1	
2	
3	An evolutionary perspective on paranoia
4	
5	Nichola J Raihani ¹ & Vaughan Bell ²
6	
7	1. Department of Experimental Psychology, University College London, 26 Bedford Way, WC1H
8	0AP
9	2. Division of Psychiatry, University College London.
10	
11	Abstract
12	Paranoia is the most common symptom of psychosis but paranoid concerns occur throughout the
13	general population. Here, we argue for an evolutionary approach to paranoia across the spectrum of
14	severity that accounts for its complex social phenomenology – including the perception of conspiracy
15	and selective identification of perceived persecutors - and considers how it can be understood in light
16	of our evolved social cognition. We argue that the presence of coalitions and coordination between
17	groups in competitive situations could favour psychological mechanisms that detect, anticipate and
18	avoid social threats. Our hypothesis makes testable predictions about the environments in which
19	paranoia should be most common as well as the developmental trajectory of paranoia across the
20	lifespan. We suggest that paranoia should not solely be viewed as a pathological symptom of a mental
21	disorder but also as a part of a normally-functioning human psychology.
22	
23	

- 24 Humans evolved in complex and dynamic groups comprised of kin and non-kin. Life in complex
- 25 social groups favours the evolution of specialized and sophisticated socio-cognitive abilities ^{1–3}
- 26 including the ability to form and maintain coalitions and alliances (e.g. hyenas ⁴; chimpanzees ⁵,
- 27 corvids ⁶), to recognise and categorise other individuals in terms of dominance (e.g. pinyon jays ⁷) and
- alliance membership (e.g. Hamadryas baboons⁸), and to varying degrees to predict and manipulate
- 29 the intentions and behaviour of others (e.g. anthropoid apes ⁹, western scrub jays ¹⁰). In this article we
- 30 argue that paranoia involves all of these socio-cognitive abilities and that the human ability for
- 31 paranoid thinking evolved in response to these social selection pressures. Evolutionary accounts of
- 32 paranoia have been proposed before ^{11,12} but have not fully accounted for the full phenomenological
- 33 complexity of paranoia, nor shown how such a perspective has the potential to explain variation in
- 34 paranoia both across contexts and over development. We explore why paranoid thinking is such a
- 35 common human characteristic and why paranoia can become intense and disabling after many forms
- 36 of social, psychological and neurological difficulties.
- 37

38 *Current conceptualisation of paranoia*

- 39 A persecutory belief is considered to be the central defining feature of paranoia and includes two 40 essential elements; i) a belief that harm will occur, and ii) an attribution that others intend this harm ¹³. 41 In the general population, such persecutory ideas can be experienced with varying degrees of 42 frequency and entertained to varying degrees of intensity. Paranoia can range from mild concerns 43 about others' intentions to beliefs that are sufficiently unlikely, and inflexible to be classified as a 44 psychiatric symptom, most notably, as a paranoid delusion 14 . One of the implicit assumptions about 45 paranoia is that it represents an exaggerated or false attribution of harmful intent to others. However, 46 given the continuum of paranoia, paranoid explanations can, and occasionally should, be accurate (e.g. see ^{15,16}) although these are likely to be increasingly inaccurate as paranoia becomes more 47 becomes more disabling and a likely focus of clinical concern^{16,17}. 48
- 49

50 Epidemiological studies show that paranoia shows full taxometric continuity throughout the 51 population, indicating that categorical distinctions used in psychiatric diagnosis are not reflected in a clear point of change of severity in the population ^{18–20}. Nevertheless, this continuous distribution in 52 the population does not necessarily imply that underlying causes are fully continuous within 53 54 individuals, over time, or between sub-groups ²¹. Most current research has focused on paranoia in the 55 context of mental health, typically in people without individually diagnosable neurological disorder, 56 and has identified various risk factors and cognitive process that support paranoid thinking. Indeed, paranoia has now been reliably associated with living in areas of low social cohesion ²², worry ²³, 57 sleep deprivation ^{24,25}, victimisation ^{25,26}, and early life adversity, abuse and trauma ²⁷. Paranoia has 58 59 also been found to co-occur with general cognitive biases relating to causal and probabilistic reasoning and belief flexibility ^{28,29}. However, diagnosable paranoid states can also be caused by a 60

61 wide range of direct disturbances to brain function. Paranoia is common in psychosis following

- 62 epilepsy ³⁰, brain injury ^{31,32} and dementia ³³. It is also one of the most frequent unwanted side-effects
- 63 for several classes of recreational drugs ^{34–36}. Indeed, in terms of the causes and contexts in which it
- appears, paranoia is perhaps most remarkable for being associated with such a wide range of
- 65 difficulties, impairments and stresses.
- 66

67 Given this diversity, the aim of this article is to ask whether paranoia might sometimes serve an 68 adaptive (fitness-enhancing) function and how an evolutionary perspective can help us to predict 69 where paranoia will be most common. To be clear, our aim is not an attempt to explain how frank 70 paranoid delusions and – by extension – psychotic spectrum disorders, have been favoured by 71 selection. Indeed, based on the lowered reproductive success of individuals with these disorders and 72 the lack of evidence of benefits to kin ³⁷, we think that this is highly unlikely. Our overarching 73 hypothesis is that the existence of paranoia can generally be understood as a consequence of selection 74 for detecting and evaluating coalitional threat. We first describe the phenomenology of paranoia and 75 argue that current evolutionary theories do not fully account for the perception of conspiracy and 76 selective identification of arbitrary persecutors that are so common in paranoia. We suggest that 77 coalitionary competition, which can occur both within and between groups and which can be 78 relatively stable in some contexts and yet highly flexible in others, can help to explain why paranoia 79 takes the form it does. Our hypothesis predicts that within-individual variation in paranoid thinking 80 should occur in response to immediate context-specific changes in the perception of coalitionary threat (as defined by ³⁸), whereas stable between-individual differences in paranoia are likely to 81 82 emerge in response to chronic threat from others. Finally, we explore why impairments to brain 83 function also commonly predispose individuals to paranoia, and whether this is likely to be an 84 adaptive response to the environment or a maladaptive consequence of cognitive constraints.

85

86 Understanding the full social phenomenology of paranoia

Freeman and Garety's ¹³ definition has been useful in providing a clear operational definition of a 87 88 central component of paranoia. However, existing approaches to paranoia have tended to 89 conceptualise paranoia in terms of cognitive processes used to make sense of other *individuals* rather 90 than groups. One limitation of this approach is that it fails to account for why the experience of more 91 severe paranoia often involves the misperception of group boundaries and collective action. Indeed, 92 paranoia is frequently accompanied by other features that are common enough to be included in 93 phenomenological descriptions, both historical and modern, but are often neglected by more recent 94 cognitive approaches. These are i) the perception of a conspiracy behind the intentional harm, and ii) 95 social selectivity in terms of identifying the people perceived to be the source of intentional harm.

Conspiracy thinking is common in the general population ^{39,40} and is defined as a tendency to provide 97 98 "explanations for important events that involve secret plots by powerful and malevolent groups" ⁴¹. In 99 paranoid delusions, however, conspiracy thinking often becomes self-focused, with delusions 100 commonly involving the perception of organised attempts to harm the believer, rather than malign and 101 impersonal explanations for public events. The perception of a self-focused conspiracy has been 102 identified as a central characteristic of delusional paranoia from early in the history of psychiatry ⁴² 103 and forms part of many modern phenomenological descriptions ^{43,44}. Cameron ⁴⁵ conceptualised this 104 aspect of paranoia as a belief in a persecutory 'pseudo-community' who are perceived to be united in 105 a co-ordinated undertaking against the paranoid individual but who fail to correspond to any group in 106 wider society who share the coordinated aims and actions attributed to them. Unlike public conspiracy 107 theories, these concerns are more likely to focus on the history, intentions and day-to-day activities of 108 the believer.

109

110 Although paranoia involves a belief that others intend harm to the believer, these concerns typically 111 pertain to specific individuals or social groups and also commonly involve the misperception of group 112 boundaries and coordinated group action. In increasingly severe paranoia, these concerns and 113 misperceptions become increasingly exaggerated and may present as frank persecutory delusions. 114 Studies of delusional patients indicate that the majority selectively identify specific groups as 115 responsible for their maltreatment. In a study of delusions in Korean, Korean-Chinese, and Chinese 116 patients conducted by Kim et al.⁴⁶, only 27.4%, 17.7% and 24.6% of persecutors, respectively, were 117 unspecified, while the rest were variously identified as groups such as relatives, neighbours, the police, or medical personnel (see also⁴⁷). Green et al.⁴⁸ reported that persecutory delusions could be 118 classified as focusing on individuals (e.g. "my father"), groups with defined members ("[the patient's] 119 120 neighbour, his neighbour's brother and mates"), established social groups ("the police"), undefined 121 groups ("people", "spirits") and all others ("everyone") with perceived individual and multiple 122 persecutors each consisting 50% of the total.

123

124 Evolutionary approaches to paranoia

125 Attempts to answer the question of why some people are more paranoid than others have typically 126 appealed to proximate level explanations (Box 1) such as genetics, life history or cognitive biases ¹⁴. 127 Nevertheless, these approaches do not answer the issue of why we have a cognitive capacity for 128 paranoid thinking (Box 2) and whether between-individual variation in paranoid thinking might, in 129 some environments, be selectively advantageous in fitness terms. From a Darwinian perspective, a 130 fearful response to danger, whether actual or potential, is likely to carry significant fitness benefits and to have been subject to strong selection in many species ⁴⁹. Nevertheless, not all individuals show 131 132 an equivalent magnitude of response to the same threatening stimulus or context: levels of fearfulness 133 differ markedly across individuals, even within a species. The question of how stable, between134 individual differences in fearful responses might arise and be stabilised by selection falls under a 135 broader banner of research on the evolution of stable behavioural types. Research in this field has 136 shown that the evolution of variation in behavioural types stems from trade-offs in pursuing different 137 fitness-relevant activities. For example, investing in growth (e.g. via foraging) often comes with an attendant increased risk of predation ^{50,51} and so strategies aimed at increasing growth are likely to be 138 139 traded-off against strategies that reduce predation risk. Organisms must therefore balance the rewards 140 of investment in growth against the increased mortality risk; the optimal resolution of such trade-offs 141 in different environments or for different individuals can therefore select for variation in fearfulness, 142 aggression, risk appetite and so on, which broadly dictate individual life history strategies and

- associated behaviour.
- 144

145 In addition to balancing such trade-offs, organisms must also effectively manage costs from errors that occur due to perceptual uncertainty ('error management theory' ⁵², Box 3). Specifically, error 146 147 management theory (also conceptualised as 'the smoke detector principle' in evolutionary medicine 148 ⁵³) predicts that when there are asymmetries in the costs of false-positive and false-negative error 149 types, selection will favour strategies that minimise the chance of making the costlier error, even if 150 this produces many behavioural mistakes. Following the logic of error management theory, previous 151 evolutionary accounts ^{11,52} have suggested that paranoia is an evolved psychological mechanism 152 shaped by the selective pressures of catastrophic harm from others that is tuned to have a low 153 threshold for detecting social threat. Individual variation in the relative asymmetry of error types is 154 proposed to account for variation in paranoia across the full spectrum (see Box 3 for a critique).

155

156 Shortcomings of existing evolutionary theories

157 Nevertheless, existing evolutionary theories of paranoia based solely on social threat detection do not 158 fully account for the complex phenomenology of paranoia. Specifically, we have to ask why a 159 mechanism aimed at detecting and avoiding social threats does not solely result in variation in 160 avoidance, submissive or appeasement behaviours (as is also observed in many non-human species, see ⁵⁴ and also discussed elsewhere ^{55–59}, but also incorporates more complex features that are not 161 162 adequately explained by this approach. Namely, selective identification of a specific yet often 163 seemingly arbitrary group of persecutors, the attribution of unobservable malign intentions and 164 motives to these individuals, and the formulation of hypothetical narratives rendering these 165 attributions subjectively plausible. Below, we focus on the first of these features but see Box 2 for a 166 discussion of the evolution of inferential causal reasoning abilities (including mental state attribution) 167 in humans.

- 168
- An important feature of human social groups is the presence of coalitions: any situation where two or
 more individuals unite in competition against a third party or parties ^{60,61}. Coalitionary conflict in

- 171 human groups can manifest in the form of lethal aggression ('lethal raids' reviewed in ⁶²) but can also
- include non-lethal and non-aggressive conflict, such as stigmatization, ostracism, exclusion, and
- derogation. For example, witchcraft accusations have been (and still are) used to identify individuals
- 174 or groups for ostracism, persecution or even death ^{63,64}. In modern industrialised societies, similar
- 175 forms of indirect aggression are used by coalitions to damage the reputation of (often higher-ranking)
- 176 rival, for example via gossip or derogation (see 65,66).
- 177
- 178 This persistent risk of persecution selects for what others have called a 'coalitional psychology' that
- anticipates and deflects these threats by integrating oneself within a coalition or coalition(s),
- 180 recognising and categorizing others as allies or potential competitors; and using these categorizations
- 181 to predict how others might behave or react in specific social interactions ^{38,67,68}. One might expect
- social threat detection mechanisms to be sensitive to reliable indicators of coalitional threat, such as
- 183 dominance hierarchies, signals of group membership and the cohesiveness of rival coalitions ^{38,67} and,
- accordingly, experimental evidence shows that exposing people to these different forms of coalitional
- threat does increase the tendency to make paranoid attributions 69,70 .
- 186

187 Nevertheless, paranoia often involves the selective identification of a (seemingly arbitrary) group of 188 persecutors, where malign intent is attributed to some individuals (or groups) but not others (e.g. 'I'm 189 being persecuted by the CIA' [and not FBI] or 'I'm being persecuted by my family' [but not my neighbours]'). We suggest that this arbitrary selectivity might reflect the fact that coalition boundaries 190 191 in human groups are themselves highly fluid and flexible and can be formed in the absence of any 192 stable group identifiers ⁷¹. The fact that coalitions can be formed on the basis of minimal cues or 193 markers of similarity in turn selects for cognitive machinery that readily and flexibly categorizes people into groups on the basis of such 'minimal' cues^{72,73}. Indeed, humans readily form and detect 194 195 minimal groups, even from a young age⁷³ and the perception of these groups fundamentally alters 196 expectations about the intentions and behaviour of individuals within them (reviewed in 74). Assuming 197 that paranoia builds on this existing cognitive machinery helps to explain the seemingly arbitrary 198 selectivity in the identification of perceived persecutors. This raises an interesting theoretical question 199 as to the extent to which increasingly severe paranoia reflects variation in cognitive processes 200 involved in perceiving coalitions and alliances, as opposed to processes involved in the attribution of 201 (harmful) intent to others. We suggest that disambiguating these processes and how they vary across 202 the paranoia spectrum will be a fruitful avenue for further research.

- 203
- 204 A coalitional psychology model of paranoia

A coalitional perspective suggests that variation in paranoia could function to protect individuals from

- 206 coalitionary threat in specific contexts and therefore serve an adaptive function when either the
- 207 probability and/or the costs of harm from others are high. A prediction of this hypothesis is therefore

- that variation in paranoid thinking will reflect the background probability and/or costs of coalitional
- 209 conflict. Epidemiological evidence supports this prediction: an increased tendency for paranoid
- thinking has been documented in general population groups that are involved in higher-than-average
- rates of coalitionary aggression, such as gang members ⁷⁵ and army veterans ^{76,77}. The probability of
- inter-coalitionary violence is increased under conditions of resource scarcity⁷⁸ and, as expected, living
- 213 in poverty is also associated with increased tendency for paranoid thinking⁷⁹.
- 214
- 215 Variation in paranoia should also be sensitive to the perceived costs of receiving inter-coalitionary 216 aggression, which escalate with low coalitionary support, low social rank or increasing power 217 imbalances between coalitions^{80,81}. In support of this prediction, risk for psychosis (for which 218 paranoia is the most common delusional theme) is higher among people who have small social 219 networks ⁸² or who are socially isolated, both of which are proxies for low coalitionary support. 220 Epidemiological evidence supports the idea that perceived power imbalances can raise the risk for 221 psychosis and, by extension, can also increase the probability for paranoid thinking. For example, low 222 social rank (both perceived and objective) is an important predictor for increased paranoia ⁸³ – a 223 finding that has recently been supported by experimental work where participants' social status 224 relative to that of a partner was experimentally manipulated ⁶⁹. Similarly, being part of a marginalised 225 social group (e.g. a low status immigrant, or an ethnic minority) is a risk factor for paranoia⁸⁴, which 226 can be ameliorated by living in increased densities within the marginalised group⁸⁵. A coalitional 227 psychology perspective on paranoia would predict this otherwise paradoxical 'ethnic density effect' 228 since living at higher ethnic densities with perceived coalition members should be associated with an 229 increased perception of coalitionary support.
- 230

231 Paranoia also varies within individuals and is fine-tuned to the degree of coalitional threat in the 232 current interaction. For example, experimental work where people interact with a political affiliate or 233 with a political adversary shows that harmful intent attributions, the fundamental component of live 234 paranoid ideation (Box 4) are stronger for the dissimilar than for the similar interaction partner, as 235 expected⁶⁹. Paranoid thinking should also respond flexibly to the cohesiveness of coalitions since cohesive coalitions are more able to work together to harm rivals³⁸. As expected, recent work has 236 237 shown that paranoid attributions increase when participants interact with a cohesive pair of opponents 238 compared to a pair of non-cohesive opponents⁷⁰. Thus, observational and experimental evidence suggests that paranoid thinking is flexible and responsive to social context in both the short and long-239 240 term, as would be expected if paranoia is the output of a mechanism for detecting and avoiding 241 coalitionary threat.

242

243 Paranoia across the lifespan

244 Paranoia also varies widely across the lifespan, emerging in adolescence, being most pronounced in early adulthood ⁸⁶ and declining as individuals age ²². Indeed, if paranoia is an output of a coalitional 245 psychology, then its emergence should coincide with onset of coalitional threat. Empirical evidence 246 247 suggests that coalitional competition begins to emerge when individuals reach puberty and is most 248 intense during late adolescence and early adulthood⁸⁷. Competition during adolescence may play an 249 important role in the formation of and integration into coalitions that ultimately determine 250 individuals' status, access to resources (including mates) and reproductive success. In modern tribal 251 societies, such as the Nyangatom, men form close alliances with same-age individuals during 252 adolescence. It is also at this time that men begin to join lethal raiding excursions to neighbouring 253 groups (usually with members of their coalition), continuing to participate in these raids until they end 254 their reproductive careers (c. age 45⁸⁸). More generally, interaction with peers increases markedly 255 during adolescence⁸⁹, leading also to an increase in social competition at this age. For example, 256 bullying – which can be construed as a form of coalitional competition - is prevalent across all world 257 cultures (and also in pre-industrialised societies) and increases in frequency as children enter 258 adolescence⁹⁰, peaking around the age of 14⁹¹. Other work has shown that adolescence is a period that is characterised by increased sensitivity to social threat, social risks and social exclusion $^{92-94}$, as 259 260 well as being a common onset period for many mental health problems, including psychotic-spectrum 261 disorders^{86,95}. Thus, we suggest that the developmental trajectory of paranoia reflects a selective 262 process that balances sensitivity to threat in line with fitness-relevant outcomes.

263

264 Individuals may also experience sensitive periods during development, where cues from the (social) 265 environment exert exaggerated effects on subsequent development. Sensitive periods are expected to 266 evolve whenever the early environment can reliably predict future conditions and when there are 267 constraints on plasticity⁹⁶. The conditions experienced during a sensitive period of development can 268 act as a 'weather forecast', guiding subsequent development along different trajectories and generating adaptive matches between the environment and the individual's phenotype $^{96-99}$. It has 269 270 been suggested that adolescence could be one such sensitive period in development^{96,100,101}, with the 271 evolutionary relevance being that individuals receive more reliable cues about the kind of social world 272 they will inhabit and their place in it during adolescence than earlier in development (see⁹⁶). One of 273 the key outstanding questions with respect to paranoia will be to determine whether social threat 274 shapes responses across the lifetime, or whether there are sensitive periods of development during 275 which exposure to social threat exerts lasting consequences on social cognition and behaviour. If the 276 latter, then identifying when these sensitive periods are and how they vary in response to the stochasticity of the social environment (e.g. ^{102,103}) will also be fruitful. 277 278

279 When does paranoia become pathological?

280 Having argued so far in favour of viewing variation in paranoia as part of a normally-functioning, 281 naturally selected human psychology, we now address the question of when paranoia might be best 282 viewed as a disorder and, therefore, under negative selection. The definition of mental disorder is 283 historically controversial and beyond the scope of this article: here we adopt the 'harmful dysfunction' definition proposed by Wakefield¹⁰⁴ which states that a) mental disorders are conditions 284 285 that cause harm to the person as judged by the standards of the person's culture, and b) that the 286 condition results from the inability of some internal mechanisms (psychological or physiological) to 287 perform its natural function, wherein a natural function is an effect that is part of the evolutionary 288 explanation of the existence and structure of the mechanism. Importantly, as with many other 289 biological continuities (e.g. weight), it may be difficult (if not impossible) to provide precise cut-offs 290 that demarcate the boundary between ordered and disordered paranoia¹⁰⁵ without needing to deny 291 clear pathology within this range.

292

293 An analogy may be helpful: fever helps the body fight off pathogens and can therefore be viewed as 294 part of a normally-functioning body's evolved responses to infection. Nevertheless, the underlying 295 mechanisms regulating temperature can become impaired or fail, leading to increasingly dysregulated 296 fever that can sometimes be fatal. Clearly, in the latter case, fever would be viewed as pathological 297 (i.e. disordered) despite that fact that, under normal circumstances, fever is an adaptive response to 298 infection. Based on this logic, we suggest that as paranoia becomes increasingly severe and therefore 299 less responsive to threat in the immediate environment, it is increasingly likely to stem from 300 dysfunction in the underlying cognitive mechanisms that support threat evaluation and so is likely to 301 fit the definition of disorder (being, by implication, maladaptive). We remain agnostic about the 302 precise cut-off point for separating ordered from disordered paranoia, as well as about the magnitude 303 and linearity / non-linearity of fitness costs involved.

304

305 At this point however, it is also instructive to raise another question. Paranoia is increased by a wide 306 range of brain injuries and impairments, including substance use, sleep deprivation, illness, traumatic 307 head injury, and dementia: do these impairments imply that the resulting paranoia is necessarily 308 disordered? We argue that it need not be the case. Rather, we suggest that it is possible that increased 309 paranoia in response to brain impairment reflects the correct functioning of a 'cognitive failsafe' 310 because cognitive impairment renders people at higher risk of being exploited by others whom were previously allies or makes them less able to incur the costs of being exploited (e.g. see^{106,107}) and 311 312 therefore a bias toward developing paranoia, rather than other socio-affective states, after impairment 313 may have a protective effect. We note that an important disadvantage of this bias may be that it makes 314 the person less likely to trust others who may provide help but we hypothesise that, on average, this 315 could be protective given the potential catastrophic consequences of exploitation, historically high 316 rates of exploitation of impaired individuals, and the fact that many acute stage impairments and

- 317 consequent periods of paranoia often improve naturally over time. Therefore, such a cognitive failsafe
- 318 might constitute an adaptive response rather than a disorder, although theoretical and empirical data
- are needed to disambiguate these possibilities. Nevertheless, following the fever analogy above, this

320 hypothesis allows that in some individual contexts, impairments to the mechanisms of the cognitive

- 321 failsafe can lead to increasingly severe and disordered paranoia, resulting in worse or even
- 322 catastrophic outcomes for an individual.
- 323

324 To conclude, we argue that an evolutionary approach can help make sense of otherwise puzzling 325 features of paranoia. These include a population continuum of paranoia that includes both context-326 sensitive paranoid thinking and inflexible, unlikely paranoid delusions, as well as the tendency to selectively identify seemingly arbitrary groups of persecutors, and to perceive that one is the target of 327 328 conspiracy. We also note that our approach highlights some key areas of future research. The first is 329 on the phenomenology of paranoia and we suggest that the content of delusions in severe paranoia 330 should often reflect common sources of coalitionary threat (e.g. coordinated groups and cliques, 331 higher status individuals, physical harm, threats to reputation). For some individuals, different threats 332 may be more salient or more likely and this might well be reflected in the content of delusions across individuals (e.g. see¹⁰⁸). Secondly, we suggest additional focus is needed on how people perceive 333 334 social groups, including processes relating to identification with in-group and categorising others as 335 out-group, and how these processes may be altered in people experiencing severe paranoia. We also 336 note that paranoia has received surprisingly little attention from evolutionary scientists in comparison 337 to other psychiatric difficulties and we hope it becomes of further interest in the field, given its clear 338 relevant to fitness concerns, its diverse presentation and ubiquity in human history.

339

341

340 Box 1. Proximate and Ultimate level explanations

342 It is worth clearly delineating between proximate and ultimate levels of explanation. In evolutionary 343 biology, an answer to the question of 'why' an individual behaves in a certain way can take two 344 broad, non-mutually exclusive forms: proximate and ultimate level explanations^{109–112}. Ultimate level 345 explanations provide the answer to 'why' the behaviour exists: they describe the function of the 346 behaviour in question and show how such behaviour, on average, is associated with fitness increases. 347 Proximate level explanations, on the other hand, are concerned with 'how' the behaviour is 348 implemented. For example, proximate level explanations could describe the psychological 349 mechanisms that support or constrain the behaviour but could also include the hormonal or 350 physiological basis of behaviour. For example, one might answer the question of why a lioness chases 351 a zebra by saying that the lioness needs to eat and is motivated by hunger, or that she has babies to feed, or that she is joining the other lionesses in the pride in the hunt - these would all be valid 352 353 proximate-level explanations. An ultimate level explanation for hunting behaviour is that lionesses 354 who attempt to hunt and kill prey have more surviving offspring than those who do not partake in

- 355 hunting and so this behaviour has been selected for in lion populations over evolutionary time.
- 356 Clearly, the two explanations are not mutually exclusive. However, a proximate level answer cannot
- be posed as the solution to an ultimate question of why behaviour exists.
- 358

Box 2. Which features of paranoia are unique to humans and why?

360 Evidence for the sort of inter-coalition competition that we propose results in selective pressure for 361 variation in paranoia is also present for other species, raising the question of to what extent features of 362 paranoia may be present in non-humans animals. For example, lethal intergroup competition in the 363 form of lethal raiding occurs also in chimpanzees⁶², and more subtle forms of coalitional competition 364 have also been observed in many other social non-human species (see⁶¹ for a review). There is also convincing evidence for variation in social anxiety in non-human species⁵⁴. However, we would argue 365 366 that the key cognitive mechanism that underlies the ability for paranoid thinking: namely the ability to 367 reason about unobservable causal mechanisms to explain why events have occurred in the past or might occur in the future seems to be, for the most part, unique to humans¹¹³. Additionally, the most 368 369 complex forms of coordination and conspiracy are likely to rely on capacities for language and 370 communication that are not present in any non-human species. It is possible that the ability to attribute 371 intentions to others (also key in paranoia and arguably absent in non-human species¹¹⁴) might 372 represent an instantiation of this ability for inferential causal reasoning, albeit one that is specific to the social domain¹¹⁵. The question of what selective pressures are most likely to have favoured the 373 374 human-specific propensity to seek diagnostic causal explanations for phenomena humans is hotly 375 debated (see^{115,116}) and a full discussion is beyond the scope of this article. Specifically, it remains an 376 open question whether the human tendency to seek and draw causal inferences evolved in response to 377 social selection pressures, or whether this is more likely to have evolved in response to ecological 378 selection pressures, being subsequently co-opted and used in the social domain.

379

380 Box 3. Error-management theory

Error management theory¹¹⁷ also conceptualised in evolutionary medicine as the 'smoke detector 381 382 principle'⁵³ states that the existence of asymmetric error costs can favour the evolution of strategies 383 that err on the side of caution, thereby protecting individuals from catastrophic errors, and may be 384 presented as cognitive biases – that is, psychological mechanisms that result in inaccurate perceptions of the true environment but that can shape behaviour in on-average beneficial ways (see^{118–121} for 385 386 discussion). For example, it may be better to mistake a stick for a snake, than a snake for a stick, 387 because the latter mistake is more likely to be fatal. False alarms of this sort are abundant in nature, in 388 humans and non-human species^{37,52}. Crucially, selection is not expected to produce perfectly optimal 389 behaviour under all circumstances but rather to produce strategies that are on average successful over 390 the lifetime and within a population. From an evolutionary perspective, many behavioural 'mistakes' 391 (mistaking sticks for snakes) would be permitted under a broadly adaptive strategy of 'all snake392 shaped things should be initially treated as if they could be snakes'. The strength of such biases 393 (whether behavioural or cognitive) should therefore reflect the asymmetry in error costs: the greater 394 the risk that one error type will produce a catastrophic outcome in comparison to the other, the more 395 likely individuals are to be biased towards making the least costly of the error types. Nevertheless, it 396 is worth noting a shortcoming in the typical application of error management theory to paranoia: in 397 social groups, the asymmetric costs in terms of misperceiving social motivations may depend on 398 context⁵². The costs of wrongly treating someone as trustworthy who actually wants to do you harm 399 may be severe. However, the costs of wrongly treating a coalition member as untrustworthy may also be severe due to the fact non-cooperation often results in reciprocal defection¹²², punishment^{123,124}, or 400 401 exclusion^{125,126}. Indeed, mistakenly treating others as if they might harm you can jeopardize the future 402 of potentially mutually-beneficial partnerships, to the extent that the costs associated with such errors 403 have been posited as the basis for the extraordinarily high levels of human trust and cooperation in 404 seemingly anonymous, one-shot interactions (when the potential for cheating and being exploited is rife)¹²⁷ (but see¹²⁸). So, while it may be adaptive to consistently err on the side of misperceiving a 405 406 snake for a stick – as in the traditional formulation of error management theory – the costs are highly 407 asymmetric in comparison to human threat examples in large part because you cannot form a coalition 408 with a snake or incorrectly reject it as an ally. Importantly, the exact distribution of cost asymmetry 409 that drives selection in these situations is an empirical question and it is possible that the costs of 410 under-perceiving hostile intent in others is still on overage higher than the costs of over-perceiving 411 hostile intent in allies. However, the fact that the latter is well-established as having costs in human 412 social groups suggests that cost asymmetry will not mirror contexts that are most commonly cited as 413 selective pressures that drive the evolution of cognitive biases (sticks, snakes etc).

414

415 Box 4. Measuring paranoia in experiments involving genuine social interactions

416 Paranoia by definition affects how we form and update impressions of others in social interactions. It 417 is therefore instructive to attempt to measure paranoia in settings where participants experience 418 genuine social interactions with others. Game theory tasks – typically used in experimental and 419 behavioural economics - provide many paradigmatic examples of stylized social interactions that can 420 be used to infer or measure social behaviour and preferences and these tasks are now being used to great effect to better understand how social cognition and behaviour vary in paranoia^{69,129–132}. Many 421 422 game theoretic tasks operationalise pro-social behaviour as the willingness to forego financial 423 earnings in the task in order to benefit the partner(s) in the interaction. Games can be one-shot or 424 repeated, occur among pairs or groups of individuals and allow for various forms of social behaviour, 425 including cooperation and punishment. In particular, many game theoretic tasks allow us to measure 426 paranoid attributions since the motives underpinning the decisions to cooperate or not in these tasks are often murky. Consider, for example, the Dictator Game¹³³. In this two-player game, one person 427 428 (the 'dictator') is given a sum of money and can choose whether to send some to the partner (the

- 429 'receiver') or to keep all the money for themselves. The receiver has no active role in this game and
- 430 must accept whatever share the dictator offers. Importantly, the motives underpinning a dictator's
- 431 decision to keep all the money are ambiguous. One might infer that the dictator is motivated by greed
- 432 (or self-interest). Alternatively, one might also infer that the dictator is motivated by a desire to deny
- the receiver any money (i.e. intent to harm). Inferring harmful intent in such an interaction is a
- 434 reliable proxy for paranoid thinking and, in a series of studies using participants from the general
- population^{69,70,131}, it has been shown that people who have higher tendency for paranoid thinking
- 436 make stronger harmful intent attributions in these tasks. The degree to which individuals attribute
- 437 harmful intent to others in turn predicts their willingness to punish their interaction partners¹³².
- 438

- 439 Acknowledgements
- 440 NR is funded by a Royal Society University Research Fellowship; VB is supported by a Wellcome
- 441 Trust Seed Award in Science [200589/Z/16/Z]. Thanks to Louise Barrett and Willem Frankenhuis for
- 442 helpful comments on an earlier draft. The funders had no role in study design, data collection and
- 443 analysis, decision to publish, or preparation of the manuscript
- 444
- 445
- 446

447 References

- Dunbar, RIM & Shultz, S. Why are there so many explanations for primate brain
 evolution? *Philos. Trans. R. Soc. B Biol. Sci.* **372**, 20160244 (2017).
- 450 2. Holekamp, KE & Benson-Amram, S. The evolution of intelligence in mammalian
- 451 carnivores. *Interface Focus* **7**, 20160108 (2017).
- 452 3. Emery, NJ., Seed, AM., von Bayern, AMP & Clayton, NS. Cognitive adaptations of social
- 453 bonding in birds. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **362**, 489–505 (2007).
- 454 4. Holekamp, KE., Dantzer, B., Stricker, G., Yoshida, KCS & Benson-Amram, S. Brains,
- 455 brawn and sociality: a hyaena's tale. *Anim. Behav.* **103**, 237–248 (2015).
- 456 5. De Waal, FBM. Chimpanzee Politics. (2007).
- 457 6. Clayton, NS & Emery, NJ. The social life of corvids. *Curr. Biol.* **17**, R652–R656 (2007).
- 458 7. Paz-y-Mino, G., Bond, AB., Kamil, AC & Balda, RP. Pinyon jays use transitive inference
- to predict social dominance. *Nature* **430**, 778–781 (2004).
- 460 8. Bergman, TJ., Beehner, JC., Cheney, DL & Seyfarth, RM. Hierarchical classification by
- 461 rank and kinship in baboons. *Science* **302**, 1234–1236 (2003).
- 462 9. Krupenye, C., Kano, F., Hirata, S., Call, J. & Tomasello, M. Great apes anticipate that
- 463 other individuals will act according to false beliefs. *Science* **354**, 110–114 (2016).
- 464 10. Clayton, NS. Social cognition by food caching corvids: the western scrub-jay as a
- 465 natural psychologist. *Philos. Trans. R. Soc. B Biol. Sci.* **362,** 507-522 (2007).
- 466 11. Green, MJ & Phillips, ML. Social threat perception and the evolution of paranoia.
- 467 *Neurosci. Biobehav. Rev.* **28**, 333–342 (2004).
- 468 12. Veras, AB. et al. Paranoid delusional disorder follows social anxiety disorder in a long-
- term case series: evolutionary perspective. J. Nerv. Ment. Dis. **203**, 477–479 (2015).

- 470 13. Freeman, D. & Garety, PA. Comments on the content of persecutory delusions: Does
- 471 the definition need clarification? *Br. J. Clin. Psychol.* **39**, 407–414 (2000).
- 472 14. Freeman, PD. Persecutory delusions: a cognitive perspective on understanding and
- 473 treatment. *Lancet Psychiatry* **3**, 685–692 (2016).
- 474 15. Jack, AH. & Egan, V. Childhood Bullying, Paranoid Thinking and the Misappraisal of
- 475 Social Threat: Trouble at School. *School Ment. Health* **10**, 26–34 (2017).
- 476 16. Bebbington, PE. *et al.* The structure of paranoia in the general population. *Br. J.*
- 477 *Psychiatry* **202**, 419–427 (2013).
- 478 17. Bell, V. & O'Driscoll, C. The network structure of paranoia in the general population.
- 479 Soc. Psychiatry Psychiatr. Epidemiol. **53**, 737–744 (2018).
- 480 18. Elahi, A., Algorta, GP., Varese, F., McIntyre, JC & Bentall, RP. Do paranoid delusions
- 481 exist on a continuum with subclinical paranoia? A multi-method taxometric study.
- 482 Schizophr. Res. **190**, 77–81 (2017).
- 483 19. van Os, J., Linscott, RJ., Myin-Germeys, I., Delespaul, P. & Krabbendam, L. A systematic
- 484 review and meta-analysis of the psychosis continuum: evidence for a psychosis
- 485 proneness–persistence–impairment model of psychotic disorder. *Psychol. Med.* **39**,
- 486 179–195 (2009).
- 487 20. Taylor, MJ., Freeman, D. & Ronald, A. Dimensional psychotic experiences in
- 488 adolescence: Evidence from a taxometric study of a community-based sample.
- 489 *Psychiatry Res.* **241**, 35–42 (2016).
- 490 21. David, AS. Why we need more debate on whether psychotic symptoms lie on a
- 491 continuum with normality. *Psychol. Med.* **40**, 1935–1942 (2010).
- 492 22. Freeman, D. *et al.* Concomitants of paranoia in the general population. *Psychol. Med.*
- **493 41**, 923–936 (2011).

Startup, H., Freeman, D. & Garety, PA. Persecutory delusions and catastrophic worry in
 psychosis: Developing the understanding of delusion distress and persistence. *Behav.*

496 *Res. Ther.* **45**, 523–537 (2007).

- 497 24. Kahn-Greene, ET., Killgore, DB., Kamimori, GH., Balkin, TJ. & Killgore, WDS. The effects
- 498 of sleep deprivation on symptoms of psychopathology in healthy adults. *Sleep Med.* 8,
 499 215–221 (2007).
- 500 25. Catone, G., Marwaha, S., Kuipers, E. & Lennox, B. Bullying victimisation and risk of
 501 psychotic phenomena: analyses of British national survey data. *Lancet Psychiatry* 2,
 502 618–624 (2015).
- 503 26. Bird, JC., Waite, F., Rowsell, E., Fergusson, EC. & Freeman, D. Cognitive, affective, and
- social factors maintaining paranoia in adolescents with mental health problems: A
 longitudinal study. *Psychiatry Res.* 257, 34–39 (2017).
- 506 27. Bentall, RP., Wickham, S., Shevlin, M. & Varese, F. Do Specific Early-Life Adversities
- 507 Lead to Specific Symptoms of Psychosis? A Study from the 2007 The Adult Psychiatric
- 508 Morbidity Survey. *Schizophr. Bull.* **38**, 734–740 (2012).
- 509 28. McLean, BF., Mattiske, JK. & Balzan, RP. Association of the Jumping to Conclusions and
- 510 Evidence Integration Biases With Delusions in Psychosis: A Detailed Meta-analysis.
- 511 Schizophr. Bull. **43**, 344–354 (2017).
- 512 29. Buchy, L., Woodward, T. & Liotti, M. A cognitive bias against disconfirmatory evidence
- 513 (BADE) is associated with schizotypy. *Schizophr. Res.* **90**, 334–337 (2007).
- 514 30. Elliott, B., Joyce, E. & Shorvon, S. Delusions, illusions and hallucinations in epilepsy: 2.
- 515 Complex phenomena and psychosis. *Epilepsy Res.* **85**, 172–186 (2009).
- 516 31. Fujii, D. & Ahmed, I. Characteristics of Psychotic Disorder Due to Traumatic Brain
- 517 Injury. J. Neuropsychiatry Clin. Neurosci. **14**, 130–140 (2002).

- 518 32. Koponen, S. et al. Axis I and II Psychiatric Disorders After Traumatic Brain Injury: A 30-
- 519 Year Follow-Up Study. *Am. J. Psychiatry* **159**, 1315–1321 (2002).
- 520 33. Van Assche, L. *et al.* The Neuropsychological Profile and Phenomenology of Late Onset
- 521 Psychosis: A Cross-sectional Study on the Differential Diagnosis of Very-Late-Onset
- 522 Schizophrenia-Like Psychosis, Dementia with Lewy Bodies and Alzheimer's Type
- 523 Dementia with Psychosis. Arch. Clin. Neuropsychol. **10**, 229 (2018).
- 524 34. Bersani, G. & Prevete, E. Novel psychoactive substances (NPS) use in severe mental
- 525 illness (SMI) patients: Potential changes in the phenomenology of psychiatric diseases.
- 526 *Hum. Psychopharmacol. Clin. Exp.* **32**, e2591 (2017).
- 527 35. McKetin, R., Baker, AL., Dawe, S., Voce, A. & Lubman, DI. Differences in the symptom
- 528 profile of methamphetamine-related psychosis and primary psychotic disorders.
- 529 *Psychiatry Res.* **251**, 349–354 (2017).
- 530 36. Quinn, CA., Wilson, H., Cockshaw, W., Barkus, E. & Hides, L. Development and
- 531 validation of the cannabis experiences questionnaire Intoxication effects checklist
- 532 (CEQ-I) short form. *Schizophr. Res.* **189**, 91–96 (2017).
- 533 37. Nesse, RM. Evolutionary Psychology and Mental Health. (John Wiley & Sons, Inc.,
- 534 2015). doi:10.1002/9781119125563.evpsych243
- 535 38. Boyer, P., Firat, R. & van Leeuwen, F. Safety, Threat, and Stress in Intergroup Relations.
- 536 *Perspect. Psychol. Sci.* **10**, 434–450 (2015).
- 537 39. Oliver, JE. & Wood, TJ. Conspiracy Theories and the Paranoid Style(s) of Mass Opinion.
- 538 Am. J. Polit. Sci. 58, 952–966 (2014).
- 539 40. van Prooijen, JW. & van Vugt, M. Conspiracy Theories: Evolved Functions and
- 540 Psychological Mechanisms. *Perspect. Psychol. Sci.* 1745691618774270 (2018).
- 541 doi:10.1177/1745691618774270

- 542 41. Douglas, KM., Sutton, RM. & Cichocka, A. The Psychology of Conspiracy Theories. *Curr.*
- 543 Dir. Psychol. Sci. 26, 538–542 (2017).
- 42. Harper, DJ. Histories of suspicion in a time of conspiracy: a reflection on Aubrey Lewis's
 history of paranoia. *Hist. Hum. Sci.* **7**, 89–109 (1994).
- 43. Andreasen, NC. SAPS Scale for the Assessment of Positive Symptoms. (University of
 Iowa, 1984).
- 548 44. Oyebode, F. Sims' Symptoms in the Mind. (Saunders Elsevier, 2008).
- 549 45. Cameron, N. The Paranoid Pseudo-Community Revisited. *Am. J. Sociol.* 65, 52–58
 550 (1959).
- 46. Kim, KI. *et al.* Schizophrenic Delusions Among Koreans, Korean-Chinese and Chinese: a
- 552 Transcultural Study. *Int. J. Soc. Psychiatry* **39**, 190–199 (1993).
- 553 47. Stompe, T. *et al.* Comparison of Delusions among Schizophrenics in Austria and in
 554 Pakistan. *Psychopathology* **32**, 225–234 (1999).
- 555 48. Green, C. *et al.* Content and affect in persecutory delusions. *Br. J. Clin. Psychol.* 45,
 556 561–577 (2010).
- 557 49. Boissy, A. Fear and Fearfulness in Animals. *Q. Rev. Biol.* **70**, 165–191 (1995).
- 558 50. Smith, BR. & Blumstein, DT. Fitness consequences of personality: a meta-analysis.
- 559 *Behav. Ecol.* **19**, 448–455 (2008).
- 560 51. Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: a behavioural
- 561 ecology perspective. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **367**, 2762–2772 (2012).
- 562 52. Haselton, MG. & Nettle, D. The Paranoid Optimist: An Integrative Evolutionary Model
- 563 of Cognitive Biases. *Personal. Soc. Psychol. Rev.* **10**, 47–66 (2006).
- 564 53. Nesse, RM. The Smoke Detector Principle. Ann. N. Y. Acad. Sci. **935**, 75–85 (2001).

- 565 54. Brosnan, SF., Tone, EB. & Williams, L. The Evolution of Social Anxiety. in *The Evolution*566 of Psychopathology 93–116 (Springer International Publishing, 2017). doi:10.1007/978567 3-319-60576-0 4
- 55. Miloyan, B., Bulley, A. & Suddendorf, T. Episodic foresight and anxiety: Proximate and
 ultimate perspectives. *Br. J. Clin. Psychol.* 55, 4–22 (2016).
- 570 56. Miloyan, B., Bulley, A. & Suddendorf, T. Anxiety: Here and Beyond. *Emot. Rev.* 10,
 571 175407391773857 (2018).
- 572 57. Rodebaugh, TL., Klein, SR., Yarkoni, T. & Langer, JK. Measuring social anxiety related
- 573 interpersonal constraint with the flexible iterated prisoner's dilemma. J. Anxiety
- 574 Disord. 25, 427–436 (2011).
- 575 58. Rodebaugh, TL. *et al.* The behavioral economics of social anxiety disorder reveal a
- 576 robust effect for interpersonal traits. *Behav. Res. Ther.* **95**, 139–147 (2017).
- 577 59. Tone, EB. *et al.* Social Anxiety and Social Behavior: A Test of Predictions From an
- 578 Evolutionary Model. *Clin. Psychol. Sci.* 2167702618794923 (2018).
- 579 doi:10.1177/2167702618794923
- 580 60. Harcourt, AH. & de Waal, F. *Coalitions and Alliances in Humans and Other Animals*.
- 581 (Oxford University Press, 1992).
- 582 61. Bissonnette, A. *et al.* Coalitions in theory and reality: a review of pertinent variables
 583 and processes. *Behaviour* 152, 1–56 (2015).
- 584 62. Wrangham, RW. & Glowacki, L. Intergroup Aggression in Chimpanzees and War in
- 585 Nomadic Hunter-Gatherers. *Hum. Nat.* **23**, 5–29 (2012).
- 586 63. Gershman, B. Witchcraft beliefs and the erosion of social capital: Evidence from Sub-
- 587 Saharan Africa and beyond. *J. Dev. Econ.* **120**, 182–208 (2016).

- 588 64. Mace, R. *et al.* Population structured by witchcraft beliefs. *Nat. Hum. Behav.* 2, 39–44
 589 (2018).
- 590 65. Vaillancourt, T. Do human females use indirect aggression as an intrasexual
- 591 competition strategy? *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **368**, 20130080–20130080
- 592 (2013).
- 593 66. Hess, NH. & Hagen, EH. Sex differences in indirect aggression: Psychological evidence
 594 from young adults. *Evol. Hum. Behav.* 27, 231–245 (2006).
- 595 67. Tooby, J. & Cosmides, L. *Groups in Mind: The Coalitional Roots of War and Morality*.
- 596 (Macmillan Education UK, 2010). doi:10.1007/978-1-137-05001-4_8
- 597 68. Pietraszewski, D. How the mind sees coalitional and group conflict: the evolutionary
- 598 invariances of n -person conflict dynamics. *Evol. Hum. Behav.* **37**, 470–480 (2016).
- 599 69. Saalfeld, V., Ramadan, Z., Bell, V. & Raihani, NJ. Experimentally induced social threat
 600 increases paranoid thinking. *R. Soc. Open Sci.* 5, 180569 (2018).
- 601 70. Greenburgh, A., Bell, V. & Raihani, NJ. PsyArXiv Preprints | Paranoia and conspiracy:
- 602 group cohesion increases harmful intent attribution in the Trust Game. *psyarxiv.com*
- 603 71. Tajfel, H. & Turner, J. An integrative theory of intergroup conflict. in *The social*
- 604 *Psychology of intergroup relations* (eds. Austin, W. & Worchel, S.) 33–48 (1979).
- Liberman, Z., Woodward, AL. & Kinzler, KD. The Origins of Social Categorization. *Trends Cogn. Sci.* 21, 556–568 (2017).
- 607 73. Dunham, Y. Mere Membership. *Trends Cogn. Sci.* 22, 780–793 (2018).
- 608 74. Otten, S. The Minimal Group Paradigm and its maximal impact in research on social
 609 categorization. *Curr. Opin. Psychol.* **11**, 85–89 (2016).
- 610 75. Wood, J. & Dennard, S. Gang Membership: Links to Violence Exposure, Paranoia, PTSD,
- 611 Anxiety, and Forced Control of Behavior in Prison. *Psychiatry* **80**, 30–41 (2017).

- 612 76. Pizarro, J., Silver, RC. & Prause, J. Physical and Mental Health Costs of Traumatic War
- 613 Experiences Among Civil War Veterans. Arch. Gen. Psychiatry 63, 193–200 (2006).
- 614 77. Kaštelan, A. *et al.* Psychotic Symptoms in Combat-Related Post-Traumatic Stress
- 615 Disorder. *Mil. Med.* **172**, 273–277 (2007).
- 616 78. Ember, CR., Adem, TA. & Skoggard, I. Risk, Uncertainty, and Violence in Eastern Africa.
 617 *Hum. Nat.* 24, 33–58 (2012).
- 618 79. Anderson, F. & Freeman, D. Socioeconomic Status and Paranoia. *J. Nerv. Ment. Dis.*619 **201**, 698–702 (2013).
- 620 80. Wrangham, RW. Evolution of coalitionary killing. *Am. J. Phys. Anthropol.* **110**, 1–30
- 621 (1999).
- 81. Johnson, DDP. & MacKay, NJ. Fight the power: Lanchester's laws of combat in human
 evolution. *Evol. Hum. Behav.* 36, 152–163 (2015).
- 624 82. Gayer-Anderson, C. & Morgan, C. Social networks, support and early psychosis: a

625 systematic review. *Epidemiol. Psychiatr. Sci.* **22**, 131–146 (2013).

- 626 83. Wickham, S., Taylor, P., Shevlin, M. & Bentall, RP. The Impact of Social Deprivation on
- 627 Paranoia, Hallucinations, Mania and Depression: The Role of Discrimination Social

628 Support, Stress and Trust. *PLoS ONE* **9**, e105140 (2014).

- 629 84. Shaikh, M. et al. Perceived ethnic discrimination and persecutory paranoia in
- 630 individuals at ultra-high risk for psychosis. *Psychiatry Res.* **241**, 309–314 (2016).
- 631 85. Bosqui, TJ., Hoy, K. & Shannon, C. A systematic review and meta-analysis of the ethnic
- density effect in psychotic disorders. *Soc. Psychiatry Psychiatr. Epidemiol.* 49, 519–529
 (2014).
- 634 86. Kessler, RC. *et al.* Age of onset of mental disorders: a review of recent literature. *Curr.*635 *Opin. Psychiatry* **20**, 359–364 (2007).

- 636 87. Geary, D. Evolution and development of boys' social behavior. *Dev. Rev.* 23, 444–470
 637 (2003).
- 638 88. Glowacki, L. *et al.* Formation of raiding parties for intergroup violence is mediated by
 639 social network structure. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 12114–12119 (2016).
- 640 89. Del Giudice, M., Angeleri, R. & Manera, V. The juvenile transition: A developmental
- 641 switch point in human life history. *Dev. Rev.* **29**, 1–31 (2009).
- 642 90. Cook, CR., Williams, KR., Guerra, NG., Kim, TE. & Sadek, S. Predictors of bullying and
- 643 victimization in childhood and adolescence: A meta-analytic investigation. Sch. Psychol.
- 644 *Q.* **25**, 65–83 (2010).
- 645 91. Volk, AA., Camilleri, JA., Dane, AV. & Marini, ZA. Is Adolescent Bullying an Evolutionary
 646 Adaptation? *Aggress. Behav.* 38, 222–238 (2012).
- 647 92. Blakemore, SJ. Avoiding Social Risk in Adolescence. *Curr. Dir. Psychol. Sci.*

648 096372141773814 (2018). doi:10.1177/0963721417738144

- 649 93. Spielberg, JM., Olino, TM., Forbes, EE. & Dahl, RE. Exciting fear in adolescence: Does
- 650 pubertal development alter threat processing? *Dev. Cogn. Neurosci.* **8**, 86–95 (2014).
- 651 94. Silk, JS. *et al.* Increased neural response to peer rejection associated with adolescent
- depression and pubertal development. *Soc. Cogn. Affect. Neurosci.* 9, 1798–1807
- 653 (2014).
- 95. Paus, T., Keshavan, M. & Giedd, JN. Why do many psychiatric disorders emerge during
 adolescence? *Nat. Rev. Neurosci.* 9, 947–957 (2008).
- 656 96. Fawcett, TW. & Frankenhuis, WE. Adaptive explanations for sensitive windows in
- 657 development. *Front. Zool.* **12 Suppl 1**, S3 (2015).
- 658 97. Frankenhuis, WE. & de Weerth, C. Does Early-Life Exposure to Stress Shape or Impair
- 659 Cognition? *Curr. Dir. Psychol. Sci.* **22**, 407–412 (2013).

- 660 98. Frankenhuis, WE., Nettle, D. & McNamara, JM. Echoes of Early Life: Recent Insights
- 661 From Mathematical Modeling. *Child Dev.* **6**, 769–15 (2018).
- 662 99. English, S., Browning, LE. & Raihani, NJ. Developmental plasticity and social
- specialization in cooperative societies. *Anim. Behav.* **106**, 37–42 (2015).
- 100. Blakemore, SJ. Development of the social brain during adolescence. *Q. J. Exp. Psychol.*
- 665 **61**, 40–49 (2008).
- 666 101. Fuhrmann, D., Knoll, LJ. & Blakemore, SJ. Adolescence as a Sensitive Period of Brain
 667 Development. *Trends Cogn. Sci.* 19, 558–566 (2015).
- 668 102. Panchanathan, K. & Frankenhuis, WE. The evolution of sensitive periods in a model of
- incremental development. Proc. R. Soc. Lond. B Biol. Sci. 283, 20152439 (2016).
- 670 103. Frankenhuis, WE. & Panchanathan, K. Individual Differences in Developmental
- 671 Plasticity May Result From Stochastic Sampling. *Perspect. Psychol. Sci.* 6, 336–347
 672 (2011).
- 104. Wakefield, JC. The concept of Mental Disorder. *calstatela.edu* **42**, 373–388 (1992).
- 674 105. Wakefield, JC. Evolutionary versus prototype analyses of the concept of disorder. J.
- 675 *Abnorm. Psychol.* **108**, 374–399 (1999).
- 106. Bateson, M., Brilot, B. & Nettle, D. Anxiety: An Evolutionary Approach. Can. J.
- 677 *Psychiatry* **56**, 707–715 (2011).
- 678 107. Nettle, D. & Bateson, M. The Evolutionary Origins of Mood and Its Disorders. *Curr. Biol.*
- 679 **22**, R712–R721 (2012).
- 680 108. Campbell, MM. et al. The content of delusions in a sample of South African Xhosa
- 681 people with schizophrenia. *BMC Psychiatry* **17**, 41 (2017).
- 109. Tinbergen, N. On aims and methods of Ethology. *Ethology* **20**, 410–433 (1963).
- 683 110. Mayr, E. Cause and Effect in Biology. *Science* **134**, 1501–1506 (1961).

684	111. Mayr, E.	Proximate and	ultimate causations.	Biol. Philos. 8,	, 93–94 (1993)).
-----	---------------	---------------	----------------------	------------------	----------------	----

- 685 112. Scott-Phillips, TC., Dickins, TE. & West, SA. Evolutionary Theory and the Ultimate-
- 686 Proximate Distinction in the Human Behavioral Sciences. *Perspect. Psychol. Sci.* 6, 38–
 687 47 (2011).
- 688 113. Penn, DC. & Povinelli, DJ. Causal cognition in human and nonhuman animals: A
- 689 comparative, critical review. Annu. Rev. Psychol. 58, 97–118 (2007).
- 690 114. Penn, DC. & Povinelli, DJ. On the lack of evidence that non-human animals possess
- 691 anything remotely resembling a 'theory of mind'. *Philos. Trans. R. Soc. Lond. B Biol. Sci.*
- **362**, 731–744 (2007).
- 693 115. Penn, DC., Holyoak, KJ. & Povinelli, DJ. Darwin's mistake: Explaining the discontinuity
- between human and nonhuman minds. *Behav. Brain Sci.* **31**, 109–130 (2008).
- 695 116. Stuart-Fox, M. The origins of causal cognition in early hominins. *Biol. Philos.* **30**, 247–
 696 266 (2014).
- 697 117. Johnson, DDP., Blumstein, DT., Fowler, JH. & Haselton, MG. The evolution of error:
- 698 error management, cognitive constraints, and adaptive decision-making biases. *Trends*699 *Ecol. Evol.* 28, 474–481 (2013).
- 118. McKay, R. & Efferson, C. The subtleties of error management. *Evol. Hum. Behav.* 31,
 309–319 (2010).
- 119. McNamara, JM., Trimmer, PC., Eriksson, A., Marshall, JAR. & Houston, Al.
- 703 Environmental variability can select for optimism or pessimism. *Ecol. Lett.* 14, 58–62
 704 (2011).
- 120. Marshall, JAR., Trimmer, PC., Houston, AI. & McNamara, JM. On evolutionary
- explanations of cognitive biases. *Trends Ecol. Evol.* **28**, 469–473 (2013).

121. Trimmer, PC. Optimistic and realistic perspectives on cognitive biases. *Curr. Opin.*

708 Behav. Sci. **12**, 37–43 (2016).

709 122. McCullough, ME., Kurzban, R. & Tabak, BA. Cognitive systems for revenge and

710 forgiveness. *Behav. Brain Sci.* **36**, 1–15 (2013).

- 711 123. Clutton-Brock, TH. & Parker, GA. Punishment in animal societies. *Nature* 373, 209–216
 712 (1995).
- 124. Raihani, NJ., Thornton, A. & Bshary, R. Punishment and cooperation in nature. *Trends Ecol. Evol.* 27, 288–295 (2012).
- 715 125. Robertson, TE., Delton, AW., Klein, SB., Cosmides, L. & Tooby, J. Keeping the benefits of
- 716 group cooperation: domain-specific responses to distinct causes of social exclusion.
- 717 Evol. Hum. Behav. **35**, 472–480 (2014).
- 718 126. Feinberg, M., Willer, R. & Schultz, M. Gossip and Ostracism Promote Cooperation in
 719 Groups. *Psychol. Sci.* 25, 656–664 (2014).
- 127. Delton, AW., Krasnow, M., Cosmides, L. & Tooby, J. Evolution of direct reciprocity
- 721 under uncertainty can explain human generosity in one-shot encounters. *Proc. Natl.*
- 722 Acad. Sci. U. S. A. **108**, 13335–13340 (2011).
- 723 128. Zimmermann, J. & Efferson, C. One-shot reciprocity under error management is
- 724 unbiased and fragile. *Evol. Hum. Behav.* **38**, 39–47 (2017).
- 725 129. Ellett, L., Allen-Crooks, R., Stevens, A. & Wildschut, T. A paradigm for the study of
- paranoia in the general population: The Prisoner's Dilemma Game. *Cogn. Ldots* 27, 53–
 62 (2013).
- 130. Fett, A., Shergill, SS., Joyce, DW., Riedl, A. & Strobel, M. To trust or not to trust: the
- dynamics of social interaction in psychosis. *Brain* **135**, 976–984 (2012).

- 730 131. Raihani, NJ. & Bell, V. Paranoia and the social representation of others: a large-scale
- 731 game theory approach. *Sci. Rep.* **7**, 4544 (2017).
- 732 132. Raihani, NJ. & Bell, V. Conflict and cooperation in paranoia: a large-scale behavioural
- 733 experiment. *Psychol. Med.* **76**, 1–11 (2017).
- 133. Kahneman, D., Knetsch, JL. & Thaler, R. Fairness as a Constraint on Profit Seeking:
- 735 Entitlements in the Market. *Am. Econ. Rev.* **76**, 728–741 (1986).

737 Competing Interests statement

738 The authors declare no competing interests.