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ABSTRACT 12 

This paper presents ultra-low cycle fatigue tests and the calibration of different fracture 13 

models for duplex stainless steel devices of high seismic performance braced frames. Two 14 

different geometries of the devices were tested in full-scale under fourteen cyclic loading 15 

protocols up to fracture. The imposed protocols comprised of standard, constant amplitude, 16 

and randomly-generated loading histories. The test results show that the devices have stable 17 

hysteresis, high post-yield stiffness, and large energy dissipation and fracture capacities. 18 

Following the tests, two micromechanics-based models, i.e. the Cyclic Void Growth Model 19 

and the built-in Abaqus ductile fracture model, were calibrated using monotonic and cyclic 20 

tests on circumferentially-notched coupons and complementary finite element simulations. In 21 

addition, Coffin-Manson-like relationships were fitted to the results of the constant amplitude 22 

tests of the devices and the Palmgren-Miner’s rule was used to predict fracture of the devices 23 

under the randomly generated loading protocols. Comparisons of the experimental and 24 

numerical results show that the calibrated models can predict ductile fracture of the devices 25 

due to ultra-low cycle fatigue with acceptable accuracy.  26 

INTRODUCTION 27 

A modern seismic design philosophy is to isolate damage in steel energy dissipation devices 28 

and protect the main structural members from yielding with the aid of capacity design rules. 29 



Energy dissipation devices can be designed to be easily accessible and replaceable (if needed) 30 

so that repair costs and downtime in the aftermath of strong seismic events can be 31 

significantly reduced (Soong and Spencer 2002; Symans et al. 2008). Steel yielding devices 32 

have stable and predictable hysteretic behavior and are insensitive to ambient temperature 33 

variations. Based on the first concepts developed in New Zealand in the 1970s (Kelly et al. 34 

1972; Skinner et al. 1975), a wide range of steel yielding devices have been proposed for 35 

beam-column connections, braces, and base isolation systems. Early developments include 36 

the U-strip hysteretic dampers and devices made of multiple plates with optimized shape. 37 

Examples of the latter are the added damping and stiffness (ADAS) damper (Steimer et al. 38 

1981; Whittaker et al. 1991) and the triangular-plate added damping and stiffness (T-ADAS) 39 

damper (Tsai et al. 1993). Other examples include the honeycomb damper used as seismic 40 

isolation system in bridges (Kajima 1991), C-shaped and E-shaped hysteretic dampers for 41 

bridges (Ciampi and Marioni 1991; Marioni 1997; Tsopelas and Constantinou 1997), slit-type 42 

dampers applied to beam-column connections or brace members (Chan and Albermani 2008; 43 

Oh et al. 2009), yielding shear panels (Nakashima et al. 1994), and cast-iron yielding fuses 44 

installed in braces (Gray et al. 2010). Steel cylindrical pins with hourglass-shape bending 45 

parts were used as the energy dissipation mechanism of a steel post-tensioned beam-column 46 

connection for self-centering moment-resisting frames (Vasdravellis et al. 2013a; 47 

Vasdravellis et al. 2013b). 48 

A critical failure mode of steel yielding devices is ductile fracture. Under seismic loading, 49 

fracture of metals typically occurs after a relatively small number of cycles accompanied by 50 

large-scale plasticity. This loading is often termed as ultra-low cycle fatigue (ULCF). Nip et 51 

al. (2010) conducted low-cycle fatigue and ULCF tests on different structural steel grades, 52 

i.e. carbon steel and austenitic stainless steel, and found that the ductile fracture occurs when 53 

the number of cycles is below 100. Several studies have demonstrated that the fracture 54 



mechanism for ULCF is similar to monotonic ductile fracture, since it involves cyclic growth 55 

and collapse of voids (Nip et al. 2010; Kanvinde 2017). Therefore, micromechanics-based 56 

approaches that originate from fracture models for monotonic loading have been recently 57 

proposed to predict ULCF fracture (Kanvinde and Deierlein 2007; Myers et al. 2010; Jia and 58 

Kuwamura 2015; Wen and Mahmoud 2016b; Smith et al. 2017). 59 

Vasdravellis et al. (2014) investigated the ductile fracture behavior of hourglass-shaped pins 60 

made of different steel grades, i.e. high-strength steel, austenitic stainless steel, and duplex 61 

stainless steel. The results showed that duplex stainless steel pins, named as SSPs, have the 62 

most desirable behavior for seismic design purposes, as they exhibit excellent ductility, high 63 

post-yield stiffness, and large fracture capacity. The notably high post-yield stiffness of the 64 

SSPs was utilized to reduce the residual drifts in a dual concentrically-braced moment-65 

resisting frame (CBF-MRF) proposed by Baiguera et al. (2016), where SSPs are installed in 66 

series with the braces. Nonlinear dynamic analyses of the dual CBF-MRF showed that the 67 

high post-yield stiffness of the SSPs results in negligible residual drifts under the Design 68 

Basis Earthquake (DBE, 10 % probability of exceedance in 50 years) and very small residual 69 

drifts under the Maximum Considered Earthquake (MCE, 2% probability of exceedance in 50 70 

years). In the assessment of the CBF-MRF, ductile fracture of SSPs was preliminarily 71 

evaluated based on the tests conducted in Vasdravellis et al. (2014). However, the available 72 

experimental data referred to a limited number of cyclic tests conducted under one-sided 73 

loading protocols.  74 

This paper presents the results of an experimental investigation on the seismic performance 75 

of full-scale SSPs under full-cycle ULCF loading protocols. This study aims to provide 76 

calibrated models for predicting ductile fracture of the SSPs, which can be implemented in 77 

seismic collapse evaluation of buildings equipped with such devices. The results of fourteen 78 

cyclic tests on two full-scale SSP geometries, selected from the prototype dual CBF-MRF 79 



proposed in Baiguera et al. (2016), are presented. The tests were conducted using a testing 80 

apparatus reproducing the SSP-brace connection, and various loading histories, i.e. standard, 81 

constant amplitude (CA), and randomly-generated protocols. Following the tests, two 82 

micromechanics-based fracture models, i.e. the CVGM and the built-in Abaqus ductile 83 

fracture model, were calibrated for SSD using tests on circumferentially-notched specimens 84 

(CNSs) and complementary simulations using the finite element method (FEM). Coffin-85 

Manson-like relationships were fitted to the CA tests and were used to predict fracture of the 86 

SSPs under the random loading protocol tests, in combination with a Palmer-Miner linear 87 

damage accumulation rule.  The ability of the models to predict fracture was assessed against 88 

the experimental tests of SSPs.  89 

PROTOTYPE FRAME 90 

Fig. 1(a) shows the CBF-MRF proposed by Baiguera et al. (2016). The SSPs are installed in 91 

series with the braces and pass through aligned holes between the gusset plate and a strong U-92 

shaped plate, which is connected by either welding or bolting to the brace member [Fig. 93 

1(b)]. The SSPs dissipate energy due to inelastic bending perpendicular to their axis. The 94 

geometric properties of a SSP are shown in Fig. 2(a). The bending hourglass parts have 95 

length LSSP, external diameter De, and mid-length diameter Di. The hourglass shape promotes 96 

a constant curvature and a uniform distribution of plastic deformations along the length of the 97 

SSP, delaying in that way fracture. The design of a SSP includes the selection of De, Di and 98 

LSSP to provide the required force FSSP and to ensure a ductile flexural rather than a non-99 

ductile shear failure. A detailed design procedure for SSPs is given in Vasdravellis et al. 100 

(2014) and is not repeated herein. To meet capacity design requirements and avoid 101 

undesirable column failure due to high post-yield stiffness of the SSPs, friction pads are 102 

placed between the brace members and the beam gusset plate at the top of each floor [Fig. 103 

1(a)]. The friction pads are activated at a predefined story drift level. More details on the 104 



geometry and seismic performance of the proposed dual CBF-MRF are presented in Baiguera 105 

et al. (2016). 106 

EXPERIMENTAL PROGRAM 107 

Specimens 108 

In the dual CBF-MRF, each SSP-brace connection is made of four or more identical SSPs 109 

that work in parallel to resist the brace axial force [Fig. 1(b)]. Since all SSPs undergo the 110 

same displacement when loaded, tests were conducted on a single SSP. Two different SSP 111 

geometries were tested in full-scale, representing the devices at the third and sixth story of the 112 

prototype building, and denoted as SSP1 and SSP2, respectively. SSP1 has De = 50mm, Di = 113 

24 mm and LSSP = 225 mm, while SSP2 has De = 40mm, Di = 18 mm and LSSP = 225 mm. 114 

The two geometries are shown in Fig. 2(b). 115 

Seven specimens of each geometry were manufactured by machining 740 mm long round 116 

rolled bars, having diameters equal to 65 mm and 51 mm. The material is SSD, certified as 117 

UNS S31803 F51 by the manufacturer (UGITECH, France). The specimens were fabricated 118 

with a slightly reduced maximum diameter (nominal value: De+10 mm) to allow for a small 119 

clearance of 0.2 mm in the holes of the supporting plates. The rolled bars were supplied in the 120 

solution annealed condition because the material yield strength was greater than 450 MPa. 121 

This type of stainless steel is much stronger (i.e. twice or more) than the common austenitic 122 

stainless steel. 123 

Material tests 124 

Before testing the SSPs, three uniaxial tensile tests were performed on round coupon 125 

specimens designed according to EN10002-1 (European Committee for Standardization, 126 

2001). The coupon specimens had an external diameter of 16 mm and were tapered to a 127 

reduced diameter of 12 mm. Table 1 lists the mechanical properties of the material from the 128 

coupon tests, i.e. the yield stress fy defined using the 0.2% offset strain, the ultimate (peak) 129 



stress fu, the fracture strain εf, and the Young’s modulus E. The average yield stress is equal 130 

to 520 MPa, the average ultimate stress is equal to 750 MPa, and the average fracture strain is 131 

0.47, which indicate a material with large fracture capacity and high post-yield stiffness. The 132 

ratio of the post-yield stiffness to the elastic stiffness is equal 1/125. 133 

Testing apparatus 134 

Tests on SSPs were conducted using a self-reacting structural testing machine employing a 135 

servo-hydraulic actuator with 2000 kN force capacity and ±120 mm stroke capacity. The test 136 

setup had a configuration that reproduces the SSP-gusset plate connection of the dual CBF-137 

MRF. Fig. 3 shows the test setup, which consists of vertical steel plates representing the 138 

gusset plate tied to the beam-column connection and the U-shaped plate tied to the bracing 139 

member, respectively [see Fig. 1(b)]. The SSPs were inserted into aligned holes drilled on the 140 

vertical plates. The top row of holes was used for the SSP1, whereas the bottom row was 141 

used for the SSP2. The top assembly is made of a 40-mm thick vertical plate welded 142 

normally onto a 50-mm thick 300x200 mm horizontal plate. The bottom assembly is made of 143 

two vertical 60-mm thick plates welded normally onto a 700x150x50 mm horizontal plate. 144 

Two 150x300x50 mm plates welded onto the top and bottom horizontal plates are gripped by 145 

the testing machine, as shown in Fig. 3. The minimum thickness of the supporting plates is 146 

based on the design rules presented by Vasdravellis et al. (2014). 147 

Fig. 4 shows the SSP1 specimen installed. To prevent the unidirectional axial translation due 148 

to cyclic loading observed in Vasdravellis et al. (2014), the SSPs were axially restrained by 149 

welding a 10-mm thick steel collar at both ends of an SSP as shown in Fig. 4. Before the test, 150 

the collar was just in contact with the vertical plates. To prevent excessive bending of the 151 

vertical plates of the bottom assembly as the SSP deforms, 30 mm-thick triangular stiffeners 152 

were welded at the base of the plates. 153 

Instrumentation 154 



Fig. 4 shows the two linear variable differential transformers (LVDTs) that were used to 155 

measure the relative displacement between the top and bottom plate assemblies. The LVDTs 156 

have ±150 mm travel length and were fixed to the bottom horizontal plate by magnetic bases, 157 

while their tips were attached to the top horizontal plate. 158 

Loading protocols 159 

Table 2 lists the loading protocols that were used for the tests. All the loading protocols were 160 

applied under displacement control at a rate ranging from 5 to 40 mm/min. The first loading 161 

protocol, denoted as AISC protocol, is the one recommended in ANSI/AISC 341-10 (AISC 162 

2010) for the seismic evaluation of buckling restrained braces. The loading history is defined 163 

by the yield displacement of the SSP, uy, and the displacement demand in the brace expected 164 

under the DBE, uDBE. The values of uDBE were determined from the seismic evaluation results 165 

in Baiguera et al. (2016). Preliminary values of uy were derived from the results of the 166 

simulations using the three-dimensional FEM sub-models of the SSPs presented in Baiguera 167 

et al. (2016). Based on the above, uy is equal to 8 mm and uDBE equal to 17 mm for SSP1, 168 

while the same quantities are equal to 5 mm and 14 mm for SSP2. The AISC protocol 169 

prescribes a loading history that consists of increasing imposed displacements with 170 

amplitudes uy, 0.5uDBE, uDBE, 1.5uDBE, and 2uDBE, each one applied for two cycles. To fully 171 

characterize the hysteretic response of each SSP up to fracture, the AISC protocol was 172 

extended to include four additional cycles at 1.5uDBE, followed by two cycles at 2.5uDBE, and 173 

then a series of cycles with an amplitude increased by 0.5uDBE every two cycles. 174 

Both specimens were tested under ultra-low cycle fatigue loading histories, i.e. constant 175 

amplitude (CA) and randomly-generated protocols. The imposed amplitudes are defined as 176 

multiples of the SSP yield displacement. SSP1 was tested under CA = 4��, 5��, 6�� and 7��, 177 

while SSP2 was tested under CA = 4��, 5��, 6��, 7�� and 8��. Both specimens were also 178 

tested under random loading protocols, which consisted of randomly generated number of 179 



cycles and imposed displacements. These protocols were defined assuming imposed 180 

displacement values in the range of 2 to 8 times uy and number of cycles between 1 and 9. 181 

Note that the selected range of applied displacements for the tests reflects the demand that 182 

SSPs are expected to resist in the proposed dual CBF-MRF, where larger displacements lead 183 

to the activation of the friction pads. 184 

EXPERIMENTAL RESULTS 185 

Cyclic behavior and fracture of SSPs 186 

Fig. 5 shows the force-displacement cyclic behavior of the two specimens under the extended 187 

AISC loading protocol. uDBE is shown on the graphs as a vertical line. The SSPs successfully 188 

passed the imposed protocol showing stable hysteretic behavior up to an imposed 189 

displacement equal to 4.5uDBE, where the tests were terminated as no signs of fracture 190 

initiation in the SSPs were observed.  191 

The rest of the tests were executed up to full-section fracture of the specimens. Fig. 6 shows 192 

the hysteresis of SSP1 and SSP2 under the CA loading protocols. Table 2 reports the number 193 

of cycles sustained by each specimen until full-section fracture. The SSPs sustained many 194 

inelastic cycles before fracture, showing a stable hysteretic behavior and large energy 195 

dissipation capacity.  196 

Fracture typically initiated on the surface of the SSP at the middle sections of the bending 197 

parts, i.e. halfway between De and Di, as shown in Fig. 7(a). These fracture locations are 198 

denoted as sections 1 and 2, where section 1 is the one closest to the lower supporting plate. 199 

The number of cycles to fracture initiation were recorded for each ultra-low cycle fatigue test 200 

and are reported in Table 2.  Once fracture initiation occurred, several micro-cracks were 201 

gradually formed and propagated to full section fracture after several cycles [Fig. 7(b)]. Fig. 202 

7(c) shows the cracks observed on the surface after forty-eight cycles in the SSP2 tested 203 

under CA = 6uy and how they propagated in the successive eleven cycles, leading to the full-204 



section fracture of the specimen at cycle fifty-nine. The optimized shape of the SSPs resulted 205 

in large plastic deformations throughout the length of their bending parts. This caused a large 206 

axial elongation of the SSPs which increased with cycles. Fig. 8 shows the noticeable axial 207 

elongation of SSP2 after thirty cycles under CA = 7��. 208 

The force-displacement curves are characterized by a slight pinching at zero force due to the 209 

small clearance (0.2 mm) in the holes of the supporting plates that allows the pins to slip. It 210 

can be observed from Figs. 5 and 6 that the hysteretic curves exhibit a hardening behavior at 211 

large imposed displacement. This behavior is more evident in the CA protocols for CA> 6uy 212 

for SSP1 and CA> 5uy for SSP2. This hardening response is attributed to the welded collars 213 

that at large imposed displacements bore on the vertical plates, while they were not in contact 214 

with them at small amplitudes (as shown in Fig. 8). 215 

Energy dissipation capacity 216 

The energy dissipated by a SSP in a cycle, W, is calculated as the area enclosed by the force-217 

displacement curve. To have a consistent comparison, W is normalized by the product of uy 218 

and the corresponding yield force Fy. The experimental yield forces of the two specimens are 219 

Fy,SSP1 = 150 kN and Fy,SSP2 = 75 kN. Figs. 9(a and b) show a comparison between the energy 220 

dissipating curves of SSP1 and SSP2 under the 7uy and 4uy CA loading protocols. The energy 221 

dissipation capacity of SSP1 and SSP2 is similar during the first cycles, with SSP2 222 

experiencing a more visible drop in its energy dissipation capacity than SSP1. However, 223 

SSP2 sustained a larger number of cycles than SSP1.  224 

The energy dissipation curves computed for the AISC tests are shown in Fig. 9(c). SSP1 225 

appears to have a higher energy dissipation capacity in the initial cycles. This observation is 226 

consistent to all tests and can be attributed to the fact that the clearance between the external 227 

diameter and the supporting plate holes was slightly bigger in SSP2 than in SSP1. However, 228 



SSP2 reached full-section fracture after having sustained more cycles than SSP1 under CA 229 

loading protocols. 230 

Fig. 10 compares the energy dissipation capacity of the SSPs under all the CA loading 231 

protocols. The energy dissipation curves are descending until fracture with a rate that is 232 

proportional to the magnitude of the imposed displacement, i.e. the larger the CA is, the 233 

faster the energy dissipation capacity of the SSPs degrades. On the contrary, when the 234 

specimens are subjected to small amplitudes (i.e. CA = 4uy), the energy dissipation curve is 235 

almost horizontal until fracture.  236 

Prediction of strength of SSPs  237 

The strength of an SSP is predicted using the design equations presented in Vasdravellis et al. 238 

(2014) with modifications to account for the exact location of the plastic hinges. Fig. 7(a) 239 

shows that the plastic hinges form at midway between De and Di. Therefore, the strength of 240 

an SSP is given by Vasdravellis et al. (2014): 241 

 ����  =
2

3

���
�

���
�� (1) 

where LPH = LSSP/2, and DPH = (De+Di)/2, based on the geometric properties shown in Fig. 2. 242 

Using this formula, the strength of SSP1 is 156 kN and that of SSP2 is 75 kN, which are in 243 

excellent agreement with the experimental values, i.e. 150 kN and 75 kN, respectively. Note 244 

that the capacity design rules to avoid shear failure at the section of diameter Di are satisfied 245 

according to Vasdravellis et al. (2014). 246 

PREDICTION OF FRACTURE OF SSPs USING THE PALMGREN-247 

MINER’S RULE 248 

The results of the CA tests were used to derive a relationship between the applied 249 

displacement amplitude and the number of cycles to fracture. Such correlation may be 250 

convenient for establishing a fracture criterion in phenomenological models of the SSPs for 251 



seismic collapse modeling of buildings equipped with such dampers. For instance, the 252 

‘Fatigue material’ model available in the OpenSEES software (Mazzoni et al. 2006), which is 253 

based on the Coffin-Manson relationship and on a linear damage accumulation rule, can also 254 

be defined for spring-like elements with a force-displacement response.  255 

Based on the CA test results, the points corresponding to the number of cycles to fracture (Nf) 256 

as a function of the applied amplitude (∆�/2) are plotted in Fig. 11. Then, a Coffin–Manson-257 

like equation can be obtained, i.e. 258 

 ∆�/2  = ∆� ∙ (��)
� (2) 

where � and ∆� are parameters with values that result in the best fit to the points in Fig. 11. 259 

The calibrated values of ∆� and � are 350 mm and -0.6 for SSP1, and 455 mm and -0.6 for 260 

SSP2. 261 

The Palmgren-Miner linear damage accumulation rule is applied to the random tests: 262 

 

  � = �
��

��,�

�

� ��

 (3) 

where �� is the number of cycles applied at a given amplitude, ��,� is the number of cycles 263 

required to reach fracture at that given amplitude, and � is the damage index, which is equal 264 

to 1 when the low-cycle fatigue life is reached (Bruneau et al. 2011). Table 3 shows that the 265 

fracture prediction using Eq. (3) for the randomly generated cyclic loading protocols is in 266 

good correlation with the experimental results: SSP1 fractured at the end of phases 14 and 9 267 

for which the Miner’s rule estimates a value of � equal to 1.14 and 1.08, respectively, while 268 

SSP2 fractured at the end of phase 9 for which the Miner’s rule estimates a value of � equal 269 

to 0.99.  270 

The calibrated parameters are only valid for the specific geometries tested in this study. 271 

Instead, the mechanics-based fracture models, presented below, can be used to estimate the 272 

facture behavior of new geometries under ULCF, without the need for further tests. 273 



MICROMECHANICS-BASED FRACTURE MODELS 274 

Fracture prediction under monotonic loading 275 

Under monotonic loading, the Void Growth Model (VGM) and the Stress Modified Critical 276 

Strain (SMCS) model provide good predictions of ductile fracture in metals based on prior 277 

theoretical and experimental research (McClintock 1968; Rice and Tracey 1969; Hancock 278 

and Mackenzie 1976; Mackenzie et al. 1977; Hancock and Brown 1983; Johnson and Cook 279 

1985; Marini et al. 1985; Panontin and Sheppard 1995; Bandstra et al. 2004; Anderson 2005; 280 

Kanvinde and Deierlein 2006; Kanvinde 2017). These studies have shown that ductile 281 

fracture depends on two variables, i.e. the equivalent plastic strain �̅�� and the stress 282 

triaxiality, which is defined as the ratio of the mean stress, σm, to the von Mises stress, σe. 283 

The VGM assumes that ductile fracture initiates when a quantity named void growth index 284 

(VGImonotonic) reaches a critical value (VGI���������
�������� ): 285 

 

  
VGI���������  = � exp

����

�

(1.5�) d� ̅�� > VGI���������
��������   (4) 

Calculation of the VGI���������
�������� , which is considered as a material property invariant to stress 286 

and strain states, requires complementary FEM analysis up to the point of fracture initiation 287 

(Kanvinde and Deierlein 2006). 288 

The SMCS model does not account for variations in triaxiality during the loading history. 289 

Fracture initiation occurs when �̅�� reaches the critical value ��̅�������
�� :      290 

 ��̅�������
��  = � exp(−1.5�) (5) 

where α is the toughness index. The SMCS model requires complementary FEM analysis to 291 

calibrate α, based on ��̅�������
��  and � values at fracture initiation. The SMCS model was 292 

recently applied to predict fracture in various steel grades and in steel beam-column 293 

connections (Chi et al. 2006; Kanvinde and Deierlein 2006). Kiran and Khandelwal (2013) 294 

calibrated the parameters of the VGM and SMCS models for the A992 steel grade. 295 



The Abaqus software offers a general criterion for predicting ductile fracture initiation that is 296 

given by: 297 

 ���������  = �
d� ̅��

��̅�������
�� (�)

 (6) 

where ��������� is the fracture initiation index that increases monotonically with plastic 298 

deformations and ��̅�������
�� (�) is the equivalent plastic strain at fracture initiation, which 299 

depends on the instantaneous � value (Dassault Systèmes 2014). When ��������� = 1, it is 300 

assumed that fracture initiation occurs. 301 

More recently, a fracture criterion under monotonic loading that depends on both the 302 

triaxiality and the Lode angle parameter was proposed in Wen and Mahmoud (2016a). 303 

Fracture prediction under ultra-low cycle fatigue 304 

In seismic applications, the initiation of ductile fracture in metals typically occurs due to 305 

ULCF, i.e. the material is subjected to a relatively small number of large inelastic cycles. 306 

Under this loading condition, the fracture mechanism is more similar to monotonic ductile 307 

fracture rather than low or high cycle fatigue failure that typically involves hundreds or 308 

thousands of cycles. To predict fracture initiation in metals under ULCF, Kanvinde and 309 

Deierlein (2007) proposed the CVGM, which is an extension of the VGM accounting for 310 

positive and negative triaxiality that develops at the point of interest under cyclic loading: 311 

 
VGI������  = � exp

���

(1.5|�|) d� ̅�� − � exp
���

(1.5|�|) d� ̅��  (7) 

The model assumes that fracture initiates in the material only under positive triaxiality. 312 

Fracture initiation occurs when VGI������ exceeds a critical value (VGI������
��������), which is 313 

calculated applying an exponential decay function to its monotonic critical value 314 

VGI���������
�������� , i.e. 315 

 VGI������
��������  = VGI���������

��������  exp (−���̅��
�� ) (8) 



where ��̅��
��  is the cumulative plastic strain up to the start of each tensile excursion and � is the 316 

rate of cyclic deterioration, which takes values from 0 to 1 for structural steels (Kanvinde and 317 

Deierlein 2007). A small value of � results in a faster degradation. The coefficient � is 318 

experimentally determined by conducting cyclic tests on CNSs.  319 

Jia and Kuwamura (2015) have recently simulated ductile fracture of specimens subjected to 320 

cyclic loading using the Abaqus fracture initiation criterion [Eq. (6)]. To define an ��̅�������
�� (�) 321 

function appropriate for cyclic loading, they modified the SMCS model by introducing a cut-322 

off at � = -1/3, on the basis of experimental evidence that ductile fracture is practically 323 

inhibited in compression (Bridgman 1964; Bao & Wierzbicki 2004). Below � = -1/3, ductile 324 

fracture is assumed to initiate for an infinite value of ��̅�������
�� (�) and thus no damage is 325 

accumulated. The above conditions are expressed as: 326 

 
��̅�������

�� (�)  = �
������� exp(−1.5�)    if � ≥ −1/3

∞                                   if � < −1/3
 (9) 

 

���������  = �
�

d� ̅��

��̅�������
��

(�)
    if � ≥ −1/3 

0                          if � < −1/3

 (10) 

This fracture criterion was previously validated by Jia & Kuwamura (2015) against the 327 

response of specimens monotonically pulled to fracture after being subjected to few small 328 

inelastic cycles (fewer than five). For this purpose, the cyclic fracture parameter ������� was 329 

calibrated using monotonic tests on round specimens. However, its application to ultra-low 330 

cycle fatigue requires the calibration of ������� based on coupon tests under cyclic loading. 331 

All models derived from the work of McClintock (1968) and Rice and Tracey (1969) assume 332 

that the stress state is axisymmetric. However, recent studies have demonstrated that ductile 333 

fracture is also influenced by the Lode angle �, which is an additional indicator of stress state 334 

and related to the Lode parameter, �, as expressed in Eq. (11): 335 



 
� = cos � =

3√3

2

��

��
�/�

 (11) 

where �� and  �� are the second and third stress invariants of the deviatoric stress tensor. � 336 

varies from -1, in case of axisymmetric compression, to 1, in case of axisymmetric tension. 337 

Smith et al. (2014) and Smith et al. (2017) recently proposed the stress-weighted damage model 338 

(SWDM), which is an enhanced version of the CVGM accounting for the effect of the 339 

deviatoric stress state. Wen and Mahmoud (2016b) developed a new fracture model that takes 340 

in full consideration both stress triaxiality and the Lode angle parameter.   341 

In this study, the effect of the Lode angle parameter is not considered since complementary 342 

FEM simulations of the SSP tests show that the fracture locations are characterized by 343 

axisymmetric stress state, i.e. � = ±1 [see Fig. 23(c)] at the locations of fracture on the SSPs’ 344 

external surfaces. This indicates that the deviatoric stress does not influence the prediction of 345 

ductile fracture initiation in the SSPs under ULCF.  346 

CALIBRATION OF FRACTURE PARAMETERS FOR DUPLEX 347 

STAINLESS STEEL 348 

CNS tests 349 

Monotonic and cyclic tests on CNSs made of duplex stainless steel were carried out to 350 

calibrate the critical parameters of the CVGM and the Abaqus ductile fracture initiation 351 

model. CNSs with three different radii were used, i.e. � = 2, 3, ad 4.5 mm, to vary the 352 

severity of triaxiality at the center of the notched cross-section. The notched specimens, 353 

denoted as CNS-2, CNS-3, and CNS-4.5, were manufactured using 16-mm diameter round 354 

bars from the same material batch of the SSPs. The CNS geometries are shown in Fig. 12(a).  355 

CNS-2 is characterized by high triaxiality (� > 1) at the center of the notch, while CNS-3 and 356 

CNS-4.5 have moderate triaxiality (1/3 < � < 1). 357 



A total of six tests, three tensile monotonic and three cyclic, were conducted for each CNS up 358 

to fracture. Two types of ultra-low cycle fatigue protocols were defined, i.e. CA, consisting 359 

of cycles between zero and a positive displacement multiple of the yield displacement ��; 360 

and protocols with increasing amplitude where the specimen was subjected to amplitudes 361 

increased by 2�� every four cycles. Table 4 provides a summary of the loading protocols. 362 

The specimens were instrumented with a 50-mm gauge length extensometer as shown in Fig. 363 

12(b). The tests were performed under displacement control with a rate of 1 mm/min. The 364 

imposed displacement was controlled by the extensometer. 365 

The monotonic force-displacement curves of CNS-2 are shown in Fig. 13(a). Fig. 13(b) 366 

shows the cyclic force-displacement response of CNS-4.5 under no. 9 protocol. The CNSs 367 

showed a stable hysteretic response under all cyclic protocols. Ductile fracture of the 368 

specimen occurred in all the tests. 369 

FEM simulations of the coupon tests 370 

Nonlinear three-dimensional FEM models of the CNSs were created in Abaqus. Fig. 12(b) 371 

shows the geometry of the FEM model of CNS-2. Only the gauge length was modelled and 372 

was discretized using C3D8R elements with reduced integration. The mesh is refined in the 373 

notch with an average element size of 0.45 mm. The displacement history measured by the 374 

extensometer was applied defining a smooth step amplitude. The model was analyzed using 375 

the explicit dynamic solver in Abaqus as the explicit direct integration procedure is 376 

computationally efficient for the simulation of highly discontinuous quasi-static problems 377 

that involve contact, damage and failure. To reduce the computational cost of quasi-static 378 

simulations, a smaller loading rate is typically applied. In addition, a variable mass scaling is 379 

used for computational efficiency by defining a minimum stable time increment target. 380 

Depending on the CNS geometry and test protocol, the loading rate was in the range of 0.06-381 

0.45 mm/s and a value of 0.002 s was iteratively identified as a stable time increment. A 382 



smooth step amplitude was defined for the FEM simulations of the monotonic tests to ensure 383 

a stable quasi-static analysis. 384 

An elastic plastic constitutive law with isotropic hardening, shown in Fig. 14, was specified 385 

for the monotonic tests, based on coupon tests on round bars performed prior to the CNS 386 

tests. To capture the cyclic behavior of duplex stainless steel, an elastic plastic material model 387 

with combined isotropic and kinematic hardening was specified. The material model is 388 

defined by the yield surface φ(σ) defined as (Dassault Systemes, 2016):  389 

 

�(�) = �
3

2
(� − �)�(� − �) − �� (12)

where �� is the yield stress, t is the transposition operation, S is the stress deviator, σ is the 390 

stress vector and α is the backstress vector. The hardening laws for each backstress are 391 

defined as:  392 

 
� = � ��

�

���

 (13)

 
�̇� =

��

��
(�− �) � ̅̇� − �� �� � ̅̇� (14)

where a superimposed dot indicates an incremental quantity, B is the total number of the 393 

backstresses, Ck and γk are the constitutive material parameters to be calibrated against the 394 

experimental results, and �̅̇� is the equivalent plastic strain rate. The evolution of �� 395 

(isotropic hardening component) is defined by the following exponential law: 396 

 �� = �|� + ��(1− ������
) (15)

where �|� is the yield stress at zero plastic strain, b defines the rate at which the size of φ(σ) 397 

changes for increasing plastic strains, and �� is the maximum change in the size of φ(σ). 398 

Several simulations were iteratively conducted to identify the values of the parameters that 399 

define the constitutive model. A good correlation was achieved adopting the following 400 

values: �|� = 400 MPa, C1 = 6,500 MPa, γ1 = 30, C2 = 100,000 MPa, γ2 = 700, b = 5, �� = 401 



200 MPa. Fig. 13 shows the experimental-numerical agreement for CNS-2 under monotonic 402 

loading and CNS-4.5 under no. 9 cyclic protocol. A similar agreement was found in all the 403 

tests. 404 

Calibration of the CVGM 405 

The parameters of the CVGM, i.e. VGI���������
��������  and �, were calibrated following the 406 

procedure described in Kanvinde & Deierlein (2007). First, the VGI���������
��������  was identified 407 

based on the FEM simulations of the monotonic CNS tests. Then, the cyclic damage 408 

parameter � was identified using the FEM simulations of the cyclic CNS tests.   409 

Stress and strain histories extracted from the fracture location of the CNSs, i.e. the center of 410 

the notched section, were used to integrate Eq. (4) up to fracture (assumed to represent 411 

complete failure of the specimen) as indicated in the force-displacement response of CNS-2 412 

in Fig. 13(a). The values of VGI���������
��������  along with the plastic strain and triaxiality at 413 

fracture for the three CNS geometries under monotonic loading are summarized in Table 5. 414 

VGI���������
��������  has a mean value of 2.88 and a small standard deviation equal to 0.29. This 415 

value agrees with the results presented in Vasdravellis et al. (2014), where VGI���������
��������  was 416 

found to have a mean value of 2.87 for the SSD material. 417 

The value of the parameter � was determined by deriving a relationship between the 418 

VGI������
��������/VGI���������

��������  ratio and the associated ��̅��
��  at fracture initiation. Damage initiation 419 

in the cyclic tests is assumed to occur when there is a 10% drop in the force carrying capacity 420 

of the specimen based on the force time history. Fig. 15(a) shows the force versus cycle 421 

evolution for CNS-2 subjected to no. 3 loading protocol (Table 4). Fracture initiation is 422 

indicated on the graph by the vertical shaded area and the cycle where fracture initiated is 423 

denoted as ��, i.e. ��  = 18 in this test. VGI������
�������� values are calculated by integrating Eq. (7) 424 

for each cyclic CNS test. By fitting an exponential function to the resulting VGI������
��������/425 



VGI���������
�������� − ��̅��

��  data, plotted in Fig. 16, � = 0.12. The small value of � obtained for SSD 426 

is consistent with the large fracture capacity exhibited by the coupon specimens. 427 

Calibration of the ductile fracture initiation and evolution criterion in Abaqus 428 

The calibration of the Abaqus ductile fracture initiation criterion involves determining the 429 

parameter αcyclic in Eq. (9) based on the cyclic CNS test results. Thus, ������� is calibrated 430 

using the same stress and strain histories extracted from the FEM simulations for the 431 

calibration of the CVGM. The fracture initiation index ��������� is determined by integrating 432 

Eq. (10) and ������� is iteratively found imposing ��������� = 1 at the start of the cycle where 433 

fracture initiated. Fig. 15(b) shows the evolution of ωcritical in the test no. 3 of CNS-2. To have 434 

ωcritical = 1 at the 18th cycle, αcyclic should be equal to 10 in this test. The same procedure of 435 

determining αcyclic was applied to all CNS cyclic tests and the results are summarized in Table 436 

6. ������� has a mean value of 10.6 and a standard deviation of 1.4. The excessively small 437 

value of 5.5 resulted for specimen CNS-2 under no. 2 loading protocol was disregarded as 438 

non-representative. Note that the specimen in the specific test sustained fewer cycles than in 439 

test no. 3 despite being subjected to a smaller amplitude. Thus, ������� = 10 is conservatively 440 

used in the fracture simulations of the SSPs in Abaqus. Fig. 17 shows the ��̅�������
�� (�) function 441 

expressed in Eq. (9) with ������� = 10 and the cut-off at � = -1/3. 442 

To simulate the progressive degradation of the material following fracture initiation, Abaqus 443 

offers a damage evolution criterion based on the approach proposed by Hillerborg et al. 444 

(1976). The stress-strain definition cannot accurately capture the degradation of the material 445 

as a strain localization would introduce a strong mesh dependency. Abaqus overcomes this 446 

issue by introducing a damaged stress-displacement response (Dassault Systèmes 2014). The 447 

damage evolution variable is specified as a function of the equivalent plastic displacement 448 

����. The latter depends on the characteristic length of a finite element �����, which is 449 

expressed by: 450 



 ����̇  = ����� ��̅�̇  (16) 

Before fracture initiation, ����̇  = 0. Since ����� depends on the geometry and formulation of 451 

the finite element, the mesh dependency of the results is reduced (Dassault Systèmes 2014). 452 

In addition, the damage evolution capability offers the removal of the elements from the 453 

mesh when the damage evolution index Devol in Eq. (17) is equal to 1: 454 

 �����  = 1 −
����

�
 (17) 

where ���� is the ‘damaged’ stress of the material (Dassault Systèmes 2014).  The 455 

calibration procedure proposed in Pavlovic et al. (2013) was used in this study to define the 456 

damage evolution law. The characteristic length of a finite element is given by the product of 457 

the element size and a factor accounting for the element type (e.g. 3.2 for C3D8R elements in 458 

Abaqus). The evolution of the damage variable Devol, specified as a tabular function of ����, 459 

was derived using the results of tensile coupon tests on round bars. Details of this calibration 460 

procedure can be found in Pavlovic et al. (2013) and are not repeated herein. 461 

Validation of fracture parameters using the CNS tests 462 

To validate the Abaqus fracture models for ultra-low cycle fatigue loading, the cyclic CNS 463 

tests were simulated in Abaqus/Explicit using the fracture parameters described in the 464 

previous section.  The experimental and numerical hysteresis and force evolutions of three 465 

cyclic tests (one for each CNS geometry) are shown in Fig. 18. The calibrated Abaqus 466 

fracture initiation and evolution model capture well the response of CNSs. 467 

SIMULATION OF CYCLIC BEHAVIOR AND DUCTILE FRACTURE 468 

OF SSPs 469 

Three-dimensional FEM models of SSP tests 470 

Three-dimensional FEM models of the full-scale tests on SSPs were constructed in Abaqus. 471 

Only half of the test setup was reproduced in full detail due to its symmetric geometry. The 472 



steel collar and the triangular stiffeners were included in the model. Fig. 19 shows the mesh 473 

discretization applied to the FEM model of SSP1 along with the boundary conditions. Three-474 

dimensional hexahedral elements with reduced integration (C3D8R) were used for all the 475 

parts of the assembly. A symmetry condition was defined to the nodes of the symmetry plane. 476 

The grip of the testing machine jaw faces was simulated by restraining all the degrees of 477 

freedom on the surface of the vertical plate welded to the bottom plate assembly.  The 478 

imposed displacement history was applied to the upper supporting plate assembly as shown 479 

in Fig. 19. A relatively coarse mesh was used for the steel plate assemblies, while a more 480 

refined mesh is applied to the SSPs, where inelastic deformations and fracture were 481 

experimentally observed. To keep the computational time of analysis at reasonable levels, the 482 

average mesh size in the bending parts of the SSPs was 3 mm. It is noted that unlike fracture 483 

in existing crack tips or sudden geometric changes, the stress state at the free surface of a SSP 484 

is smooth, and the fracture models are less sensitive to the mesh size (Vasdravellis et al. 485 

2014). Therefore, the adopted mesh was considered a reasonable trade-off between 486 

computational time and accuracy.  487 

Surface-based tie constraints, which impose equal displacements among the nodes of two 488 

surfaces, were used for modelling the welded joints in the two steel plate assemblies, i.e. 489 

between the lower and vertical plates, the triangular stiffeners at the base of the plates, and 490 

the steel washer welded onto the SSP. The welds around the supporting plates (Fig. 3) were 491 

not included in the FEM model because preliminary analyses showed that their effect is 492 

negligible. A general contact algorithm was defined to simulate the interaction between the 493 

SSP and the holes of the supporting plates. Based on experimental measurements, a clearance 494 

of 0.1 mm and 0.3 mm was used for the SSP1 and SSP2 models, respectively. A contact 495 

property with normal and tangential behavior with a friction coefficient equal to 0.2 was 496 

defined between the SSP and the holes of the supporting plates. 497 



The hysteretic behavior of duplex stainless steel was simulated by the elastic-plastic material 498 

model with combined isotropic and kinematic hardening. An elastic-plastic material model 499 

with isotropic hardening behavior was defined for the steel assemblies made of S355 grade 500 

steel. The yield stress of S355 steel was conservatively reduced to 300 MPa to account for the 501 

large thickness of the steel plates (40-60 mm) since the yield stress reduces with increasing 502 

thickness of plate sections (European Committee for Standardization 2004). 503 

Explicit FEM simulations without fracture 504 

To evaluate the ability of the FEM model to capture the cyclic hardening of the SSPs and to 505 

adjust the various parameters of the explicit solver so that it can capture the quasi-static 506 

loading conditions, the cyclic tests were first simulated in Abaqus/Explicit without the 507 

definition of any ductile fracture criteria. Displacement-controlled analyses were conducted 508 

under quasi-static loading conditions in the large displacement/strain nonlinear regime. To 509 

ensure that that the loading rate is relatively low and no dynamic effects influence the 510 

analysis, the time step for one cycle was set equal to 60 sec. For example, for an imposed 511 

amplitude of 49 mm, the load was applied at around 3 mm/s. To ensure a stable analysis, the 512 

density of the material was decreased by six orders of magnitude, and the displacement 513 

history was applied with a periodic amplitude. Based on the mesh size, a stable target time 514 

increment equal to 0.0001 sec was iteratively identified. 515 

Fig. 20 shows the comparison of the numerical and experimental hysteresis of SSP1 under 516 

CA = 7uy and SSP2 under CA = 6uy. The results indicate that the FEM model is capable of 517 

tracing well the cyclic behavior of the specimens prior to fracture. Similar correlations are 518 

found for the rest of the loading protocols. It can be observed that the FEM simulations 519 

capture the pinching effect at zero force, indicating that the clearance between the SSPs and 520 

the holes of the supporting plates was modelled accurately. 521 

CVGM fracture predictions 522 



The SSP simulations were post-processed to evaluate the accuracy of the CVGM to predict 523 

fracture in the SSPs. The stress and strain histories at the locations of fracture, i.e. at mid-524 

distance between De and Di (Fig. 3), were extracted at the end of the analyses. The results 525 

were then used to derive the VGI������ and VGI������
�������� histories.  526 

Fig. 21 shows the evolutions of VGI������ and VGI������
�������� for the CA = 6uy test of SSP2. 527 

VGI������ varies with the sign of T, while VGI������
�������� is a stepwise function starting at 528 

VGI���������
��������  and decreasing at the start of each cycle according to the exponential decay 529 

function given by Eq. (8). The intersection of the VGI������
�������� and VGI������ curves indicates 530 

fracture. As illustrated in Fig. 21, the CVGM predicts fracture at the same cycle observed in 531 

the test. The CVGM fracture predictions are summarized in Table 7 for all tests. The results 532 

indicate that the calibrated CVGM parameters predict with good accuracy the fracture in the 533 

SSPs with a maximum error of 12%. 534 

Explicit simulation of SSP fracture in Abaqus 535 

Explicit fracture simulations of the SSPs were performed in Abaqus using the fracture 536 

initiation criterion shown in Fig. 16. The parameters of the damage evolution model, which 537 

depends on the mesh size (i.e. Lchar), were modified to account for the 3-mm average element 538 

size used in the bending parts of the SSPs.  539 

Fig. 22 shows a comparison between the experimental and numerical deformed shapes at the 540 

onset of fracture initiation for both SSPs under CA = 7uy. The contours of the fracture 541 

initiation index, i.e. the output variable DUCTCRT, are plotted on the numerical models. 542 

When DUCTRT = 1, then fracture has initiated in the model at the corresponding location. It 543 

is shown that the FEM simulations predict the exact location of fracture in the SSPs, i.e. at 544 

locations 1 and 2, which are midway between De and Di. 545 

The evolution of the variables governing ductile fracture, extracted at the location of fracture 546 

from the simulation of SSP2 under the random protocol, are shown in Fig. 23. In Fig. 23(a), 547 



the evolution of the damage variable ωcritical during the cyclic loading is plotted. It takes the 548 

value 1 at the beginning of the 41st cycle, indicating fracture initiation. After this point, 549 

degradation initiates according to the specified damage evolution law until the element 550 

removal from the mesh. The histories of both ��������� and � over three consecutive cycles of 551 

the simulation, i.e. cycles 25 to 28, are plotted in Fig. 23(b). It is shown that triaxiality at the 552 

fracture section is characterized by alternating cycles of tension and compression with 553 

maximum absolute values in the range of 0.33-0.4. It can also be observed that, below the 554 

cut-off value of � = -1/3, no damage is accumulated. It is noted that the Lode parameter ξ at 555 

fracture initiation is in within 0.96-1 [Fig. 23(c)]. This indicates that the fracture location in a 556 

SSP under cyclic loading is characterized by axisymmetric stress state and therefore the 557 

effect of the Lode angle is negligible on the prediction of ductile fracture.  558 

The results of fracture initiation predictions for all the simulations are summarized in Table 8, 559 

where the cycle at which fracture initiates is compared with that from the experiments. The 560 

predictions are within ±10% error. The latter has a mean value of 6% and standard deviation 561 

of 1.2%. Thus, it can be concluded that the calibrated model in Abaqus/Explicit can provide 562 

an accurate prediction for all the ultra-low cycle fatigue tests. 563 

Following fracture initiation, the numerical force-carrying capacity of the SSPs decreases 564 

because of the deletion of elements from the mesh according to the damage evolution model. 565 

Fig. 24 compares the simulated fracture evolution with experimental photographic evidence 566 

of two representative cyclic tests on SSP1 and SSP2 (no. 2 and 11 tests in Table 2). The 567 

results show that the FEM model can simulate the progressive damage of the material due to 568 

cyclic loading after fracture initiation until complete fracture of the section occurs. However, 569 

comparison of the numerical and experimental force histories of the same tests in Fig. 25 570 

reveals that, once fracture initiates, the numerical force-carrying capacity decreases at a faster 571 

rate than in the experiments. A similar response can be seen in the numerical-experimental 572 



force evolutions of the remaining tests. This indicates that the FEM simulation tends to 573 

underestimate the numbers of cycles between fracture initiation and complete failure. For 574 

instance, simulations of CA = 4uy tests show a premature degradation of the force-carrying 575 

capacity of SSPs. Such discrepancy can be attributed to the relatively coarse mesh applied to 576 

the SSP bending parts. For an improved accuracy in simulating fracture evolution, a refined 577 

mesh should be ideally used at fracture locations. However, this would result in a significant 578 

increase in computational time.  579 

CONCLUSIONS 580 

This paper presented an experimental and numerical investigation on the cyclic behavior and 581 

facture capacity of SSPs under ULCF conditions. SSPs are devices with large post-yield 582 

stiffness ratio, which can be used in series with conventional steel braces to increase the 583 

energy dissipation capacity and reduce the residual drifts of steel frames. The tests conducted 584 

on SSPs included fourteen ultra-low cycle fatigue loading protocols. Three predictive ductile 585 

fracture models were calibrated and assessed against the test results. Based on the findings of 586 

this work, the following conclusions can be drawn: 587 

 SSPs successfully pass the AISC loading protocol, sustaining without fracture 588 

displacements up to 4.5 times the displacement demand of the Design Basis Earthquake. 589 

 Under constant amplitude cyclic protocols, SSPs sustain many inelastic cycles without 590 

degradation before initiation of ductile fracture. 591 

 The optimized shape of the SSPs results in large plastic deformations throughout the 592 

whole length of the bending parts. Ductile fracture initiates at the free surface, at a section 593 

half way between the maximum and minimum diameter. 594 

 The Palmgren-Miner’s rule predicts failure of SSPs under the randomly generated 595 

loading protocols with very good accuracy, and thus, the calibrated Coffin-Manson-like 596 

relationships can be reliably applied to phenomenological fracture models for seismic 597 



collapse analysis of buildings equipped with these devices. However, the parameters 598 

associated with this rule depend on the geometry of the SSPs examined in this study. 599 

 The calibrated micromechanics-based models, i.e. the CVGM and the built-in Abaqus 600 

criterion calibrated for cyclic loading, provide accurate predictions of ductile fracture 601 

initiation for the ULCF tests of SSPs. The Cyclic Void Growth Model (CVGM) predicts 602 

ductile fracture in SSPs under all loading protocols with a maximum error of 12%, mean 603 

error of 6%, and standard deviation of 5%, while the Abaqus model predicts fracture 604 

initiation with maximum error of 9%, mean error of 4%, and standard deviation of 3%. 605 

Therefore, the calibrated fracture parameters can be used to predict the ULCF fracture 606 

initiation of SSPs having different geometries and boundary conditions, without the need for 607 

further experimental tests. Note that the parameter αcyclic in the modified Abaqus fracture 608 

model is valid only for ULCF, while the CVGM can be used for monotonic loading and 609 

ULCF. 610 

 The Abaqus explicit fracture simulations capture well the hysteretic behavior of the 611 

SSPs; however, the ability of tracing the degradation of the material following fracture 612 

initiation was less accurate due to the relatively coarse mesh applied to the bending parts of 613 

the SSP. 614 
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TABLE 1. Summary of mechanical properties of duplex stainless steel 

Specimen �� �� �� � 

 (MPa) (MPa) (%) (MPa) 

Round bar 1 530 752.4 45.7 189,655 

Round bar 1 513 750.9 47.5 181,250 

Round bar 1 518 745.8 47.9 187,500 

Mean 520 749.7 47.0 186,135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



TABLE 2. Test matrix of SSP tests 

Specimen Test Protocol Failure mode No. of cycles 

    Full fracture Fracture initiation 

SSP1 1 AISC No failure - - 

 2 CA = 7�� Ductile fracture 28 21 

 3 CA = 6�� Ductile fracture 35 25 

 4 CA = 5�� Ductile fracture 44 31 

 5 CA = 4�� Ductile fracture 78 43 

 6 Random-1 Ductile fracture 59 35 

 7 Random-2 Ductile fracture 45 25 

SSP2 8 AISC No failure - - 

 9 CA = 8�� Ductile fracture 33 30 

 10 CA = 7�� Ductile fracture 43 36 

 11 CA = 6�� Ductile fracture 59 41 

 12 CA = 5�� Ductile fracture 76 45 

 13 CA = 4�� Ductile fracture 89 54 

 14 Random Ductile fracture 48 40 

 

 

 

 

 

 

 

 

 

 

 

  



TABLE 3. Prediction of fracture in SSPs under random loading protocols using the 
Palmgren-Miner rule 

Specimen Test Phase ∆�/2 n Nf � 

SSP1  Random-1 1 3�� 8 109 0.07 
  2 6�� 1 35 0.10 
  3 4�� 9 78 0.22 
  4 7�� 2 28 0.29 
  5 6�� 5 35 0.43 
  6 5�� 3 44 0.50 
  7 3�� 4 109 0.54 
  8 7�� 7 28 0.79 
  9 3�� 2 109 0.81 
  10 7�� 3 28 0.91 
  11 3�� 2 109 0.93 
  12 4�� 2 78 0.96 
  13 2�� 4 214 0.98 
  14 5�� 7a 44 1.14 

SSP1  Random-2 1 6�� 9 35 0.26 
  2 7�� 8 28 0.54 
  3 2�� 2 214 0.55 
  4 7�� 6 28 0.77 
  5 5�� 4 44 0.86 
  6 2�� 6 214 0.89 
  7 3�� 4 109 0.92 
  8 5�� 5 44 1.04 
  9 7�� 1a 28 1.08 

SSP2 Random 1 6�� 9 59 0.15 
  2 7�� 8 43 0.34 
  3 2�� 2 33 0.40 
  4 7�� 6 43 0.54 
  5 5�� 4 76 0.59 
  6 2�� 6 33 0.77 
  7 3�� 4 168 0.80 
  8 5�� 5 76 0.86 
  9 7�� 5a 43 0.99 

aExperimental fracture 

 
 
 
 
  



TABLE 4. Cyclic loading protocols of CNS tests 

Specimen Test Loading protocol 

CNS-2 1 (4)x[0;4��]+(4)x[0;6��]+(2)x[0;8��]+p.t.f. 

 2 (22)x[0;5��] 

 3 (24)x[0;6��] 

CNS-3 4 (4)x[0;4��]+(4)x[0;6��]+(4)x[0;8��]+(4)x[0;10��] +(1)x[0;12��] 

 5 (21)x[0;8��] 

 6 (39)x[0;5��] 

CNS-4.5 7 (41)x[0;5��]+p.t.f. 

 8 (4)x[0;4��]+(4)x[0;6��]+(4)x[0;8��]+(4)x[0;10��]+(2)x[0;12��] 

 9 (19)x[0;8��] 

Note: the number in parentheses indicates the number of cycles, followed by the prescribed 
amplitude in square brackets. For example, (22)x[0;5��] refers to a specimen subjected to 

twenty-two cycles between 0 and 5 times ��; p.t.f. = pull to fracture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE 5. Summary of VGI���������
�������� , � and �̅�� values at fracture for CNS tests 

Specimen  VGI���������
��������  �* � ̅��* 

CNS-2  2.66 1.02 0.77 

CNS-3  3.21 0.76 1.00 

CNS-4.5  2.77 0.63 1.08 

 Mean 2.88   

 St dev 0.29   

*Note: the values of T and �̅�� refer to the monotonic coupon tests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE 6. Summary of ������� values for the CNS tests 

Specimen  Cyclic Test �� ������� 

CNS-2  1 p.t.f. 9.0 

  2 16 5.5a 

  3 18 10.0 

CNS-3  4 16 11.2 

  5 16 13.4 

  6 32 9.9 

CNS-4.5  7 p.t.f. 11.6 

  8 18 9.5 

  9 18 10.2 

 Mean   10.6 

 Std dev   1.2 

aValue ignored as not representative 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



TABLE 7. Prediction of fracture initiation in SSPs according to CVGM versus experimental 
tests 

Specimen Test Protocol Fracture initiation �� 

   Test CVGM CVGM-test difference 

   (cycle no.) (cycle no.) (cycle) (% error) 

SSP1 2 CA = 7�� 21 19 −2 −10% 

 3 CA = 6�� 25 28 +3 +12% 

 4 CA = 5�� 31 29 −2 −6% 

 5 CA = 4�� 43 42 −1 −2% 

 6 Random-1 35 35 0 0% 

 7 Random-2 25 28 +3 +12% 

SSP2 9 CA = 8�� 30 33 +3 +10% 

 10 CA = 7�� 36 36 0 0% 

 11 CA = 6�� 41 41 0 0% 

 12 CA = 5�� 45 45 0 0% 

 13 CA = 4�� 54 48 −6 −11% 

 14 Random 40 42 +2 +5% 

     Mean 6% 

     St dev 5% 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE 8. Prediction of fracture initiation in SSPs according to Abaqus fracture model 
versus experimental tests 

Specimen Test Protocol Fracture initiation �� 

   Test Abaqus Abaqus-test difference 

   (cycle no.) (cycle no.) (cycle) (% error) 

SSP1 2 CA = 7�� 21 21 0 0% 

 3 CA = 6�� 25 26 +1 +4% 

 4 CA = 5�� 31 29 −2 −6% 

 5 CA = 4�� 43 40 −3 −7% 

 6 Random-1 35 36 +1 +3% 

 7 Random-2 25 26 +1 +4% 

SSP2 9 CA = 8�� 30 32 +2 +7% 

 10 CA = 7�� 36 37 +1 +3% 

 11 CA = 6�� 41 42 +1 +2% 

 12 CA = 5�� 45 45 0 0% 

 13 CA = 4�� 54 49 −5 −9% 

 14 Random 40 41 +1 +3% 

     Mean 4% 

     St dev 3% 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 1. Geometry of the dual CBF-MRF proposed in Baiguera et al. (2016): (a) overview; and 

(b) brace-SSP connection detail 

 

 

 

 

 

 

 

 

 

 

 

  



 

Fig. 2.  (a) SSP geometry; and (b) SSP specimens 
 

 

 

 

 

 

 

 

 

 

 

 

  



 

Fig. 3. Test setup: (a) SSP1; and (b) SSP2 

 
 
 
 
 
 
 
 
 
 
  



 

Fig. 4. Test setup and welded collar on SSP1   

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Fig. 5. Hysteresis of SSPs under the AISC protocol with additional cycles up to four and half 

times ���� 

 

 

 

 

 

 

 

 

 

 

 

  



 
Fig. 6. Hysteresis of SSPs under the CA protocols  



 
Fig. 7. (a) Typical fracture locations in SSPs; (b) full section fracture; and (c) fracture 

evolution in SSP2 under CA  = 6uy 

 

 

 
 
 
 
 
 
 

 

  



 
Fig. 8. Axial elongation of SSP2 after 30 cycles under CA = 7�� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
Fig. 9. Comparison of the energy dissipation of SSPs: (a) CA = 7�� test; (b) CA = 4�� test; 

and (c) AISC test 

 

 

 

 

 

 

 

  



 
Fig. 10. Energy dissipation in CA tests: (a) SSP1; and (b) SSP2 

 

 

 

 

 

 

 

 

 

 

 

 

  



Fig. 11. Imposed amplitude versus number of cycles to failure relationship: (a) SSP1; and (b) 

SSP2 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



 
Fig. 12. (a) CNS geometry; (b) FEM model of CNS-2 (gauge length) 

 

 

 

 

 

 

 

 

 

 

 

  



Fig. 13. Experimental-FEM comparison of CNS response (simulation without fracture 

definition): (a) monotonic; and (b) cyclic 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Fig. 14.  True stress-true plastic strain curve of SSD. 

  



Fig. 15. CNS-2 (test 3): (a) experimental versus FEM force history; and (b) ωcritical evolution 
up to fracture. The grey vertical area denotes fracture initiation 

  



 

Fig. 16. Calibration of � based on VGI������
��������/VGI���������

��������  ratios and associated ��̅��
�� values 

from CNS tests 
 
 
  



 
Fig. 17. Abaqus fracture initiation model calibrated for ultra-low cycle fatigue 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Fig. 18. Comparison of the experimental and numerical results: (a) force-displacement 

behavior; and (b) force history with indication of experimental ductile fracture initiation 

(cycle no.) 

 

  



 
Fig. 19. SSP1 FEM model: mesh discretization and boundary conditions 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
Fig. 20. Experimental and numerical (without fracture criteria) hysteresis: (a) SSP1 (CA = 

7uy); and (b) SSP2 (CA = 6uy) 
 
 
  



 

 

Fig. 21. CVGM fracture prediction in SSP2 under CA = 6uy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
Fig. 22. Experimental and numerical fracture locations in SSPs 

  



  
Fig. 23. SSP2 Random test: (a) fracture initiation index evolution; (b) fracture index and 

triaxiality evolution; and (c) Lode parameter evolution. 
 
  



 
Fig. 24. Comparison of experimental and numerical ductile fracture evolution in section 2 

for: (a) SSP1; and (b) SSP2. 
 

  



Fig. 25. Experimental-numerical force histories of SSPs: random tests. 
 

 

 


