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ABSTRACT: The conversion of biomass to useful chemical
products requires precise catalytic properties to achieve the required
activity, selectivity, and durability. Here we show, through optimized
colloidal synthesis, the tandem control of Pd size and site availability
for the directed hydrogenation of the bioderived intermediate
furfural. Adjusting the temperature of colloidal reduction dictates the
size of Pd nanoparticles; in some instances ultrasmall clusters of <20
atoms are achieved. However, changing the solvent system affects the
PVA—Pd interaction and relative proportion of available surface sites
(corners, edges, planes), allowing us to control the selectivity to the
valuable hydrogenation products furfuryl alcohol and tetrahydro-
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furfuryl alcohol. We demonstrate, through combined experimental and computational studies, that Pd nanoparticle planes are
more prone to deactivation through the formation of Pd carbide, resulting in the reduced efficacy of furfural binding. This
approach to nanoparticle optimization is an important strategy for producing long-lasting, high-performance catalysts for

emerging sustainable technologies.
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B INTRODUCTION

Upgrading biomass to useful products, be they energy or
platform intermediates, is a crucially important part of a
sustainable chemicals industry. The hydrolysis of hemicellulose
is one example, where one of the major products, xylose, is acid
catalyzed to the valuable intermediate furfural."”” Furfural is
readily valorized and is an important precursor in the
generation of biofuels™ and chemical intermediates.” Furfuryl
alcohol, used in the manufacture of resins, adhesives, and
synthetic fibers,” is produced from the selective hydrogenation
of furfural. Subsequent hydrogenation of furfuryl alcohol
produces tetrahydrofurfuryl alcohol, a “green solvent”, often
used in printer inks and agricultural applications.® Ultimately,
the hydrogenation of furfural results in a complex network of
products (Figure 1), where there is a need to control the
relative distribution. The challenge is to find a selective catalyst
that has control over C=C or C=O hydrogenation and
disfavors alternative pathways: e.g., decarbonylation.
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Many heterogeneous catalysts have been investigated for the
hydrogenation of furfural, with the majority of studies focusing
on Cu-, Ni-,” Ru-,® or Pd-based”'’ systems. Cu, in the form of
Cu chromite'" or on supports,'*~"° has been commonly used
and shows good selectivity to furfuryl alcohol as a consequence
of the preference of Cu to bind C=0 over C=C."” Ni
catalysts show different product distributions to Cu, with the
primary step favoring decarbonylation and with secondary
paths, including opening of the furan ring,'® Pd is an ideal
catalyst for hydrogenation processes, as it readily dissociates
hydrogen under ambient conditions. Recent studies have
shown that Pd/TiO,-based systems are effectively able to
hydrogenate furfural and furfuryl alcohol under mild conditions
(room temperature, 1—3 bar of hydrogen).'”~"” The studies
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Figure 1. Schematic representation of reaction pathways during
furfural hydrogenation.

focused on Pd nanoparticles prepared by incipient wetness
impregnation and showed that methylfuran and furfuryl alcohol
were the major products and that the product distribution
could be altered by changing the solvent of reaction and metal
loading."” Indeed, the differences in furfural binding (1'(CO),
7'(0), n*(C—=0), and 7*(C—C)) and their preference for
specific crystal facets”””' have been linked to variations in
product selectivity for different particle sizes.”” As well as
particle size effects, the ability to manipulate the binding
orientation of furfural onto specific metal sites, to control
selectively the hydrogenation pathway, has been effectively
achieved using self-assembled monolayers (SAMs) as blocking
agents.””~>> Medlin et al. used thiolates to block facets
selectively, leaving only particle edges/corners exposed.

In this study, we report for the first time how Pd/TiO,
catalysts prepared through controlled sol-immobilization
routes™® afford series of nanoparticles of tailored particle size
distributions, including populations of metal clusters. We show,
systematically, how particle size and the solvent system of
preparation influences the activity, selectivity, and stability of
the catalysts during furfural hydrogenation under mild reaction
conditions of 25 and 50 °C. Furthermore, we demonstrate
changes to the nanoparticle structure, through carbidization,
which causes catalyst deactivation. To our knowledge, this is
the first time this deactivation route has been reported.

B METHODS

Catalyst Preparation. Supported Pd NPs were prepared
using a standard sol-immobilization method with temperature
control during the reduction process. K,PdCl, was used to
prepare solutions with various H,O/EtOH ratios of the desired
palladium concentration (1.26 X 107 M), to which aqueous
solutions of PVA (PVA/Pd (w/w) = 0.65) were added.
Solutions of NaBH, (0.1 M; NaBH,/Pd (mol/mol) = S) were
freshly prepared in the respective solvent and added dropwise
to each solution over a 1 min period with stirring to form dark
brown-black sols. After the complete reduction of Pd species
(30 min), the colloidal solution was individually immobilized
on TiO, (commercial P25) under vigorous stirring conditions.
The amount of support material required was calculated so as
to give a final metal loading of 1 wt %. The mixture was
acidified to pH 1—2 by sulfuric acid before being stirred for 60
min to accomplish full immobilization of the metal NPs onto
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the support. The slurry was filtered, washed thoroughly with
distilled water, and dried overnight at room temperature.

Transmission Electron Microscopy (TEM) and High
Angle Annular Dark Field Scanning TEM (HAADF STEM)
Imaging. Samples for examination by TEM and aberration-
corrected HAADF STEM were prepared by first dispersing the
catalyst powder in high-purity ethanol using ultrasonication for
30 min. A 40 uL portion of the suspension was dropped on to a
holey-carbon film supported by a 300 mesh copper TEM grid
before the solvent was evaporated. A JEOL JEM 2100 EM was
used for HAADF STEM analysis at the Nanoscale Physics,
Chemistry and Engineering Research Laboratory at the
University of Birmingham by using a JEOL JEM2100F
STEM equipped with a spherical aberration corrector
(CEOS). The HAADF detector was operated with an inner
angle of 62 mrad and an outer angle of 164 mrad. An integrated
HAADF STEM intensity analysis was used to obtain the size of
ultrasmall clusters, with large Pd clusters functioning as mass
balances.””*® The 3D intensity plot of the small Pd clusters was
performed using imagej software.

Infrared CO Chemisorption Studies. Fourier transform
infrared (FTIR) transmission spectra were obtained with a
Nicolet iS10 spectrometer at a spectral resolution of 2 cm™ and
accumulation of up to 64 scans. For each experiment, ~25 mg
of the catalyst was pressed to form a very thin pellet. The cell
was purged with helium for 30 min to obtain a background
spectrum before CO was introduced using a 10% CO/He
mixture at 70 mL min~" over a 30 s period. Three CO doses of
this nature were administered for each experiment. The gas was
switched to helium for 30 min at 70 mL min~’, in order to
remove gaseous and physisorbed CO before obtaining a
spectrum.

X-ray Absorption Fine Structure (XAFS). XAFS studies
were performed to examine the Pd oxidation state (XANES) as
well as the average Pd particle size from the primary shell
coordination number (EXAFS). Pd K-edge XAFS studies were
carried out on the B18 beamline at the Diamond Light Source,
Didcot, UK. Measurements were performed in transmission
mode using a QEXAFS setup with a fast-scanning Si(311)
double-crystal monochromator and ion chamber detectors. The
time resolution of the spectra was 1 min/spectrum (k,,,, = 18).
On average, 15 scans were acquired to improve the signal to
noise level of the data. XAS data processing was performed
using the Demeter IFEFFIT package.””*’

Catalytic Studies. Furfural hydrogenation was performed
at 25 or 50 °C, using a stainless steel reactor (30 mL capacity),
equipped with heater, mechanical stirrer, gas supply system, and
thermometer. Furfural solution (15 mL; 0.3 M in 2-propanol)
was placed in the reactor, and the desired amount of catalyst
(furfural/metal = 500 mol/mol) was suspended in the solution.
The hydrogen pressure was S bar. The mixture was left at room
temperature (25 °C) or alternatively heated to SO °C and
mechanically stirred (1250 rpm). At the end of the reaction, the
autoclave was cooled to room temperature (when performed at
50 °C), the H, flow was stopped, and the autoclave was purged
with flowing nitrogen. Samples were removed periodically (0.2
mL) and analyzed with an HP 7820A gas chromatograph
equipped with an HP-5 capillary column 30 m X 0.32 mm, 0.25
um film, by Agilent Technologies. Authentic samples were
analyzed to determine separation times. Quantitative analyses
by an external standard method (n-octanol) were carried out.

DFT Studies. The Vienna ab initio simulation package
(VASP) was used to perform DFT-based calculations with
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Grimme’s D2 corrections.”’ ~** The projector augmented wave
(PAW) method was used, and the cutoff energy for the
expansion of the plane-wave basis set was set to 550 eV, which
gave bulk energies converging to within 10e™ eV. A
convergence criterion of 0.01 eV/A for our structural
optimizations was adopted. For all the preliminary calculations,
the most commonly used Perdew—Burke—Ernzerhof (PBE)
version of the generalized gradient approximation (GGA) was
used to carry out total energy calculations and perform
geometry optimizations.” For the bulk calculations, the
Brillouin zone was integrated using a Monkhorst—Pack (MP)
grid of 11 X 11 X 11 k points. Since it is known that the
Pd(111) surface is the most stable surface among the low-index
surfaces, all of our calculations were performed on this
surface.”” The ideal Pd(111) surfaces were modeled by a 3 X
3 supercell with § atomic layers. A lattice constant of 3.904 A
and a k-point grid of 3 X 3 X 1 was used. During the
optimization process, we relaxed the upper two atomic layers
along with the furfural molecule. The bottom three atomic
layers were fixed to mimic the bulk of the system. The
adsorption energy was calculated using the equation

Eq= EPd(111)+furfura] - (EPd(lll) + Efurfural)

where E4 is the adsorption energy, Epy(111)+furfura 1S the energy
of the system with furfural molecule adsorbed, and Eg, ., is the
energy of the furfural molecule.

B RESULTS AND DISCUSSION

Characterization of As-Prepared Catalysts. The exper-
imental conditions under which each 1 wt % Pd/TiO, catalyst
was prepared, as well as notation, is presented in Table 1, with

Table 1. Solvent and Temperature Conditions Applied for
Each Pd/TiO, Catalyst Preparation, Average Pd Particle
Diameter Calculated by TEM Analysis, and XANES Linear
Combination Analysis Data for the 1 wt % Pd/TiO,
Catalysts

ref standard (%)

H,O/EtOH

solvent ratio sample  TEM av Pd
temp/°C v/v) notation diameter/nm Pd** Pd° Ry
1 100 PdA1l 25 +08 33 67 0.043
25 100 PdA2 2.7 £ 09 29 71 0.037
N 100 PdA3 2.9 + 1.5% 20 80 0.036
75 100 PdA4 52 +2.1% 12 88 0.025
-30 NU PdB1 14 + 04 71 29 0.056
1 S0 PdB2 2.1+ 06 36 64 0.045
25 50 PdB3 34+ 09 25 67 0.043

“As a consequence of dense agglomeration, only 100 particles were
counted.

elemental analysis by microwave plasma atomic absorption
spectroscopy (MP-AES) shown in Table SI in the Supporting
Information. The prepared Pd/TiO, catalysts were charac-
terized using TEM to assess the particle size distribution (Table
1); all images and histograms are detailed in Figure S1 in the
Supporting Information.

Within each solvent environment (A series, H,O; B series,
H,0O/EtOH), decreasing the temperature of preparation
decreases the average Pd particle diameter, in agreement with
our previous work with Au-based materials.”® PdA1 (2.5 nm)
and PdB1 (1.4 nm) produced the smallest Pd nanoparticles
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within their respective series, with PdBI exhibiting the
narrowest particle size distribution. It is understood that this
average particle size is smaller than any previously reported for
a Pd/TiO, catalyst, synthesized using a PVA/NaBH, colloidal
preparation.”® The effect of the solvent system can be assessed
by comparing samples PdA1 and PdB2 and samples PdA2 and
PdB3, which denote samples prepared at 1 and 25 °C,
respectively. Interestingly, the B series of Pd/TiO, produces a
larger spread of Pd particle size as a function of preparation
temperature, with catalyst PdB2 being evidently smaller than
the A series equivalent (PdA1). However, the distribution of
sizes for the A series is much narrower, and the catalyst
prepared at 25 °C (PdA2) has a smaller average particle
diameter in comparison to the B series analogue (PdB3). We
rationalize these differences by the competing influences during
sol-immobilization: the rate of metal precursor reduction,
solubility of PVA, and interaction of solvent with the metal salt
and formed colloid. PdA1 and PdB1 were examined with
HAADF STEM to investigate the presence of Pd clusters that
are too small to image clearly with standard TEM (Figure 2 and

Zintensity a.u.

(intensity a.u.)

Figure 2. Processed HAADF STEM image of PdA1 showing Pd,; and
Pd,, clusters.

Figure S2 in the Supporting Information). The presence of
ultrasmall Pd clusters is clearly evident for catalyst PdAl and
can be identified by the HAADF STEM images. The ability to
achieve significant populations of metal clusters through
standard chemical means remains a challenge, and in
accordance with our previous study,”® we demonstrate how
adjusting the temperature of colloidal reduction is able to
influence this.

X-ray absorption near edge structure (XANES) is a valuable
tool in probing the speciation of metal nanoparticles, in this
instance for determining the Pd oxidation state in the Pd/TiO,
catalysts under atmospheric conditions (during hydrogenation
conditions the oxidic content will reduce to Pd metal). The
ratio between Pd>* and Pd’ was performed by linear
combination analysis (LCA) of the first derivative of the
XANES profile, using PdO and Pd foil as reference standards
(Table 1 and Figure S3 in the Supporting Information). It is
evident that, for each solvent system, lowering the temperature
at which colloidal Pd is prepared results in an increase in Pd**.
All X-ray absorption fine structure (XAFS) measurements
represent the whole sample, which means that for NP systems
the surface speciation can only influence the overall response
for very small NP size; the ratio of surface to core species
increases as the average NP diameter decreases. Small Pd NPs
form an oxidic surface layer at room temperature on exposure
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to air,”” and indeed, we observe a clear correlation between
average Pd particle diameter (by TEM) and the extent of Pd*".
The k*-weighted forward Fourier transform of PdAl (Figure
S3) confirms that there are no large PdO crystallites. The Pd—
Pd scattering path that would otherwise be present at 3 A and
can be observed in the PdO reference is not observed in the
PdA1 data. With this knowledge, it is understandable that the
contribution in the PdB1 catalyst is 71% Pd** and only 29%
Pd’ due to the very small average Pd size in this catalyst. This
information, consistent with TEM analysis, confirms that
preparing colloidal Pd NPs at a lower temperature results in
a decrease in particle size and the formation of clusters. Pd
colloidal preparation at —30 °C in a mixed EtOH/H,O solvent
shows the most significant interest, as the stabilization of
ultrasmall metal nanoparticles is challenging but achievable.
To elucidate the specific adsorption sites generated using the
different preparation routes, catalysts PdA1, PdA2, PdB1, and
PdB2 were evaluated using CO as a probe molecule (Figure 3
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Figure 3. FTIR spectra from CO adsorption studies on PdB1 (solid
black line) and PdA1 (red dashed line).

and Figure S4 in the Supporting Information). Here, the IR
frequency of the CO band was used to assess differences in the
surface structure of the Pd NPs. The adsorption band present
at 2086 cm ™' is assigned to CO linearly adsorbed on corner
sites of Pd nanoparticles.*” There is a secondary linear adsorbed
CO band at 2063 cm™’, which can be ascribed to adsorption on
Pd nanoparticle edges. Bridge-bonded CO can also be
identified at ~1975 and 1945 cm™!, with the differences in
position attributed to adsorption of facets and edges,
respectively.40 Moreover, there are adsorption bands at 2140,
2120, and 1875 cm™, assigned to CO adsorbed on Pd**, Pd",
and 3-fold sites, respectively."** The spectra obtained for all
four catalysts exhibit noticeable differences in the distribution of
available sites. The relative intensities of the linearly adsorbed
CO bands, in comparison to those from bridge-bonded CO, are
much higher for the catalysts prepared in a mixed ethanol—
water solvent system. Furthermore, there are differences in the
ratio between different types of linear and bridge-bonded sites.
The series of NPs prepared in the ethanol—water solvent have a
greater proportion of the 2086 cm™' linear adsorbed CO and
1975 cm™" bridge-bonded CO. It is clear that changing the
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solvent system of preparation affords Pd NPs with different
surface characteristics, most notably the increase in available Pd
corner and edge sites. We propose that the different surface
sites observed are a consequence of the interaction between the
solvent and PVA, which affects the extent of PVA binding on
the metal surface.

Catalytic Testing. Both series of catalysts were evaluated
for the hydrogenation of furfural (furfural 0.3 M; F/metal ratio
500 mol/mol, 5 bar of H,, solvent 2-propanol) at 25 °C (Table
S2 in the Supporting Information) and S0 °C (Table S3 in the
Supporting Information), with the data illustrated graphically in
Figure 4. On comparison of the data between the A series
(prepared in water) and B series (prepared in water—ethanol),
interesting relationships can be observed. For the A series there
is a clear correlation between Pd particle size and activity;
smaller Pd NPs are more active, regardless of the reaction
temperature. Indeed, the catalyst of the A series of smallest Pd
particle size (Al, 2.5 nm) showed the highest catalytic activity
(440 and 620 mol (mol Pd)™* h7! at 25 and 50 °C,
respectively).

For the A series other distinct trends can be seen; as the Pd
particle size increases (PdA1 — PdA4), selectivity to furfuryl
alcohol increases (48, 65, 76, and 78% for PdA1, PdA2, PdA3,
and PdA4, respectively; Table S3 in the Supporting
Information) with a decrease in selectivity to tetrahydrofurfuryl
alcohol (39, 25, 20, and 15% for PdA1, PdA2, PdA3 and PdA4,
respectively; Table S3). On some occasions, the A series
catalysts showed improved activity, in comparison to the B
series at comparable particle sizes. Catalyst PdAl, with a mean
particle size of 2.5 nm, has a higher activity at 50 °C than PdB2
(620 and 470 converted mol (mol Pd)™" h™!, respectively;
Table S3), despite the smaller particle size of PdB2 (2.1 nm). It
must be noted that these Pd mass normalized activities are high
in comparison with current Pd-based catalysts for this
reaction.'””> There are clearly other parameters, in addition
to particle size, that influence activity and selectivity, as can be
observed by the catalytic performance of the B series. In the
case of the B series tested at 25 °C, the catalyst B1 (1.4 nm)
was less active than B2 (2.1 nm) with activities of 491 and 568
mol (mol Pd)™" h7', respectively. The selectivity of BI is
comparable to that of the only previously reported Pd/TiO,
catalyst (Pd particle also <2 nm) used for this reaction, despite
the different reaction solvent.'” However, when tests were
carried out at 50 °C, there was a direct relationship between
particle size and activity. Another characteristic difference of the
B series is the variation in selectivity profile with increasing
particle size. Broadly speaking, there is an inverse relationship
for furfuryl alcohol and tetrahydrofurfuryl alcohol selectivity
with particle size in comparison to the A series; as the particle
size increases, furfuryl alcohol selectivity decreases and
tetrahydrofurfuryl alcohol selectivity increases. It is apparent
that there is a collaborative effect between the solvent system
and temperature of colloidal preparation, which directs the
catalytic performance. It is our assertion that the competing
influences of sol immobilization—rate of reduction, PVA
solubility, and PVA/solvent/colloid interaction—are responsible
for the trends observed. The difference in selectivity can be
ascribed to the different binding modes of furfural on the Pd
surfaces. The CO chemisorption studies for the A and B series
show a clear difference in linear CO to bridged CO ratio, with
the B series having a far greater proportion of linear sites.
Where CO binds linearly to Pd edge and corner sites, previous
studies have indicated that these sites tend to bind furfural in a
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Figure 4. Catalytic performance plots for hydrogenation of furfural using tailored Pd/TiO, catalysts: (top left) Pd NPs Al — A4 tested at 25 °C;
(top right) Pd NPs Al — A4 tested at S0 °C; (bottom left) Pd NPs B1 — B3 tested at 25 °C; (bottom right) Pd NPs B1 — B3 tested at S0 °C.
Reaction conditions: furfural 0.3 M; F/metal ratio 500 mol/mol, 5 bar of H,, solvent 2-propranol. Converted amounts mol (mol Pd)™ h™! were
calculated after 15 min of reaction, and the selectivity was calculated at 50% conversion, except catalysts PdA3 and PdA4 at 25 °C, where selectivity
was calculated at 10% conversion. Open black circles denote conversion. Open blue diamonds denote activity. Red pentagons and triangles indicate

selectivity to the products denoted by the inset key.

perpendicular orientation, rather than flat across a surface, in
agreement with the recent work of Medlin et al.** In these
instances we observe improved selectivity to furfuryl alcohol.
Moreover, the adsorption sites that correspond to bridge-
bonded or 3-fold CO adsorption are able to bind furfural
through both the aldehyde functionality and the furan ring and
promote the complete reduction to tetrahydrofurfuryl alcohol.
Catalysts used for sustainable technologies need to be robust
and durable; therefore, recycling studies were performed. The
recycling tests were performed on Al and BI catalysts at
different temperatures (Tables S4 and SS in the Supporting
Information and Figure S), by reusing the same catalyst without
any pretreatment. These data evidenced a significant
deactivation of both catalysts when the reaction was performed
at 25 °C, whereas at 50 °C the deactivation was less
pronounced. When the reaction profile (Figures S5 and S6 in
the Supporting Information) was assessed as a function of time,
there is evidence that stronger deactivation phenomena
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occurred for all of the catalysts when the reaction was
performed at 25 °C. To explain the origin of the deactivation,
the used catalysts were also characterized.

Used Catalyst Characterization. TEM was used to
calculate the average Pd particle size after the recycling
experiments were performed at both 25 and 50 °C. The
particle size distribution (Figure S7 in the Supporting
Information) indicate that, for the samples prepared in water,
there is a small increase in average size (2.5 to 2.7 nm for
PdA1) when experiments were performed at 25 °C, with no
further particle growth when experiments were performed at
the higher temperature. However, for the Pd catalysts prepared
in an H,O/EtOH mixture, the temperature of the reaction has
a greater influence for PdB1, in which the average particle size
increases from 1.4 to 2.0 and 2.7 nm when the reaction was
performed at 25 and 50 °C, respectively, and these results are in
agreement with the observed initial decrease in catalytic activity.
The average Pd particle diameter is still very small, and STEM/
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Figure S. Catalytic activity for recycling studies of catalysts PdAl and
PdB1.

HAADF was used to identify the presence of Pd clusters in the
PdA1 and PdBI catalysts after performing the reaction at 25 °C
(Figure S8 in the Supporting Information). It is clear that very
small Pd clusters are still preserved during catalysis, which is a
combined result of the mild reaction conditions and protective
stabilization role of PVA.

The used PdA1 and PdBI catalysts tested at 25 °C (after five
reaction cycles) were assessed using XAFS spectroscopy, with
the XANES data shown in Figure 6. The initial observation
from the XANES data is the presence of Pd** and Pd’. The
heights of the main edge of the fresh and used catalysts are
greater than that of Pd foil. This difference in height can be
attributed to the presence of oxidized Pd in the Pd/TiO,
catalysts. Elsewhere, the maximum of the second XANES peak
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Figure 6. Normalized XANES spectra of PdAl and PdB1 after
catalysis and a Pd° reference.
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is seen to move to lower energy for the used catalysts, in
comparison to the Pd foil. The shift in the position of the
second maximum is observed for both hydride and carbide
forms of Pd; however, the broadening of the first peak is only
observed for carbidic Pd.**~* In this instance changes in the
first peak maximum are complicated by the separate
contribution of oxidized forms of Pd. Further evidence of
carbide formation was sought by assessing the EXAFS (Figure 7
and Figure S9 and Table S6 in the Supporting Information),
which is able to probe changes in Pd—Pd spacing.

1.2 - "
——Fresh data
1.0 =
©
< 08 -
3
]
o 0.6 =
x
|—
('S
0.4 -
Shift = lattice
expansion
0.2 o
0.0 T T T 1
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Figure 7. FT »* weighted EXAFS data of fresh (black line) and used
(red line) PdAL.

Analysis of the EXAFS data confirms an increase of Pd—Pd
spacing after the reaction from ~2.74 to 2.77 A. An increase in
Pd—Pd spacing is encountered for the formation of Pd carbide
and hydride;*”*® however, hydride is known to readily desorb
from the Pd lattice under normal atmospheric conditions.
Considering this, it is apparent that this expansion could not be
caused by the formation of hydride. The expansion of the Pd
lattice from 2.74 t02.79 A has been previously reported for bulk
(PdC,, where x = 0.13) Pd carbide formation, suggesting that
only partial carbidization has occurred.*® We propose that the
deactivation encountered at lower reaction temperature is a
result of the transformation to Pd carbide, expansion of the
Pd—Pd distance, and the subsequent effect on hydrogen
dissociation and the #? adsorption of C=0 and C=C
functionalities. Indeed, a greater degree of deactivation is
observed for the catalyst A1Pd (464 — 394 mol (mol Pd)™
h™") in comparison to BIPd (491 — 450 mol (mol Pd)™" h™"),
which correlates with the extent of carbidization observed.
Although we experience deactivation upon carbidization, other
catalytic processes experience different effects. Previous work
investigating the effect of carbide on the catalytic activity of
acetylene hydrogenation concluded that both an increased and
decreased activity can be observed, depending on the type of
carbidized Pd site (flat, increase; step, decrease).*”*®

DFT Calculations. To assess the effect of carbidization on
the adsorption of furfural, DFT calculations were performed.
We first considered two different configurations of furfural,
parallel and perpendicular, on a pristine Pd(111) surface
(Figure 8a,b). In the case of the perpendicular configuration, we
considered the stability of the system on top of a Pd atom
(Pdwp) , on the bridge site between two Pd atoms (deridge)J and
on the 3-fold hollow site (Pd,gj..). The calculated adsorption
energy for the parallel configuration (Pdpara]lel) is —2.160 eV,
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Figure 8. (a) Parallel and (b) perpendicular configurations of furfural on the Pd(111) surface. (c) apDOS for pristine Pd(111) and (d) apDOS for
farfural on the PAC(111) surface. Black and blue lines represent the signatures for Pd d orbitals close to C and O atoms, respectively. Red, aqua, and
green lines represent the p orbitals due to C, O, and interstitial C atoms, respectively.

which is slightly more negative than the previously reported
value of —1.830 eV, which can be accounted for by the different
versions of DET-D approaches used.”' The adsorption energies
for Pdy, Pdyigee and Pdpy, configurations are —0.632,
—0.940, and —2.18S eV, respectively, with relaxed structures of
Pd,, and Pdy;g, retaining a perpendicular orientation.
However, it is interesting to note that for the Pd, ., site the
furfural molecule attained a parallel configuration to the surface
after relaxation (Pdyqjow-paratet) and is comparable in energy to
the Pd,, iy configuration. The adsorption energies obtained
confirm that the parallel configuration of furfural binding is
more stable than the perpendicular orientation. Subsequently,
we investigated the increase in Pd—Pd bond distances, as a
result of carbidization, in bulk Pd (by 0.095 A) and subsurface
of Pd(111) (by 0.057 A) (Figures S10 and SI1 in the
Supporting Information), which were consistent with exper-
imentally determined values of partially carbidized Pd nano-
particles.””™* We found that the increase in Pd—Pd distance
correlated with an increased adsorption energy for furfural. The
calculated adsorption energy for this system is —1.613 eV,
confirming that adsorption of furfural is more favorable on
pristine Pd(111), in comparison to PAC(111). Furthermore, on
comparing the geometry of furfural on pristine and carbide
systems we find that in both cases parallel adsorption is
preferred, although there are some minor differences in the
planarity of the furfural adsorption (Table S7 in the Supporting
Information).

To assess this change in stability, we analyzed the atom
projected partial density of states (apPDOS) of the C and O
atoms of the furfural molecule and Pd atoms of the Pd(111)
and PAdC(111) surfaces closest to each other. For convenience,
the Fermi energy (Eg) is shifted to 0, which is represented by a
dotted line in Figure 8c,d. From the analysis of apPDOS we see
that around —7.0 to —5.5 eV (Figure 8c,d) there is a strong
interaction between the p orbitals, of C and O atoms of furfural,
with the d orbital signatures of Pd atoms on the Pd(111)
surface. However, on incorporation of an interstitial C atom,
another sharp signature due to the C p orbital appears around
this region, which has a higher contribution than the p-orbital
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signatures due to C and O atoms of the furfural molecule. The
interaction of the C p signatures, due to interstitial C atoms,
interact more strongly with the nearby Pd atoms and result in a
weakening of the interaction of furfural C and O atoms with the
Pd(111) surface. As a consequence, adsorption of furfural is
more favored on pristine Pd(111), in comparison to PAC(111).

B CONCLUSIONS

We have demonstrated the tandem optimization of the
colloidal preparation of Pd nanoparticles, through adapting a
simple and systematic combination of choice of solvent and
temperature of reduction. These parameters allow us to tune
both the size domains of Pd nanoparticles and available
reaction sites, which directs the performance toward the
hydrogenation of furfural. Reduced Pd NP size was achieved by
lowering the temperature of colloidal reduction. For the catalyst
prepared at 1 °C in water the average particle size was found to
be 2.5 nm; however, we were also able to detect clusters of Pd
with <20 atoms. For the B series prepared at —30 °C, an
average particle size of 1.4 nm was produced, which is smaller
than has been previously reported for Pd NPs prepared through
a PVA/NaBH, colloidal route. Site-selective catalysis was
enabled by adjusting the solvent of colloid preparation; the Pd/
TiO, catalysts prepared using a water—ethanol solvent were
found to have a larger proportion of available corner and edge
sites, which were able to direct the selectivity of the furfural
hydrogenation products. We propose that the greater number
of available corner and edge sites adsorb furfural perpendicular
to the nanoparticle surface, resulting in greater selectivity to
form furfuryl alcohol over the complete reduction product,
tetrahydrofurfuryl alcohol. We also find that the selectivity
profile does not correspond solely to particle size; for the B
series furfuryl alcohol selectivity decreases with increasing
particle size, whereas for the A series the inverse relationship is
found. The available sites are therefore not just a result of
particle size but are also a consequence of the interaction of the
protecting agent with the NPs prepared. This influence was also
manifested in recycling studies, where those catalysts prepared
in water—ethanol were more robust than those prepared solely
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in water. By assessing the EXAFS of the used catalysts, we were
able to identify a Pd—Pd lattice expansion. This is attributed to
the formation of Pd carbide, which we propose is responsible
for the deactivation observed. This assertion is supported by
computational modeling studies, which show that the
carbidization of Pd reduces the binding energy of furfural,
leading to a lowering of catalytic activity. To our knowledge this
is the first report of this proposed deactivation pathway for the
hydrogenation of a,f-unsaturated aldehydes.

B ASSOCIATED CONTENT
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The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acscatal.6b03190.

TEM HAADF images with supporting Pd particle size
distribution histograms, EXAFS fitting parameters, CO-
chemisorption IR spectra, microwave plasma-atomic
emission spectroscopy, computational studies, and addi-
tional catalytic data for furfural hydrogenation can be
found in the Supporting Information. The original data
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