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application and sister packages which include Prolog code interfacing a number
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cal system that has complementary strengths in areas such as machine learning,
statistical inference and visualisation. Furthermore, Real has a central role to
play in the uptake of semantic web, computational biology and bioinformatics
as application areas for research in logic programming.
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1. Introduction

Real [4] is a low level interface between Prolog and R [14]. It enables the
user to call R functions on Prolog data and communicate the results back to
the logic system. The library works on two open source systems: YAP [6] and
SWI-Prolog [25]. This is possible as YAP has a fairly complete emulation of
SWI’s C language interface [23]. Since its first introduction Real has evolved
and has exerted some influence in advances to Prolog syntax. Furthermore, it
has been used in a number of projects and in the process acquired a number
of sister libraries. These libraries deliver Prolog predicates to useful tasks that
can be best be dealt by existing R code. Real has thus be shown to be a useful
and well integrated Prolog library that can provide access to the wealth of open
source code available in R.

Here we focus on describing the full syntax of Real 2 and its role in recent
developments with syntactic changes in SWI-7. The changes in both systems
have made the integration of R code into Prolog more natural and unobtrusive.
Changes in the library itself had to be made to accommodate transition to the
new Prolog syntax while preserving compatibility with traditional implementa-
tions. It is thus the case that the Real can be used in both of the supported
Prolog systems, but only SWI-Prolog benefits from the new tighter integration.

R has a huge array of contributed code often accompanying published papers.
It has particular strengths in statistical inference [19, 8], machine learning [11,
9] and data visualisation [20]. Within the specialist area of bioinformatics,
Bioconductor [7] is a large agglomerating project that manages a large number
of additional, user-contributed libraries.

Real gives access to R libraries that can complement Prolog’s weaknesses in
areas such as statistical inference and visualisation. With the library installed,
it is straight forward with a basic grasp of R to call its functions on Prolog data.
However, for users with no prior exposure to R there still might be a barrier. To
address this, and in order to increase general usability of the library a number
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of sister packages have been developed. We highlight some of the predicates
that enable access to R code without any knowledge of R.

Central application areas since the inception of Real has been these of seman-
tic web, bioinformatics and computational biology. In this paper we describe the
role of Real in a web-based application as well as presenting sister libraries that
here have evolved for addressing real world bioinformatics tasks in the context
of a variety of projects: [27, 12, 16]. The main thesis of this paper is that Prolog
can play a central role as a unifying platform in research in statistical and prob-
abilistic areas such as web reasoning and bioinformatics, taking advantage of
its strong grip on knowledge representation and reasoning and in combinations
with recent advances with Real and web programming [24, 10].

2. Real

In this section we describe the main features of Real and the innovations in
the new version Real 2 , which include: syntactic extensions that allow R code
to be represented in a form that more closely resembles normal R syntax, the
new predicate r library/1, which provides a more flexible way to locate and load
R libraries from their local filestore, and support for multiple Prolog threads to
use a single R session, allowing Real to be used in SWI-Prolog’s multithreaded
web server framework. Taken together, these innovations allow a tighter and
smoother integration of R code and enable Prolog programmers to tap in the
wealth of statistical functions implemented in R with greater ease.

2.1. Real’s predicates

Real 2 adopts the convention of a uniform prefix to all the library predicates.
The full list of Real ’s predicates along with the associated operators and brief
descriptions is shown in Table 1. New additions include a hookable locator for
R libraries, web server support, intuitive syntax for non-destructive assignment
and a new interface predicate for mixing Prolog and R options with options for
directing output to graphical devices.

With the new predicate r library/1 users can load the standard R libraries
in their local installation. In addition, the predicate can be directed to user
specified locations where local, possibly, changed sources of such libraries can
be preferentially loaded in Real . The flexibility allows for (a) specific code to
be loaded only known to Real thus leaving the remainder of the R installation
intact, and (b) user code that can be made available and can work either with
the distributed version while having extra functionality when used with the
altered sources.

2.2. Basic operation

The bulk of the interaction with Real is via a single predicate ← /2 which
is also defined as an infix operator. It is similar to the Prolog is/2 operator,
except that the term on the right-hand side is interpreted as an R expression
and evaluated in the embedded R session. Within Real , ← /2 can be used
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Indicator Operator Symbol Description
r/2 <- ← evaluate R expression and assign result
r/1 <- ← evaluate R expression and ignore result
r new/1 <<- � argument is a fresh R variable
� /2 <<- � r/2 but with error if R variable exists
r call/2 <-C++O ← ++ r/{1,2} with options (O)
r library/1 load R library in a hookable manner
r start/0 start the connection to R
r stop/0 stop the connection to R
r remove/1 remove R variable
r thread loop/0 start an R thread server
r serve/0 serve all R expressions on queue thread

Table 1: Library’s main predicates

to transfer data between R and Prolog, to apply R functions to Prolog data,
retrieve R values as Prolog data, and destructively assigning values to R vari-
ables. Disambiguation clearly distinguishes the different modes, which can be
summarised by:

−PlVar ← +Rexpr

+RAexpr ← +PlData

+RAexpr ← +Rexpr

Disambiguation of the call modes depends on whether the right hand side
(RHS) is ground and if so on its term form. When the left hand side (LHS)
of the operator is a free variable, the first mode is assumed, where the value
of Rexpr is passed to PlVar after it has been evaluated in R. When the RHS
is a c/N term or a list then the second mode is assumed and the Prolog data
term in the RHS, PlData, is transferred to the assignable R expression in the
LHS: RAexpr, typically an R variable. If none of the top two rules applies, Real
passes the second argument to R for evaluation and the value assigned to the
LHS term (RAexpr).

The following examples show how to: transfer Prolog data to R and back
(1), transfer Prolog data to R and get the result of applying a function to the
data in the new R variable (2) and demonstrating how to apply an R function
on Prolog data without the use of an explicit R variable (3).

?− a ← [1,2,3], A ← a.

A = [1,2,3].
(1)

?− a ← [1,2,3], Mean ← mean(a).

Mean = 2.0.
(2)

?− Mean ← mean([1,2,3]).

Mean = 2.0.
(3)
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On occasions the return value of an R expression is of no consequence. In
such cases it can be ignored by using the single argument operator

← +Rexpr

The following two examples illustrate its use. The first example plots Prolog
data to the current graphic display, while the second example prints the contents
of an R variable (x) to the output stream.

← plot([1,2,2,4]).

← x.

2.3. Composite data objects

As already seen, Real maps an R vector to a Prolog list of objects. In
addition named lists are mapped to ’=’-pair lists and matrices to either nested
lists or lists of compound terms. The following two examples pass a matrix and
a named list to R variables x and y.

?− x ← [row(1,2,3),row(4,5,6)].

% same as:

?− x← [[1,2,3],[4,5,6]].

?− ← x.

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

?− X ← x.

X = [[1, 2, 3], [4, 5, 6]].

?− y ← [a = [1,2,3],b = [4,5,6]].

?− ← y.
$a

[1] 1 2 3
$b

[1] 4 5 6

Through matrices and named lists, Prolog can also access data frames which
are widely used in R. For instance, the values of the example data frame mtcars
can be passed to Prolog as a matrix represented by a list of lists.

?− Mt ← as.matrix( mtcars ).

Mt = [ [21.0, 6.0, 160.0, 110.0, 3.9, 2.62, 16.46, 0.0|...],
[21.0, 6.0, 160.0, 110.0, 3.9, 2.875, 17.02|...],
[22.8, 4.0, 108.0, 93.0, 3.85, 2.32|...], ... ].
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2.4. Session variable management

In R, assigning the result of a computation to a variable, say x, has the
side-effect of changing the state of the R session, viz., binding the name ‘x’ to
a new value, overwriting any binding it may have had previously. To avoid
the risk of losing data in this way, we introduced operators �/2 and �/1 and
predicate r new/1, provide fresh unused variable names on demand. The first
ensures that its first argument (an R variable) did not exist prior to assigning to
it some new values. The second removes its arguments from the R work-space
and the third fails if its argument is already a known R variable.

2.5. Syntax

Although Prolog’s hierarchical terms are sufficient for expressing the syntax
of any R expression, the resulting calls to R would not be recognisable as R code
by programmers. Real enhances the representation of R expressions by Prolog
operators in order to be as close as possible to R syntax. In previous versions of
Real , four aspects of R syntax where impossible to emulate in Prolog: the use
of (‘.’) in R identifiers, the use of double quotes (‘”’) to represent strings, the
invocation of functions with no arguments (‘foo()’), and accessing array elements
with subscripts in square brackets (‘a[1,2]’). In these cases, Prolog operators
were used to provide representations of such R syntactic constructions:

• Operator ‘..’ was used to construct arity 2 terms to represent R identi-
fiers containing a period. For example, the Prolog term my..variable was
translated to the R identifier my.variable, my..variable −→ my.variable).

• Operator + applied to a non numerical value resulted in a conversion from
atoms and code lists to strings, +foo −→ ”foo”.

• With the newly, at the time, introduced block operator ‘()’ it was possible
to represent the R syntax foo() as the Prolog term foo’()’, foo() −→ foo’()’.

• The infix operator ‘ˆ’ was used to represent array sub-scripting with a list
as the second argument, i.e., aˆ[1,2] −→ a[1,2]

With Real in mind, SWI-7 [21] introduced extensions to Prolog syntax that
allowed all of the above R syntactic constructs to be parsed in Prolog, under the
control of per-module Prolog flags, such as allow dot in atom (default false) and
double quotes (default string). Real has been adapted to utilise the new changes
in a backwards compatible manner. Under YAP, Real continues to work using
standard Prolog operator definitions and the old term representation, while
under SWI-Prolog, users are able to take advantage of the more direct syntax
enabled by the new extensions. In addition, the complexity of expressions such
as those allowed in array indices has been enhanced. All of the following are
now valid Real syntax mapping to the corresponding R constructs, provided the
relevant flags have been enabled.
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R Real Description
a[,3] aˆ[∗,3] missing array index
%*% @∗@ matrix multiplication
%o% @ˆ@ outer product of arrays
%~% @in@ set/list membership
!= \= not equal operator

Table 2: Syntax translations between R and Real .

• func.foo(a,b,c)

• write.csv(”to file.csv”, x)

• foo()

• a[1,2]

• hmrn.pass ← hmrn[ hmrn$’Contamination’==”PASS”, ∗]

A few remaining translations, shown in Table 2 , handle R syntax that
cannot be parsed directly as Prolog despite the recent syntax extensions. In R,
a missing subscript denotes array slicing ; e.g., a[,3] is the vector obtaining by
extracting the third column of a. In Real , the missing subscript is represented
by an asterisk, e.g, a[∗,3]. Similarly, certain combinations of symbols cannot be
used to construct Prolog operators. R operators mapping to these combination
must be represented using variabnt Prolog operators. The mapping of such
operator mappings in Real is shown in Table 2.

A final innovation at the syntactic level has been the introduction of ‘NA’
values in the interface. In R, NA values stand for not available or unknown value
placeholders. Prolog does not support such values internally, but the interface
enables mapping of such values within arithmetic vectors and matrices to $NaN.
When passing numeric data from Prolog to R in addition to $NaN, the empty
atom (‘’) is also translated to R’s NA value.

In summary, there are only very few instances where Real code diverges
syntactically from R code. In the vast majority of cases Real code is valid R
code and it is well signposted with Prolog via the use of single main operator
and call: ← /2.

2.6. Handling optional named arguments

Integral to the R language design and practice is the use of options that
control the details of function calls. These options are pairs of argument name
to values (name=value), which might not be necessarily present at invocation.
When not present, default values supplied by the function developers are used.
Similarly but not as widely used, is the use of list of terms that control calls to
Prolog predicates. By convention an options list is placed at the last argument
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of a predicate and commonly contains a number of single arity terms. Real 2
provides a uniform way of marrying the two conventions and a flexible way
of handling options addressed to Prolog predicates accessing R functions. In
addition, a number of standard tasks have been incorporated to a new interface
predicate:

r call(Func,Opts)

which can also be accessed as

← Func ++Opts

Func is a compound term which is translated to an R function call and Opts
can be a combination of: (a) =/2 terms, which are added to Func, (b) options
controlling r call/2’s own execution and (c) Prolog style options which can in-
fluence the caller’s behaviour but are ignored in the R call. The options term
Opts is in general a list, but for convenience a singleton option list can be given
as an non-list term. The main options for r call/2 are:

rvar(Rvar) : when given call becomes: Rvar ← Fcall
rmv(Rmv = false) : removes Rvar after end of call
stem(Stem = real plot) : stem to use for output files
outputs(Outs = false) : a list of output devices
debug(Dbg = false) : sets debug(real) for the duration of call
fcall(Fcall) : returns the function call as presented to R
post call(Post) : call this after the function call

The following three calls illustrate the use of the new predicate. The first
example enables debug messaging during the specific R call, the second redirects
output of its plot call to a PDF file and the third passes an arbitrary argument
to the R call.

← plot([1,2,3])++debug(true).

← plot([1,2,3])++outputs(pdf).

← plot([1,2,3])++xlab = ”bespoke−x−label”.

2.7. Multithreading and performance

R is inherently single threaded. To support the use of Real in multithreaded
applications, and particularly in web servers built with SWI Prolog’s HTTP
libraries [24], Real 2 allows a single designated Real server thread to be started.
This thread controls evaluation of all R expressions. Subsequent calls to ←/1
and ←/2 from any thread are redirected to the Real server thread and the
results awaited. Communication is handled synchronously using SWI Prolog
queues and is transparent to the user.

The core of Real is implemented in C, providing an efficient and stable
bridge which has been used to pass extremely large datasets to and from R. In
comparison to the computational power required to compute with such large
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datasets the crossover time is negligible. In the following example predicate
numlist/3 constructs the list of all integers appearing between its first and second
arguments. Real can pass a million integers in a fraction of a tenth of a second
on a modest computer (CPU at 2.30GHz) with its performance scaling linearly.

?− numlist(1,1000000,Million),time(mv ← Million),length(Million,Length).

% 30 inferences, 0.033 CPU in 0.033 sec (100% CPU, 483 Lips)

Million = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],
Length = 1000000.

?− numlist(1,10000000,TenMillion), time(mv ← TenMillion).

% 118 inferences, 0.341 CPU in 0.341 sec (100% CPU, 346 Lips)

TenMillion = [1, 2, 3, 4, 5, 6, 7, 8, 9|...].

?− numlist(1,100000000,HndMillion), time(mv ← HndMillion).

% 116 inferences, 3.426 CPU in 3.427 sec (100% CPU, 34 Lips)

HndMillion = [1, 2, 3, 4, 5, 6, 7, 8, 9|...],

3. Real libraries and applications

3.1. Digital Music Laboratory

The Digital Music Laboratory (DML1) is a system for doing large scale
collaborative computational musicology, bringing together a collection of audio
recordings and symbolic scores, their metadata, a collection of computational
analysis methods, and a database of computation results. It consists of an in-
formation and computation management server providing web APIs, a browser,
a Javascript web application for exploration and visualisation, and a web-based
programming environment, a SWISH instance [22], for more flexible, free form
experimentation. The system uses Real in several ways:

• The browser, based on the SWI Prolog Semantic Web application frame-
work Cliopatria [26] uses R to produce high quality scalable vector graph-
ics, such as a pitch histogram for a musical scoreor a piano-roll representa-
tion of an automatic transcription2, to be included in web pages describing
musical resources (see Fig. 1).

1http://dml.city.ac.uk
2http://mirg.city.ac.uk/cp/browse/list_resource?r=file://vamp/_Audio_

Analysis/Chopin/silvet_settings_fast_nonfinetune_allinstruments.n3_9d782/

026A-1CL0016611XX-0100A0_vamp_silvet_silvet_notes.csv
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Figure 1: An example of R graphics embedded in a web page on the Digital Music Laboratory
website. This page is associated with the results of a music transcription algorithm, whose
result is visualised as a piano-roll using R’s rect() plotting function.

• The computation system uses R for doing statistical analysis on the con-
tents of the database, such as music metadata or results from previous
computations.

• The programming environment allows users to compose their own compu-
tations, possibly using Real for numerical analysis or generating plots.

An example from DML is shown in Fig. 2 which displays part of a browser
window running SWISH, with a simple R computation and rendering.3 Because
of the web-based, collaborative nature of the system, it is important that it be
able to handle multiple concurrent requests for R computations. Thus, it uses
Real ’s ability to start a singe R server thread, which then receives and serialises

3http://mirg.city.ac.uk/cp/swish/p/test_r.swinb, but please note that R computa-
tions and graphics in the SWISH environment are restricted to logged-in users, for security
reasons.
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Figure 2: An example of how R can be used inside the SWISH web-based Prolog development
environment. A SWISH ‘term rendering’ plugin is included to allow certain terms to be
recognised as plot specifications and rendered accordingly.

all R computations.
In comparison with previous versions of the system which used Matlab’s

engine API to communicate with a separate Matlab process, via the plml package
[1], the lower overhead of communicating with Real ’s in-process embedded R
yields much better performance when numerous relatively small computations
are required.

Graphical output from R is included in web pages or the SWISH program-
ming environment ultimately as an HTML image element referring to a URL
on the server that will dynamically generate the plot and return it as an SVG
stream. The handler for this URL takes literal Prolog code as a parameter,
checks that this code is safe to run using the SWI Prolog sandbox library, runs
the code to create the plot, saves the graphic in a temporary directory, and
replies with the contents of the file. A simplified view of the code, which can
handle several output formats, is shown in Fig. 3.
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% this is the HTTP request handler

r figure render(Request) :−
% ...code to extract parameters Code, Fmt, W, and H omitted...

sandbox:safe goal(Code),

with temp dir(Dir, (

file name extension(tmpfig, Fmt, Filename),

directory file path(Dir, Filename, Path),

with mutex(r plot, print fig(Fmt, Code, Path, [size(W,H)])),

reply file(Path, Fmt))). % sends HTTP reply with correct MIME type

% run Code and save graphic in Path in requested format

print fig(Fmt, Code, Path, Opts) :−
option(size(Width,Height), Opts),

dev(Fmt, Path, Width, Height, Dev),

setup call cleanup(r(Dev), once(Code), r(’dev.off()’)).

% table of R codes to create a graphics context in a given format.

dev(pdf, Path, W, H, pdf(+Path, width = W, height = H)).

dev(eps, Path, W, H, cairo ps(+Path, width = W, height = H)).

dev(svg, Path, W, H, svg(+Path, width = W, height = H)).

Figure 3: Simplified extract of Prolog code used to serve graphics generated in R in response
to HTTP requests.

3.2. Computational Biology

The development of Real was strongly motivated by the pervasiveness of R
code in bioinformatics, with many of the numerous relevant R libraries being
part of Bioconductor [7]. Real has been used in a number of projects including a
complete pipeline for the functional analysis of SILAC, proteomic datasets [16,
27]. Within the context of this project a number of useful components have been
developed as independent Prolog libraries that allow users to tap on R graphics
and R functions without writing any R code. In what follows we describe three
of these libraries. The emphasis here is to assist Prolog programmers that are
not familiar with R to take advantage without having to learn R. If later on
they become more familiar with the language they can take fuller advantage of
R via Real . The penetration of Prolog into bioinformatics have been also been
advocated by more holistic approaches [13]. However the approach we have
taken here is to take advantage of SWI’s package manager to produce a number
of independent libraries that can be used in a number of application areas.

3.2.1. Basic Real library

An introductory library to using R is b real . It is based on basic R calls via
Real and it contains a collection of predicates that aim to provide a Prolog based
interface to a number of simple R tasks. The target audience is Prolog users
that have little or no previous experience with R. Providing interface predicates
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Figure 4: ggplot2 based bar plots. Left: with default options. Right: a number of options
have altered elements of the plot.

to R functions allows: use of untyped arguments or Prolog friendly arguments,
ability to use the more familiar Prolog syntax and better control over side-effects
of the calls. The predicates described here can use the basic functionality of the
underlying R functions and can adjust some of the behaviour entirely in Prolog,
while allowing arbitrary option passing to users with some familiarity with R.

Bar plots are basic plots that can present comparative information in a in-
tuitive manner. Here we present a Prolog interface to ggplot2 [20]. In its most
general form, the predicate gg bar plot/2 displays a number of grouped mea-
surements such as, for instance, the cpu-times of a number of machine learning
algorithms ran on a number of datasets. The following query, produces the plot
in the LHS of Fig. 4.

?− Pairs = [a−[1,2,3], b−[2,4,6]], gg bar plot(Pairs,[ ]).

ggplot2 is a complex piece of software able to display many types of plots while
gg bar plot/2 only accessing the bar plotting part. Within this, a number of plot
elements can be controlled with Prolog options passed in the second argument.
The following query changes elements such as the colour of the drawing pen
(black) the labels (x,y and main), legend title and fill colours, producing the
plot in the RHS of Fig. 4.

?− Pairs = [a−[1,2,3], b−[2,4,6]],

Opts = [ geom bar draw colour(black),

fill colours([”skyblue2”,”khaki2”,”#FB9A99”]),

flip(false), labels(x,y,main),

legend title(legend) ],

gg bar plot( Pairs, Opts ).
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Figure 5: Heatmap generation with aheatmap() from package NMF.

Heatmap drawing functions are ubiquitous in R. b real provides an inter-
face to the aheatmap function. In addition to some simple option mapping
aheatmap/2 provides polymorphic support for the first argument which could
be a matrix R variable or a Prolog representation of one. The following code
uses the mtcars example dataset, from which it plots a heatmap of two variables:
hp (horsepower) and disp (displacement).

?− MtC ← as.list(mtcars), memberchk(hp = HP,MtC),

memberchk(disp = Disp,MtC), x ← [HP,Disp],

rownames(x) ← c(”horsepower”,”displacement”),

← aheatmap(x).

3.2.2. Weighted graphs

R has a number of plotting functions for drawing graphs formed of nodes
and edges. Two of these are igraph() and qgraph(). The latter being based
on the former with some extra options and facilities for grouping nodes. The
Prolog pack wgraph provides a uniform Prolog interface to these two R libraries.
A plot with the default renderings can be easily drawn from a list representing
the graph connections and the weights on the edges:

?− G = [1−2:200, 2−3:400, 2−4:300],

wgraph plot(G,[ ]).

A set of Prolog options that control the choice of the drawing function and basic
parameters of the graph, and which work irrespective of the drawing function
can be provided in the second argument of wgraph plot/2. In the following
example igraph() is passed the size of nodes to use, the degree at which the
node labels should be displayed and the distance of the label from the node
edge. The resulting graph is shown in the RHS of Fig. 6.
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?− G = [1−2:200, 2−3:400, 2−4:300],

Opts = [ plotter(igraph),

label distance(−1),

label degree(2),

node size(4) ],

wgraph plot( G, Opts ).

Weighed graphs are a popular means of displaying biological information
such as protein-protein interactions. Databases such as String [17] hold inter-
action relations over proteins that are either experimentally verified or inferred
algorithmically. Depending on the strength of the evidence and corroborating
sources, String assigns a degree of belief (0, 999) on each possible edge. Given a
set of proteins or genes it is thus possible to visualise their inter-connectivity in
String as weighed graphs with the width of the edges proportional to the degree
of belief on the edge’s existence. The Gene Ontology (GO, [18]) annotates genes
with a number of terms that belong in one of the ontology’s three categories:
cellular component, molecular function and biological process. By combining
GO and String we can visualise the physical interactions between genes in a
GO term as a weighed graph.

Prolog predicates for both GO and String are provided by bio db [3]. This
library implements predicates that map database tables from a number of cu-
rated databases to a single library relation. For demonstrating wgraph’s ca-
pabilities two predicates are of interest: map gont gont symb(GOterm,Symbol)
is the set membership relation of Symbols to gene ontology terms (GOterm).
edge string hs symb(Symbol1,Symbol2,Weight) holds the String defined gene in-
teractions with an associated belief measure (Weight). Having access to these
predicates and with Prolog’s powerful search execution model graphs that show
the interactions of genes within a GO term can be constructed and easily visu-
alised with wgraph. An example of such a network is shown in 7 . The code for
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Figure 7: Weighed graph for gene ontology term, GO:0043552, positive regulation of phos-
phatidylinositol 3-kinase activity.

reproducing this is succinct and typical of the high level programming that can
be achieved with Prolog.

?− use module(library(bio db)), use module(library(wgraph)).

?− findall( Symb, map gont gont symb(’GO:0043552’,Symb), Symbs ),

findall( Symb1−Symb2:Weight, (

member(Symb1,Symbs),

member(Symb2,Symbs),

edge string hs symb(Symb1,Symb2,Weight)

),

Graph ),

wgraph plot( Graph ).
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Figure 8: Comparative performance of two simple learners. The first comparative metric is
used to plot the dots where any additional metrics are averaged over the K folds and displayed
on the right edge.

3.2.3. Machine learning utilities

Machine learning utilities, mlu, is a collection of machine learning predicates
that allow users to run machine learning experiments and predictors on the
learned models. The library does not implement the learners themselves but
deals with tasks such K-fold cross validation and plotting of predicted values
that allow evaluation of performance for a number of algorithms. The learners
themselves can be either other Prolog predicates such as Aleph (pack(aleph),
[15] and Bims (pack(bims), [2]) or one of the plethora of R machine learning
and statistical inference functions. The following code declares two determin-
istic learners, truism/2 and falsehood/2, which always learn t$$rue and f$$alse
respectively. We then define predictors that generate 4 measures of accuracy
for each model. In this example the predictors are based on random values that
are biased by the type of input model with true models fairing slightly better.

Using k fold comparative statistic/6 a number of learners can be compared
by running each learner on the same K fold exhaustive partition of the data
and obtaining performance statistics. The predictions can then be tabulated
or plotted for visual comparison of performance. Figure 8 shows a comparative
plot of the performance for the two simple learners presented below. In the plot,
the first predictive value is used to draw juxtaposed dots on a scatter plot with
all additional predictive measures averaged over the 10 folds and displayed as
mean values on the right ledger of the plot.
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truism( ,true).

falsehood( ,false).

bias(false,Data,c(Rnd,Rnd,Rnd2,Rnd3)) :−
random(0.5,1,Rnd),

random(0.65,1,Rnd2),

random(0.7,1,Rnd3).

bias(true,Data,c(Rnd,Rnd,Rnd2,Rnd3)) :−
random(0.6,1,Rnd),

random(0.75,1,Rnd2),

random(0.8,1,Rnd3).

?− numlist(1,10,Data),

Learners = [falsehood,truism],

Predictor = bias,

Opts = [post(jitter),

statistic names([’1 year AUC’,’AUC(1Y)’,’Harrel\’s C’,’R square’])

],

k fold comparative statistic(Data,Learners,Predictor, Ms, Sts,Opts).

Although the example given here is a simple one, similar analysis can be ap-
plied to a variety of learning contexts such as survival analysis (for example with
the coxph() function) where metrics such as AUC for 1 year survival, Harrrel’s
concordance index and R2 can be used to document the relevant performance
of alternative learners. We also plan to include bootstrapping in mlu along with
more comparative plots.

3.3. Availability

The four libraries discussed here: Real , b real , wgraph and mlu are available
as SWI-Prolog packages4 which can be installed easily from within SWI-Prolog.
To download and install Real the user needs to query with:

?− install pack(real).

More information including documentation and full sources are available
from the project’s home page 5. These libraries have been developed in the
context of Prolog based bioinformatics [3, 5] but are made available as stand
alone libraries as they can be of use in a variety of other application areas.
The package manager enables easy installation and a central point at which
user-contributed libraries can be found.

4http://swi-prolog.org/pack/list
5http://stoics.org.uk/~nicos/sware/real/
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4. Conclusions and Future Work

We presented a number of recent advances in Real and we have shown how
developments in Prolog syntax allow R calling code to blend naturally into
Prolog code. The resulting syntax provides a powerful platform for accessing
the extensive collection of open source R code. As a result, Real can have
a strong positive influence onto the penetration of Prolog to new application
areas such as bioinformatics and the semantic web. With version 2, Real has
reached a new level of maturity including facilities for using R in web-servers.
In addition, we highlighted predicates from sister packages. As with Real itself,
these are freely available and can be easily installed via the SWI-Prolog package
manager. In the future we plan to work towards suggesting internal ways for
Prolog to work better, or more confluent to R, with NA values and infinity.

With regard to web applications, the R server thread serialises R compu-
tations at the level of individual calls to the embedded R API. This is fine for
‘pure’ functional operations that have no side effects, that is, do not change the
state of the R session nor do any input or output. However, it is still possi-
ble for operations that require several calls with side-effects to impede on each
other’s operation. This is the case for graphical plots that involve several steps,
each of which may add elements to a plot, before the final step of writing the
resulting image to a file. If two threads attempted to create two such plots
concurrently, the single graphics window would become corrupted. The DML
server described above avoids this by using an SWI Prolog mutex to protect
the R graphics HTTP request handler, essentially turning the entire plotting
sequence into an atomic operation. Another, possibly more elegant solution not
requiring a mutex, would be to allow the R server thread to receive requests
to execute Prolog goals, rather than just atomic R computations. This would
allow each Prolog goal, including multiple calls to R, to complete atomically,
safe in the knowledge that no other R computations will intervene. Current
work by the developers of SWISH [22], the on-line portal for SWI-Prolog, con-
centrates on : (a) isolating interactions for each distinct user, (b) capturing the
input/output of the underlying R sessions, and (c) confining R to a safe subset,
such as say to disallowing operating system interactions.

Real has been used in a number of projects in the areas of web programming
and bioinformatics, and has a steady stream of downloads via SWI-Prolog’s
package manager. With the enhanced level of integration, Real is becoming
a powerful hybrid programming language, which combines the clear computa-
tional model of Prolog with the powerful statistical code base of R.
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