
PHYSICAL REVIEW A 98, 012338 (2018)

Quantum walk search on Kronecker graphs

Thomas G. Wong,1,* Konstantin Wünscher,2,† Joshua Lockhart,3,‡ and Simone Severini3,4,§

1Department of Physics, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
2Department of Statistical Science, University College London, 1-19 Torrington Place, London WC1E 7HB, United Kingdom

3Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
4Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

(Received 30 April 2018; published 31 July 2018)

Kronecker graphs, obtained by repeatedly performing the Kronecker product of the adjacency matrix of an
“initiator” graph with itself, have risen in popularity in network science due to their ability to generate complex
networks with real-world properties. We explore spatial search by continuous-time quantum walk on Kronecker
graphs. Specifically, we give analytical proofs for quantum search on first-, second-, and third-order Kronecker
graphs with the complete graph as the initiator, showing that search takes Grover’s O(

√
N ) time. Numerical

simulations indicate that higher-order Kronecker graphs with the complete initiator also support optimal quantum
search.
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I. INTRODUCTION

Grover’s algorithm [1] is a foundational algorithm in quan-
tum computing [2] that searches an unordered database of
N items in O(

√
N ) time, thus offering a quadratic speedup

over classical search. However, Benioff [3] notes that the
runtime can be slower when searching a spatial region, since
the time taken for a quantum robot or cellular automata
[4,5] to traverse the physical database must be taken into
consideration. Since then, much research has explored how
quickly quantum computers search various spatial regions. See
[6–8] for some seminal papers, and [9–11] for some recent
results. The structure of the physical database can be encoded
as a combinatorial graph, the goal being to find a particular
“marked” vertex using the least possible number of queries
to an oracle encoding the graph structure. Often, the quantum
search is performed using a quantum walk [12], which respects
the locality of the graph.

Most of the graphs on which quantum search has been
analyzed have translational symmetry or some other structure
that makes the behavior of the quantum algorithm amenable
to rigorous proof. These constraints mean that the graphs
considered are often very different from real-world networked
data (henceforth, “networks”), which are typically small world
[13], meaning the number of edges between any pair of nodes
is small. The degree distributions of real-world networks are
often scale free, heavy tailed, or follow power laws [14]. The
question of how quantum walk search performs on real-world
networks has received much less attention.

To attack this question, one might consider investigating
the behavior of quantum search on real-world networked
datasets (see, for example, the Stanford Large Network Dataset
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Collection [15]). However, we are mostly interested in how
the runtime of the search algorithm depends on the number
of nodes N , and since these datasets are typically static with a
fixed number of nodes, they are not suitable for this purpose. To
determine the dependence on N , one would need to extrapolate
the network to the future or rewind a network to the past, which
is made difficult by the fact that randomly removing vertices
destroys the degree distribution of the network [16].

One solution to this is to use Kronecker graphs [17–20]
to generate synthetic networks that have some or all of the
aforementioned real-world properties. Kronecker graphs can
be “grown” iteratively, to include as many vertices as desired,
and so they are suitable for our purposes. To produce a
Kronecker graph, one begins with an “initiator” graph of M

vertices and its associated adjacency matrix A, where Auv = 1
if vertices u and v are adjacent, and 0 otherwise. The j th-order
Kronecker graph is the graph whose adjacency matrix is A⊗j ,
the Kronecker or tensor product of A with itself j times, i.e.,

A⊗j = A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
j times

. (1)

This defines a graph with N = Mj vertices. Kronecker graphs
can also be made stochastic, and they have been used to
accurately model the arXiv citation graph, the internet at the
level of autonomous systems, citations of U.S. patents, the
coauthor network, and the trust network of Epinions [20].

Besides their ability to be fitted to real-world datasets, Kro-
necker graphs have another advantage over other methods for
generating real-world networks, such as the preferential attach-
ment model [14]. As real-world networks grow, the number of
edges they sprout is typically more than the number of nodes.
This means the network gets more dense over time and the
effective diameter tends to shrink. The preferential attachment
model does not capture this, but Kronecker graphs do [17,18].

In this paper, we report our first steps toward understanding
how quantum walks search Kronecker graphs by analyzing
the case where the initiator is the complete graph, or all-to-all
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FIG. 1. K4, the complete graph, or all-to-all network, of four
vertices.

network. We denote the complete graph of M vertices by KM ,
and the j th-order Kronecker graph generated by it by K

⊗j

M =
KM ⊗ KM ⊗ · · · ⊗ KM . This is an ideal Kronecker graph to
begin with because, as we will see subsequently, it is amenable
to rigorous analysis. We give proofs that the first-, second-, and
third-order Kronecker graphs with complete initiator can be
searched by a continuous-time quantum walk in π

√
N/2 time,

which is the optimal O(
√

N ) runtime of Grover’s algorithm
[21]. A continuous-time quantum walk searches [7] by starting
in a uniform superposition |s〉 over all N vertices:

|ψ (0)〉 = |s〉 = 1√
N

N∑
i=1

|i〉, (2)

where |1〉, |2〉, . . . , |N〉 are the computational basis states that
label the vertices. Then the system evolves by Schrödinger’s
equation idψ/dt = Hψ (with h̄ = 1) with Hamiltonian

H = −γA⊗j − |w〉〈w|, (3)

where γ is the jumping rate (amplitude per time) of the quan-
tum walk, and |w〉 denotes the marked vertex we are looking
for [7]. We end by showing results of numerical simulations
that suggest higher-order Kronecker graphs, with the complete
initiator, can also be quickly searched in the same π

√
N/2

time. For search on deterministic and stochastic Kronecker
graphs with incomplete initiators that produce graphs with
real-world properties, we will report our findings separately.

II. FIRST ORDER

In this section, we analyze search on the first-order Kro-
necker graph with complete initiator. From the definition of
Kronecker graphs (1) with j = 1, the first-order Kronecker
graph is simply the complete initiator graph itself. For example,
the complete graph with four vertices is shown in Fig. 1, and
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FIG. 2. Success probability as a function of time for search by
continuous-time quantum walk on the complete graph KM with
M = 256.

its adjacency matrix is

A =

⎛
⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎠.

If the initiator has M vertices, then the first-order Kronecker
graph has N = M vertices.

Search on the complete graph is exactly the quantum walk
formulation of Grover’s unstructured search algorithm since a
complete graph constitutes an unstructured database. As shown
in [7], when the jumping rate γ takes a “critical value” of
1/N , the algorithm is equivalent to the “analog analogue” of
Grover’s algorithm [22]. Then the system evolves from the
initial uniform superposition state |s〉 to the marked state |w〉
(up to a phase) in time π

√
N/2 = O(

√
N ) [23]. Measuring

the position of the walker at this time, one is certain to find
it at the marked vertex. A simulation is shown in Fig. 2, and
the success probability reaches 1 at time π

√
256/2 ≈ 25.13,

as expected.

III. SECOND ORDER

Next, we consider the second-order Kronecker graph with
complete initiator, which is also the line graph of a complete
bipartite graph [24]. For example, if the initiator is the complete
graph of M = 4 vertices from Fig. 1, then the second-order
Kronecker graph has N = M2 = 42 = 16 vertices, and its
adjacency matrix is

A⊗2 = A ⊗ A =

⎛
⎜⎝

0 A A A

A 0 A A

A A 0 A

A A A 0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1
0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1
0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1
0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0
0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1
1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1
1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1
1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0
0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1
1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1
1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1
1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0
1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0
1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0
1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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FIG. 3. (a) Four sets of four vertices. (b) The second-order
Kronecker graph K4 ⊗ K4.

To draw this Kronecker graph, we begin with the initiator
K4 in Fig. 1 and replace each vertex with four new nodes,
as shown in Fig. 3(a), grouping them in sets P1 through P4.
Now, consider a specific vertex, say vertex 1. First, it is not
connected to any other vertices in its set P1. Next, note vertex
1 is in the top-left corner of P1 and, similarly, vertex 5 is in the
top-left corner of P2, vertex 9 is in the top-left corner of P3,
and vertex 13 is in the top-left corner of P4. Vertex 1 is adjacent
to all vertices in the other partite sets except these that share
the same top-left position. So vertex 1 is adjacent to vertices
6, 7, and 8 in P2, vertices 10, 11, and 12 in P3, and vertices 14,
15, and 16 in P4. Following this procedure for each vertex, the
Kronecker graph K4 ⊗ K4 is shown in Fig. 3(b). Note that P1,
P2, P3, and P4 are partite sets of a four-partite graph.

To determine how quickly a continuous-time quantum walk
searches second-order Kronecker graphs with the complete
initiator, we next prove that KM ⊗ KM is a strongly regular
graph [25]. A strongly regular graph (N, k, λ, μ) is a graph
of N vertices where every vertex has k neighbors, adjacent
vertices share λ common neighbors, and nonadjacent vertices
share μ common neighbors. How quickly a continuous-time
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FIG. 4. Success probability as a function of time for search by
continuous-time quantum walk on KM ⊗ KM with M = 256.

quantum walk searches a strongly regular graph, depending on
its parameters, was investigated in [9].

To determine the parameters of the strongly regular graph,
let us work through the example of K4 ⊗ K4 in Fig. 3(b).
Then, we will generalize it to arbitrary KM ⊗ KM . First, every
vertex is adjacent to three vertices in three partite sets, so the
graph is regular with degree 32 = 9. Second, adjacent vertices
must be in different partite sets, and their positions (top-left,
top-right, etc.) within their partite sets must also differ. For
example, vertices 1 and 6 are adjacent. There are 4 − 2 = 2
remaining partite sets in which they have mutual neighbors,
and each of these partite sets has 4 − 2 = 2 positions within
them containing mutual neighbors. So adjacent vertices have
22 = 4 mutual neighbors. Finally, nonadjacent vertices could
be in the same partite set or in different partite sets. If the
nonadjacent vertices are in the same partite set, such as vertices
1 and 2, then there are 4 − 1 = 3 other partite sets that each
contain 4 − 2 = 2 mutual neighbors, for a total of 3×2 = 6
mutual neighbors. If they are in different partite sets, such as
vertices 1 and 5, then they must occupy the same position
within their respective sets, such as the top-left corner. This
leaves 4 − 2 = 2 other partite sets that each contain 4 − 1 = 3
mutual neighbors, for a total of 2×3 = 6 mutual neighbors.
So the number of mutual neighbors of nonadjacent vertices is
the same in both cases. Combining these results, K4 ⊗ K4 is
strongly regular with parameters (N, k, λ, μ) = (16, 9, 4, 6).

Generalizing this, KM ⊗ KM is an M-partite graph that is
strongly regular with parameters (N, k, λ, μ), where

N = M2,

k = (M − 1)2,

λ = (M − 2)2,

μ = (M − 1)(M − 2).

From [9], if the parameters of a strongly regular graph
satisfy k = o(N ) and k = o[(μN )2/3], then when the jumping
rate γ takes a “critical value” of 1/k + 1/[(N − 1)μ], the
continuous-time quantum walk searches the graph with prob-
ability 1 at time π

√
N/2, asymptotically. With the parameters

that we derived for KM ⊗ KM , k scales as
√

N , and (μN )2/3

scales as N4/3. So both conditions that k = o(N ) and k =
o[(μN )2/3] are satisfied, and a continuous-time quantum walk
searches the second-order Kronecker graph with complete
initiator in π

√
N/2 time. A simulation is shown in Fig. 4, and
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FIG. 5. The vertices of K4 ⊗ K4 ⊗ K4, arranged in four sets Pi

with i = 1, 2, 3, 4, each with four subsets Pi,j with j = 1, 2, 3, 4.

the success probability reaches 1 at time π
√

2562/2 ≈ 402.12,
as expected.

IV. THIRD ORDER

Now, we consider the third-order Kronecker graph. For
example, using K4 from Fig. 1 as the initiator, the third-order
Kronecker graph has N = M3 = 43 = 64 vertices, and its
adjacency matrix is

A⊗3 = A ⊗ A ⊗ A

=

⎛
⎜⎜⎝

0 A⊗2 A⊗2 A⊗2

A⊗2 0 A⊗2 A⊗2

A⊗2 A⊗2 0 A⊗2

A⊗2 A⊗2 A⊗2 0

⎞
⎟⎟⎠.

To draw this Kronecker graph, we again begin with the
initiator K4 from Fig. 1 and replace each vertex with the
16 vertices of K4 ⊗ K4 from Fig. 3(a). The result of this
substitution is shown in Fig. 5, without any edges. In this figure,
we grouped together sets Pi of 16 vertices, and further grouped
subsets Pi,j of four vertices.

To determine the edges, consider a specific vertex, say
vertex 1, which is in the top-left corner of its subset P1,1. Then,
vertex 1 is nonadjacent to any vertex in the top-left position of
its subset, so it is nonadjacent to vertices 5, 9, 13, 17, 21, 25,
29, 33, 37, 41, 45, 49, 53, 57, and 61. Vertex 1 is in subset P1,1,
which is the top-left subset within the set P1. Then, vertex 1 is
nonadjacent to the subsets P1,1, P2,1, P3,1, and P4,1, since those
are the top-left subsets of their partite sets. Finally, vertex 1 is
within set P1, so it is not adjacent to any other vertex in P1.
Vertex 1 is adjacent to everything else. Explicitly drawing all
the edges is messy, so we do not do so. In Fig. 6, however, the
vertices adjacent to vertex 1 are colored blue.

FIG. 6. The vertices of K4 ⊗ K4 ⊗ K4, arranged in four sets Pi

with i = 1, 2, 3, 4, each with four subsets Pi,j with j = 1, 2, 3, 4.
Vertex 1 is colored red, and identified by a double circle. Its neighbors
are colored blue, and its nonadjacent vertices are colored yellow and
magenta, depending on their mutual neighbors. Identically colored
vertices evolve identically.

Now, note the system evolves in a four-dimensional (4D)
subspace, in contrast to the first-order Kronecker graph (com-
plete graph) that evolves in a 2D subspace [7] and the second-
order Kronecker graph (strongly regular graph) that evolves
in a 3D subspace [9]. This is because vertices can evolve
identically to each other due to the symmetry of the graph and
quantum walk. In this case, there are four types of vertices.
The details are given in the Appendix, but we briefly describe
them here. The first type of vertex is the marked vertex, which
evolves uniquely. The second type is the vertices adjacent to the
marked vertex. They evolve identically to each other, and there
are (M − 1)3 of them. The graph has diameter 2, so vertices
nonadjacent to the marked vertex constitute the third and fourth
types of vertices. Specifically, 3(M − 1) of these vertices
share (M − 1)2(M − 2) common neighbors with the marked
vertex, and 3(M − 1)2 of them share (M − 1)(M − 2)2 mutual
neighbors with the marked vertex. Altogether, there are 1 +
(M − 1)3 + 3(M − 1) + 3(M − 1)2 = M3 = N vertices, as
expected. Each vertex is color coded by type in Fig. 6, with the
marked vertex red, its adjacent vertices blue, and the two types
of nonadjacent vertices yellow and magenta. Since the graph
is vertex transitive, without loss of generality, vertex 1 can be
considered to be the marked vertex.

Grouping together identically evolving vertices, the 4D
subspace is spanned by

|a〉 = |Type 1〉 = |w〉,

|b〉 = 1√
(M − 1)3

∑
x∈Type 2

|x〉,
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|c〉 = 1√
3(M − 1)

∑
x∈Type 3

|x〉,

|d〉 = 1√
3(M − 1)2

∑
x∈Type 4

|x〉.

So |a〉 is the marked vertex, |b〉 are the vertices adjacent to the
marked vertex, and |c〉 and |d〉 are the two types of vertices
nonadjacent to the marked vertex. In this {|a〉, |b〉, |c〉, |d〉}
basis, the initial uniform superposition state (2) is

|s〉 = 1√
N

⎛
⎜⎜⎝

1√
(M − 1)3√
3(M − 1)√
3(M − 1)2

⎞
⎟⎟⎠,

and the adjacency matrix is

A⊗3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√

M3
1 0 0√

M3
1 M3

2

√
3M1M2

√
3M1M

2
2

0
√

3M1M2 0
√

M3
1

0
√

3M1M
2
2

√
M3

1 2M1M2

⎞
⎟⎟⎟⎟⎟⎟⎠,

where Mi = M − i. For example, the entry in the third row,
second column of A comes from the (M − 1)2(M − 2) type-2
vertices adjacent to a type-3 vertex, times

√
3(M − 1) and

divided by
√

(M − 1)3 to convert between the normalizations
of |c〉 and |b〉. Using this, the search Hamiltonian (3) is

H = −γ

⎛
⎜⎜⎜⎜⎜⎜⎝

1
γ

√
M3

1 0 0√
M3

1 M3
2

√
3M1M2

√
3M1M

2
2

0
√

3M1M2 0
√

M3
1

0
√

3M1M
2
2

√
M3

1 2M1M2

⎞
⎟⎟⎟⎟⎟⎟⎠.

To determine how the search algorithm evolves with this
Hamiltonian for large N , we utilize degenerate perturbation
theory. In this approach [9,26], we first decompose the Hamil-
tonian into leading- and higher-order terms:

H = H (0) + H (1) + · · ·
for large M . From this, we next find the eigenvalues and
eigenvectors of H (0), some of which may be degenerate.

Finally, adding the perturbation H (1), certain linear combina-
tions of the degenerate eigenvectors of H (0) are eigenvectors
of H (0) + H (1), and this “lifts” the degeneracy. This mixing
drives evolution between degenerate eigenvectors of H (0), and
the energy or eigenvalue gap dictates the rate of evolution.

We want the perturbation H (1) to mix the marked vertex
|a〉 with the unmarked vertices and drive evolution between
them, and this only occurs from the 〈a|H |b〉 = 〈b|H |a〉 =√

(M − 1)3 terms, which is O(M3/2), apart from a factor of
−γ . So, H (1) should include terms �(M3/2), and H (0) should
include anything of higher order, i.e., ω(M3/2):

H (0) = −γ

⎛
⎜⎜⎝

1
γ

0 0 0

0 M3 − 6M2
√

3M2
√

3M5/2

0
√

3M2 0 0
0

√
3M5/2 0 2M2

⎞
⎟⎟⎠,

H (1) = −γ

⎛
⎜⎜⎝

0 M3/2 0 0

M3/2 0 0 − 9
√

3
2 M3/2

0 0 0 M3/2

0 − 9
√

3
2 M3/2 M3/2 0

⎞
⎟⎟⎠,

H (2) = O(γM ).

With this decomposition, we next need to find the eigenvectors
and eigenvalues of H (0), but, unfortunately, this is prohibitively
complicated.

To circumvent this obstacle, we can try changing the basis,
as in [9,27]. Besides |a〉, we choose the uniform superposition
of unmarked vertices to be another basis state:

|r〉 = 1√
N − 1

∑
x �=w

|x〉 = 1√
M3 − 1

[
√

(M − 1)3|b〉

+
√

3(M − 1)|c〉 +
√

3(M − 1)2|d〉].

A state that is obviously orthogonal to this, which we use as a
third basis state, is

|r ′〉 = 1√
M

(
√

M − 1|c〉 − |d〉).

For the fourth basis state, we take the cross product of |r〉 and
|r ′〉. Abusing notation,

|r ′′〉 = |r〉 × |r ′〉 = 1√
M3 − 1

1√
M

∣∣∣∣∣∣
|b〉 |c〉 |d〉√

(M − 1)3
√

3(M − 1)
√

3(M − 1)2

0
√

M − 1 −1

∣∣∣∣∣∣
= 1√

M3 − 1

1√
M

[−M
√

3(M − 1)|b〉 +
√

(M − 1)3|c〉 + (M − 1)2|d〉].

Changing the Hamiltonian from the {|a〉, |b〉, |c〉, |d〉} basis to the {|a〉, |r〉, |r ′〉, |r ′′〉} basis, we conjugate it by

T = (|a〉|r〉|r ′〉|r ′′〉).
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That is, we calculate T −1HT to get the Hamiltonian in the new basis. Note that in this case, T −1 = T ᵀ. Doing this and keeping
terms at least linear in M , the Hamiltonian in the {|a〉, |r〉, |r ′〉, |r ′′〉} basis is

H ′ ≈ −γ

⎛
⎜⎜⎝

1
γ

M3/2 0 −√
3M

M3/2 M3 − 3M2 + 3M 0 0
0 0 0 −M3/2

−√
3M 0 −M3/2 −M2 + 3M

⎞
⎟⎟⎠.

Utilizing degenerate perturbation theory in this new basis,
we decompose the Hamiltonian H ′ into leading- and higher-
order matrices:

H ′(0) = −γ

⎛
⎜⎜⎝

1
γ

0 0 0
0 M3 − 3M2 0 0
0 0 0 0
0 0 0 −M2

⎞
⎟⎟⎠,

H ′(1) = −γ

⎛
⎜⎜⎝

0 M3/2 0 0
M3/2 0 0 0

0 0 0 −M3/2

0 0 −M3/2 0

⎞
⎟⎟⎠.

The eigenvectors and corresponding eigenvalues of H ′(0) are
now easy to identify, unlike in the old basis. They are

|a〉, −1,

|r〉, −γ (M3 − 3M2),

|r ′〉, 0,

|r ′′〉, γM2.

The initial state |s〉 is approximately |r〉 for large M , and since
we want this to evolve to |a〉, we make |a〉 and |r〉 degenerate
by choosing

γ = 1

M2(M − 3)
. (4)

This is the “critical value” of γ .
Next, we include the perturbation H ′(1), which causes linear

combinations αa|a〉 + αr |r〉 to be eigenvectors of H ′(0) +
H ′(1). To find the coefficients, we solve the eigenvalue problem(

Haa Har

Hra Hrr

)(
αa

αr

)
= E

(
αa

αr

)
,

where Har = 〈a|(H ′(0) + H ′(1) )|r〉, etc., and E is the eigen-
value. Evaluating the matrix elements with γ at its critical
value (4),( −1 −1√

M (M−3)−1√
M (M−3)

−1

)(
αa

αr

)
= E

(
αa

αr

)
.

Solving this, we get the following eigenvectors and eigenvalues
of H ′(0) + H ′(1):(

αa

αr

)
= 1√

2

(
1
1

)
, E0 = −1 − 1√

M (M − 3)
,

(
αa

αr

)
= 1√

2

(−1
1

)
, E1 = −1 + 1√

M (M − 3)
.

Since the eigenvectors are proportional to ±|a〉 + |r〉, the
system evolves from |s〉 ≈ |r〉 to |a〉, up to a phase, in time

π

�E
= π

2

√
M (M − 3) ≈ π

2
M3/2 ≈ π

2

√
N,

where �E = E1 − E0 is the energy gap. This is the same
runtime as the first-order Kronecker graph (i.e., complete
graph) and second-order Kronecker graph. A simulation is
shown in Fig. 7, and the success probability reaches 1 at time
π

√
2563/2 ≈ 6433.98, as expected.

These results are asymptotic, meaning M must be suffi-
ciently large in order for the success probability to reach 1
at time π

√
N/2. Numerically, choosing γ to be 1/(M − 1)3,

rather than 1/M2(M − 3) that we derived earlier, allows
smaller values of M to exhibit this asymptotic runtime. Taylor
expanding the two values of γ for large M ,

1

(M − 1)3
= 1

M3
+ 3

M4
+ 6

M5
+ O

(
1

M6

)
,

1

M2(M − 3)
= 1

M3
+ 3

M4
+ 9

M5
+ O

(
1

M6

)
.

Thus, the two values of γ are equal, up to terms of order 1/M5.

V. HIGHER ORDERS

In theory, we can apply the same perturbative approach from
the third-order case to Kronecker graphs with order j � 4.
Analyzing an infinite number of these cases in this iterative
manner, however, is prohibitive due to the countably infinite
possible values for j . Further complicating the matter is that
the dimension of the subspace increases with j , so perturbation
theory would be used to find the eigenvalues and eigenvectors
of progressively larger matrices, making generalization of our
results difficult. For example, when j = 1, the complete graph
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FIG. 7. Success probability as a function of time for search by
continuous-time quantum walk on KM ⊗ KM ⊗ KM with M = 256.
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FIG. 8. Success probability as a function of time for search
by continuous-time quantum walk on the sixth-order Kro-
necker graph KM ⊗ KM ⊗ KM ⊗ KM ⊗ KM ⊗ KM with M = 4 and
γ = 0.001372.

evolves in a 2D subspace, when j = 2, the strongly regular
graph evolves in a 3D subspace, and when j = 3, the graph
evolves in a 4D subspace.

Numerical simulations do suggest, however, that search on
higher-order Kronecker graphs with the complete initiator also
takes π

√
N/2 time, asymptotically. For example, the success

probability for search on a sixth-order Kronecker graph is
shown in Fig. 8, and it reaches 1 at time π

√
46/2 ≈ 100.53.

Similarly, numerical simulations show that increasing j and
keeping M fixed, or increasing both j and M , yields a
successful search in π

√
Mj/2 time.

Despite the increase in the dimension of the subspace, we
can prove that the diameter of the Kronecker graph, with
complete initiator, is 2 for all j � 2 and M � 3. To do this,
note a general vertex |v〉 can be written as

|v〉 = |p1, p2, . . . , pj 〉,
where each pi takes values 1, . . . ,M and encodes the position
at each level of hierarchy. For example, in Fig. 8, if pi = 1
encodes the top-left position, then vertex 1 would be |1, 1, 1〉
since it is the top-left vertex in its subset P1,1, its subset P1,1

is the top-left subset in its set P1, and P1 is the top-left set. A
vertex nonadjacent to |v〉 has the general form

|u〉 = |p′
1, p

′
2, . . . , p

′
j 〉,

where at least one p′
i = pi since, if all of the positions were

to differ, the vertices would be adjacent. Now consider a third
vertex,

|w〉 = |p′′
1 , p

′′
2 , . . . , p

′′
j 〉,

where p′′
i �= pi and p′′

i �= p′
i . This is possible since M � 3.

Then, |w〉 is adjacent to both |v〉 and |u〉, so the distance
between |v〉 and |u〉 is 2, and the diameter of the graph
is 2.

VI. CONCLUSION

Kronecker graphs are a useful method to generate complex
networks with real-world properties. Here, we investigated
how continuous-time quantum walks search Kronecker graphs
by focusing on the case that the initiator is the complete graph.
Then, the first-order Kronecker graph is exactly the quantum

walk formulation of Grover’s algorithm, where the search takes
π

√
N/2 time. We proved that second-order Kronecker graph is

a strongly regular graph, and that it is also searched in π
√

N/2
time. Furthermore, using degenerate perturbation theory, we
proved that the third-order Kronecker graph is searched in the
same optimal runtime as the first- and second-order graphs.
Numerical simulations indicate that higher-order Kronecker
graphs behave the same way, and an analytical proof is open
for further research. Our work on quantum search on Kronecker
graphs, where the initiator is not the complete graph, will be
reported elsewhere.
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APPENDIX: 4D SUBSPACE FOR THIRD-ORDER
KRONECKER GRAPHS

Recall for the third-order Kronecker graph with complete
initiator that there are four types of vertices. Let us begin
by determining how many of each type of vertex there is
using the M = 4 case in Fig. 6 and then generalizing to
arbitrary M .

The first type of vertex is the unique marked vertex, say
vertex 1, so there is only one vertex of the first type. Next, we
count the number of vertices adjacent to vertex 1, which are
the vertices in a different set, different subset, and different
position within the subset from the marked vertex. Vertex
1 has adjacent vertices in (4 − 1) = 3 sets, namely, in P2,
P3, and P4. Within each of these sets, vertex 1 has adjacent
vertices in (4 − 1) = 3 of the subsets, such as P2,2, P2,3, and
P2,4. Within a subset, vertex 1 is adjacent to (4 − 1) = 3
vertices, such as vertices 22, 23, and 24. So vertex 1 has
(4 − 1)3 = 27 neighbors. Generalizing this, there are (M − 1)3

vertices adjacent to the marked vertex, and these are vertices
of the second type.

The third and fourth types of vertices are nonadjacent
to the marked vertex. Let us tabulate the vertices that are
nonadjacent to the marked vertex, showing that they either
share (M − 1)2(M − 2) mutual neighbors with the marked
vertex or (M − 1)(M − 2)2 mutual neighbors with the marked
vertex.

Vertices that are in the same subset as the marked vertex
are nonadjacent to the marked vertex. For example, in Fig. 6,
if vertex 1 is marked, then vertices 2, 3, and 4 are in the
same subset as vertex 1 and are nonadjacent to vertex 1. In
general, there are (M − 1) such vertices. Let us take vertex 2,
for example. Vertices 1 and 2 share no common neighbors in
P1 since they are nonadjacent to all vertices in P1. Within each
of the (4 − 1) = 3 remaining sets P2, P3, and P4, they share
adjacent vertices in (4 − 1) = 3 subsets, such as P2,2, P2,3, and
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TABLE I. For the third-order Kronecker graph KM ⊗ KM ⊗ KM , the types of vertices that are nonadjacent to the marked vertex, how many
such vertices there are, and the number of mutual neighbors each vertex has with the marked vertex.

Description of nonadjacent vertex Number of vertices Number of mutual neighbors

Same set, same subset, different position M − 1 (M − 1)2(M − 2)
Same set, different subset, same position M − 1 (M − 1)2(M − 2)
Same set, different subset, different position (M − 1)2 (M − 1)(M − 2)2

Different set, same subset, same position M − 1 (M − 1)2(M − 2)
Different set, same subset, different position (M − 1)2 (M − 1)(M − 2)2

Different set, different subset, same position (M − 1)2 (M − 1)(M − 2)2

P2,4 in P2. Within each subset, there are (4 − 2) = 2 mutually
adjacent vertices, such as vertices 23 and 24 in P2,2. So, the
total number of common neighbors is (4 − 1)(4 − 1)(4 − 2) =
18. Generalizing this, there are (M − 1)(M − 1)(M − 2) =
(M − 1)2(M − 2) mutual neighbors. This is summarized in
the first row of Table I.

A vertex that is nonadjacent to the marked vertex could be
in the same set as the marked vertex, but a different subset,
yet in the same position within its subset as the marked vertex
is within its subset. In Fig. 6, these vertices would be vertices
5, 9, and 13. In general, there are (M − 1) such nonadjacent
vertices. Let us take vertex 5, for example. Vertices 1 and 5
share no common neighbors in P1, so (4 − 1) = 3 sets remain
where they can have common neighbors. Within these sets,
say P2, there are no common neighbors in the top two subsets
P2,1 or P2,2. This leaves (4 − 2) = 2 subsets P2,3 and P2,4 that
contain mutual neighbors, and within each of these subsets,
such as P2,3, there are (4 − 1) = 3 mutual neighbors. So the
total number of common neighbors is (4 − 1)(4 − 2)(4 − 1) =
18, as in the previous case, or (M − 1)(M − 2)(M − 1) =
(M − 1)2(M − 2) in general. This is summarized in the second
row of Table I.

Another vertex that is nonadjacent to the marked vertex is
one in the same set as the marked vertex, but a different subset,
and in a different position. In Fig. 6, these are vertices 6, 7, 8,
10, 11, 12, 14, 15, and 16, and, in general, there are (M − 1)2

such vertices. Let us take vertex 6, for example. Vertices 1 and
6 have mutual neighbors in the three remaining sets P2, P3, and
P4. In general, there are (M − 1) such sets. With a set, say P2,
there are (4 − 2) = 2 subsets P2,3 and P2,4 that contain mutual
neighbors of vertices 1 and 6. In general, there are (M − 2)
such subsets within each set. Finally, within each subset, say
within P2,3, vertices 27 and 28 are mutual neighbors of vertices
1 and 6, and, in general, there are (M − 2) mutual neighbors in
each subset. Altogether, there are (M − 1)(M − 2)(M − 2) =
(M − 1)(M − 2)2 mutual neighbors. This is summarized in the
third row of Table I.

A vertex in a different set from the marked vertex, but in
the same position, is also nonadjacent to the marked vertex.
In Fig. 6, these vertices would be vertices 17, 33, and 49,
and, in general, there are (M − 1) such vertices. How many

mutual neighbors does one of these vertices have with the
marked vertex? There are (M − 2) sets that contain mutual
neighbors, each with (M − 1) subsets that contain mutual
neighbors, each with (M − 1) mutually adjacent vertices, for
a total of (M − 2)(M − 1)(M − 1) = (M − 1)2(M − 2) mu-
tual neighbors. This is summarized in the fourth row of Table I.

One more kind of vertex that is nonadjacent to the marked
vertex is one in a different set from the marked vertex, the
same relative subset, but a different position within the subset.
In Fig. 6, this corresponds to vertices 18, 19, 20, 34, 35,
36, 50, 51, and 52. In general, there are (M − 1)2 such
vertices. Taking one of these vertices and the marked vertex
1, there are (M − 2) sets containing mutual neighbors, each
with (M − 1) subsets containing mutual neighbors, each with
(M − 2) mutual neighbors, for a total of (M − 1)(M − 2)2

mutual neighbors. This is summarized in the fifth row of
Table I.

Finally, the last kind of vertex that is nonadjacent to the
marked vertex lies in a different set, in a different relative
subset, but the same position within the subset as the marked
vertex. In Fig. 6, this corresponds to vertices 21, 25, 29, 37,
41, 45, 53, 57, and 61. In general, there are (M − 1)2 such
vertices. Taking one of these vertices and the marked vertex
1, there are (M − 2) sets containing mutual neighbors, each
with (M − 2) subsets containing mutual neighbors, each with
(M − 1) mutual neighbors, for a total of (M − 1)(M − 2)2

mutual neighbors. This is summarized in the last row of Table I.
Summarizing these results, in total, there are 3(M − 1)

vertices that are nonadjacent to the marked vertex, each with
(M − 1)2(M − 2) mutual neighbors with the marked vertex.
Also, in total, there are 3(M − 1)2 vertices that are nonadjacent
to the marked vertex, each with (M − 1)(M − 2)2 mutual
neighbors with the marked vertex. This divides the vertices
that are nonadjacent to the marked vertex into type-3 and type-4
vertices.

Lastly, as a sanity check, we add the one marked vertex, the
number of adjacent vertices, and the number of nonadjacent
vertices of each type:

1 + (M − 1)3 + 3(M − 1) + 3(M − 1)2 = M3 = N.

We get the total number of vertices, as expected.
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