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Abstract: 37 

 38 

The acute anti-viral response is mediated by a family of interferon stimulated 39 

genes (ISG), providing cell-intrinsic immunity. Mutations in genes encoding 40 

these proteins are often associated with increased susceptibility to viral 41 

infections. One family of ISGs with anti-viral function are the interferon-42 

inducible transmembrane proteins (IFITM) of which IFITM3 has been studied 43 

extensively. By contrast, IFITM1 has not been studied in detail. Since IFITM1 44 

can localise to the plasma membrane, we investigated its function with a 45 

range of enveloped viruses thought to infect cells by fusion with the plasma 46 

membrane. Overexpression of IFITM1 prevented infection by a number of 47 

Paramyxoviridae and Pneumoviridae, including Respiratory Syncytial Virus 48 

(RSV), mumps virus and human metapneumovirus (HMPV). IFITM1 also 49 

restricted infection with an enveloped DNA virus that can enter via the plasma 50 

membrane, herpes simplex virus 1 (HSV-1). To test the importance of plasma 51 

membrane localisation for IFITM1 function, we identified blocks of amino 52 

acids in the conserved intracellular loop (CIL) domain that altered the 53 

subcellular localisation of the protein and reduced anti-viral activity. Screening 54 

published datasets, twelve rare non-synonymous SNPs were identified in 55 

human IFITM1, some of which are in the CIL domain. Using an Ifitm1-/- knock-56 

out mouse we show that RSV infection was more severe, thereby extending 57 

the range of viruses restricted in vivo by IFITM proteins and suggesting 58 

overall that IFITM1 is broadly anti-viral and this anti-viral function is 59 

associated with cell surface localisation. 60 

  61 
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Importance 62 

Host susceptibility to viral infection is multifactorial, but early control of viruses 63 

not previously encountered is predominantly mediated by the interferon 64 

stimulated gene (ISG) family. There are upwards of 300 of these genes, the 65 

majority of which do not have a clearly defined function or mechanism of 66 

action. The cellular location of these proteins may have an important effect on 67 

their function. One ISG located at the plasma membrane is Interferon 68 

inducible transmembrane protein 1 (IFITM1). Here we demonstrate that 69 

IFITM1 can restrict a range of viruses that enter via the plasma membrane. 70 

Mutant IFITM1 proteins that were unable to localise to the plasma membrane 71 

did not restrict viral infection. We also observed for the first time that IFITM1 72 

plays a role in vivo, Ifitm1-/- knock-out mice were more susceptible to viral lung 73 

infection. This data contributes to our understanding of how ISG prevent viral 74 

infections. 75 

 76 
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Introduction 77 

 78 

Intrinsic immunity is the ability of infected and bystander cells to restrict 79 

infection prior to the recruitment of innate or adaptive immune cells (1). This 80 

intrinsic immune response is in part mediated by proteins encoded by 81 

interferon stimulated genes (ISG). There are over 300 of these genes that are 82 

upregulated in response to type I, II and III interferons (2). Although the 83 

functions and modes of action of a few of these genes have been studied in 84 

detail, many remain to be functionally characterised (3). Nevertheless, the 85 

importance of ISGs in defence against various pathogens is demonstrated by 86 

increased disease severity associated with single nucleotide polymorphisms 87 

(SNPs) in genes encoding ISGs including IFITM3 (4), MDA5 (5), OAS-1 (6), 88 

and Mx1 (6-8). 89 

 90 

One family of ISGs that functions as broad-spectrum inhibitors of viral 91 

replication is the Interferon-inducible transmembrane protein (IFITM) family. 92 

IFITMs are functionally conserved across many species, including birds (9-93 

12), pigs (13, 14), and bats (13). In most cases this family of restriction factors 94 

block infection during virus entry into cells (15), although additional 95 

mechanisms have been proposed (16, 17). It is proposed that these very 96 

similar proteins arose by gene duplication events (18), but their maintenance 97 

across many species suggests they have distinct functions or specialisations. 98 

While IFITM2 and IFITM3 share 90% of their amino acids, IFITM1 shares only 99 

74% with IFITM3, due largely to an N-terminal deletion of 21 amino acids. 100 

Research into IFITM proteins has mainly focussed on IFITM3 and 101 

investigation of its ability to inhibit entry and replication of RNA viruses, 102 

including influenza (19-22), dengue virus (20, 23), Zika virus (24), RSV (25), 103 

Semliki Forest and Sindbis viruses (26) and murine cytomegalovirus (mCMV) 104 

(27). Fewer studies have been performed on IFITM1, which can restrict a 105 

number of RNA viruses, including hepatitis C virus (28, 29), Sheep Jaagsikie 106 

virus (30), HIV (31), Zika virus (24), and influenza viruses (20), but not Rift 107 

Valley fever virus (32), Sindbis or Semliki Forest virus (26). IFITM1 has no 108 

reported antiviral activity against the non-enveloped DNA viruses human 109 

papillomavirus and adenovirus (33).  110 
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 111 

Interestingly, the IFITM proteins differ in their sub-cellular localisation when 112 

expressed individually: IFITM1 is found primarily on the cell surface (10, 34), 113 

IFITM2 in late endosomes and IFITM3 mainly in early endosomes (34). The 114 

function of IFITM1 may thus be linked to its abundance in the plasma 115 

membrane. Indeed, mutations that increase IFITM1 cell surface expression 116 

lead to increased restriction of HIV-1NL4–3 infection compared to wildtype 117 

IFITM1 (31). Moreover, mutations in IFITM1 that prevent it binding to the 118 

vesicular transport adaptor protein AP3 reduced inhibition of viral replication 119 

(35). 120 

 121 

Greater examination of the range of viruses restricted by IFITM1 and the 122 

effect of engineered and naturally occurring mutations in IFITM1 is required to 123 

further understand the mechanism of IFITM1 viral restriction. Here we show 124 

that in vitro IFITM1 inhibits infection of several RNA viruses that enter via the 125 

plasma membrane, including mumps virus, Respiratory Syncytial Virus (RSV), 126 

human metapneumovirus (HMPV), and a DNA virus, herpes simplex virus 1 127 

(HSV-1). Further, we show that otherwise healthy Ifitm1-/- knock-out mice 128 

experience more severe RSV infection compared to wild type mice. However, 129 

mCMV infection, which is altered in Ifitm3-/-, mice was no more severe in 130 

Ifitm1-/- knock-out mice. This suggests that IFITM1 has anti-viral activity that is 131 

distinct to IFITM3. 132 

133 
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Methods: 134 

Cell culture. A549 cells (ATCC: CCL-185) were grown in F-12 media (Life 135 

Technologies), MRC-5 (ATCC: CCL-171) were grown in EMEM (ATCC), 136 

U2OS cells (ATCC: HTB-96) were grown in McCoy's media (Life 137 

Technologies). Vero cells (Sigma: 84113001), HEp2 cells (ATCC: CCL-23) 138 

and HEK293-T/17 cells (ATCC: CRL-11268) were grown in DMEM (Life 139 

Technologies). All media were supplemented with 10 % v/v FBS (Biosera).  140 

Overexpression studies. Human IFITM1 wildtype and alanine-scanned gene 141 

sequences were synthesised (GeneArt, Life Technologies) for expression in 142 

human cells. Single amino acid changes were introduced using site-directed 143 

mutagenesis (Quikchange II XL, Agilent). All IFITM genes were cloned into 144 

the BamHI and NotI sites of the lentivirus vector, pSIN-BN_puro (36), and 145 

sequences confirmed by capillary sequencing (GATC Biotech). The wildtype 146 

human genes cloned were IFITM1 (MK288009), IFITM2 (MK288010) and 147 

IFITM3 (MK288011). The gene cassette was cloned into pSIN-BN along with 148 

a C-terminal HA tag to facilitate analysis of the expressed protein. Lentivirus 149 

vector stocks were made by a three-plasmid transfection of HEK293-T/17 150 

cells, grown to confluence in a 10 cm2 dish (10). The lentiviruses were used to 151 

transduce A549 or Vero cells and produced a mixed population of IFITM 152 

expressing cells. Transduced cells were selected using puromycin 153 

(concentrations of 1.4 μg/ml and 5.2 μg/ml, respectively). Expression of IFITM 154 

proteins was detected by western blotting using an antibody against the HA 155 

tag (ab18181, Abcam), IFITM1 (HPA004810, Sigma) or IFITM3 (AP1153a, 156 

Abgent). 157 

IFITM1 Localisation. The localisation of IFITM-HA-tagged proteins was 158 

assessed using an anti-HA antibody conjugated to Dylight-550 (ab117502, 159 

Abcam). Coverslips were washed in PBS and adhered to microscopy slides 160 

using ProLong Gold with DAPI (ThermoFisher). Cells were imaged using 161 

microscopy after permeabilisation in 0.25% triton X and fixed in 4% 162 

paraformaldehyde, images were taken at 63X objective. Expression of the HA 163 

tagged IFITM1 on non-fixed and non-permabilised cells was quantified by flow 164 

cytometry using an anti-HA antibody conjugated to Alexa Fluor 647 (682404, 165 

Biolegend). Cells were washed in PBS and harvested by trypsinisation. Cells 166 
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were washed in 3% FBS PBS and stained with antibody. Analysis was 167 

performed on an LSR Fortessa flow cytometer (BD Biosciences). 168 

RNA virus in vitro infections. Transduced Vero cells were seeded at 2x105 169 

cells per well in 24-well plates. The following day cells were infected with 170 

different paramyxoviruses: parainfluenza virus rgPIV3 (MOI 0.1) (37); measles 171 

virus (MV), rMVrEdtEGFP (MOI (38) and rMVEZEGFP (39); mumps virus 172 

(unpublished Rennick et al.); Newcastle disease virus NDV, rNDV-GFP-F0 173 

(40), the orthomyxovirus influenza A virus PR/8/1934-EGFP (MOI 1) (41); and 174 

pneumoviruses Respiratory Syncytial Virus B strain rHRSVB05EGFP (42) and 175 

strain A2 rgRSV (43); human metapneumovirus HMPV NL/1/00-GFP (44), 176 

and HMPV NL/1/99-GFP (45). After 24 hr, cells were fixed in 2 % v/v 177 

paraformaldehyde (PFA) and the percentage of infected cells was measured 178 

by detecting GFP expression using flow cytometry. 179 

HSV-1 in vitro infections. 180 

HSV-1 C12, a variant that has a CMV IE1 promoter–EGFP cassette inserted 181 

at the US5 gene locus from pEGFP-C1 (Clontech), a kind gift from Dr Stacey 182 

Efstathiou, was used for these experiments (46). Virus stocks were 183 

propagated and titrated on confluent BHK-21 cells.  184 

HSV-1/GFP infection, at MOI 5 for A549 and MOI 0.5 for MRC-5, was 185 

determined by fluorescence microscopy at 7 hours post infection (hpi) unless 186 

stated otherwise, following fixation with 4 % v/v PFA for 20 min and 187 

permeabilisation using 0.3 % v/v TritonX / PBS (10 min). Cells were washed 188 

with 100 µl of PBS / Hoechst solution (Life Technologies, 200 ng/µl). The fixed 189 

cells were analysed to determine the proportion of cells expressing GFP 190 

(Cellomics ArrayScan VTI, Thermofisher), using the Target Activation 191 

bioapplication. Briefly, this method counts every cell on the plate by drawing a 192 

perimeter around each nuclei (detected by Hoechst) and calculates the 193 

percentage of these cells expressing GFP. Alternatively, flow cytometry was 194 

used to quantify HSV-1/GFP infection. Cells were washed in PBS and 195 

removed from the plastic using trypsin. Cells were washed again in PBS and 196 

fixed in 4 % v/v PFA for 10 min at RT. Cells were washed and resuspended in 197 
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PBS and analysed for GFP expression using a FACS Calibur (Becton 198 

Dickinson). 199 

Knock-down of IFITM1 using siRNA treatment. MRC-5 cells were seeded 200 

in triplicate in 12-well plates at 6x104 per well. The following day cells were 201 

either treated with 5 μl of PBS (mock), 5 μl of IFNα2a (PBL Interferon), 5 μM 202 

of human IFITM1 SMARTpool siRNA (L-019543-00, Dharmacon), or 5 μM of 203 

non-targeting pool siRNA (NT siRNA (D-001810-10, Dharmacon)). 204 

Transfections were carried out using the Dharmafect reagent according to the 205 

manufacturer’s guidelines. 206 

Confirmation of protein expressing using western blot. Total protein was 207 

quantified by BCA assay (Thermo Scientific) and equal amounts of protein 208 

were loaded onto Mini-PROTEAN® TGX™ precast SDS-PAGE gels (Biorad). 209 

Proteins were transferred onto nitrocellulose membranes using a TransBlot 210 

Turbo apparatus (Bio-Rad). Nitrocellulose membranes were blocked overnight 211 

using 5 % w/v milk powder/PBS-Tween. Proteins were visualised with the 212 

following primary antibodies: human IFITM3 (rabbit anti-IFITM3 [N-terminal 213 

amino acids 8–38; AP1153a, Abgent]); human IFITM1 (rabbit anti-IFITM1 214 

[HPA004810, Sigma]); β actin (rabbit anti- β actin [ab8227, Abcam]) was used 215 

as a loading control. All primary antibodies were visualised using species-216 

specific horseradish peroxidase-conjugated secondary antibodies (Dako).  217 

Bioinformatic analysis. Custom scripts (available on request) were used to 218 

extract single variants in the IFITM1 locus of people in the 1000Genomes 219 

phase3 cohort and people recruited in the following UK10K cohorts: 220 

UK10K_Neuro_Aberdeen, UK10K_Neuro_Asd-_Gallagher, UK10K_Neuro 221 

_Edinburgh, UK10K_Neuro_Gurling, UK10K_-Neuro_Iop_Collier, UK10K_ 222 

Neuro_Muir, UK10K_Obesity_Gs, UK10K_-Obesity_Twinsuk, UK10K_Rare 223 

_Hyperchol, UK10K_Rare_Neuromuscular, UK10K_Rare_Sir, UK10K_ 224 

TwinsUK, UK10K_ALSPAC. Resulting SNPs were analysed using the Variant 225 

Effect Predictor tool (Ensembl) displaying results as one consequence per 226 

variant. Visualisation of SNP was performed using Protter (47). 227 

Mice husbandry and phenotyping. Background-matched 8-10 week old wild 228 

type or Ifitm1-/- (Wellcome Trust Sanger Institute) (48), all of which were 229 
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>95 % C57BL/6, were supplied with food and water ad libitum and were 230 

monitored daily for signs of illness. Ifitm1-/- gene knockout (KO) mice were 231 

phenotyped through pipelines at the Wellcome Trust Sanger Institute, as 232 

described previously (49, 50). To investigate IFITM1 gene expression BALB/c 233 

8-10 week old mice were obtained from Charles River (Bath, UK) and housed 234 

at the central biomedical sciences at Imperial College London. All animal 235 

experiments were maintained in accordance with UK Home Office regulations, 236 

UK Animals (Scientific Procedures) Act 1986 and reviewed by the Wellcome 237 

Trust Sanger Institute’s or Imperial College London’s Animal Welfare and 238 

Ethical Review Boards. 239 

RSV in vivo infection. RSV strain A2 (kind gift from Prof P. Openshaw, 240 

Imperial College London) was grown in HEp-2 cells and viral titres determined 241 

by plaque assay. Mice were infected intranasally with 5x105 plaque forming 242 

units (PFU) under isoflurane anaesthesia. Weight was measured daily to 243 

monitor disease severity. At day 7 after infection, lungs were removed, the 244 

smaller lobe was snap frozen in liquid nitrogen for RNA extraction and the 245 

remainder was homogenised by passage through 100 μm cell strainers 246 

(Falcon). RSV viral load was measured by quantitative RT-PCR for the RSV L 247 

gene using primers and probes previously described (51), with copy number 248 

determined using a curve and presented relative to μg lung RNA. Lungs were 249 

homogenised with a rotor-stator homogeniser, centrifuged and the 250 

supernatant collected for cytokine analyses. Cytokines in lung homogenates 251 

were quantified by ELISA using duosets from R&D Systems. 252 

mCMV infections. Smith strain mCMV was propagated in vivo, and virus 253 

stock and viral load in tissues of infected mice quantified by plaque assay, as 254 

previously described (27). Mice were infected with 3x104 PFU of virus via the 255 

intra-peritoneal route. IL-6 in organ homogenate was quantified using ELISA 256 

(Biolegend). For in vitro infections, MEFs and bone marrow-derived myeloid 257 

cells were infected with mCMV and virus production quantified as previously 258 

described (27).  259 
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Results 260 

Restriction of Paramyxoviridae and Pneumoviridae by human IFITM1 261 

Previous studies have demonstrated that IFITM1 can restrict infection by 262 

some RNA viruses (20, 24, 28, 29, 31). Given our previous findings, that 263 

IFITM1 is preferentially localised to the cell surface (34), we sought to extend 264 

these findings to the Paramyxoviridae and Pneumoviridae, which are 265 

negative-stranded RNA viruses that are thought to enter cells at the plasma 266 

membrane. These families include viruses of clinical importance such as 267 

measles (MV), mumps virus and RSV. Lentiviral vectors were used to stably 268 

over-express IFITM1, 2 or 3 proteins in Vero cells, which are permissive to 269 

infection with the described viruses. The proteins were HA-tagged to enable 270 

detection and transfection led to detectable expression in the cells (Fig 1A). 271 

IFITM1 expression in Vero cells was observed throughout the cell, with a 272 

concentration in the perinuclear space and, unlike IFITM2 and IFITM3 which 273 

were localised internally and form a punctate pattern, distinct expression at 274 

the cell surface (Fig 1B). Cell surface expression of IFITM1 was confirmed by 275 

flow cytometry analysis on non-fixed and non-permeabilised cells (Fig 1C) 276 

and co-localisation with wheat germ agglutinin (Fig 1D). . This pattern of 277 

expression was consistent with previous studies which further confirmed cell 278 

surface expression of IFITM1 in these cell lines using additional assays (34). 279 

IFITM1-3 transduced Vero cells were infected with different members of the 280 

Paramyxoviridae and Pneumoviridae and infection compared to Vero cells 281 

transduced with an empty vector. IFITM1 restricted infection of all the viruses 282 

tested, including parainfluenza virus (PIV), RSV, human metapneumovirus 283 

(hMPV), Newcastle disease virus (NDV) and mumps virus (Fig 1E). There 284 

was a small, but significant, effect on measles virus and NDV replication. 285 

IFITM2 had no impact on any of the viruses tested. As shown previously, only 286 

RSV was restricted by IFITM3 (25, 52). Comparisons were made to influenza 287 

virus (an orthomyxovirus) which confirmed both IFITM1 and IFITM3 are able 288 

to restrict influenza A effectively. 289 

IFITM1 restricts HSV-1 infection 290 
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These data support an anti-viral role for IFITM1 against a selected group of 291 

RNA viruses. Previous studies have suggested that IFITM1 has no significant 292 

impact on DNA viruses such as papilloma and adenoviruses. However, both 293 

of these are non-enveloped viruses which, for the most part, are not restricted 294 

by IFITM proteins. To explore the role of IFITM1 on enveloped DNA viruses 295 

that can enter the cell via the plasma membrane, we looked at the effect of 296 

IFITM1 expression on infection by Herpes Simplex virus (HSV-1), a member 297 

of the Alphaherpesvirinae. A549 human fibroblasts were transduced with 298 

lentiviruses coding for human IFITM1, IFITM2 or IFITM3 proteins. Transfected 299 

cells were infected with HSV-1/GFP virus at a multiplicity of infection (MOI) of 300 

5. Quantitative fluorescence microscopy showed that at 7 hpi 16 % of cells 301 

expressing IFITM1 were infected by HSV-1 compared to 87 % and 107 % of 302 

cells expressing IFITM3 and IFITM2, respectively (values normalised to un-303 

transduced cells) (Fig 2A). These findings were supported by flow cytometry 304 

analysis of a multi-cycle HSV-1 infection. After 44 hr, HSV infection (MOI 305 

0.01) in IFITM1 expressing A549s was 36.6 % compared to 75.5% and 58.1% 306 

for IFITM2 and IFITM3, respectively, and 75.1% infection of control empty 307 

vector transduced cells (Fig 2B). 308 

To confirm the role of IFITM1, we looked at the effect of gene knockdown. A 309 

SMARTpool of siRNAs targeting human IFITM1 reduced expression of 310 

IFITM1 mRNA in MRC-5 cells by 96 % (-4.72log2 reduction) compared to 311 

Interferon alpha treatment (Fig 2C). The non-targeting control had some effect 312 

on IFITM1 transcription. Pre-treatment with the human IFITM1 specific 313 

siRNAs increased HSV-1 infection, compared to untreated cells and a non-314 

targeting siRNA control (Fig 2D). Pre-treatment with IFNα2a substantially 315 

reduced HSV-1 infection, but the addition of siRNA against IFITM1 to IFNα2 316 

treated cells negated the effect of the IFNα2a. Collectively, these data 317 

suggest that IFITM1 is an important part of the IFN response to HSV-1 318 

infection. 319 

Amino acids in the CIL domain of IFITM1 are important for restriction 320 

The current model of IFITM1 structure establishes it as having its short N-321 

terminal domain in the cytoplasm, two membrane domains linked by a 322 

conserved intracellular loop (CIL) exposed to the cytoplasm and the C-323 
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terminal domain exposed on the cell surface (34). In order to determine the 324 

amino acids that are important for IFITM1 localisation and virus restriction, we 325 

generated a panel of 20 cell lines expressing mutant proteins with consecutive 326 

substitutions of six alanines, starting from the second N-terminal amino acid 327 

(Fig 3A). These mutated proteins were expressed in A549 cells (Fig 3B) and 328 

their localisations established by immunofluorescence using an antibody 329 

against the C-terminal HA-tag (Fig 3C). Since the CIL domain is predicted to 330 

be exposed to the cytoplasm (34), mutations in this domain were not expected 331 

to alter IFITM1 localisation. However, in the 6-alanine mutants AA-63, 69 and 332 

83 IFITM1 was not seen at the cell surface but was primarily associated with 333 

LAMP1-negative (a marker for late endosomes and lysosomes) intracellular 334 

membranes. Interestingly, AA-76 IFITM1 appeared to show both intracellular 335 

and surface localisation. The loss of cell surface expression with mutation of 336 

the CIL domain was confirmed by flow cytometry on non-fixed and non-337 

permeabilsed cells, wild type protein was detected at significantly higher 338 

levels on the cell surface than the AA-63, 69 or 83 mutants (Fig 3D, E), there 339 

was no significant difference in surface expression of the AA-76 mutant and 340 

the wildtype. However, there was a decrease in the median fluorescence 341 

intensity (MFI) of A549 AA-76 cells suggesting that there is reduced levels of 342 

cell surface IFITM1 expression (Fig 3.E). 343 

To determine whether mutations in the CIL domain affected function, cells 344 

expressing wildtype IFITM1, a negative control Empty vector, or IFITM1 with 345 

6-alanines inserted at AA-63, 69, 76 or 83 were infected with influenza, 346 

measles virus, mumps virus, or RSV. As observed previously, overexpression 347 

of wild type IFITM1 reduced infection for all tested viruses, relative to empty 348 

cells (Fig 3F, 3G). Cell lines expressing IFITM1 AA-63, 69, 76, or 83 mutants 349 

showed increased infection relative to cells expressing the wild type IFITM1, 350 

suggesting an impairment of IFITM-mediated restriction. Interestingly IFITM1 351 

AA-76, which was seen to maintain some cell surface expression unlike the 352 

other mutant proteins, was still able to restrict RSV ~20% (Fig 3G). However, 353 

this was still a significant reduction in restriction compared to that observed 354 

with over-expression of the wild type protein. Together, the infectivity and 355 

immunofluorescence data indicate that the CIL domain influences IFITM1 356 
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localisation and is important for IFITM1’s anti-viral activity. This may suggest 357 

that IFITM1 function is dependent upon its localisation to the cell surface, 358 

rather than intracellular membranes, which requires an intact CIL domain. 359 

Having observed that IFITM1 can restrict infection by enveloped RNA and 360 

DNA viruses and that sequence alterations in the CIL domain effectively 361 

impair function, we investigated whether there are common SNPs in the 362 

IFITM1 gene. To map these SNPs, variants were identified in IFITM1 from the 363 

1000Genomes phase 3 dataset (2504 people), the UK10K control cohorts 364 

(2453 people) and 11 UK10K disease cohorts (6053 people). In total, 93 365 

SNPs were identified across the entire gene (Fig 3H). Of these 12 (20 %) 366 

resulted in non-synonymous substitutions, but all SNPs were very rare and 367 

were rarely seen in multiple cohorts (Table 1). The exception is SNP 368 

rs9667990 (P13A), which is seen in the vast majority of individuals; it is likely 369 

therefore that a proline at AA13 was a rare amino acid substitution in the 370 

reference sequence and that alanine is the correct, common amino acid. The 371 

location of these non-synonymous SNPs is shown across the whole of the 372 

IFITM1 protein (Fig 3I). 373 

 374 

RSV disease is more severe in mice lacking IFITM1 375 

As IFITM1 affects viral replication in vitro, we wished to determine its role in 376 

vivo. Ifitm1-/- mice and wild type C57BL/6 mice were intranasally infected with 377 

RSV A2, and were monitored daily for weight loss for seven days after 378 

infection (Fig 4A). Ifitm1-/- mice showed significant weight loss on day seven 379 

after infection compared to wild type littermates (p<0.05) (Fig 4A). There was 380 

significantly higher lung RSV viral load at day four after infection (Fig 4B), and 381 

significantly more cells in the airways at day 4 (Fig 4C) and lungs at day 7 (Fig 382 

4D) after infection. To determine the effect of IFITM1 on the inflammatory 383 

response, the lungs of all mice were homogenised and the levels of IL-6 (Fig 384 

4E) and IL-1β (Fig 4F) compared between genotypes after RSV infection. The 385 

levels of both cytokines were significantly higher in infected KO mice 386 

compared to wildtype littermates. 387 
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To test the effect of IFITM1 in an established herpesvirus model, we infected 388 

WT and Ifitm1-/- mice with the beta herpesvirus murine CMV (mCMV). IFITM1 389 

deficiency did not impact virus-induced weight loss in this model (Fig 4G). 390 

Moreover, in accordance with the reported lack of role for IFITM1 in restriction 391 

of hCMV replication (33, 53), mCMV replication was not increased in the 392 

absence of IFITM1 in vivo (Fig 4H). Given that IFITM1 deficiency during RSV 393 

infection led to an increased IL-6 production and Ifitm3-/- mice suffer from IL-6 394 

driven pathogenesis during mCMV infection (27), we assessed IL-6 395 

production in mCMV-infected Ifitm1-/- mice. In accordance with unaltered 396 

weight loss observed in these mice, Ifitm1 deficiency did not influence virus-397 

induced cytokine production (Fig 4I). As mCMV and RSV infect different 398 

tissues we quantified basal Ifitm1 expression in the lungs, liver, and spleens 399 

of wild-type BALB/c mice (Fig 4.L). Expression was detectable in each tissue 400 

but was significantly lower in the liver. However, expression was comparable 401 

between lung and spleen tissue. Further, when BMDMs and MEFs from wild-402 

type and KO mice were infected ex vivo with mCMV there was no difference 403 

in viral titres (Fig 4J, 4K).Thus, overall, these data demonstrate that IFITM1 404 

does not influence the replication and associated pathogenesis of a beta-405 

herpesvirus in vivo.  406 

Discussion 407 

Here we demonstrate that IFITM1 has wide ranging anti-viral function, 408 

restricting the replication of RNA viruses from the Paramyxoviridae and 409 

Pneumoviridae. Importantly, for the first time we demonstrate anti-viral 410 

function of IFITM1 against a DNA virus, HSV-1. Our findings suggest that the 411 

cellular localisation of the protein is critical for its function. 412 

 413 

Sequential mutation of the CIL domain of IFITM1 revealed that this domain 414 

was essential in determining cellular localisation and antiviral activity. Stably-415 

transduced Vero cells were found to express wild type IFITM1 in a diffuse 416 

manner likely on the cell surface, but also potentially in the cytoplasm. 417 

Previous studies, including the initial study identifying IFITM1 (referred to as 418 

surface antigen Leu-13 antigen and subsequently CD225) have shown that 419 

IFITM1 is primarily expressed on the plasma membrane (54). Most 420 
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subsequent studies have shown that IFITM1 has domains expressed on the 421 

cell surface using a range of assays including cell-surface biotinylation and 422 

antibody labelling in the absence of plasma membrane disruption (10, 28, 34, 423 

55). However, some studies have suggested that IFITM1 is also expressed 424 

internally in vesicles distinct from either IFITM2 or 3, although they have not 425 

been specifically identified (32, 35). Here we find evidence for different cellular 426 

locations of IFITM1 with mutation of the CIL domain: interestingly the AA-76 427 

mutant showed the highest level of cell surface expression and the greatest 428 

reduction of RSV infection. A proposed mechanism of action for the IFITM 429 

proteins is that they alter the fluidity of cellular membranes preventing fusion 430 

with the infecting virus envelope (21, 30). We suggest that IFITM1, unlike 431 

IFITM2 and IFITM3, primarily functions through alteration of the plasma 432 

membrane and as such is able to restrict viruses at this initial point in 433 

infection. 434 

 435 

This is the first reported study describing viral infection in Ifitm1-/- animals. 436 

Uninfected Ifitm1-/- mice were phenotypically normal as assessed by the 437 

Wellcome Trust Sanger Institute murine phenotyping pipelines. We observed 438 

a different phenotype depending on the virus infection, Ifitm1-/- mice were 439 

more susceptible to RSV infection as judge by viral RNA, cell infiltration, 440 

cytokine production and body weight loss. However, no effect was seen in 441 

mCMV-infected animals. This may in part be due to differences in where the 442 

infection is localised as there are lower levels of Ifitm1 in the liver than in the 443 

lung. However, mCMV also establishes infection in the spleen after systemic 444 

administration (56) where there is comparable Ifitm1 expression. It has been 445 

previously shown that another member of the IFITM family, IFITM3, restricts 446 

RSV in vivo (25). Interestingly IFITM3 has also been shown to restrict mCMV 447 

pathogenesis in vivo, and this is due to modulation of pro-inflammatory 448 

cytokine production rather than direct control of virus replication (27). The 449 

observation that IFITM1 did not influence mCMV pathogenesis in our 450 

experiments highlights fundamental functional differences between IFITM1 451 

and IFITM3. Further studies of the immune-regulatory functions of IFITM3 452 

and, possibly, IFITM1 will be informative.  453 

 454 
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Not all enveloped viruses are restricted by IFITM1. The differences in virus 455 

inhibition may reflect differences in the route by which the virus infects the 456 

cell, some viruses may bypass IFITM1 at the plasma membrane, for example 457 

mCMV enters certain cell types (e.g. myeloid cells) by endocytosis-dependent 458 

mechanisms (27). Furthermore, we cannot preclude the possibility that 459 

IFITM1 may restrict initial mCMV cell entry into other cells (e.g. fibroblasts) 460 

but that a subsequent previously described pro-viral role for IFITM1 (53) may 461 

mask this effect in our assays.  462 

 463 

Further investigation into how IFITM1 affects human susceptibility to viral 464 

infection is required. We have previously reported that a SNP in IFITM3 were 465 

associated with more severe influenza infection (4). In the current study we 466 

report a list of SNPs found in the IFITM1 gene. In the 11,000 individuals 467 

screened we identified 93 SNPs of which 20% were rare non-synonymous. 468 

Future studies will need to focus on how the protein interacts with viruses to 469 

prevent their entry into the cell. Improved understanding of the function of this 470 

ISG in the control of viral lung infection could also inform the design of novel 471 

anti-viral strategies.  472  on January 8, 2019 by guest
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Figure Legends 707 
 708 
Figure 1. IFITM1 restricts a wide range of RNA virus replication in vitro.  709 
A) Over-expression of IFITM proteins in Vero cells detected by Western blot 710 
using an antibody to the C-terminal HA tag. IFITM1 (Vero_M1), IFITM2 711 
(Vero_M2), and IFITM3 (Vero_M3). Detection of B actin expression was used 712 
as a control, Vero Empty is the non IFITM expression vector negative control. 713 
B) Localisation of different IFITM proteins was detected by confocal 714 
microscopy using an antibody to an inserted HA tag (red) and nuclei are 715 
stained with DAPI (blue).C) Analysis of surface expression of HA tagged 716 
IFITM1 by flow cytometry on non-fixed and non-permeabilised cells. D) Co-717 
localisation of IFITM1 (red) and wheat germ agglutinin (green) was detected 718 
by confocal microscopy. Nuclei are stained with DAPI (blue). E) Transduced 719 
Vero cells were seeded in 24 well plates and infected at a range of MOIs. 720 
Influenza A virus PR8 (H1N1 PR8), Parainfluenza virus-3 (PIV3), measles 721 
virus (rMV-Edt, rMV-EZ), Respiratory Syncytial Virus (rgRSV, RSV-B05), 722 
mumps virus (mumps), Human metapneumovirus NL/1/00-GFP (rHMPV 723 
NL1/1/00), human metapneumovirus NL/1/99-GFP (rHMPV NL/1/99), and 724 
Newcastle disease virus (rNDV). 24 hpi cells were fixed and infection level of 725 
each cell line was measured by flow cytometry. * p<0.05, ** p<0.01, 726 
*** p<0.001, **** p<0.0001 by ANOVA, when compared to cells transduced 727 
with an empty vector control (n=3). 728 
 729 
Figure 2. IFITM1 restricts HSV-1 infection. (A) A549 cell lines stably 730 
expressing an empty vector, IFITM3, IFITM2 or IFITM1 were generated using 731 
lentiviruses. The cell lines were infected with HSV-1/GFP (MOI 5, n=3). GFP 732 
expression was measured on a Cellomics ArrayScan 7 hpi and normalized to 733 
infection levels in untransduced A549. (B) Transduced A549 cells were 734 
infected with HSV-1/GFP at an MOI of 0.01. Cells were harvested at 44 hpi 735 
and GFP expression detected by flow cytometry. (C) MRC-5 cells were 736 
treated with IFNα2a, siRNA targeting IFITM1, non-targeting siRNA or mock-737 
treated. Total RNA was extracted and expression of IFITM1 measured. 738 
Presented as percentage expression relative to the mock treated cells +/- SD. 739 
N=3. (D) Treated MRC-5 cells were infected with HSV-1/GFP at MOI 0.5 for 7 740 
h, GFP expression was measured on a Cellomics ArrayScan (+/- SD). 741 
Significance by ANOVA. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 742 
 743 
Figure 3. IFITM1 domains necessary for membrane localisation and 744 
virus restriction. (A) Twenty mutant human IFITM1 proteins were designed 745 
by mutating sequential blocks of six amino acids to alanine from the N to the 746 
C terminus of the protein. B) A selection of these proteins with Alanine blocks 747 
in the CIL domain were over-expressed in Vero cells using lentiviral 748 
constructs and puromycin selection; expression of the HA-tagged protein 749 
detected by Western blot. (C) Localisation of mutant protein expression was 750 
compared to wildtype human IFITM1. HA tagged proteins shown in green 751 
(anti-HA-488) and LAMP1 expression shown in red. (D) Analysis of surface 752 
expression of HA tagged CIL mutants of FITM1 by flow cytometry on non-753 
fixed and non-permeabilsed cells (E). Representative plot showing relative 754 
surface expression of CIL mutants. (F) Vero cells were also infected with 755 
influenza, measles virus (RMV) or Mumps virus at an MOI of 1 and the level 756 
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of infection of each cell line was measured by fluorescence microscopy 24 hpi 757 
(Cellomics ArrayScan). (G) Mutant IFITM1 proteins were also over-expressed 758 
in A549 cells. Cells were infected with rgRSV (moi 0.8) for 24 hours prior to 759 
analysis of infectivity by flow cytometry. n=3. (H) 93 single nucleotide 760 
polymorphisms (SNPs) in the IFITM1 gene were identified. (I) The location of 761 
these SNPs in the human IFITM1 protein marked in red. * p<0.05, ** p<0.01, 762 
*** p<0.001, **** p<0.0001 by ANOVA, significance relative to wild-type 763 
IFITM1, n=3. 764 
 765 
Figure 4. Ifitm1-/- mice increases RSV but not MCMV infection. 766 
Homozygous knockouts and wildtype mice were intranasally infected with 767 
5×105 PFU of RSV-A2. Weight loss was measured over the course of 7 days 768 
(A). RSV viral load was measured by quantitative RT-PCR for the RSV L gene 769 
at day 4 after infection (B). Cells in Airways (C) and (D) lungs after infection. 770 
Lungs were homogenised, centrifuged and the supernatant collected for IL-6 771 
(E) and IL-1β (F) analyses four days after infection. Mean values represent 772 
N≥5 (A-B). Points represent individual animals (C-E). WT and Ifitm1-/- mice 773 
were infected with mCMV, weight loss was measured throughout (G) and after 774 
4 days, virus load was measured in spleen and liver by plaque assay (H). IL-6 775 
concentrations in spleens and livers of mCMV-infected WT and Ifitm1-/- mice 4 776 
days after infection (I). BMDMs (J) and MEFs (K) were infected with mCMV. 777 
(L) Ifitm1 was quantified in lung, liver, and spleen of BALB/c mice (n=5). 778 
*p<0.05, **p<0.01, *** p<0.001, **** p<0.0001 by ANOVA (A, L), or t-test (B-779 
K). 780 
  781 
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Table 1: SNPs in IFITM1 gene resulting in amino acid substitution 782 
 783 
93 single nucleotide polymorphisms (SNPs) in the IFITM1 gene were identified 784 
from 11 UK10K disease cohorts, UK10K controls and 1000 Genomes datasets 785 
using custom scripts. 12 SNPs result in an amino acid substitution, shown in the 786 
table along with the minor allele frequencies (MAFs). 787 
 788 
SNP ID AA 

Change 

Nucleotide 

Change 

UK10K 

disease 

cohorts 

UK10K 

controls 

1000 

Genomes 

(GMAF) 

rs9667990 P13A CCA/GCA 1 1 1 

COSM46151 P14S CCC/TCC 0.00023 - - 

rs374294080 V24M GTG/ATG - - 0.00020 

rs371803538 V33M TGT/ATG - - 0.00020 

rs764916857 F42L TTC/TTG - 0.00026 - 

rs373112031 V61M GTG/ATG 0.00050 - - 

rs200528039 G74R GGG/AGG 0.00055 - - 

rs557063411 I98T ATT/ACT - - 0.00020 

rs201082701 V105I GTA/ATA - - 0.00040 

rs199539158 H113R CAT/CGT 0.00046 0.00026 - 

rs191154799 M115I ATG/ATA - - 0.00040 

rs572703137 Q120R CAG/CGG - - 0.00020 

 789 
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