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Science and Technology EAWAG-ETH, Zürich, Switzerland, 5 Environmental Change Research Centre,

Department of Geography, University College London, London, United Kingdom

* sarah.roberts2@canada.ca

Abstract

Lake Baikal has been experiencing limnological changes from recent atmospheric warming

since the 1950s, with rising lake water temperatures, reduced ice cover duration and

reduced lake surface-water mixing due to stronger thermal stratification. This study uses

lake sediment cores to reconstruct recent changes (c. past 20 years) in Lake Baikal’s

pelagic diatom communities relative to previous 20th century diatom assemblage records

collected in 1993 and 1994 at the same locations in the lake. Recent changes documented

within the core-top diatom records agree with predictions of diatom responses to warming at

Lake Baikal. Sediments in the south basin of the lake exhibit clear temporal changes, with

the most rapid occurring in the 1990’s with shifts towards higher abundances of the cosmo-

politan Synedra acus and a decline in endemic species, mainly Cyclotella minuta and Ste-

phanodiscus meyerii and to a lesser extent Aulacoseira baicalensis and Aulacoseira

skvortzowii. The north basin, in contrast, shows no evidence of recent diatom response

to lake warming despite marked declines in north basin ice cover in recent decades. This

study also shows no diatom-inferred evidence of eutrophication from deep water sediments.

However, due to the localised impacts seen in areas of Lake Baikal’s shoreline from nutrient

pollution derived from inadequate sewage treatment, urgent action is vital to prevent anthro-

pogenic pollution extending into the open waters.

Introduction

In recent decades, lakes around the world have experienced increased surface water tempera-

tures [1, 2]. The impacts of this warming are numerous but include changes in the vertical

thermal structure of the water column and longer ice-free seasons, together with shifts in

ecosystem structure and function [1, 3–6]. For example, lakes have experienced community

compositional changes such as large-scale shifts in plankton, with increases in taxa (such as

picocyanobacteria) which are better adapted to reduced turbulent mixing [7–12]. These

changes are not restricted to small—medium sized water bodies. Very large lakes, including the
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Laurentian Great Lakes, Lake Tahoe (North America) and Lake Tanganyika (East Africa), have

also experienced shifts in their biological communities and autochthonous primary production

[2, 11–15]. At the same time, lake ecosystems are also sensitive to the impacts of climate warm-

ing on watershed processes, which can lead to alterations of fluvial inputs, including the flux of

nutrients to lakes and the browning of lake waters from increased dissolved organic matter

(DOM) input [9, 10, 16–18]. Such changes can influence autotrophic algal and bacterial com-

munities through changes in nutrient cycling and light availability [19, 20].

Lake Baikal, the world’s oldest, deepest, and most voluminous lake, is experiencing impacts

from climate warming. Atmospheric temperatures in the region around Lake Baikal in south-

ern Siberia have increased significantly in recent decades, with mean annual surface air tem-

peratures in the nearby city of Irkutsk (Fig 1) rising from -5.8˚C to 0.3˚C over the last 20 years

[21]. Atmospheric temperature data from a climate station in Nizhneangarsk (Fig 1), in the

north basin catchment area of Baikal, similarly shows a less pronounced warming trend from

-1.27˚C to 0.48˚C between 1952 and 2013 CE (mean annual temperatures; http://climexp.

knmi.nl/). The scale of recent atmospheric warming, regionally, is unprecedented for the past

1000 years [22]. Concordant with recent warming, summer surface lake water temperatures

have increased by over 2˚C over the past 60 years [9, 23, 24], alongside seasonal changes to ice

cover dynamics [25, 26]. Shorter ice cover and warmer water temperatures have led to marked

increases in chlorophyll-a concentrations and summer plankton biomass in the south basin of

Lake Baikal over the past 60 years [9, 23, 24, 27–29].

Further 21st Century warming is predicted to trigger additional plankton community

change with a shift from the production of endemic, heavily silicified diatoms towards lighter,

littoral diatoms and autotrophic picoplankton (APP) [23, 30–33]. For example, [33] predicted

that future reductions in ice duration associated with regional warming, would result in

enhanced transport of diatoms such as Stephanodiscus meyerii and Synedra acus to pelagic

regions, concomitant with the decline in endemic pelagic species such as Aulacoseira baicalen-
sis and Cyclotella minuta. These changes may be enhanced by elevated spring run-off from

increased precipitation [34], increasing silicon and other nutrient delivery to the lake, further

encouraging the growth of species such as Synedra acus [33, 35], while also altering carbon

cycling in the lake due to enhanced delivery of dissolved organic carbon (DOC) and particu-

late organic carbon (POC) [17, 23].

To date, these predictions at Lake Baikal have largely been made from diatom records col-

lected in the early 1990’s [31, 33]. More recent diatom changes are examined here, as Lake Bai-

kal has experienced limnological and biological changes with rising lake water temperatures

and reductions in ice cover duration [9, 24, 25, 27–29]. Furthermore, it has become increas-

ingly apparent that over the past decade cultural eutrophication from shoreline settlements

has also impacted littoral regions of the lake [36, 37], giving rise to the potential for multiple

stressors impacting its ecological resilience. In this paper, we test these predictions and assess

whether the diatom flora in Lake Baikal has indeed undergone shifts in community composi-

tion in response to the major increases in global and regional atmospheric temperatures over

the past 20 years [34]. In particular we examine whether there has been a transition from a

flora dominated by heavily-silicified endemic species to one that is more cosmopolitan with

lighter, less-silicified species [9, 23, 24, 27, 28, 33].

Methodology

Short cores

Short cores (< 65 cm) were collected in March and August 2013 from 7 coring stations across

the southern and northern basins of Lake Baikal, as well as the Maloe More Strait (Fig 1). No
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permits were required as part of this work. All expeditions on Lake Baikal were organised by

the Institute of Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, Irkutsk,

Russia. No endangered or protected species were put at risk during this project. The codes

used to define the locations of these coring sites across Lake Baikal include south basin (SB),

nearby the Selenga Delta (SD), at the Buguldieka Saddle (BS), Maloe More Strait (MM) and

Fig 1. Map of Lake Baikal showing coring station sites across the south and north basin, and within Maloe More Strait, off the

central basin. [SB: South basin, SD: Selenga Delta, BS: Buguldieka Saddle, MM: Maloe More and NB: North basin].

https://doi.org/10.1371/journal.pone.0208765.g001

Diatom evidence of 20th century ecosystem change in Lake Baikal, Siberia

PLOS ONE | https://doi.org/10.1371/journal.pone.0208765 December 19, 2018 3 / 20

https://doi.org/10.1371/journal.pone.0208765.g001
https://doi.org/10.1371/journal.pone.0208765


north basin (NB), and these have been applied after the original coring site codes. Cores were

collected using a UWITEC corer with PVC-liners (Ø 63 mm), which provided complete and

undisturbed recovery of the sediment/water interface. All coring stations were> 5 km from

the shore with some sites coinciding with previous short cores taken in 1993 and 1994 –see

Table 1 and [31] for details. Several cores were collected at each station. One core was sub-

sampled in the field at a resolution of 0.2 cm and transported to the UK for diatom analyses

and 210Pb radiometric dating, and at least one other core was transferred to the Institute of the

Earth’s Crust (Irkutsk) before being cut, photographed and lithologically described, based on

smear slide inspection. A Bartington MS2E High Resolution Surface Scanning Sensor [38] was

used for non-destructive measurement of magnetic susceptibility (MS), with a resolution of 1

cm and reproducibility of<5%.

Diatom analysis

Surface sediment samples (upper 2 cm) covering at least the past 30 years were analysed for

diatoms, enabling overlap with published diatom records covering the interval prior to this

[31]. These diatom records were combined based on independently derived 210Pb ages of the

sediment samples from the cores collected in 2013 and in 1993/1994 [31]. Sample preparation

followed previous protocols for diatom analysis on Lake Baikal sediment samples with no

chemical treatments in order to minimise valve breakage, especially of lightly silicified diatom

species [31, 39]. To calculate diatom concentrations (104 valves/g dry weight), a known weight

of divinylbenzene microspheres (approximately 1–2 g) was added to the cleaned samples [40].

Subsamples of the suspensions were diluted and settled out onto coverslips and fixed onto

slides with Naphrax on a hotplate at 130˚C. A total of 300 valves were counted at x1000 magni-

fication by using an oil immersion lens and phase contrast under a Zeiss Axioskop 2 plus light

microscope.

Diatom dissolution also plays a role in shaping sedimentary diatom assemblages, because

some species are more heavily silicified (A. baicalensis) than others (S. acus) and consequently

more resistant to dissolution [41]. Diatom dissolution was estimated by categorising endemic

diatom species; Aulacoseira baicalensis (Meyer) Simonsen, Aulacoseira skvortzowii (Edlund,

Stoermer and Taylor), Cyclotella baicalensis (Meyer) Skv., and Cyclotella minuta (Skv.) Anti-

pova, into three stages of valve preservation. A diatom dissolution index (DDI) [42] was then

calculated to quantify the extent of diatom preservation in every sample [43]. A DDI value of 0

indicates that all diatom valves are affected by dissolution, while a DDI value of 1 indicates that

all the diatom valves are in a pristine condition. Indices have been combined to express the

index as dissolution per sample. There is possibly a third endemic Cyclotella species, Cyclotella
ornata [39] of intermediate size between C. baicalensis and C. minuta. However, [44] suggest

Table 1. Location of both the sediment cores collected in March and August 2013 and the published diatom records at nearby coring sites in Lake Baikal collected

in 1993/1994 [31]. Water depths at each coring site are shown, along with the location which they were collected from. [SB: South basin, BS: Buguldieka Saddle; SD: Sel-

enga Delta, MM: Maloe More and NB: North basin].

Sediment cores collected in March and August 2013 Sediment cores published in [31] Basin N E Water depth (m)

BAIK13-4C_SB (-) South 51˚41’33.8” 104˚18’00.1” 1350

BAIK13-7A_SB BAIK38_SB South 51˚34’06” 104˚31’43” 1080

BAIK13-10A_SD (-) South/Selenga 52˚11’07” 106˚05’38” 66

BAIK13-11C_BS BAIK19_BS South/Selenga 52˚27’00” 106˚07’32” 345

BAIK13-14C_MM (-) Maloe More Strait 53˚21’03” 107˚29’88” 200

BAIK13-18A_NB BAIK29_NB North 54˚47’31.4” 109˚14’15.3” 890

BAIK13-19B_NB (-) North 55˚38’57.8” 109˚4657.7” 460

https://doi.org/10.1371/journal.pone.0208765.t001
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that it most likely represents smaller valves of C. baicalensis, or occasionally C. minuta that has

undergone size regeneration. Either way, in sedimentary material the centre areas of these

valves are often indistinguishable from the central areas of C. minuta valves after breakage and

dissolution. Here we group potential C. cf. ornata valves in with C. minuta (C. minuta agg.),

which also makes comparisons with earlier studies, e.g. [31] consistent.

Chronology

Dried sediments from cores BAIK13-4F_SB, BAIK13-7A_SB, BAIK13-10A_SD, BAIK13-

11C_BS, BAIK13-14C_MM, BAIK13-18A_NB and BAIK13-19B_NB (Fig 1) were analysed for
210Pb, 226Ra, 137Cs and 241Am, by non-destructive direct gamma spectrometry [45] at the UCL

Environmental Radiometric Facility, using an ORTEC HPGe GWL series well-type coaxial

low background intrinsic germanium detector. Age-depth models were constructed using

polynomial regressions fitted to the 210Pb data with additional degrees added until no improve-

ment occurred in the fitted model under an ANOVA test at the 95% confidence interval.

Statistical analysis

To constrain how diatom assemblages in the core-tops (representing material over the past c.

20 years) have differed through the 19th and 20th Centuries, squared chord distance (SCD) dis-

similarity scores were determined using R [46] for cores BAIK13-7A_SB, BAIK13-11C_BS

and BAIK13-18A_NB. These cores overlap with previously published cores BAIK38_SB,

BAIK19_BS and BAIK29_NB respectively (Table 1), and the results can be used as a baseline

to evaluate whether diatom assemblages have significantly altered since the 1990’s [31]. Rang-

ing between 0 and 5, a SCD score of 0 indicates that the diatom assemblages in two samples

are identical, whereas a score of 5 indicates samples are completely different in their diatom

assemblage composition. To examine the timing of significant changes within the diatom data-

sets, breakpoint analysis was carried out on the SCD scores in R using the segmented library

[46, 47]. Breakpoint analyses determines if there is a sharp change in the directionality of the

dataset, by fitting two linear regression models, joined at a breakpoint. The significance of

each breakpoint was also tested.

Temporal changes in the diatom assemblages were further visualised using principal com-

ponents analysis (PCA) of major taxa in all core-top samples collected in 2013 together with

data from the overlapping cores collected in 1993/1994 (Table 1). Following detrended corre-

spondence analysis (DCA), which demonstrated a linear response based on the gradient length

of the first axis, data were reanalysed using PCA with square root transformation of species

abundances using Canoco 4.5 [48].

Results

Core lithology

All cores were dominated by terrigenous material with varying levels of oxidation (the water

column of Lake Baikal is fully oxygenated) (Fig 2). Turbidites were present in cores BAIK13-

4C_SB and BAIK13-18C_NB, but the uppermost turbidites (2.0–5.3 cm in BAIK13-4C_SB;

22.0–49.8 cm in BAIK13-18C_NB) occurred below the samples analysed in this study and are

therefore not discussed further.

210Pb age models

Total 210Pb activity reaches equilibrium with supported 210Pb at a depth of 9 cm (BAIK13-

4F_SB), 4 cm (BAIK13-7A_SB), 13 cm (BAIK13-10A_SD), 10 cm (BAIK13-11C_BS), 7 cm
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Fig 2. Core lithology and magnetic susceptibility profiles for BAIK13-4C_SB, BAIK13-7B_SB, BAIK13-10B_SD,

BAIK13-11A_BS, BAIK13-14B_MM, BAIK13-18C_NB and BAIK13-19A_NB sediment cores. Lithology key: 1—

pelagic mud, 2—turbidite, 3—sandy sediment, 4—diatoms, 5—clay, 6—silt, 7—sand, 8—land plant remains. Right

column: 9—oxidized sediment, 10—Fe/Mn crust, 11—fragments of Fe/Mn crust, 12—O2 reduced sediment.

Boundaries between layers: 13—distinct boundaries between layers, 14—indistinct boundaries between layers. The

lithology for cores BAIK13-4C_SB and BAIK13-7B_SB have previously been published in [49]. [SB: South basin, SD:

Selenga Delta, BS: Buguldieka Saddle, MM: Maloe More Strait and NB: North basin].

https://doi.org/10.1371/journal.pone.0208765.g002
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(BAIK13-14C_MM), 3 cm (BAIK13-18A_NB) and 5.5 cm (BAIK13-19B_NB) (Fig 3). At all

sites, 210Pb dates were calculated using the constant rate of 210Pb supply (CRS) model [50], and

where possible, dates independently verified using 137Cs and 241Am data. For example, a well

resolved 137Cs activity peak at 5.5–5.7 cm agrees with 210Pb dated sediments at BAIK13-

4F_SB. At BAIK13-10A_SD, 137Cs activity shows a broad peak at 6.7–8.5 cm, and because
241Am peaks at 8.3 cm, this represents the 1963 CE (common era) peak in radioactive fallout;

the 210Pb date at 1963 CE falls in this range. At BAIK13-11C_BS, 210Pb dating can be con-

firmed with peaks of 137Cs at both 1986 CE and 1963 CE. At BAIK13-14C_MM, high 137Cs

activities in top 4.1cm concur with 210Pb dating that these sediments were deposited since

1963 CE. At BAIK13-18B_NB, the peak in 137Cs activity between 0.7–1.1 cm concurs with

CRS 210Pb dating of 1986 CE being between 0.7–1.1cm, so this peak likely represents Cherno-

byl accident in 1986 CE. At only two sites, BAIK13-7A_SB and BAIK13-19B_NB, were 137Cs

and 241Am activities not able to be used to confirm 210Pb dating. For all sites, the final age-

depth model shows a good fit to the 210Pb dates with an adjusted R2 > 0.99 (Fig 3). Mean

uncertainty in the individual 210Pb dates across all four cores ranges from 2–36 years is:

BAIK13-4F_SB: �x ¼ 8, range = 2–30; BAIK13-7A_SB: �x ¼ 3, range = 2–6, BAIK13-10A_SD:

�x ¼ 7, range = 2–20; BAIK13-11C_BS: �x ¼ 12, range = 2–36; BAIK13-14C_MM: �x ¼ 8,

range = 2–26; BAIK13-18A_NB: �x ¼ 8, range = 2–15; BAIK13-19B_NB: �x ¼ 11, range = 2–24

(Fig 3).

Diatom profiles

South basin sites. In the south basin, at BAIK13-4F_SB (Fig 4) S. acus increased from

7% to 22% abundance over the top 2 cm of the core (2006–2013 CE). Over the same interval

Fig 3. 210Pb age models for BAIK13-4F_SB, BAIK13-7A_SB, BAIK13-10A_SD, BAIK13-11C_BS, BAIK13-

14C_MM, BAIK13-18A_NB and BAIK13-19B_NB sediment cores. In the upper sediments, turbidites are present

between 2.0–5.3 cm in the BAIK13-4F_SB sediment core. [SB: South basin, SD: Selenga Delta, BS: Buguldieka Saddle,

MM: Maloe More and NB: North basin].

https://doi.org/10.1371/journal.pone.0208765.g003
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Fig 4. Stratigraphic plots of core top diatom assemblages are shown for (A) BAIK13-4F_SB, (B) BAIK13-10A_SD, (C) BAIK13-

14C_MM, (D) BAIK13-19B_NB. Diatom concentrations (104 valves/g DW) are shown alongside diatom abundances (species

with> 2% abundance). [SB: South basin; SD: Selenga Delta; MM: Maloe More; NB: North basin].

https://doi.org/10.1371/journal.pone.0208765.g004
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A. baicalensis declined from 26% to 24%, along with A. skvortzowii (decrease from 8% to 5%).

C. minuta agg. varies between 35% to 51% relative abundance and S. meyerii varied between

2% to 5%. Diatom concentrations in the upper sediments ranged between 85.1 to 147.1 x 104

valves/g DW over the last decade.

In the south basin, at site BAIK13-7A_SB (Fig 5) there was a good overlap with the core dia-

tom assemblages from BAIK38_SB in [31] between 0.9–1.9 cm. S. acus relative abundances in

the surface sediment assemblages from BAIK13-7A_SB ranged from 6% to 18%, A. baicalensis
ranged from 25% to 41% relative abundance over the last c. 40 years between 1975–2013 CE,

and Cyclotella minuta agg. ranged between 38% and 24%. Diatom concentrations ranged

between 540.8 and 98.5 x 104 valves/g DW over the last c. 30+ years (1980–2013 CE). Diatom

dissolution index (DDI) values fluctuated between 0.5 and 0.8.

In the south basin, at site BAIK13-10A_SD (Fig 4), in the shallow waters off the coast of

the Selenga Delta, the diatom assemblage diversity (> 2% abundance) was higher than the

core tops in this study, with Stephanodiscus parvus (1–3% abundance), Staurosira construens
var. venter (1–3% abundance), Fragilaria ulna (2–4% abundance), Fragilaria capucina (1–

9% abundance), Achnanthidium minutissimum (1–3% abundance), Staurosirella pinnata
(1–4% abundance) and Cocconeis placentula (1–2% abundance). Over the top 2 cm (2009–

2013 CE), percentage abundances remained relatively consistent for A. baicalensis (range

between 9–17%), A. skvortzowii (ranged between 22–31%), C. minuta agg. (ranged between

13–18%) and S. acus (ranged between 10–17%), while S. meyerii ranged from 13% to 2%

abundance.

At site BAIK13-11C_BS, in the waters of the Buguldieka Saddle opposite the Selenga Delta

(Fig 1), there was a good overlap between 2.4–2.6 cm with the diatom assemblages from

BAIK19_BS in [31] (Fig 5). The upper 2.3 cm in BAIK13-11C_BS showed a decreasing trend

in A. baicalensis to abundances of c. 14% and C. minuta agg. to abundances of c. 20% and

increasing abundances of S. acus to abundances of> 20% over the last c. 20 years (1993–2013

CE). Diatom concentrations showed a decreasing trend towards the surface sediments, from

concentrations of 648.5 x 104 valves/g DW to 241.1 x 104 valves/g DW over the last c. 80 years

(1930–2013 CE). DDI values fluctuated between 0.4 and 0.7.

Maloe More Strait. In the Maloe More Strait at site BAIK13-14C_MM (Fig 4), A. baica-
lensis (range = 13–20%), A. skvortzowii (range = 3–8%), C. minuta agg. (range = 19–31%),

S. acus (range = 9–15%) and Crateriportula inconspicua (range = 4–6%) remained relatively

consistent in abundance over the 2 cm (2002–2013 CE). However, over the same interval

S. meyerii ranged from 22–13% abundance, and diatom concentrations ranged between 78.7

and 486.2 x 104 valves/g DW.

North basin sites. In the centre of the north basin, at site BAIK13-18A_NB (Fig 1) there

was a good overlap between 0.8–1.9 cm with the assemblages from BAIK29_NB in [31] (Fig 5).

Assemblages within the upper 2 cm of BAIK13-18A_NB showed a decreasing trend in A. bai-
calensis (from c. 60% to c. 50%) and S. acus ranged from c. 6% to 1% (Fig 5). C. minuta agg.

ranged in abundance between c. 20% to 30% over the last c. 80 years (1930–2013 CE). DDI val-

ues fluctuated between 0.5 to 0.7 and before the surface sediments, diatom concentrations

showed a decreasing trend, from concentrations of 129.5 to 12.4 x 104 valves/g DW between c.

1876–1992 CE.

In the north of the north basin, at site BAIK13-19B_NB (Fig 4), A. baicalensis and C. minuta
agg. varied between 65–74% and 12–17% respectively, while there was little change in both A.

skvortzowii and C. inconspicua (1–4% and 2–3% respectively). S. meyerii showed a small

decline from 5–1.3% over the top 2 cm (1984–2013 CE) with diatom concentrations ranging

between 129.5 and 455.6 (104 valves/g DW) over the last 30 years.
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Fig 5. Stratigraphic plot of diatom assemblages at (A) BAIK13-7A_SB, (B) BAIK13-11C_BS, (C) BAIK13-18A_NB with core top samples

(represented by grey bars) overlapping with diatoms records from [31] (A) BAIK38_SB, (B) BAIK19_BS, (C) BAIK29_NB (represented by black

bars). Diatom Dissolution Index (DDI) and diatom concentrations (104 valves/g DW) are shown alongside diatom abundances (species with> 2%

abundance). SCD dissimilarity scores are shown for the diatom dataset. The timings of significant breakpoints in the SCD scores are highlighted in grey

for BAIK13-7A_SB and BAIK13-11C_BS diatom assemblages. No significant breakpoints were found in the BAIK13-18A_NB diatom assemblage data.

[SB: South basin; BS: Buguldieka Saddle; NB: North basin].

https://doi.org/10.1371/journal.pone.0208765.g005
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Temporal changes in the diatom assemblages

DDI values are> 0.5 in all samples, suggesting that the majority of the valves that make it into

the sedimentary record are relatively well preserved [41]. Squared chord distance (SCD) dis-

similarity scores (Fig 5) showed that surface sediment diatom assemblages in the south basin

(BAIK13-7A_SB) and Buguldieka Saddle (BAIK13-11C_BS) were significantly different from

older diatom assemblages determined from BAIK38_SB and BAIK19_BS respectively. In the

south basin, the significant change in SCD values occurred at c. 1970 CE (p< 0.001; Fig 5). At

the Buguldieka Saddle, breakpoint analysis of the SCD scores showed that a significant shift to

the modern-day assemblage occurred later, at c. 2000 CE (p value < 0.001) (Fig 5). In contrast,

diatom assemblages have changed very little in the north basin over the past 60 years, with no

significant breakpoints found in the SCD scores at BAIK13-18A_NB (Fig 5).

PCA of all diatom assemblages investigated here revealed a difference between the core top

samples analysed in this study and all samples in the older, overlapping cores from [31]. Core

tops collected in 2013 contained higher abundances of S. acus, A. skvortzowii and S. meyerii,
and lower abundances of A. baicalensis (Fig 6). Axis one explained 47% of the variance in

the dataset and is driven largely by the pelagic species A. baicalensis (species score = +0.98)

Fig 6. PCA of diatom species from all core samples. Core top samples (upper 2 cm) are from BAIK13-4F_SB, BAIK13-7A_SB, BAIK13-10A_SD,

BAIK13-11C_BS, BAIK13-14C_MM, BAIK13-18A_NB and BAIK13-19B_NB sediment cores collected in 2013. The older sediments (20th century

sediments) are from cores BAIK19_BS, BAIK29_NB and BAIK38_SB [31]. Axis one eigenvalue is 0.47 and axis two eigenvalue is 0.24. [SB: South basin,

SD: Selenga Delta, BS: Buguldieka Saddle, MM: Maloe More and NB: North basin].

https://doi.org/10.1371/journal.pone.0208765.g006
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versus species linked to littoral habitats, mainly S. acus, A. skvortzowii, (and to a lesser extent

S. meyerii). Axis two explained 24% of the variance in the dataset and is driven by a gradient of

pelagic C. minuta agg. versus the smaller C. inconspicua species (Fig 6).

Discussion

Diatom ecology and spatial variability

The observed spatial distributions of the most common planktonic diatoms in Lake Baikal sur-

face sediments (summarised by PCA in Fig 6) are linked to (i) complex interactions between

lake morphology and chemistry, against a backdrop of a strong climatic gradient associated

with the lake spanning over 4 degrees of latitude [31, 51], and (ii) evolutionary adaptations of

different taxa over Quaternary timescales (e.g. [52]). PC1 reflects the gradient between A. bai-
calensis (which dominates north basin, deep-water surface sediments; species score = +0.98)

and A. skvortzowii (-0.72), S. acus (-0.83) & S. meyerii (-0.79) (all associated with the relatively

shallow-water surface sediments of the Buguldieka Saddle and the Maloe More Strait) (Fig 6).

Unlike A. baicalensis abundances, Fig 5 reveals that the latter three species have never been

abundant in the north basin for at least the last 100 years.

Both A. baicalensis and A. skvortzowii thrive in cold water temperatures below 5˚C; they

bloom mainly during the spring after ice break-up, and decline in abundance when lake waters

warm to more than 5–6 ˚C [44, 53]. To avoid lethal, higher surface-water temperatures each

species has evolved very different strategies [44, 54]. A. baicalensis grows well in conditions of

low light [54], and due to its physiological plasticity competes well under ice through the pro-

duction of smaller-sized valves, which then sink slowly after ice break up. After ice break up,

mixing depths increase and declining light levels induce A. baicalensis to form longer, thicker

resting cells full of storage products that allow them to survive throughout the period of sum-

mer stratification in cooler waters of intermediate depth (c. 50–100 m) [44]. Formation of the

resting cells requires a lot of silica, which is met through remineralisation of silica from dis-

solving diatoms at moderate depths in the water column [44, 55]. A skvortzowii also avoids

higher surface-water temperatures through the production of resting stages, but unlike A. bai-
calensis, its cue for the production of resting spores is phosphate utilisation by other algae (e.g.

picoplankton) [53]. These non-siliceous algae effectively compete for nutrients [56], making

them unavailable for most diatoms growing in the open lake. In the north basin of Lake Baikal

however, lower Spring primary production (e.g. [24, 57]) means that phosphate concentrations

rarely fall below the threshold level of 15–23 μg/L needed to induce A. skvortzowii spore for-

mation [53]. Moreover, when phosphate concentrations do decline below the threshold level,

it is often after isothermal mixing, meaning that growth of A. skvortzowii in the north basin is

poor [53]. Elsewhere in Lake Baikal, A. skvortzowii does well because it has evolved planktonic

and littoral life history stages, such that viable spores when produced remain in coastal sedi-

ments down to a depth of 25 m, where they can be resuspended by strong autumn wind-driven

waves into the pelagic zone (ibid.) in time to bloom the following spring.

S. acus is a finely silicified, needle-shaped, cosmopolitan diatom, with high growth rates

and low cell volumes [58]. It currently forms an important component of the under-ice diatom

flora in Lake Baikal, and while reasonably abundant in both the south and central basins [31,

33] and shallow water regions (this study) it is almost absent from the north basin (Fig 6). S.

acus is associated with high dissolved silica concentrations [34, 59], which may explain its neg-

ative relationship with A. baicalensis (Fig 6); recent work has shown that increased silicic acid

availability is strongly controlled via population changes in diatom taxa [21, 58]. In particular,

when increased populations of A. baicalensis result in “Melosira bloom years”, the availability

of silicic acid for other species to uptake (such as S. acus) declines [58].
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S. meyerii is a small endemic diatom which has a high temperature optimum of 15–17.5 ˚C

[58], and like other Stephanodiscus species likely has a high affinity for phosphorus [34],

although its autecology is poorly known. These adaptations likely account for the observed dis-

tributions (Fig 6), especially in regions which have high phosphorus loadings [33], such as the

shallow waters of the Maloe More Strait, and off the coast of the Selenga Delta [60].

C. minuta is an endemic, co-dominant of the pelagic diatom community in both the north

and south basins, although it mainly occupies a different temporal niche than the spring

blooming diatoms, which accounts for it being positioned orthogonal to taxa associated with

PCA axis 1 (Fig 6). Populations of C. minuta also grow under ice during spring, but their main

growth occurs during autumn overturn [58]. Indeed, they are the only pelagic diatom to

bloom in substantial numbers during the autumn in Lake Baikal; they persist in the upper

water column for longer because they can tolerate water temperatures up to 11˚C, so that

when stratification breaks down at the end of the summer, and nutrient overturn occurs in the

photic zone, cells are retrained first, giving them a competitive advantage [58]. However, at the

finer scale, C. minuta abundances are not truly independent of spring blooming species. For

example, when A. baicalensis blooms are particularly large, dissolved silica becomes depleted

for all other diatoms, causing the subsequent autumnal crop of C. minuta to be much smaller

[58]. Unfortunately, we know very little about the ecology of the endemic C. inconspicua, and

currently can only describe its spatial distribution here as being present in very low relative

abundances (< 2%) in the south basin and in the shallow waters off the Selenga Delta, but is

persistent (> 2%) in the north basin and the Buguldieka Saddle, which accounts for its strong

negative association with axis 2 in Fig 6.

Environmental trends and temporal variability

Spring (March to April) air temperatures, from the KNMI Climate Explorer database (http://

climexp.knmi.nl/) for Irkutsk, close to the south basin of Lake Baikal (World Meteorological

Organisation station 30710; 52˚16’20”N, 104˚18’29”E; elevation = 467 m) increased between

1950–2013 CE (Fig 7). Air temperatures in the south basin of Lake Baikal have increased by c.

1.2˚C per year, significantly higher than global trends, with greatest warming occurring during

winter months, especially at the start of the 1950s and again since the early 1970s [21]. Increas-

ing air temperatures have resulted in increases in average annual surface water temperatures

of c. 2˚C across the entire lake between 1977–2003 CE [24], with warming in the south basin,

reaching increases of over 2.4˚C during late summer months [9] and warming also reported in

the north basin from 1977 to 2003 CE [24]. Warmer atmospheric temperatures have also

resulted in marked changes in ice dynamics across the lake; annual ice duration in the south

and north basins has declined, as has ice thickness since the start of the 1970s in the south

basin [21, 25]. Since the 1950s, increased surface water temperatures have resulted in extended

summer stratification [27], and increased chlorophyll-a concentrations [23, 24]. Total annual

river inflow into the lake has increased over the past 100 years due to increased precipitation,

bringing with it supplies of nutrients and dissolved silica [21]. A key question therefore, is

whether this significant and unprecedented regional warming in southern Siberia [21, 22], led

to a measurable impact, either directly or indirectly, on diatom community composition in

Lake Baikal in particular.

Breakpoint analyses reveal that a significant change in diatom assemblage composition in

the south basin was already underway by the early 1970s (Fig 5), in line with diatom changes

seen in other temperate lakes [61, 62]. Although this trend was initially identified in the diatom

record by [31], the more recent records show the disappearance of S. meyerii altogether from

(BAIK13-7A_SB) in the south basin. At the Buguldieka Saddle (BAIK13-11C_BS), significant
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changes occurred c. 2000 CE, a few decades later than the more southern site. Here, the

increase in S. acus is accompanied by wider changes in the diatom flora (Fig 5); again S. meyerii
declines to low relative abundance (although it persists in record), while C. inconspicua almost

disappears from the record. Both sites also show declines in heavily silicified species such as A.

baicalensis and C. minuta. These changes are in contrast to no significant changes in the dia-

tom flora from the north basin over the past 100 years (BAIK13-18A_NB).

Significant change in diatom SCD scores in the south basin core BAIK13-7A_SB (Fig 5) at

c.1970 CE occurs soon after significant change in rising summer (July to August) surface water

temperatures in the south basin (Fig 7; breakpoint at 1966 CE in the temperature record; p

value < 0.001) and the start of declining ice thickness in the south basin [25, 26]. Phytoplank-

ton monitoring studies from the south basin show major changes in the diatom flora consis-

tent with those observed in the stratigraphic record. For example, within phytoplankton

samples from the south basin, A. baicalensis concentrations have declined from c. 5 to 3 cells

L-1 between 1950–2010 CE [29]. These changes are likely related to ice cover dynamics and

increasing surface water stratification [27]. For example, the mixing depths in the south basin

are deepening with lake warming, due to the higher summer surface water temperatures caus-

ing a stronger thermal stratification during the summer months [9, 27], which likely alters the

position of resting cells within the water column, and their subsequent ability to be retrained

into the photic zone. For C. minuta, this would mean fewer cells being entrained back up into

the photic zone during the autumnal overturn, hence the declining valve numbers observed in

the south basin (Fig 5).

Factors causing the heavily silicified diatoms to decline in abundance may also contribute

to observed increases in S. acus. S. acus has a high temperature optima and fast growth rates

[63], so can take advantage of rapidly warming surface waters after ice break-up. It is also able

to grow through the summer months (e.g. [41, 57]) due to its low biovolume and higher sur-

face—volume ratio, enabling it to stay in the photic zone longer than heavily silicified endemic

species. So as heavily silicified, endemic diatom species find growth in increasingly warmer

Fig 7. Regional spring Irkutsk air temperatures (March and April average) from a climate station next to the south basin of Lake Baikal (World

Meteorological Organisation station 30710; 52˚16’20”N, 104˚18’29”E; elevation = 467 m) are shown over the period 1950 CE to 2013 CE. Summer

surface water temperatures and water temperatures in the upper 25m of the water column (July to August average) are shown for the south basin over

the period 1948 CE to 2002 CE [9]. Ice cover duration data for the south basin of Lake Baikal is shown between the period 1869 CE to 1996 CE [25].

Zooplankton summer abundance (1000 cells L-1) for copepods, rotifers and Bosmina/Daphnia are shown for the period 1950 CE to 2002 CE (data

provided by S. Hampton). The stratigraphic plot includes SCD dissimilarity scores, comparing upper core top samples to all samples below in the same

core. Timings of significant breakpoints in the SCD scores are also highlighted in grey for BAIK13-7A_SB and BAIK13-11C_BS diatom assemblages.

No significant breakpoints were found in the BAIK13-18A_NB diatom assemblage data. [SB: South basin, BS: Buguldieka Saddle and NB: North basin].

https://doi.org/10.1371/journal.pone.0208765.g007
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waters of southern Lake Baikal challenging, the cosmopolitan S. acus is able to flourish under

these conditions, especially if availability of dissolved silica also increases [58].

An additional, notable, finding of this study is the disappearance in the endemic S. meyerii
off the Vydrino Shoulder (BAIK13-7A_SB) and its marked decline at the Buguldieka Saddle

(BAIK13-11C_BS) post c. 2003 CE (Figs 1 and 5). Its decline may be linked to changes towards

reduced nutrient availability (including silicon and phosphorus concentrations). As men-

tioned above, S. meyerii may be indicative of more nutrient rich waters. However, in core

BAIK13-10A_SD (Fig 4) within the shallow waters off the Selenga Delta, Stephanodiscus par-
vus, a cosmopolitan diatom which is often indicative of cultural enrichment, remains only at

low abundance while S. meyerii declines in abundance over the past 10 years. High abundances

of S. acus are seen within the BAIK13-10A_SD core top sediments, which are similar to those

observed in BAIK13-4F_SB, BAIK13-7A_SB, BAIK13-11C_BS and BAIK13-14C_MM core

tops (Figs 4 and 5). We suggest therefore that S. acus may be out-competing S. meyerii at these

locations.

The lack of diatom changes in north basin sediments (BAIK13-18A_NB) contrast with

those not only from the south basin and Buguldieka Saddle (BAIK13-7A_SB and BAIK13-

11C_BS) (Fig 7), but also from many other lakes in cold regions (e.g, [61, 64]). Diatom

responses to anthropogenic climate change are complex, involving interactions of multiple

drivers, including changes to ice duration and variability, changes to light penetration from

snow and ice cover, changes to timing and strength of surface water stratification, and changes

to nutrient inputs, predation and disease, amongst others. One of the most important controls

on diatom growth in Lake Baikal is light; for example, A baicalensis has evolved to take advan-

tage of relatively low light intensities (under 40 μmol m-2 s-1) which can occur when cells are

either vertically mixed by convection to depths in excess of 100m depth [54], or when snow

cover persists on the frozen lake before ice break-up [65]. Given that seasonal snow cover on

the north basin of Lake Baikal is much thicker than the rest of the lake (e.g. [33, 66]), light

becomes a limiting factor, making the north basin much less favourable for diatoms to flourish

during spring turnover (e.g. [54]). A. baicalensis is able to grow due to its evolutionary adapta-

tions to low light intensities [54, 65], while C. minuta is able to grow because it blooms mainly

during the autumn overturn. We conclude that the magnitude of change in snow and ice on

the frozen north basin has not yet been sufficient to induce major changes in diatom commu-

nities in the north basin.

In addition to direct climate change, changes in the Lake Baikal diatom community may

also be driven by changes within the lake’s food-web. Since the 1950s, increased surface water

temperatures have resulted in changes to zooplankton numbers, including declining abun-

dances of planktonic rotifers, but increased abundances of cladocera [9] and copepods [24].

With shorter ice cover duration on the lake, a rise in summer zooplankton biomass (copepods

and Bosmina/ Daphnia) has been seen over the last 60 years [9] (Fig 7), with many of these

groups also shifting to more shallow waters in the water column for reasons not yet fully

understood [27]. Increasing zooplankton biomass (largely the endemic copepod Epischura bai-
calensis) in the upper 50 m of the water column in the south basin have also been determined

[29] from 1950–2010 CE. The diatom assembly shifts seen in the south basin and Buguldieka

sediment core (BAIK13-11C_BS) (Fig 5) could therefore also be affected by increased grazing

pressures, both from increasing zooplankton numbers and their shift to shallow water posi-

tions, but also an increase in the spatial overlap between phytoplankton and copepods [27, 67].

For example, C. minuta is a key food source for the zooplankton Epischura baicalensis (e.g.

[27, 33, 58]), while the larger endemic Cyclotella baicalensis although too large to be consumed

by E. baicalensis is instead an important food source for the larger endemic gammarid Macro-
hectopus brankcii [58].
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Finally, we find no evidence in our recent palaeolimnological records to suggest that local

anthropogenic pollution has had a detectable effect on planktonic diatom communities. Nev-

ertheless, in the past decade, evidence of cultural eutrophication of benthic and littoral regions

of Lake Baikal near towns and tourist resorts is clear [36, 37]. Very poor or non-existent sew-

age treatment has resulted in localised high levels of nutrients (phosphorus & nitrogen) and

organic matter [68]. Such eutrophication is causing large blooms of filamentous green algae to

form, often far from local sources of pollution (including Spirogyra spp. and Stigeoclonium
tenue), which then rot along the coastlines [36, 37, 69]. As yet there is no chemical monitoring

evidence to suggest that littoral eutrophication has spread into the pelagic regions of lake (e.g.

[68]), nor of a biological impact in the form of increased chlorophyll concentrations or decline

in water transparency [24]. However, near-shore nutrient pollution can act as a precursor of

off-shore disturbance, especially food-web dynamics [70]. Improvements to water treatment

facilities in Lake Baikal are essential as soon as possible to ensure that eutrophication does

not reinforce the negative impacts of anthropogenic climate change [71] on the Lake Baikal

ecosystem.

Conclusions

Palaeolimnological records of changing diatom assemblages over recent decades agree well

with phytoplankton monitoring studies; numbers of heavily silicified diatom species in the

south basin of Lake Baikal are in decline at the expense of increasing cosmopolitan, lighter, lit-

toral species. These changes are consistent with previous predictions as to what might happen

to diatoms in Lake Baikal as global mean temperature continue to increase [23, 33]. Warmer

surface waters and increased period of stratification are very inhospitable for endemic taxa

such as A. baicalensis, A. skvortzowii and C. minuta, while changes in nutrient availability may

be restricting the growth of smaller, lighter endemics such as S. meyerii. Interactions with

increasing numbers of primary consumers, especially endemic copepods such as Epischura
baicalensis and amphipods such as Macrohectopus, are as yet undefined, but likely to be impor-

tant. S. acus on the other hand may be benefiting from a combination of different impacts

including shorter ice duration, longer periods of summer stratification, and increased dis-

solved silica availability from both increased river discharge, but also declining numbers of

heavily silicified diatoms. At the moment these changes are confined to the south basin of

Lake Baikal, and we have no evidence of warming impacts yet on sedimentary diatom

assemblages in the north basin, most likely due to the persistence of unfavourable growing

conditions. We also have no evidence in our records of increased impact from littoral eutro-

phication—however, given that littoral regions can act as early indicators of future wide-

spread change, urgent action is still needed to stop nutrient pollution from entering the lake.

Observed changes in the diatom flora are likely to be affected by several interacting factors

which are still in play today, and much more work still needs to be done to unravel these multi-

ple stressors.
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