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ABSTRACT 

Accessibility of powerful computers and availability of so-called “big data” from a variety of 

sources means that data science approaches are becoming pervasive. However, their 

application in mental health research is often considered to be at an earlier stage than in 

other areas despite the complexity of mental health and illness making such a 

sophisticated approach particularly suitable. In this article we discuss current and potential 

applications of data science in mental health research using the UK Clinical Research 

Collaboration classification: underpinning research; aetiology; detection and diagnosis; 

treatment development; treatment evaluation; disease management; and health services 

research. We demonstrate that data science is already being widely applied in mental 

health research, but there is much more to be done now and in the future. The possibilities 

for data science in mental health research are substantial. 
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Summary for journal homepage: 

Russ et al. discuss the broad applications of data science to mental health research and 

consider future ways that big data could improve detection, diagnosis, treatment, health 

care provision, and disease management. 
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INTRODUCTION  

Data-driven approaches have become key in answering important scientific questions. In 

the UK, major developments, including that of Health Data Research UK, have highlighted 

the potential of these approaches.1 However, definitions of “data science” lack clarity. It 

has been variously defined as: the ‘fourth paradigm’ of science (with empirical, theoretical, 

and computational science); a concept to unify statistics, data analysis, and their related 

methods; a synonym of statistics; and as that activity containing multidisciplinary 

investigations, models, and methods for data. Unsurprisingly, there is similarly little 

consensus in the curricula of the various data science degrees. 

 

However, the world is changing because of the deluge of data generated daily as well as 

the growing capability of computers. It is probably fair to describe data science as 

generating new knowledge from real world data. This is distinct from mere description but 

additionally means deriving meaningful inferences from which it is possible to make helpful 

decisions, for example about treatment for a particular individual. 

 

Some areas of medicine are already benefitting from data science, such as prevention of 

heart disease,2 and treatment of some cancers.3 For mental health and neuroscience, data 

science is at a relatively early stage. In this article we outline our view of what data science 

might offer mental health research (summarised in Figure 1). We use as a framework the 

Health Research Classification System of the UK Clinical Research Collaboration 

(http://www.hrcsonline.net/) which divides health research under the headings shown in 

Box 1. 

 

http://www.hrcsonline.net/
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UNDERPINNING RESEARCH 

Figure 2 summarises the interrelation between applications of data science in mental 

health and illness, outlined in the following sections. This research is underpinned by 

studies of normal biological, psychological and social processes. Mental disorders are 

often aetiologically complex, with multiple environmental, psychological and genetic 

contributors and putative individual risk factors. Generating study samples of sufficient size 

to investigate this complexity and capture normal trait variation, has until recently been a 

prohibitive challenge. In the years ahead, data science holds transformative potential for 

research, through exploitation of emerging “big data” resources.4 This should enable 

underpinning research to drive informative new models of pathophysiology and novel 

therapeutic strategies. 

 

One crucial development towards fulfilling this potential has been the establishment of 

highly scaled, population-based, collaborative biobanks. These offer phenotyping of 

mental, cognitive, and socioeconomic attributes, alongside genetic, biochemical and 

imaging data. Research within UK Biobank (N=500,000),5 for example, has identified 148 

independent genetic loci associated with variations in cognitive function,6 which has 

relevance to researchers trying to understand how cognitive processes can be impaired in 

mental disorders.7 Other examples include the US Million Veteran’s Program (current 

N=600,000)8 and the BioBank Japan project (N=200,000).9 The biobanking model itself is 

also driving innovation in mental health research through the founding of bespoke 

biobanks with an explicit focus on mental disorders, such as the University of Michigan 

Mental Health BioBank 

(https://medicine.umich.edu/dept/psychiatry/news/archive/201708/u-m-department-

psychiatry-depression-center-launch-mental-health-biobank). 

 

https://medicine.umich.edu/dept/psychiatry/news/archive/201708/u-m-department-psychiatry-depression-center-launch-mental-health-biobank
https://medicine.umich.edu/dept/psychiatry/news/archive/201708/u-m-department-psychiatry-depression-center-launch-mental-health-biobank
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Translating candidate genetic loci from GWAS into credible models of function requires 

deeper understanding of underlying biological processes. Advances in sequencing 

technology, such as the long awaited $100 per individual next-generation techniques,10 will 

expand available genomic data by orders of magnitude. Mental health researchers will 

require skills in data science – parallel computing, highly scalable storage, complex 

multivariate analysis, and visualisation – to make these data tractable11. Combined with 

the related discipline of bioinformatics, data science offers great potential for underpinning 

research through in silico discovery science, such as machine-learning-driven modelling of 

cellular protein folding12 and synaptic transmission,13 or computational modelling of 

receptor pharmacology for drug development.14 In addition to further stimulating research 

on the molecular biology of psychiatric disorders, this work also supplements preclinical 

psychopharmacological research.15  

 

Similarly, progress in neuroimaging has been constrained by a lack of sufficiently powered 

and consistent datasets of healthy controls16 through which to understand healthy brain 

development and morphology. New networks of open-access, multicentre imaging 

consortia, containing very large numbers of participants drawn from the general population 

(e.g. ENIGMA [N=50,000]17, UK Biobank [Target N=100,000]5, and the Human 

Connectome Project18) enable brain mapping at scale across the life course. Research 

using scans from childhood to adulthood have revealed normal brain functional networks 

(e.g. default-mode, salience, sensorimotor) with distinct developmental trajectories.19 

Alteration in the default-mode network has been implicated in follow-up research in 

autism,20 schizophrenia21 and Alzheimer’s dementia22 among others.23 Looking to the 

future, combining multiband imaging with genomics to study the inter-relationships 

between genotype, brain structure and functional architecture24 is a petabyte-scale data 

science challenge which can now be undertaken.25  
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One of data science’s most exciting opportunities is the adaption of emerging technologies 

to generate new phenotypic and biometric variables, which can be linked to existing 

datasets. The development and commercialisation of a number of sensors, wearables, and 

smartphone applications, will enable real-time, fine-grained, monitoring of a number of 

traits, including sleep and mood variation,26 vital signs variation,27 and alcohol use28. As 

well as guiding research in areas such as circadian rhythms in mental illness,29 such tools 

can also be used to augment clinical care.30 Diverse phenotypic data can also be extracted 

through data mining techniques deployed to social media and health records 

databases.31,32 Finally, record linkage to repositories of social and educational data33 will 

enable construction of a truly integrative model of mental processes, in health as well as 

disease.34  

 

AETIOLOGY, PREVENTION OF DISEASE AND PROMOTION OF WELL-BEING 

All mental disorders have a complex aetiology.35 As well as providing causal information 

and potentially helping to refine current phenotypic definitions, genetic data resources 

need to be combined with more detailed longitudinal data on the environment. A key 

challenge is therefore better cohort characterisation on a large scale using participant-

active repeated sampling as well as longitudinal data linkage.  

 

There is growing interest in the physical environment and its relevance to mental health. 

For example, there are benefits to living in proximity to, and spending time in, green 

space.36-38 Such environmental data are often collected at the regional or neighbourhood 

scale – for example weather or air pollution monitoring stations – but allocate a value for 

the exposure (e.g., air pollution) based on an individual’s residential address.39  
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More ambitious studies have recently generated a more nuanced quantification of physical 

environments using GPS technology, allowing observational data to be used to model the 

extent to which the environment might facilitate health and maximise well-being.40 For 

example, by monitoring the routes people take through the environment, alterations could 

encourage time spent in green spaces, thus allowing people potentially to benefit. Whilst 

there are inaccuracies in the location derived from GPS, and in the availability of openly 

available data on the local area in which participants live, these data offer the exciting 

prospect of increased accuracy in relating the environment to mental health.  

 

Other large scale and challenging environmental data such as latitude, sunlight exposure, 

and ambient temperature have also been studied in relation to mental health.41 A number 

of vitamins, including folic acid and vitamins B12 and D have been linked with mental 

illnesses.42,43 Mendelian randomization has also been used to infer a causal relationship of 

lower vitamin D with Alzheimer’s disease44 Without data science, none of these ambitious 

studies would be possible. 

 

Socioeconomic position is an important confounder of most environmental risk factors. For 

example, living close to a major road is associated with lower socioeconomic position in 

most parts of the world which may explain observed associations with important mental 

health outcomes.45 Ascertaining socioeconomic position on a large scale often involves 

linking an individual’s residential address with an area-based level of deprivation (which 

may or may not match that individual’s socioeconomic status). Novel data linkages – 

linking health to survey data with better socioeconomic measures or even to robustly 

anonymised Census output – is one way forward.46-48 There might also be scope to identify 

educational and occupational status from electronic health and other records.49 However, 

this approach is currently accompanied by substantial practical and ethical challenges. 
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Linking large well-characterised datasets with other sources of outcome data, for example 

electronic medical records or mortality records, provides important opportunities for the 

study of mental health and disorder. Data linkages allow for passive follow-up of research 

participants and outcomes of interest to be collected for relatively low unit cost and low 

drop-out. This is the approach being taken in UK Biobank.5 Such linkages clearly offer 

more outcomes than could feasibly be assembled through original data collection. 

However, case finding in primary and secondary care is likely to identify different patient 

groups50 and many people with mental disorders are not in contact with clinical services – 

and may not have a diagnosis and would not be identified by this approach.51 Furthermore, 

diagnostic practice differs according to location and changes over time, potentially 

influencing case identification.52 However, the recently completed UK Biobank mental 

health questionnaire is likely to provide much more robust data regarding mental disorders 

of all types.53 

 

Disease surveillance 

Information gathered from electronic health records and other digital sources (internet 

searches, social media, and mobile phone data) has a huge potential for surveillance of 

mental disorders and their treatment.54 This could support the planning of services, 

implementation of interventions, evaluation of treatments, priority setting and the 

development of health policy and practice.  

 

Traditional surveillance systems are often used in specific populations for specified 

exposures. They can be expensive to run, and data can be difficult to disseminate in a 

timely manner. However, real time acquisition and analysis of population, local and 

individual level data is possible with big data streams. This has the potential to improve 
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timeliness, resolution and access to hidden populations, providing a surveillance system 

for mental health previously not attainable. However there are significant challenges in 

using these data for surveillance in terms of the population sampled, their denominators, 

plus stage and severity of illness. Careful consideration would be required to align the aim 

of the surveillance system (screening, early detection, secondary prevention) with existing 

data sources, their completeness and quality. Given the challenges with routine coding of 

disease in mental health systems, integration of big data with validated survey output may 

be the way forward to improve timeliness but retain accuracy. This would also allow the 

inclusion of people not diagnosed or in contact with services. There is also a potential for 

surveillance of prescribing behaviours and adverse drug reactions.55 It would be possible 

to use the patient reporting of adverse reactions online (for example 

https://yellowcard.mhra.gov.uk and https://www.drugs.com), although checks and 

balances would be needed to prevent unfounded claims of adverse reactions impacting 

uptake of beneficial interventions.  

 

DETECTION, SCREENING AND DIAGNOSIS 

Diagnostic classification 

Psychiatric disorders are traditionally classified into syndromes defined by expert 

consensus.56,57 An ideal diagnostic scheme would have consistency across settings and 

over time, and point to aetiology, prognosis and treatment response; current schemes do 

not achieve this,58,59 so a recorded diagnosis alone may be inadequate.60 Using full-text 

medical records for research with natural language processing can identify specific signs, 

symptoms, and health trajectories at a large scale.32,61,62 Studying these data could lead to 

better phenotypic classifications which predict clinically relevant outcomes.63,64 For 

example, the depression can be heterogeneous in prognosis: one study identified five 

broad trajectories of depression in 3000 patients using electronic health records .65 

https://yellowcard.mhra.gov.uk/
https://www.drugs.com/
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Patients subsequently presenting with depression were sub-classified using the features 

identified to facilitate follow-up decisions.66 

 

However, clinical observations are often subjective. Therefore, there is also an effort 

towards both collecting and using objective and measurable data, such as neuroimaging 

and psychometrics for classification. The National Institute of Mental Health (NIMH) 

Research Domain Criteria programme (RDoC) encourages interdisciplinary study of 

psychopathological constructs postulated as relevant for the understanding of the 

mechanisms of mental disorders across categorical divides at the level of genes, cells, and 

circuits.17,67-69 Techniques from data science are needed to understand the resulting 

complexity. For example, a study taking an RDoC approach used behavioural, 

physiological and MRI measures in children, some with a clinical diagnosis of ADHD, and 

found three novel pathological phenotypes related to ADHD which cut across existing 

classifications: mild, extremely responsive to reward, and irritable, which could also be 

distinguished by patterns of cardiac reactivity and brain connectivity.70,71 Sources of 

information for could be extended to non-clinical domains such as social media and 

wearables to capture, for example sleep, physical activity, and shopping habits.72,73 

 

Screening, detection and diagnosis  

An algorithm using coded fields and free text in electronic medical records can predict 

depression up to six months before the appearance of a coded diagnosis,74 representing 

an opportunity for automated screening. Since mental health disorders such as depression 

are often undiagnosed,75 screening would represent an opportunity for early identification 

and intervention, potentially reducing morbidity, saving lives, and providing economic 

benefits.76-78 However, all screening generates false positives and there is already concern 

about medicalising normality – such as feelings of stress or sadness – which could 
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undermine a person’s ability to cope, label them inappropriately, and result in unnecessary 

treatment.79-81 Thus, any screening model must be built upon mental health classifications 

that have the ability to distinguish if and when cases are likely to benefit from 

intervention.64,82 We hypothesise that such a model would need to use longitudinal clinical 

assessments and social context, alongside physiological, genetic and imaging data where 

available. 

 

Such screening is some way from implementation, but a risk score for developing severe 

mental illness, or clinically relevant outcomes such as suicide, derived using data science 

could be possible within a few years.61,83-85 A data-driven approach has been taken to 

produce a risk score for cardiovascular events called QRISK2, using data from 2.3 million 

primary care records in the UK to produce an algorithm that uses parameters such as 

blood pressure, cholesterol and smoking status to estimate the likelihood of suffering a 

heart attack or stroke in the next decade.86 The QRISK2 score is now commonly 

presented to GPs when individual electronic health records are opened, enabling GPs to 

discuss how to reduce their risk. A mental health risk score could conceivably be similarly 

used, especially to flag particularly vulnerable people in high risk populations where mental 

health screening is already accepted, for example new mothers post-partum or people 

presenting with self-harm.87-89  

 

Outside the clinical context, wider phenotyping using non-medical data might also have 

potential for improving health outcomes, for example early detection of dementia or mild 

cognitive impairment via remote monitoring of patterns of behaviour (e.g. of social media 

posts, phone calls etc.)90 or mass screening of twitter posts for signs that someone is at 

risk of suicide.91 The advantages of using social media as a basis for screening, in 

younger people especially, is that they provide a setting to reach many millions of people 
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of diverse backgrounds.92 However, using people’s data without explicit consent needs 

careful consideration, as users of social media may not be comfortable for even “public” 

posts to be analysed in this way, and report being worried about potential 

stigmatisation,93,94 highlighting some of the potential ethical challenges of passive big data 

screening.  

 

TREATMENT & THERAPY DEVELOPMENT 

Figure 3 shows a four-stage cycle describing the application of data science in the 

treatment of mental illness, discussed in the following sections.  

 

Targeted recruitment: Electronic health record systems as screening tools. 

Patient recruitment is a rate-limiting step in clinical trials and one of the strongest drivers of 

costs.95 Consequently, many trials do not achieve recruitment targets.96 Harnessing the 

potential of electronic health records could expedite patient recruitment in mental health 

research: using routinely collected data as a screening patients for eligibility.97 In the South 

London and Maudsley NHS Foundation Trust’s “Consent for Contact” platform patients of 

this mental health trust are routinely asked for consent to be approached about relevant 

research projects based on information in their health record. These records can therefore 

be used to target and approach pre-consenting patients for potential studies.98 This model 

was evaluated for 2,106 participants, of whom 74.1% gave consent for contact. 99,100 

Furthermore, approaches identifying treatment-resistant groups – who are of growing 

interest in mental health research – could be done better in such large databases than 

clinicians alone. 

 

Repurposing 
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Linking routinely collected health and administrative data to research data may provide 

new opportunities for treatment evaluations and repurposing of existing therapies for new 

indications. Longitudinal studies of individuals before and after receipt of an intervention 

may highlight unforeseen or off-target effects on mood or daily function that suggest 

efficacy beyond a drugs original indication. Whilst observational data are vulnerable to 

confounding, novel methods now exist to reduce this influence. For example, Mendelian 

Randomization can also be applied where there is linkage to genetic information.101 This 

approach has been shown to be useful, potentially preventing multi-million pound trials of 

interventions subsequently shown to be ineffective.102  

 

Further examples of how data science may lead to the repurposing of existing treatments 

for new mental health indications come again from genetics. Genetic studies of 

neuroticism and depression have shown enrichment of known genetic associations in the 

downstream targets of antidepressant drugs,103,104 providing an important ‘proof of 

concept’. Since the effects of currently effective treatments are enriched in the genetic 

associations of mental disorders, then genetic studies may also be able to identify new 

treatments and repurpose old ones. Genetic studies, such as GENDEP105 have also used 

treatment response or side effects as their phenotype of interest. These studies promise to 

reveal why some people respond better than others to treatment. They also provide the 

prospect of identifying who will respond best to a treatment, with fewest side effects, 

before prescribing. 

 

TREATMENT EVALUATION 

As well as streamlining trial execution, data science can directly evaluate the intervention. 

Observational epidemiology has contributed greatly to healthcare developments where 

trials were impossible, even before the age of data science, for example how babies 
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should be put in their cots to sleep and the health risks of smoking tobacco. With electronic 

case records, all patients generate data which can be used in vast observational studies, 

to allow for inexpensive and rapid improvements to health and healthcare, under suitable 

governance arrangements. 

 

For example, cholinesterase inhibitors temporarily slow cognitive decline in people with 

Alzheimer’s dementia in randomised, controlled trials, but uncertainty remained about 

effects in real-world patients with multiple comorbidities. A ground-breaking study using 

pseudonymised healthcare records extracted text descriptions of cognitive test scores for 

2460 patients prescribed cholinesterase inhibitors, and found similar treatment effects to 

the trials.106 This is a proof of the potential value of observational data, given large sample 

sizes, improved generalisability, and more complete follow up. This is particularly relevant 

in mental health research where participant disengagement may be greater. 

 

Mental health treatment evaluation using routine data has been hindered by limited high-

quality data on relevant treatment outcomes.107,108 Practice research networks bridge the 

gap between service provision and research and are uniquely placed to promote collection 

of quality healthcare data at scale in a way that is acceptable to patients, clinicians, and 

researchers. For example, the Child Outcomes Research Consortium is a collaboration of 

child mental health providers in the UK which collects and shares data with focused on 

patient reported measures of outcome and experience.109,110 The Northern Improving 

Access to Psychological Therapies (IAPT) Practice Research Network is a collaboration of 

psychotherapy service providers and research institutes promoting the use of data for 

service provision and research.111,112 Importantly, all IAPT services in the UK, which treat 

over 500,000 patients each year, collect common outcome measures at each session, 

consisting of short patient-completed questionnaires, providing data on therapy 
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progression. IAPT data have already delivered insights on the utility of a clinician-support 

system that alerts therapists to patients who are not responding as well as expected, and 

ongoing work is using patient characteristics to guide treatment choice.113,114 A further 

example is the U.S. Mental Health Research Network which brings together 13 health-

system research centres providing care for 12.5 million people; early findings include 

behavioural activation being effective in perinatal depression115 and identifying subgroups 

less likely to adhere to antidepressant treatment.116 

 

Guidance published by organisations such as National Institute for Health and Care 

Excellence (NICE; England and Wales), Scottish Medicines Consortium, or Institut für 

Qualitaet und Wirtschaftlichkeit im Gesundheitswesen (IQWiG; Germany) raise standards, 

reduce variability, and provide a basis for monitoring. These organisations may currently 

value interventional research above observational research but new observational 

research – with the progress in ease (including regulatory reform),117 magnitude, speed, 

and methods suggesting causality facilitated by data science – will contribute more to the 

evidence about many healthcare interventions.118 

 

DISEASE MANAGEMENT 

Three-quarters of the UK population own a smartphone (Ofcom) and growing numbers use 

wearable health devices/apps. New advances in technology are promising to transfer 

aspects of support and care from clinicians to patients. There is great potential to engage 

patients in their treatment and to move from sporadic patient contact towards continuous 

monitoring and guidance. In mental health, advances have been made in technology-

assisted self-reporting and automated sensing.  

 

Self-reporting and Management 
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Smartphone apps make remote patient-directed assessment of symptoms119 or other self-

reported measures possible.120 Through data science techniques, some apps may provide 

a platform for intelligent assessment and recommendations tailored to the individual 

patient. However, the quality of and evidence base for health-related apps is variable. 

They can achieve quick assessment with real-time feedback and can establish a 

communication channel with carers and physicians as well as automated remote support. 

There is evidence that apps could reduce substance abuse, depression and stress.121 

There are a number of self-management apps available which enable self-tracking of 

mood to facilitate treatment or support patients to manage panic attacks.122 

 

Passive Sensing & Analytics 

Emerging wearable sensor technologies offer real-time monitoring through continuously-

collected data without patients having to do anything using the sensors in a 

smartphone/wearable device. For example, GPS traces can assess amount of time spent 

outdoors, accelerometers provide an indication of physical activity, and detection of other 

Bluetooth devices can estimate a person’s social contacts. Despite the field’s infancy, 

there exist a few applications of mobile/wearable devices to mental health: stress 

monitoring in everyday life and the workplace123,124, early detection of Parkinson’s 

disease125, and remote monitoring of sleep-awake activities to predict relapse in 

psychosis.126,127  

 

HEALTH AND SOCIAL CARE RESEARCH 

The complexity and scale of health and social care means the use of information for 

service planning, delivery, and monitoring of outcomes is ever more crucial. Examples 

include understanding the impact of proposed changes to services, planning for changing 

population needs across services, and monitoring quality, safety, and equity of care within 
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and across sectors. For data to be meaningful, it must be possible to link them over time 

across different parts of the care pathway which may include both health and social care 

systems. This is particularly important in mental health where conditions are often long-

term with health and social care needs. For example, understanding the relationship 

between particular conditions and service use can identify opportunities to prevent 

unscheduled care or identify inefficiencies across systems.  

 

Mental health can be seen as being “constrained or facilitated by the social structures in 

which [a person is] positioned.”128 Five dimensions representing potential challenges to 

optimal social functioning have been identified: social integration; social contribution; social 

coherence; social actualization; and social acceptance.128 This view of mental health shifts 

the focus from the individual to include the community and social structures within which 

people are located. Given this rich conceptualisation, other data are also necessary to 

understand mental health, including Census, environmental, housing, education, work and 

pensions, and crime data. Resources such as the Urban Big Data Centre 

(http://ubdc.ac.uk/) and the Administrative Data Research Network 

(https://www.adrn.ac.uk/) provide researchers with access to de-identified administrative 

data linked with health and social care data in a secure environment, such as that provided 

by Health Data Research UK and the Secure Anonymised Information Linkage (SAIL) 

Databank. Reflecting the complex arrangements for health and social care integration, 

agreement to share and link data across sectors is not always simple but efforts to secure 

such linkages have much to contribute to improving health and social care research and 

the social dimensions of health and health outcomes. However, as with other potential 

applications, there is a potential risk that solutions are driven by which data are available, 

resulting in policy makers getting a blinkered view of these processes. A better approach 

would be to ascertain what data are needed and then try to collect them. 

http://ubdc.ac.uk/
http://adrn.ac.uk/
https://www.adrn.ac.uk/
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ETHICAL CONSIDERATIONS 

As discussed in many of the preceding sections, conducting mental health research using 

data science techniques brings ethical concerns surrounding privacy129,130 However, we do 

not want mental health research to miss out on the breadth of opportunity outlined in this 

article. There are currently many checks and balances (including data protection 

legislation) in accessing any personal data, with additional rigorous processes in place for 

accessing data held by statutory bodies. The UK Biobank model of consent is an example 

of public willingness to consent to multiple uses of their data for research purposes. Others 

have proposed even broader ‘social contracts’ to enable data usage for public benefit.131-

133 Whilst acknowledging some of the concerns as noted above, research demonstrates 

that the public can look favourably upon the use of social media data for health 

research,93,94 even for mental health, provided anonymity is ensured. Academic 

researchers may not be able to plan for, or resolve, all the potential ethical issues which 

the use of data science for mental health research may uncover, but it is without doubt that 

we must attempt to do this in consultation with, and support from, those living with mental 

illness.134,135 Indeed, we are extremely grateful for the contributions of people with lived 

experience of mental health problems in drafting this article. 

 

CONCLUSION 

Data science is a rapidly evolving field which offers many valuable applications to mental 

health research, examples of which we have outlined in this article. Most importantly, it 

offers the possibility of making research incorporating real-world complexity tractable. We 

anticipate that the substantial advancements in mental health research we are beginning 

to see will bring tangible benefits to people with mental illness. 
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BOX 1. UKCRC Health Research Classification System Research Activity Codes 

(http://www.hrcsonline.net/rac)  

 

1. Underpinning: Research that underpins investigations into the cause, development, 

detection, treatment and management of diseases, conditions and ill health 

2. Aetiology: Identification of determinants that are involved in the cause, risk or 

development of disease, conditions and ill health 

3. Prevention: Research aimed at the primary prevention of disease, conditions or ill 

health, or promotion of well-being 

4. Detection & Diagnosis: Discovery, development and evaluation of diagnostic, 

prognostic and predictive markers and technologies 

5. Treatment Development: Discovery and development of therapeutic interventions and 

testing in model systems and preclinical settings 

6. Treatment Evaluation: Testing and evaluation of therapeutic interventions in clinical, 

community or applied settings 

7. Disease Management: Research into individual care needs and management of 

disease, conditions or ill health 

8. Health Services: Research into the provision and delivery of health and social care 

services, health policy and studies of research design, measurements and methodologies 

http://www.hrcsonline.net/rac
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FIGURE 1. What can data science do for mental health research? Data science is key to 

improving diagnosis, transforming treatments and ultimately making mental illness 

preventable 
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FIGURE 2. Data science applications in understanding mental health and mental illness – 

understanding biopsychosocial processes in health informs our understanding of aetiology 

which leads on to prevention initiatives which require robust mechanisms for detection 
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FIGURE 3. The cycle of data science applications in the context of mental health 

treatments – more efficient and targeted recruitment to trials leads on to large-scale 

evaluation of treatments and assessment of real-world efficacy which could highlight 

opportunities for drug repurposing 
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