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Abstract

A circular silicone sheet is clamped at its edge and pressurised by the in-

jection of a liquid beneath creating a pocket. We study experimentally the

deformation and pressure increase caused by the compression of a pressurised

pocket. Excellent agreement is found between experimental observations and

numerical predictions based on an axisymmetric thin hyperelastic material;

an approximate analytical model explains the link between changes in shape

and the applied force.
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1. Introduction

Planar elastic pockets are formed by introducing a fluid at pressure be-

neath a deformable sheet. They are used in hydraulic systems, such as JP-

mate Air Jack from Hornchic, to provide a vertical force to lift heavy objects

and are quite versatile because they can be made thin and inserted into nar-

row spaces. Pressurised elastic pockets have been used as a sensing device
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since the 1880’s with the invention of diaphragm-type optical indicator (eg

the Clarke & Low, the Perry and the Bedell indicators (Walter, 2011) among

others) made of thin sheet steel to monitor the pressure level of steam en-

gine; the deformation of a hemispherical elastic diaphragm displaced mirrors

that reflected a light beam on to a photographic plate (Bedell, 1897). The

complexity of this problem arises because the initial and deformed shape

of the pocket are determined by the initial level of pressurisation, material

properties, planform area of the pocket and the applied force.

The deformation of closed spherical or elliptical shells by an applied force

has been extensively studied experimentally and theoretically driven by at-

tempts to infer the mechanical properties of biological components, such as

fish eggs, sea urchins (Vlès, 1926; Cole, 1932), microcapsules (Liu et al.,

1996; Carin et al., 2003) and cells (Smith et al., 1998) with earlier experi-

ments dating back from 1891 (Pfeffer, 1891). Cells in their fluid environment

are under stress that may lead to damage when under excessive compres-

sion in typical bioprocesses for example Arnaud et al. (1993) and Ho et al.

(1995), or more recently, the studies of Douaire et al. (2011) on the pheno-

typic modification of bacteria in a Couette bioreactor. The cell response can

be modelled as a closed axisymmetric elastic shell (Smith et al., 1998). In

all cases, the problem of damage is a general one arising from cells interact-

ing with their fluid environment (Zhang and Thomas, 1993) as formalised

in the wall-strength model for microbial cell disruption (Middelberg et al.,

1992a,b). On a larger scale, elliptical shells can also be used as air-inflated

building structures (Bolonkin and Cathcart, 2007; Bolonkin et al., 2011; Koz-

icki and Kozicka, 2011) which are dome-shaped as they provide the greater
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surface area under the structure for a minimum amount of material. The

applications of planar elastic pockets are therefore very diverse.

The current paper aims at designing soft buttons. Soft buttons are able to

provide different pressure responses depending on their deformations. They

give an alternative to the classic “on/off” function of classic buttons.

The soft button is modelled as a pocket with a circular contact perimeter and

clamped. The goal of the paper is to establish the relation between the but-

ton deformation when squashed and its pressure response. Figure 1(a) shows

a circular clamped sheet of radius R and thickness T that is pressurised by

introducing a fluid beneath the sheet (to give the pressurised state in figure

1(b)). A force is applied to the pressurised pocket to give a squashed state

(figure 1(c)). The elastic sheet is thin (i.e. T/R � 1) and axisymmetric,

and so can be modelled as a thin hyper-elastic sheet using the framework of

Feng and Yang (1973) as well as Yang and Feng (1970) to a lesser extent.

The current study examines the correlation between the increase of pressure

and area of contact when pockets are under compression.

2. Mathematical model for the pocket

2.1. Formulation

The essential features of the thin sheet model are based on the work of

Yang and Feng (1970) and Feng and Yang (1973). The incompressible elastic

material is modelled using a strain-energy density function W that follows

Mooney-Rivlin (Mooney, 1940):

W (I1, I2) = C1 ((I1 − 3) + α(I2 − 3)) , (1)
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with C1, α = C2/C1 being the Mooney-Rivlin constants and I1, I2, the strain

invariants. The Young’s modulus, E, in the limit of uniaxial tension is related

to the Mooney-Rivlin constants C1 and α through E = 6(1 + α)C1. In this

model, the stretch factors and membrane stress resultants are expressed and

solved in the Lagrangian coordinate r of the underformed initial circular flat

sheet and then converted to Eulerian coordinates (ρ, η) following the work

of Yang and Feng (1970). In Figure 1, the meridian and hoop stretch ratio

denoted respectively λ1 and λ2 are

λ1 = ds
dr

=
((

dρ
dr

)2
+
(
dη
dr

)2)1/2
,

λ2 = ρ
r
,

(2)

where r and ρ are the radial distances of the undeformed and deformed

elements of the sheet respectively and s and η its pursed meridian arc length

and height.
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Figure 1: (a): Schematic of a pocket of thickness, T , in the initial state then (b) pursed

with a uniform pressure PI which is compressed in (c) with a hydrostatic force applied

uniformly on the top of pocket that results to a pressure inside the pocket equal to P .

The Lagrangian coordinates (r, 0) map onto the Eulerian coordinates (ρ, η).

The stretch factor in the through-surface direction, λ3, is determined by
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the incompressibility constraint

λ1λ2λ3 = 1. (3)

The local equilibrium of forces on a segment of the elastic sheet in the normal

and tangential directions are (Yang and Feng, 1970)

κ1T1 + κ2T2 = P,

∂T1
∂ρ

+ 1
ρ
(T1 − T2) = 0,

(4)

with κ1, κ2 being the principal curvatures and T1, T2, the membrane stress re-

sultants in the meridional and circumferential directions and P , the pressure

in the pocket. The curvatures in the meridian and circumferential directions

are given by

κ1 =
−d2η

dρ2(
1 +

(
dη
dρ

)2)3/2
, κ2 = −

dη
dρ

ρ

(
1 +

(
dη
dρ

)2)1/2
. (5)

The components of membrane stress resultants that are consistent with

(1) and (4) are

T1 = 2TC1

(
λ1
λ2
− 1

λ31λ
3
2

)(
1 + αλ22

)
, T2 = 2TC1

(
λ2
λ1
− 1

λ31λ
3
2

)(
1 + αλ21

)
.

(6)

When the pocket is pressurised, a new variable w is introduced and defined

as w = d(λ2r̃)
dr̃

, and the components of the membrane stress resultants are

described by the system of equations (λ1, λ2, w) whose gradients are linked
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through (Yang and Feng, 1970)

dλ1
dr̃

=
1

r̃

{
w

λ2

[
λ2
λ1
− λ1
λ2
− α

(
1

λ1λ32
− 1

λ31λ2

)]
− (w − λ2)

[(
−λ1
λ22

+
3

λ31λ
4
2

)(
1 + αλ22

)
+ 2αλ2

(
λ1
λ2
− 1

λ31λ
3
2

)]}
1(

1
λ2

+ 3
λ41λ

3
2

)
(1 + αλ22)

, (7)

dλ2
dr̃

=
w − λ2
r̃

, (8)

dw

dr̃
=

1

r̃

λ1 (λ21 − w2)
1/2(

λ1
λ2
− 1

λ31λ
3
2

)
(1 + αλ22)[

1

λ1λ2

(
λ21 − w2

)1/2(λ2
λ1
− 1

λ31λ
3
2

)(
1 + αλ21

)
− 1

2
P̂ (1 + α)

]
+
w

λ1

dλ1
dr̃

, (9)

with

P̂ =
PR

ET
, r̃ =

r

R
. (10)

When the pocket is squashed, the above equations applied to the portion

of the sheet that is not in contact with the applied force, i.e. ãc ≤ r̃ ≤ 1

(when ãc = ac/R). In the region of the membrane in contact with the plate

(r̃ ≤ ãc < 1), the sheet is flat so that dη/dr = 0. This corresponds to a

distance 0 ≤ r̃ ≤ ãc. In this region, (7) and (8) still hold true while (9) is

replaced by:
dw

dr̃
=

dλ1
dr̃

. (11)

The height η of the pressurised pocket can be rewritten following (2):

η

R
=

∫ 1

r̃

(
λ21 −

(
dρ

dr̃

)2
)1/2

dr̃. (12)
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The volume of fluid contained beneath the elastic sheet is

V =

∫ ηmax

0

πρ2dη. (13)

2.2. Numerical solution procedure

Two steps are required to calculate the response of a pocket to an applied

force.

• Step 1: The applied pressure PI is defined and the shape of the de-

formed circular disc is determined with λ1 = λ2 = λ0 = w at r̃ = 0. A

search algorithm is then run to determine the value of λ0 using a sec-

ond boundary condition that differs from the original problem solved

by Feng and Yang (1973) which satisfies λ2(r̃ = 1) = 1 using equations

(7), (8) and (9) with a bisection method. This condition shows that

the radial distance of the boundary of the pocket is fixed and will not

change when the pocket is under compression. Once the shape is de-

termined, the volume under the pocket, V , is calculated using (12) and

(13) and recorded.

• Step 2: The pocket is compressed with a pressure P and (7), (8) and

(11) are solved using the same technique and similar boundary con-

ditions as Step 1. The radius ãc is unknown and this step is solved

interactively to determine the value of ac such that the volume is the

same as Step 1. The search solution in both steps were solved in Mat-

lab 2012 with a tolerance of 10−4% usually obtained in less than 20

iterations. The step when searching the contact radius can be as small

as 0.5% of the pocket radius.
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3. Analytical model

To understand the physics of the compression process, we attempt to de-

velop a simple model; the case of pressurised pocket and squashed pocket are

treated separately because there are significant differences. For low applied

pressures PI when the stretch factor |λ1 − 1|�1, we can approximate the

stretch factors as

λ1 ∼= λ0, λ2 ∼= λ0 − (λ0 − 1)r̃2, (14)

to ensure the boundary conditions λ1 = λ2 = λ0 at r̃ = 0 with λ0 being a

constant and λ2 = 1 at r̃ = 1. With this prescribed from, the shape of the

pocket can be estimated from (12),

η

R
∼=
(

3

2
(λ0 − 1)

) 1
2

(1− r̃2). (15)

The pocket height and volume are

H0

R
≈
(

3

2
(λ0 − 1)

) 1
2

, (16a)

V

R3
≈ π

4
(6(λ0 − 1))

1
2 . (16b)

At the centre of the pocket, T1 = T2 and κ1 = κ2, where

T1 ∼= 12C1T (λ0 − 1) (17a)

κ1R ∼= (6(λ0 − 1))
1
2 (17b)

From (4), the pressure can be determined from the force balance at r̃ = 0

giving

PI ∼= 24C1
T

R

√
6(λ0 − 1)

3
2 . (18)
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Full numerical calculations confirm that the above model is good when λ0 ≤

1.1 (Bouremel et al., 2017), beyond which the analysis breaks down since

the increase of λ1 with r̃ needs to be taken into account. When the pocket

is compressed, within the contact region λ1 = λ2 = λc are constants, while

outside the contact-region, we approximate the stretch factors as

λ1 ∼= λc, λ2 ∼= λc − (λc − 1)
r̃2 − ã2c
1− ã2c

, (19)

to ensure that the boundary conditions at r̃ = 1 are satisfied. The normalised

deflection, η
R

, can be rewritten as:

η

R
= (λc − 1)

1
2G(r̃, ãc), (20)

where

G(r̃, ãc) =


√
2

(1−ã2c)
1
2

∫ 1

ãc
(3r̃2 − ã2c)

1
2 dr̃, r̃ ≤ ãc,

√
2

(1−ã2c)
1
2

∫ 1

r̃
(3r̃2 − ã2c)

1
2 dr̃, r̃ ≥ ãc.

(21)

The pocket height is

H

H0

=

√
2

3

(
λc − 1

λ0 − 1

)
G(0, ãc), (22)

where H0 corresponds to (16a): pocket volume must remain unchanged when

squashed so that

V = (λc − 1)
1
2 2π

∫ 1

0

r̃G(r̃, ãc)dr̃ = (λ0 − 1)
1
2

√
6π

4
. (23)

The volume constraint determines the relationship between λc and ãc; since

the model is appropriate for small values of λc, then

λc − 1

λ0 − 1
=

( √
6

8
∫ 1

0
r̃G(r̃, ãc)dr̃

)2

. (24)
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When the pocket is not compressed, i.e. ãc = 0, we recover λc = λ0. We link

the pressure of the squashed pocket to the forces on the sheet at the contact

region r̃ = ãc where

T1 = T2 ∼= 12C1T (λc − 1). (25)

The radii of curvature of the pocket at r̃ = ãc are now different with the

meridional curvature being much larger than the circumferential component,

giving

κ1R ∼= 3

(
λc − 1

1− ã2c

) 1
2

, (26a)

κ2R ∼= 2

(
λc − 1

1− ã2c

) 1
2

. (26b)

This approximation is singular in the sense that in the limit of ãc → 0,

the radii of curvature does not tend to (17b).

4. Experimental

4.1. Set-up and Methodology

The experimental set up consisted of an elastic silicone sheet sandwiched

between a clear base acrylic plate and a steel upper plate; a circular hole was

cut into the top plate so that by introducing water beneath the sheet enables

it to be pressurised to an initial pressure PI .

The source to the circular disc was connected via a three way valve to a

vertical tube that enabled the initial pressure of the pocket to be set using

a hydrostatic head and then the connection was sealed and connected to a

calibrated pressure transducer. The water head varied from 20 to 50 cm sig-

nificantly larger than the height of the pocket, so that the pressure variation
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with the height in the pocket is negligible. After applying a force, F , the

pressure in the chamber increased to P . The force was applied uniformly

over the top of the chamber by using custom-made cylinder weights. The

contact between the applied force F and the elastic membrane generates an

area Ac and is related through Ac = F/P . The height of the squashed pocket

was measured using a photographic technique.

4.2. Material characterisation

Silicone sheets with different thicknesses ranging from 0.25 mm to 3.2 mm

were sourced from Silex Ltd (Broxhead Trading Estate, Lindford, Bordon,

Hampshire, GU35 OJX, UK). The material properties were characterised

using an electromagnetic linear actuator (Bose Electroforce 3220 Series III

to determine C1, C2 and E). The experimental procedure is described in

Bouremel et al. (2017) and the samples used are different. The Mooney-

Rivlin parameters of the silicone sheets are listed in Table 1.

silicone Thickness C1 C2 Young Modulus Symbol PI

sheet T E

sample (mm) (kPa) (kPa) (MPa) (kPa)

1 0.25 160 47 1.241 H 2 - 5

2 0.5 160 47 1.241 I 2 - 5

3 0.8 160 47 1.241 J 2 - 5

4 1.6 160 47 1.241 � 2 - 5

Table 1: Table summarising the silicone samples used in the experimental study. The sheet

thickness (T ), Mooney-Rivlin parameters C1 and C2, Young Modulus (E), and symbols

are listed.
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5. Results

The elastic pockets are filled with water and have a dome shape as shown

in Figure 2 (a) where sheet sample 1 is clamped along a 2 cm radius circle

and pressurised at P̂I = 0.31 with P̂ defined in (10). The numerical green

line obtained with the method explained in Section 2.2 follows the shape

contours of the post-processed photograph of our pocket. When the pockets

are compressed, they deform with an increase in the hydrostatic pressure.

They are flatten on the top of their surfaces while bulging along the side to

retain their volume of water as shown in Figure 2 (b) with the numerical line

obtained in green for F/PIπR
2 = 0.19.

The shape deformation can be studied by looking at the evolution of the

contact area, Ac, and the deflection of the pocket at r̃ = 0, H. Figure 3 (a)

shows that the contact area (flat surface on the top) compressing the pocket

varies non-linearly with the compressive force F = PIπR
2. The numerical

line plotted in magenta is obtained from a set of simulations for different

pocket radii, R from 0.01 m to 0.02 m, thickness, T from 2.5 × 10−4 m to

2× 10−3 m, and material characteristic, α from 0.3 to 1.2. At large applied

forces, the contact area tends to a constant. The comparison between ex-

perimental points and the numerical results shows a very good agreement

across the applied force range. The analytical model developed in section (3)

is shown with a black line. The agreement is good for low compressive forces

(F/PIπR
2 < 0.1). However, as the compressive force increases, the increase

of meridional stretch factor becomes important, it leads to an under predic-

tion of Ac. Figure 3 (b) shows the decrease of the purse height, H, normalised

by the equilibrium height, H0, as the compressive force is increased. This
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Figure 2: Post-processed images using sheet sample 1 pursed at a pressure P̂I = 0.31 with

the numerical profiles superimposed and plotted in green for (a) F/PIπR
2 = 0 and (b)

F/PIπR
2 = 0.19.
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decrease of H mirrors the increase of Ac noted in Figure 3 (a) to maintain

the pocket volume constant throughout the compression. The pocket height

is quite well captured over a wide range of F by the numerical model plotted

with a magenta line and the analytical model shown with a black line.
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Figure 3: Variation of the contact area fraction Ac/πR
2 (a) and normalised deflection

height H/H0 (b) obtained at r̃ = 0 of pockets made with the different samples listed in

Table 1 under increasing compressive forces F/PIπR
2. The numerical line in magenta is

obtained from a range of simulations with pockets of different size and thickness and made

of material with different parameters, α. The black line is obtained analytically using (20)

- (23).
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Figure 4 shows the maximum deflection non-dimensionalised by the ra-

dius, H/R, of pockets of different samples listed in Table 1 under compression

when initially pursed with the same pressure (P̂I from 0.05 to 0.32) to com-

plement the results of Figure 3 (b). The non-dimensional compression P/PI

is related to the compressive forces F/PIπR
2 defined in Figures 3 (a) and

(b) through the contact area fraction, Ac/πR
2: F/PIπR

2 = P/PI ×Ac/πR2.

An excellent agreement between the simulations and the experiments with

the general conclusion that pockets made of thinner material are associated

to higher deflections.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

H
/
R

P/PI

(a)

Figure 4: Variation of the maximum deflection height H/R obtained at r̃ = 0 of pockets

made with the different samples listed in Table 1 under compression P/PI for the same

initial pressure and P̂I ranging from 0.05 to 0.32. The equivalent numerical line is plotted

with a line of the same colour.

Figure 5 shows the relative hydrostatic pressure increase P/PI when com-
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pressed with the relative compressive force F/PIπR
2. Similarly to Figure 3,

the numerical line plotted in magenta is obtained from a set of simulations

for different pocket radii, R from 0.01 m to 0.02 m, thickness, T from 2.5

× 10−4 m to 2× 10−3 m, and material characteristic, α from 0.3 to 1.2.

This shows an approximately linear relationship between the pressure and

the compression force.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 5: Variation of the internal pressure P/PI of pockets made with the different sam-

ples listed in Table 1 when under increasing compressive forces F/PIπR
2. The numerical

line in magenta is obtained from a range of simulations, with pockets of different size and

thickness and made of material with different parameters, α.

6. Designing a soft button

The experimental study and theoretical computations enable the unde-

formed and deformed states to be related to H0, E, T , R, F and PI . We
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now apply these results for designing a soft button. The two major con-

straints on button design are (a) geometrical and (b) ergonomical, which are

summarised in Table 2.

The geometrical constraints in the initial undeformed state are R and H0.

U.S Department of Defense (1999) released a standardised human engineer-

ing criteria design report for push buttons among other equipments. This

report mentions that push buttons should have a minimum diameter of 10

mm when pushed using fingertips while a minimum of 19 mm when using the

thumb showing the natural larger area accommodated by different fingers.

In this example, we are looking at buttons pressed by a single finger with

R ≈ 20 mm and H0 ≈ 10 mm.

The ergonomic constraints are softness and tactility. For softness, we

require compliant smooth material and choose silicone which is characterised

by a Young’s modulus of E ≈ 106 Pa. For the button to be tactile, it must

deform due to an applied force, F and the typical deformation must be a

reasonable fraction of the button height, i.e H/H0 ≈ 0.8. From Figure 3

(b), it can be calculated that the tactile nature of the button sets the initial

pressure through PI ≈ 5.7F/πR2 with H/H0 ≈ 0.8. A typical value of F ,

for a finger, is approximately 0.67N. Finally, the sheet thickness, T , can be

determined from the initial button height H0, radius R, pressure PI and E

through T = 0.216PIR
4/EH3

0 (Bouremel et al., 2017).
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Constraints Parameters Values

Size of button R ≈ 20 mm

Height of button H0 ≈ 10 mm

Soft e.g. silicone E ≈ 105 − 106 Pa

Tactile PI 5.7F/πR2 (so H/H0 ≈ 0.8)

Thickness of button T 0.216PIR
4/EH3

0

Maximum force F ≈ 0.67N

Table 2: Table summarising the constraints on the design of a soft button.

7. Conclusions

We have studied circular pockets experimentally and numerically, by

drawing on axisymmetric models of hyper-elastic sheets, and shown how

simplified models largely explain their function for small applied forces. For

low initial loads, the application of a force reduces the stretch factor in the

centre of the pocket, but increases the meridional stretch factors at the edge.

The volume constraint of the pocket sets the relationship between the pres-

surised and squashed states. The analysis shows that the applied force can

be inferred from the pressure increase meaning that the force range can be

accurately determined. By correlating the shape, the pressure and the ap-

plied force, the evolution of compressed systems that can be simplified as

elastic pocket such as microcapsules can be determined in the limit of small

applied forces in constrained spaces. Finally, the theory can be applied to

design soft tactile buttons to provide different pressure responses depending

on their deformations.
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