 mutations cause parkinsonian-pyramidal disease (PPD), an early-onset form of parkinsonism (Di 

Fonzo et al. 2009). This gene (PARK15) encodes for an E3 ubiquitin ligases, which play important roles in 



targeting proteins for ubiquitination and subsequent degradation (Deng et al. 2013) and participates in 

mitophagy. 

Mutations of DJ-1 cause a familial early-onset form of PD (Bonifati et al. 2003): DJ-1 plays a crucial role in 

regulating calcium flux in the mitochondrion (Ottolini et al. 2013) protecting the cell by oxidative stress 

produced by the pace-making activity of dopaminergic neurons (Guzman et al. 2010: 1) and dopamine 

toxicity (Lev et al. 2009) and its deficiency causes an increased sensitivity to oxidative stress (Kim et al. 

2005: 1).  

There is a strong relationship between mitochondrial impairment and α-synuclein accumulation, which 

accumulation is associated with altered morphology and function of mitochondria and an increase in 

oxidative stress in a vicious circle, since oxidative stress increases the accumulation of α-synuclein. 

Increased activity of the PINK1/parkin pathway is neuro-protective in models of α-synuclein 

overexpression (Schapira and Gegg 2011).  

GBA: activity and regulation 

Glucocerebrosidase (GCase; glucosylceramidase; EC 3.2.1.45) is a lysosomal enzyme that metabolises 

glucosylceramide (GlcCer) to glucose and ceramide. GCase is encoded by the GBA gene, which is located 

on chromosome1q21, comprises 11 exons and encodes a 497 amino acid protein of approximately 62 kDa 

which can be divided into three domains: Domain 1 (an antiparallel B-sheet), Domain 2 (containing the 

active site of the protein, a triose phosphate isomerase barrel) and Domain 3 (an 8-stranded B-barrel); 

there is an homologue pseudogene on the same chromosome. GBA transcription is modulated by the 

transcription factor EB (TFEB), which regulates the expression of a network of genes implicated in 

lysosome-mediated degradative pathways, named CLEAR (Coordinated Lysosomal Expression and 



Regulation). TFEB colocalizes with mTORcomplex1 on the lysosomal membrane, and is important for the 

regulation of lysosomal biogenesis and activity, for lipid metabolism, autophagy and Ca++ homeostasis in 

the lysosome. After its translation, GCase is translocated into the ER for post-translational modifications. 

GCase then binds to LIMP2 in the ER, is transported through the trans-Golgi network and finally localises 

in the membrane of the lysosome after a pH-dependent dissociation from LIMP2; in LIMP2 knock-out 

mice there is a reduction in GCase activity and an accumulation of the inactive enzyme. Under pathological 

circumstances, GCase co-localizes in the lysosome with a co-chaperone named Progranulin (PGRN), which 

is implicated in numerous cellular pathways, from inflammation and wound healing to aging. 

Glucocerebrosidase is activated by Saposin-C in the lysosome, but the mechanism by which this enzyme 

promotes lysosomal GCase hydrolysis is still undefined (Smith et al. 2017 Sep 18). 

GBA AND PD 

Defects in glucocerebrosidase cause autosomal recessive Gaucher disease (GD), which is the most 

common lysosomal storage disease worldwide, and has a particularly high prevalence among Ashkenazi 

Jews. Pathogenesis of GD is complex and includes deficits in macrophage function, cytokine and 

chemokine production and an imbalance between pro- and anti-inflammatory signalling and impaired 

regulation of inflammatory and reparatory cascades (Grabowski 2012).  

It has been shown that obligate or confirmed carriers of GBA mutations had a higher risk of developing 

parkinsonism (Goker-Alpan et al. 2004). Definitive confirmation of the association between PD and GBA 

came from a large multicentre study, conducted on 5691 patients and 4898 controls, which found that 

GBA mutations were significantly prevalent among a heterogeneous population of PD patients with an 

odds ratio of 5.43 (Sidransky et al. 2009). Even if the proportion of PD patients with GBA mutations varies 



depending on the population studied (more common in Ashkenazi) and sequencing method, between 5 

and 25% of PD patients carry GBA mutations making this the most important genetic risk factor for PD 

discovered to date (Neumann et al. 2009; Schapira 2015). Heterozygous mutations of GBA confer a 10-

30% chance of developing PD by age 80: a 20-fold increase compared to non-carriers; GD patients and 

asymptomatic heterozygous gene mutation carriers are at almost equal risk for development of PD (R N 

Alcalay et al. 2012; Anheim et al. 2012; Higuero et al. 2013; Rana et al. 2013). A study conducted on data 

from on a web-based assessment of PD prodromal markers to estimate the risk of PD showed that in the 

“high risk of PD group” the odds ratio of having GBA variant was 9.5 times greater than in other groups 

(Noyce et al. 2015). These observations were followed by the hypothesis that GBA mutations could 

increase the risk of other synucleinopathies: this was demonstrated in Lewy Body Dementia (Goker-Alpan 

et al. 2006; Nalls et al. 2013), while discordant evidence is available on multi-system atrophy (Segarane et 

al. 2009; Jamrozik et al. 2010; Mitsui et al. 2015).  

GBA-PD CLINICAL FEATURES 

GBA mutation carriers have slightly earlier onset (Sidransky et al. 2009; Gan-Or et al. 2010; Lesage et al. 

2011; Zhang et al. 2015); there may be some association with the  specific mutation in GBA (Lesage et al. 

2011; Gan-Or, Amshalom, et al. 2015), e.g. those with the L444P mutation have a more aggressive course 

(Winder-Rhodes et al. 2013; Brockmann et al. 2014).  There is contrasting evidence on the occurrence of 

L-dopa induced dyskinesias, since one study reported that levodopa induced dyskinesias were more 

severe in PD with GBA mutations than in controls (Lesage et al. 2011), but no difference was observed in 

another recent study (Zhang et al. 2015). The risk for dyskinesia in the GBA group most likely relates to 

the age of onset, as in young-onset PD. Non-motor symptoms have been found in PD patients who carry 

a GBA mutation: enteric, sexual and urinary dysfunctions, orthostatic hypotension, fatigue, pain, RBD and 



others seem to be more common in this population (Brockmann et al. 2011; McNeill, Duran, Hughes, et 

al. 2012; Gan-Or, Mirelman, et al. 2015; Kresojević et al. 2015; Cilia et al. 2016 Sep).  

Compared to idiopathic PD, GBA-PD patients show a higher risk for cognitive impairment (Zhang et al. 

2015) and the cognitive decline seems to develop sooner (Winder-Rhodes et al. 2013; Brockmann et al. 

2014; Oeda et al. 2015; Liu et al. 2016) and to affect different cognitive domains: memory and visuospatial 

domains (R. N. Alcalay et al. 2012), abstraction and orientation (McNeill, Duran, Hughes, et al. 2012), 

working memory, executive and visuospatial abilities (I.F. Mata et al. 2015) and visual short-term memory 

(Zokaei et al. 2014). PD patients with GBA mutations seem to be particularly susceptible to psychiatric 

symptoms: they show more frequent and earlier development of psychosis (Oeda et al. 2015; Cilia et al. 

2016 Sep) and hallucinations (Li et al. 2014) (Barrett et al. 2014). Depression, anxiety and apathy have 

been reported to be more common in PD patients with GBA mutations (Brockmann et al. 2011; McNeill, 

Duran, Hughes, et al. 2012; Cilia et al. 2016 Sep), although this has not been confirmed in all studies  

(Nichols et al. 2009; R. N. Alcalay et al. 2012; Wang et al. 2013; Brockmann et al. 2014; Oeda et al. 2015).   

Is there a genotype-phenotype correlation in GBA-PD? 

Different GBA mutations have been suggested to result in different risks of developing PD: the odds ratios 

for PD ranged between 2.84 and 4.94 for mild mutation carriers and 9.92 and 21.29 for severe GBA

mutation carriers (Gan-Or, Amshalom, et al. 2015). A study demonstrated that the most prevalent PD-

associated GBA mutation is E326K, which interestingly has not been described in GD (Duran et al. 2013). 

Some clinical features associated with specific GBA mutations have been identified: E236K has been 

associated with rapid motor progression, postural and gait instability but not tremor, wearing off or 

dyskinesia (Oeda et al. 2015; Davis et al. 2016 Aug 29), and with a higher risk or a more aggressive 



evolution of cognitive deterioration even though in the same domains as other PD patients (Winder-

Rhodes et al. 2013; I.F. Mata et al. 2015; Davis et al. 2016 Aug 29). GBA mutations linked to neuropathic 

GD (such as L444P, 84GG, G195E, H255Q, R257Q, P266L, R359X, G377S, D409H, L444R, A456P, N462K, 

R120W and R463C) and complex alleles (E326K plus D140H mutations, E326K plus T369M, E326K plus 

R463C,  E326K plus R257Q; and homozygotes carriers with E326K/E326K, T369M/T369M, and 

E326/E326K/L444P/L444P)  but not those of non-neuropathic GD (N370S) have been associated with a 

more rapid cognitive decline (Liu et al. 2016). The risk of dementia in carriers of “severe” mutations 

(p.L444P, p.G377S, splicing mutation IVS10+1G>T) has been estimated to be 5.6 times higher than in 

idiopathic PD and 2.9 times higher than  “mild” GBA mutations (p.N370S) (Cilia et al. 2016 Sep). No 

differences between mild and severe GBA mutations were found for the development of hallucinations 

(Barrett et al. 2014). 

Studies have demonstrated that some prodromal signs of PD (impairment of olfaction, cognition, and 

subtle motor signs) (McNeill, Duran, Proukakis, et al. 2012) and thinning of the retinal ganglion cell layer 

(McNeill, Roberti, et al. 2013) were more frequent in asymptomatic GBA mutation carriers at baseline. A 

longitudinal study of the asymptomatic carriers of GBA mutations showed significant worsening of 

depression and motor signs and significant differences in smell, autonomic dysfunction, cognition and 

motor signs in comparison with controls (Beavan et al. 2015).  

Non-Clinical Biomarkers  

Imaging does not differentiate GBA-PD from other forms of PD: fluorodopa PET or single-photon emission 

computerized tomography (SPECT) with dopamine-sensitive ligands in PD-GBA patients shows 

asymmetric tracer loss in the posterior putamen, as seen in iPD (Goker-Alpan et al. 2012; McNeill, Wu, et 



al. 2013) (Fig.4). In another study, both transcranial sonography (TCS) and positron emission tomography 

in GBA-PD did not show any difference when compared to iPD or LRRK2- PD, however this study was 

conducted on a small sample (Barrett et al. 2013); the findings on TCS were confirmed in another study 

(Kresojević et al. 2013). Discriminant features were identified in other brain regions using different 

techniques:  a reduction of parietal and precuneus blood flow has been observed in GBA-PD. This finding 

is consistent with current knowledge on GBA: this pattern of cerebral blood flow is seen in Lewy body 

dementia (Goker-Alpan et al. 2012; Oeda et al. 2015).  

White matter abnormalities involving the interhemispheric, frontal corticocortical, and parahippocampal 

tracts have been found in GBA-PD when compared to other PD patients (Agosta et al. 2013). A fMRI study 

found a significant decrease in cerebral metabolic rates of glucose in the supplemental motor area in 

patients with a GBA mutation, with additional hypometabolism in the parieto-occipital cortices in those 

who had parkinsonian signs (Kono et al. 2010). A reduced 123I-metaiodobenzylguanidine (MIBG) uptake 

in GBA-PD was demonstrated in early stages of the disease (Li et al. 2014), together with a with reduction 

in the heart to mediastinum ratio, the degree of which correlated with the stage of PD and dementia (Li 

et al. 2014); however, this has not been confirmed by all studies (Oeda et al. 2015).  

Different methods of studying GCase activity in PD have been attempted: a reduction of GCase activity 

has been demonstrated in the CSF of PD patients with and without GBA mutations (Parnetti et al. 2014; 

Parnetti et al. 2017 Aug 26) and LBD patients (Parnetti et al. 2009), although not consistently (van Dijk et 

al. 2013). The authors also found that a combination of β-glucocerebrosidase activity, oligomeric/total α-

synuclein ratio, and age can discriminate PD from neurological controls with a sensitivity of 82% and a 

specificity of 71% (Parnetti et al. 2014). However, comparison between different studies must be carried 



out with caution, given the high number of factors that influence lysosomal enzymes levels measurement 

in CSF (Persichetti et al. 2014). A reduction of GCase activity has also been demonstrated in blood samples 

from patients with GBA mutations and non-GBA-PD (Alcalay et al. 2015). 

Another way to assess GCase activity is to measure intermediates and products of its metabolic pathways 

(Fig.5): GBA-PD patients show lower levels of fatty acids (omega-3 and omega-6) in the CSF (Schmid et al. 

2012), measurement of fatty acids in the plasma of iPD patients  demonstrated higher levels of all lipid 

species in PD patients versus controls, and higher levels of ceramide and monohexosylceramide were 

found in those with cognitive impairment (Mielke et al. 2013). 

PATHOPHYSIOLOGY OF GBA in non-GBA mutation PD  

There is evidence that GCase activity might play a role in the pathogenesis of PD, even in those patients 

without GBA-mutations. A significant reduction in substantia nigra and striatum GCase activity was 

identified in iPD brain and was related to the abnormal accumulation of α-synuclein, alterations in 

lysosomal and chaperone-mediated autophagy and lipid metabolism (Gegg et al. 2012) and was 

confirmed in a further study (Murphy et al. 2014).  A decline in GCase activity has also been seen in aging 

healthy controls (Rocha et al. 2015). A decreased GCase activity was found in the substantia nigra and 

cerebellum of sporadic PD brains; there appears to be a relationship between α-synuclein and GCase 

levels in brain (Schapira and Gegg 2013) . α-synuclein accumulation occurs in case of: inhibition of GCase 

with Conduritol B Epoxide (CBE) in SH-SY5Y cells and mice (Manning-Boğ et al. 2009; Cleeter et al. 2013), 

GBA KD in primary neurons, (Mazzulli et al. 2011), in iPSC from GBA-PD patients (Schöndorf et al. 2014), 

in the brain of mouse models of GCase deficiency, in dopaminergic neurons generated from iPS from 

reprogrammed fibroblasts of a GD patient (Cullen et al. 2011; Mazzulli et al. 2011; Sardi et al. 2011; 

Osellame et al. 2013) and in a neural crest stem cell-derived dopaminergic neuronal model (Yang et al. 



2017).  Heterozygosity for GBA mutation worsens α-synuclein accumulation, as well as clinical 

manifestations, in a α-synuclein mutation mouse (Fishbein et al. 2014).  For an extensive review of models 

of GBA-PD, see (Siebert et al. 2014; O’Regan et al. 2017 Jun 7). 

It is proposed that, in neurons, deficient GCase leads to accumulation of glucocerebroside which 

promotes aggregation of toxic α-synuclein oligomers through their stabilisation, and causes a decline in 

lysosomal proteolysis that selectively affects α-synuclein (Mazzulli et al. 2011). In fact, tau -which is 

another aggregation-prone protein involved in neurodegenerative diseases- does not accumulate; this 

finding is consistent with the selective role for GBA in synucleinopathies. Increase of α-synuclein has also 

been demonstrated in E326K mutation: an hypothesis is that this variant reduces GCase activity enough 

to induce the accumulation of α-synuclein, but not of glucosylceramide (Duran et al. 2013).  

Similar effects can occur in case of mutation of other genes that are important for GCase function: LIMP-

2 deficiency causes a reduction in GCase activity and impaired autophagic/lysosomal function, lipid 

storage and α-synuclein accumulation with consequent neurodegeneration, inflammation and apoptosis, 

while its overexpression in cell lines reduces α-synuclein levels (Rothaug et al. 2014); TFEB downregulation 

results in a marked potentiation of α-synuclein toxicity and a modification of its subcellular localisation, 

with the reduction of its nuclear levels and subsequent inactivity, has been found in the midbrain of PD 

patients: it has been proposed that this could be secondary to  the accumulation of α-synuclein, which 

sequestrates TFEB it in the cytosol (Decressac et al. 2013). 

On the other hand, an increased level of α-synuclein may reduce GCase activity through several different 

pathways: bio-physical studies revealed that, at a low pH, α-synuclein in its membrane-bound α-helical 

form selectively interacts with and inhibits GCase (Yap et al. 2011; Yap et al. 2015) (Fig. 6). Moreover, 



over-expression of α-synuclein leads to the downregulation of lysosome-resident glucocerebrosidase, 

inhibiting ER-to-Golgi and ER-to-lysosome trafficking (Cooper et al. 2006; Thayanidhi et al. 2010; Chung et 

al. 2013; Mazzulli et al. 2016).  

Finally, it has been demonstrated that in mice with increased alpha-synuclein expression, the L444P GBA 

mutation enhances neuronal vulnerability to neurodegenerative processes (Migdalska-Richards, 

Wegrzynowicz, et al. 2017). On the contrary, in-vitro studies demonstrated that increasing the activity of 

glucocerebrosidase reduces α-synuclein accumulation: adeno-associated virus-mediated expression of 

exogenous GCase in GBA mutated (D409V/D409V) mice improved clinical and pathological features (Sardi 

et al. 2011; Yang et al. 2017); overexpression of glucocerebrosidase in the CNS of A53T α-synuclein mice 

reduced the levels of soluble α-synuclein (Sardi et al. 2013) and the use of ambroxol to increase GCase 

activity lowered α-synuclein levels in overexpression mice (Migdalska-Richards et al. 2016). 

However, the relevance of GCase to PD is not limited to its interaction with α-synuclein. As already 

explained, in physiological conditions wild-type glucocerebrosidase is folded in the endoplasmic reticulum 

and translocated to the lysosomes. Misfolded GCase is arrested in the endoplasmic reticulum and 

undergoes polyubiquitination and degradation -causing ER stress- and triggers the UPR and ERAD (Ron 

and Horowitz 2005; Mu et al. 2008; Bendikov-Bar et al. 2011). Evidence for these processes was confirmed 

in studies conducted on iPSC derived from GBA-mutations carriers (Fernandes et al. 2016) and increased 

ERAD markers were found in GBA-PD brains (Gegg et al. 2012). A study suggested that parkin could play 

a determinant role in GCase degradation (Ron et al. 2010), however a further study performed on 

fibroblasts carrying biallelic parkin mutations demonstrated that parkin is not a fundamental E3-ubiquitin 

ligase for glucocerebrosidase (McNeill, Healy, et al. 2013).  



A growing body of evidence suggests that GCase could interfere with mitochondrial function, another key 

mechanism in PD pathogenesis. Impairment in mitochondria function and morphology together with a 

reduced production of ATP and an increase in oxidative stress has been demonstrated in GCase inhibition 

(Cleeter et al. 2013), in fibroblasts from GD patients and in mice models of GD (Xu et al. 2014; M. de la 

Mata et al. 2015). For a review of mechanism of mitochondrial dysfunction in GCase deficiency, see (Gegg 

and Schapira 2016). 

THERAPEUTIC IMPLICATIONS 

Given the reciprocal relationship between glucocerebrosidase deficiency and α-synuclein deposition- 

several strategies are under investigation to enhance GCase function in order to slow, stop or reverse PD’s 

neurodegenerative processes. There are two approved therapies for patients with GD: enzyme 

replacement therapy (ERT) and substrate reduction therapy (SRT), the effects of which are –respectively- 

to enhance glucocerebroside degradation or to inhibit its production. ERT (mannose-terminal human 

glucocerebrosidase) is currently accepted as the first line therapy for GD and offers good results in GD 

type 1 patients (Shemesh et al. 2015) but is ineffective in neurological symptoms, since the enzyme does 

not pass the BBB (Schueler et al. 2002); at the moment, a peptide-linked recombinant glucocerebrosidase 

that targets neurons is in development (Gramlich et al. 2016). SRT (Cox et al. 2000) is used as a second 

line treatment because of the more common side effects (Shemesh et al. 2015). SRT crosses the BBB and 

therefore has been tested in GD type 3 in a randomized, controlled trial: however, it did not show 

significant benefits for the neurological features (Schiffmann et al. 2008).  



Another strategy to treat GD is the use of small molecule chaperones, whose function is to facilitate 

correct folding and translocation of GCase, increasing its lysosomal levels and activity and preventing 

glycolipid accumulation. The most studied among these compounds is ambroxol (ABX); this drug was 

initially used to treat airway mucus hypersecretion and hyaline membrane disease in infants, and was 

then recognised as a pH-dependent, mixed-type inhibitor of GCase (Maegawa et al. 2009). ABX acts as a 

chaperone for GCase and enhances lysosomal function and autophagy through the activation of the CLEAR 

network via TFEB, LIMP2 and Sap-C upregulation (McNeill et al. 2014; Ambrosi et al. 2015). Importantly, 

ABX also shows antioxidant properties (Stetinová et al. 2004), is administrable orally and crosses the BBB 

(Luan et al. 2013). ABX improves trafficking of GCase to the lysosome and increases GCase activity in GD 

fibroblasts (Maegawa et al. 2009; Bendikov-Bar et al. 2011), and a recent pilot study in GD type 1 patients 

high-dose oral ambroxol was safe and well tolerated and improved some neurological features (Narita et 

al. 2016). 

ABX has been tested in fibroblasts from GBA-PD, GBA mutations healthy carriers and in controls: it 

increased GCase activity and lysosomal function, and reduced α-synuclein accumulation in a neuronal cell 

line (McNeill et al. 2014). ABX treatment decreased α-synuclein levels and improved autophagy also in 

neural crest stem cell-derived dopaminergic neurons (Yang et al. 2017). Experiments in GBA mutant 

Drosophila demonstrated that ABX and isofagomine (see next section) improve GCase function, 

decreased ER stress and reversed the motor phenotype (Sanchez-Martinez et al. 2016). In wild-type mice, 

transgenic mice expressing the heterozygous GBA L444P and transgenic mice overexpressing human α-

synuclein, ambroxol provided an increase in GCase activity and a decrease in both α-synuclein and 

phosphorylated α-synuclein protein levels (in the mice overexpressing human α-synuclein) (Migdalska-

Richards et al. 2016). In healthy non-human primates the daily, oral administration of ABX resulted in a 

20% increase in GCase activity in the midbrain, cortex, and striatum –similar to the mouse model 



(Migdalska-Richards, Ko, et al. 2017). There are two clinical trials of ambroxol currently underway in PD 

and PD dementia.  

Other small-molecule non-inhibitory chaperones of glucocerebrosidase are under evaluation.  

The iminosugar isofagomine (IFG) is an active-site inhibitor that facilitates the folding and transport of 

newly synthesized GlcCerase and has been shown to increase GCase activity and reduce substrate 

accumulation in cell and mouse models (Steet et al. 2006; Khanna et al. 2010; Sun et al. 2012) of GD; 

although it was not successful in reducing the accumulation of lipid substrates in a model of neuropathic 

GD (Sun et al. 2011). Its efficacy was tested in a fly model of GBA-PD (Sanchez-Martinez et al. 2016). Oral 

administration of isofagomine in mice that overexpress human wild-type α-synuclein improved motor and 

olfactory performance, reduced microglial activation and reduced α-synuclein immunoreactivity in nigral 

DA neurons (Richter et al. 2014). NCGC607, which was tested in iPSCs differentiated into dopaminergic 

neurons -from patients with GD1, GD with parkinsonism and GD2- enhanced GCase function, reduced 

glycolipids storage and the accumulation of α-synuclein (Aflaki et al. 2016) 

Finally, given that autophagy is a fundamental process in PD and the pathogenesis of other 

neurodegenerative diseases, the possibility of enhancing this process using targets and pathways other 

than GCase has been extensively studied: the most studied compound for this aim is rapamycin, which 

regulates autophagy through a mTor dependent network. Rapamycin has been shown to reduce α-

synuclein accumulation and the consequent neurodegeneration in both cellular and animal models of PD.  

The application of autophagy-modulating agents in PD is further discussed in a recent review by (Moors 

et al. 2017). 



CONCLUSION 

Mutations of GBA are the most common genetic association with PD discovered to date and 

approximately 10% of PD patients carry such mutations. At present, they constitute a risk factor as only a 

minority of those that carry the mutations develop PD or a synucleinopathy. Evidence from a variety of in 

vitro and in vivo models indicate that GCase activity and α-synuclein levels have a reciprocal relationship, 

although the molecular mechanisms underlying this are not fully understood. Nevertheless, the 

therapeutic potential to manipulate this connection to enhance GCase and so reduce α-synuclein has 

been recognised and clinical trials are already underway evaluating the actions of ambroxol in PD patients 

with and without GBA mutations, and in PD dementia, and the use of SRT in PD. These trials represent 

translational studies targeting the GCase pathway that offer the potential to modify the natural course of 

PD. 



Table 1 

Motor Symptoms Non-Motor Symptoms 

Tremor Hyposmia  

Rigidity Psychiatric Symptoms: Depression, Anxiety, 

Apathy Hallucinations, Psychosis  

Bradykynesia/Akinesia/Hypokinesia Dementia/Cognitive Impairment  

Postural Instability Sensory Symptoms  

Postural Abnormalities (Camptocormia, Pisa 

Syndrome) 

Genito-Urinary Symptoms: Urinary Frequency, 

Urgency, Reduced Libido, Sexual Dysfunction  

Gait Disturbances (Freezing of Gait, Festination, 

Start/Target/Obstacle Hesitation) 

Gastrointestinal Symptoms: Constipation, 

Delayed/Reduced Stomach Emptying 

Alterations in Blinking/ Eye Movements  Dysphagia, Sialorrhoea, Dysarthria, 

Hypophonia  

Hypomimia Disturbances of Sleep and Wakefulness 

Micrographia Cardiovascular Symptoms: Blood Pression 

Variations (Postural, Post-Prandial), 

Dysrhythmias 

Table 1. Motor and non-motor symptoms of Parkinson disease

(Schapira et al. 2017) 



Figure 1a. Lewy bodies in Parkinson disease.  

Right: haematoxylin-eosin staining; left: α-synuclein immunohistochemistry 

Figure 1b.  Hypothesized pattern of LB and α-synuclein deposition: starting in the dorsal motor nucleus 

of the glossopharyngeal and vagal nerves and anterior olfactory nucleus and progressively spread to the 

brain stem. In later stages, the involvement spreads firstly to the mesocortex and allocortex and finally to 

the neocortex (Fig.1b) (Braak et al. 2003) . 

(Schapira et al. 2017) 



Fig.2  Genes involved in autophagy-lysosomal pathways which have been linked to PD

(Gan-Or, Dion, et al. 2015) 



Fig.3 Major pathways of mitochondrial quality control.

Misfolded mitochondrial proteins can be degraded by AAA protease complexes (left) or by lysosomes, 

through vesicular transport (middle). Entire mitochondria can be degraded by mitophagy (right). 

(Ashrafi and Schwarz 2013)



Fig.4 DaT SCAN in genetic PD and GBA mutations 

a) DaT SCAN from a 50 years old man with GBA mutation  

b) DaT SCAN from a 67 years old woman with PINK1-associated PD 

c) DaT SCAN from a 45 years old man with Parkin-associated PD 

d) DaT SCAN from a 32 years old woman with LRKK2 mutation 

(McNeill, Wu, et al. 2013) 



Fig.5 Ceramide and glycolipid metabolism.  

(Mielke et al. 2013) 

Abbreviations for enzymes are as follows: GCase: glucocerebrosidase; GalCer synthase: 

galactosylceramide synthase; GluCer synthase: glucosylceramide synthase; GalCeramidase: galactosyl 

ceramidase; LacCer synthase: Lactosylceramide synthase; SMase: Sphingomyelinase; SMS: 

Sphingomyelin synthase. 



Fig.6 Pathways for potential interventions in the treatment of aberrant α-Synuclein  

(Schapira et al. 2014)  

(1) agents that reduce expression of wild-type α-synuclein and thus reduce the natural substrate for a 

prion or templating reaction; (2) upregulation of chaperones that promote refolding or clearance of 

abnormal proteins; (3) facilitation of UPS or autophagy/lysosomal function to promote clearance of 

unwanted proteins; (4) interference with the prion conformer whereby misfolded α-synuclein acts as a 

template to promote the conversion of wild-type α-synuclein; (5) agents or immune approaches 

targeted to remove toxic α-synuclein oligomers or aggregates; (6) increased glucocerebrosidase stability 

or trafficking through the endoplasmic reticulum to normalise α-synuclein metabolism and lysosomal 

function. These interventions (1–6) are designed to prevent or reduce the toxic effects of 

α-synuclein oligomers or aggregates on vital cell processes (eg, mitochondrial function and axonal 

transport).  intervention (7) represents agents that prevent release of α-synuclein from affected cells 

and/or the uptake of α-synuclein into healthy unaffected cells whereby the process might extend 

throughout the nervous system. 6 Dashed arrows represent inhibition and solid arrows represent 

pathways of progression. UPS=ubiquitin proteasome system. 
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