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Abstract—This study explores the use of a spatially-variant
penalty strength, proposed initially for quadratic penalties, in
penalized image reconstruction using anatomical information.
We have used the recently proposed Parallel Level Sets (PLS)
anatomical prior as it has shown promising results in the
literature. It was incorporated into the previously proposed
preconditioned algorithm (L-BFGS-B-PC) for achieving both
good image quality and fast convergence rate. A 2-dimensional
(2D) disc phantom with a hot spot at the center and a 3D
XCAT thorax phantom with lesions inserted in different slices
are used to study how surrounding activity and lesion location
affect both the visual appearance and quantitative consistency,
respectively. Anatomical information is provided and assumed
to be well-aligned with the corresponding activity images. For
the XCAT phantom, the inserted lesions are either present or
absent in the anatomical images to investigate the influence of the
anatomical penalty. The reconstructed images for both phantoms
with and without applying the spatially-variant penalty strength
are compared. Preliminary results demonstrate that applying
the spatially-variant penalization with an anatomical prior can
reduce the dependence of local contrast on background activity
and lesion location. Further work to explore the potential benefit
in clinical imaging is warranted.

I. INTRODUCTION

IN emission tomography (ET), penalized image reconstruc-
tion methods are one of the strategies to control noise

amplification as iterations increase. Desired properties, such
as sharp edges and smoothness in uniform regions, can also
be introduced by the incorporated penalty function. However,
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tuning the weight between the likelihood term and the penalty
term of the objective function is difficult and the optimal value
can vary for different datasets. In addition, the use of the
penalty function also amplifies non-uniform image resolution,
as the effective penalty strength at every voxel is determined
by the activity level of itself and its surroundings [1]. This
makes visual comparison and quantitative analysis for regions
having different activity levels or at different locations difficult
even for lesions in the same image. The issue has been studied
extensively for quadratic priors but literature is limited for
edge preserving [2] or anatomical priors.

The aim of this study is to explore the use of a spatially-
variant penalization scheme, proposed initially for quadratic
penalties [1] and further generalized for non-quadratic penal-
ties [2], in penalized image reconstruction using an anatomical
penalty function. The expected benefit is to obtain similar local
contrast, independent of surrounding activity and location in
the field-of-view (FOV).

II. METHOD

A. Objective function

Penalized image reconstruction is performed by optimizing
a function Φ consisting of 2 parts, the unpenalized likelihood
L and the penalty function R, with a constant parameter β
which controls the strength of the penalty.

B. Spatially-variant penalty strength

In addition to using β to regulate the global weight of the
penalty term, a spatially-variant penalization map κ has been
proposed for quadratic penalties to achieve uniform resolution
across regions with different activity levels [1]:

R(f) =
1

2

∑
k

∑
j∈Nk

ωjkκjκkϕ(fj − fk) (1)

where N is a given neighborhood and ωjk indicates the weight
between voxel j and its neighboring voxel k. The latter is
chosen to be translationally invariant over the image. In [1], the
map κ is defined via a diagonal approximation of the Hessian
of the log-likelihood which needs a backprojection of the
inverse of the measured data. In this study, we approximated
κ by a precomputable matrix κ̂:

κ̂ =

√
diag{Atdiag{ g

(Af0 + n)2
}A1} (2)
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where f0 is the initial image, g is the measured data, n is the
expected background events and A is the system matrix where
every element Aij denotes the probability that an emission
from voxel j is detected by bin i. Note that κ̂ ≈ κ in [1]
when the initial image is close to the solution.

C. Anatomical penalty function

As Parallel Level Sets (PLS) has shown promising results
[3], it was chosen for exploring the use of κ̂ with anatomical
penalties in this study. Given the PET image f and the
anatomical image v, the penalty function is defined by:

ϕ(f) =

√
α2 + |∇f |2 − 〈∇f , ξ〉2, ξ :=

∇v√
|∇v|2 + η2

(3)

where ∇ is a gradient operator and α and η are parameters
that modulate the strength of the edge preserving property of
the function [3]. Note that PLS is equivalent to smoothed total
variation (TV) where no anatomical information is present.

D. L-BFGS-B-PC

PLS was incorporated into a fast convergent reconstruction
algorithm, L-BFGS-B-PC, which was previously proposed by
our group [4], [5] for achieving both good image quality and
fast convergence rate. The algorithm performed L-BFGS-B in
a transformed coordinate system to circumvent its potential
slow convergence and sensitivity to global scale factors. The
transformation was achieved as follows:

f ′ = Df , D =
√
κ̂2 + ε (4)

where ε is a small constant for preventing the division by zero
problem (ε = 0.01 in this study). Note that we used κ̂ to
calculate the transformation matrix as it is also related to a
diagonal approximation of the Hessian.

E. Data

1) 2D disc phantom: To study how the surroundings would
affect the quantitative consistency of a region of interest (ROI),
a disc phantom with a hot lesion (value = 3) inserted right
at the center of a large hot (value = 5) or cold (value = 1)
background (BG) was used. The voxel size of the phantom
was 2.397 mm and the diameter of the feature was 21.573
mm. The attenuation map (µ) with value of 0.096 cm−1 for
the feature and 0.172 cm−1 for the BG was used for providing
the anatomical information as well. Note that the feature had
the same absolute difference to the BG in both activity and µ
map hence the effect of PLS would be the same for feature
in cold and hot BG. The projection data were generated by
using STIR [6] projector in 2D acquisition.

2) 3D XCAT thorax phantom: To evaluate the potential
benefit of using κ̂ in a more realistic condition, XCAT
phantom in thorax region [7] (voxel value ranged from 0 to
1) with 6 hot lesions inserted in different slices was also
used to generate data representing typical FDG scans, see
Fig. 2. The voxel size of the phantom was 3.125 mm and
the diameter of each lesion was 9.375 mm. None of the
lesions was in the central slice and 2 of them were in the

liver. The uptake of the liver was either high (value = 0.8)
or low (value = 0.2) to simulate different background levels
for lesions in the liver. Each lesion had the same absolute
difference to its surrounding in both activity (difference = 0.4)
and anatomical images (difference = 20 HU) hence the same
influence of the anatomical prior. As lesions in liver would
have similar linear attenuation coefficient to the surrounding,
our simulations roughly correspond to using CT with injected
contrast to provide anatomical information. The phantom was
forward projected into sinograms corresponding to data from
the GE Discovery STE in 3D acquisition.

Physical effects, such as attenuation and system blurring
(with FWHM = 5.2 mm in tangential and radial directions
and 5.7 mm in trans-axial direction) were considered for both
phantoms. For analysis purpose (see Section II-G for more
information), we also generated data using the same phantoms
but with no feature or lesion.

F. Reconstruction

L-BFGS-B-PC initialized by 1 full iteration of OSEM with
35 subsets was used for image reconstruction. For each dataset,
2 reconstructions (1 with the spatially-variant κ̂ calculated
by (2) and one with a constant penalty strength) were made.
The map κ̂ was normalized to its center such that lesions
at the center would be penalized by the same strength. 2
more reconstructions (1 with lesions present in anatomical
image and 1 without) were made for the XCAT phantom
to investigate the influence of the penalty function when
anatomical information about the lesions was present (PLS)
or absent (smoothed TV). The parameter set (η, α) in PLS
was chosen according to the scale of the anatomical images.
It was (0.01 cm−1, 1) for the disc phantom and (5 HU, 0.1) for
the XCAT phantom, respectively. The global penalty strength
β was fixed at 10 for all reconstructions.

G. Evaluation

The local contrast evaluation was conducted in terms of
visual comparison and a contrast recovery estimate CR. The
merit was defined as:

CR = mean(DiffROI)
mean(Difftrue

ROI)
,

Diff = |recon(g + gl)− recon(g)|.
(5)

where Diff represents the difference image obtained by sub-
tracting the reconstructed image with lesion(s) (recon(g + gl))
from that without lesion(s) (recon(g)) and gl is the forward
projection of the lesion(s). The ROIs were drawn in the center
of the feature or lesion with size of 9× 9 voxels for the disc
phantom and 3×3 voxels for the XCAT phantom, respectively.

III. RESULTS

Fig. 1 shows images reconstructed with and without using
κ̂ for the disc phantom having either high or low BG uptake.
It is hard to delineate the feature from high BG for images
reconstructed without using κ̂ (Fig. 1, first row). However, the
benefit of using κ̂ to preserve local contrast is less significant
for lesion in low activity BG (Fig. 1, second row). In terms of
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TABLE I: CR values of the feature of the disc phantom.

BG Hot BG Cold
without κ̂ 0.33 0.46

with κ̂ 0.53 0.55

Fig. 1: Converged images reconstructed with and without using
κ̂ for the disc phantom with either high or low BG uptake.

quantitative consistency, the difference between lesion in cold
and hot BG is smaller when κ̂ is applied (Table I). Comparing
Fig. 2 to 3, a relatively uniform visual contrast for lesions
at different locations is observed in reconstructions using κ̂.
When a constant penalty strength is applied (Fig. 2), the lesion
near end slices is invisible (indicated by purple arrows) if
anatomical information is also absent. Although not shown,
similar results were obtained for data simulated with low liver
uptake. CR values for each lesion of the XCAT phantom
under various data simulation and reconstruction conditions
are represented using bar charts in Fig. 4. Consistent with
the visual comparison based on Fig. 2 and 3, the variance
of the local contrast in locations is reduced when κ̂ is used.
However, the influence of surrounding activity is not obvious
for the XCAT phantom as lesion 1 and 2 show similar contrast
recovery when the activity level of their surroundings (liver)
is changed, regardless of κ̂ is applied or not. Note that
the local contrast is significantly increased when anatomical
information about the lesions is available (Fig. 2, 3 and 4).

IV. CONCLUSION

Based on the results for the disc phantom, the influence
of surroundings on quantitative consistency can be reduced
by applying the spatially-variant penalty strength κ̂ (Fig. 1
and Table I). The scheme can also be used for improving the
uniformity of local contrast across the field-of-view (FOV)
(Fig. 2 and 3). However, the dependence of local contrast
on surrounding activity was not obvious for the XCAT phan-
tom (Fig. 4). This implies that the local contrast for FDG
studies is mainly affected by location (i.e. sensitivity). Future
work would include exploring potential benefits of using the
spatially-variant penalization scheme on patient data.

Fig. 2: A coronal view of the converged images reconstructed
without using κ̂ for cases of high liver uptake. The anatomical
information about the lesions is either present or absent. The
corresponding difference images are also provided.

Fig. 3: A coronal view of the converged images reconstructed
using κ̂ for cases of high liver uptake. The anatomical in-
formation about the lesions is either present or absent. The
corresponding difference images are also provided.
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Fig. 4: CR values for each lesion of XCAT phantom under
various data simulation and reconstruction conditions.
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