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Abstract—The work presented in this paper aims to distinguish
between armed or unarmed personnel using multi-static radar
data and advanced Doppler processing. We propose two modi-
fied Deep Convolutional Neural Networks (DCNN) termed SC-
DopNet and MC-DopNet for mono-static and multi-static micro-
Doppler signature (µ-DS) classification. Differentiating armed
and unarmed walking personnel is challenging due to the effect
of aspect angle and channel diversity in real-world scenarios.
In addition, DCNN easily overfits the relatively small-scale µ-DS
dataset. To address these problems, the work carried out in this
paper makes three key contributions: first, two effective schemes
including data augmentation operation and a regularization
term are proposed to train SC-DopNet from scratch. Next,
a factor analysis of the SC-DopNet are conducted based on
various operating parameters in both the processing and radar
operations. Thirdly, to solve the problem of aspect angle diversity
for µ-DS classification, we design MC-DopNet for multi-static µ-
DS which is embedded with two new fusion schemes termed
as Greedy Importance Reweighting (GIR) and `21-Norm. These
two schemes are based on two different strategies and have been
evaluated experimentally: GIR uses a “win by sacrificing worst
case” whilst `21-Norm adopts a “win by sacrificing best case”
approach. The SC-DopNet outperforms the non-deep methods
by 12.5% in average and the proposed MC-DopNet with two
fusion methods outperforms the conventional binary voting by
1.2% in average. Note that we also argue and discuss how to
utilize the statistics of SC-DopNet results to infer the selection
of fusion strategies for MC-DopNet under different experimental
scenarios.

Index Terms—DCNN, multi-static µ-DS, classification, armed
personnel.

I. INTRODUCTION

Radar systems are capable of measuring Doppler directly
from the frequency shift in the backscattered signal from a
moving target, with respect to its original central frequency,
micro-Doppler signature (µ-DS) in radar can be regarded as
additional frequency modulations induced by rotating and vi-
brating parts of objects, e.g. wheels of trucks, limbs movement
of human targets [1–3]. In the case of people walking, the µ-
DS are generated by the motion of the swinging arms, legs
and torso. This phenomenon has been measured and evaluated
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from a number of different radars and for a wide range of dif-
ferent motions. It has been shown that movement of different
people can be distinguished, as well as differences between
men and women, people and animals [4–6]. In addition, µ-
DS have been used to distinguish wind turbine blades and the
blades of aircraft rotors [7]. It has also been demonstrated how
µ-DS of different human target movements can help increase
the situational awareness of the ambient assistant living in the
healthcare context [8–14].

The focus of this article is on the training of a Deep
Convolutional Neural Network (DCNN) to recognize armed
and unarmed personnel using their µ-DS that have been mea-
sured using a multistatic radar. µ-DSs and their applications
in the context of security, warfare and healthcare have been
investigated over a number of years [15–17]. The challenge of
collecting the raw radar data and understanding what action
is occurring can be broken down into three key steps. 1) The
representation of the raw signals, 2) The features that can be
extracted from them 3) The classification algorithm applied to
these features. A large number of data representations, features
and classifiers methods have been proposed and applied as a
series of separate steps.

Due to the data being a time-frequency signal, the spectro-
gram is the most common method of representing the data via
a Short Time Fourier Transform (STFT). This was shown to
distinguish human targets movements, e.g. walking, crawling,
running etc. or to distinguish human from animals [7, 16, 17].
In addition, other time-frequency representation methods have
been applied, e.g. Gabor transform, Wigner-Ville transform,
Empirical Mode Decomposition based on Hilbert-Huang trans-
form to extract the time-frequency representation of various
human movements [18–21]. Other approaches have proposed
the use of extracting empirical features, such as Radar Cross
Section (RCS), Doppler bandwidth, period of motion. In addi-
tion, various dimensionality reduction or de-noising methods
have been investigated, like Singular Value Decomposition
(SVD) method, Principle Component Analysis (PCA) and
sparse representations[12, 13, 15–18].

As for the selection of classifiers, various research work
related to classifiers in machine learning community have
been proposed [5, 12, 13, 22]. However, these features and
classifiers have not been developed and optimized in the same
joint framework. This means that for different applications and
conditions, the feature extraction and classifiers may need to be
modified and tuned according to empirical experience, rather
than using formal optimization approaches.

In recent years, with the development of hardware facility
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and computation methods such as Graphic Processing Unit
(GPU), DCNNs have been proposed firstly to address the
ImageNet challenge, to classify an image dataset of more
than 10 million images [23]. One of the main advantages is
that the feature extraction and the classifier can be jointly
learned in the same framework. However, DCNN is well-
known for its difficult training from scratch and normally
requires large amount of data in the training stage to prevent
the overfitting problem. For classification of human µ-DS,
DCNN trained from scratch has been utilized and applied to
distinguish hand gestures and aquatic movements using mono-
static radar . However, in their approach, 80% of data is used
for training and a relatively small DCNN is built to address
the classification tasks [24, 25]. Recently, DCNNs have also
been used for classification task of aquatic movement using the
fine-tuning method, which utilized the trained DCNN network
weights by ImageNet dataset so that only small part of the
network weights are required to be trained [26]. For healthcare
applications, this idea is further evaluated and compared with
the one using auto-encoder based pre-training weights in the
work of [8], which handles fine-tuning DCNNs with deep
layers (e.g. VGG-Net and Inception-Net) using a small number
of radar samples. In healthcare field, DCNN has also been
utilized for recognizing falling based on mono-static range-
Doppler signatures [27].

In this paper, we propose a modified DCNN trained from
scratch called DopNet, to distinguish armed and unarmed
walking human targets using the multi-static radar data. The
contributions are three-folded:

1) Firstly, we propose two key novel schemes to address
the over-fitting problem in training DCNN, including
the radar data augmentation in the training stage and a
new regularization term balancing the Mahalanobis and
Euclidean distance of the network weights. We analyze
the effect of various factors in the single channel DopNet
(SC-DopNet) and evaluate the proposed two schemes. In
addition, we compare SC-DopNet results from mono-
static radar data with other handcrafted features and
classifiers by experimental results.

2) Secondly, we build the multiple channel DopNet (MC-
DopNet) similar to SC-DopNet and proposed two fusion
methods to jointly optimize the total objective function,
called Greedy Importance Reweighting (GIR) method
and the `21-Norm method. Note that these two methods
are embedded in training the MC-DopNet and param-
eters of the two methods can be jointly learned under
the total optimization function. MC-DopNet is an end-
to-end learning framework to address the classification
of human µ-DS using experimental radar data.

3) Finally, we compare our proposed fusion methods to-
gether with MC-DopNet to other conventional data fu-
sion methods with various features and classifiers. Note
that we also discuss and conclude in what scenarios
the proposed two fusion methods are preferable to be
utilized.

The most similar works to ours are [28] and [29] for
applying DCNNs to analyze experimental multistatic radar

data, however, no proper fusion method to combine multiple
DCNNs for addressing multi-static channel data has been
proposed in [28] and the no detailed ablation study of net-
work components are performed in [28] and [29]. Finally, no
comprehensive schemes have been proposed to address the
overfitting problem.

This paper is organized as follows: in section II, radar
system and experiments are introduced and we propose the
basic DopNet architecture and components in section III.
Then we propose the SC-DopNet and MC-DopNet with two
fusion schemes handling mono-static and multi-static µ-DS
classification in section IV and V. Section VI is aimed at
describing implementation details of the DopNet. To continue
evaluating proposed methods, we present the ablation study
results of SC-DopNet and analyze effect of MC-DopNet and
the fusion strategies in section VII and VIII. Finally, we
conclude the paper in section IX.

II. BACKGROUND

A. Radar System

The radar system used to collect the data presented in this
paper is the three-node multistatic system NetRAD, which
has been developed over the past years at University College
London. The system is a coherent pulsed radar and operates
at 2.4 GHz. The data shown in this work were collected
using the following RF parameters: 0.6 µs pulse duration,
45 MHz bandwidth, linear up-chirp modulation, and 5 kHz
pulse repetition frequency (PRF) to include the whole human
µ-DS within the unambiguous Doppler region. Five seconds of
data were recorded for each measurement in order to collect
multiple periods of the average human walking gait, which is
on average approximately 0.6 seconds. The transmitted power
of the radar is approximately 200 mW. The antennas have
24 dBi gain and are operated with vertical polarization to
effectively interact with human subjects, as the human body
shape is such that the vertical dimension is more significant
than the horizontal dimension. This is expected to increase the
signal-to-noise of the return from the targets in comparison
with horizontal polarization.

B. Experiment

As shown in the following Fig.1, the target is walking at
three different angles roughly around 30 degree, 0 degree and
-30 degree, (denoted as Ang1,2,3) with respect to the radar
baseline. The distance between the target position and the node
1 in the middle of the baseline is 70m. The node 3 is the Tx/Rx
pulse radar part, while the other two are receivers. There are
two movements in the experiment, which are walking free
handed and walking while holding with both hands a metal
rod which is comparable in size to a rifle. This simulated
carried item was designed to cause the user to walk in the
same manner as someone carrying a firle in both hands in front
of them. There are three people involved into the experiments,
their height are 1.87m, 1.7m and 1.75m respectively. For each
walking measurement, the recorded time is 5 second and in
total 180 data samples (5 second recording) are collected.
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III. DOPNET ARCHITECTURE

There are five main component layers in a DCNN, including
the convolutional, non-linear activation, pooling, fully con-
nection and the final Softmax classification layer. First these
layers with their architectures and purposes will be illustrated
in details in section A. In section B, operations to prevent the
overfitting will be presented.

𝑻𝒂𝒓𝒈𝒆𝒕

𝑨𝒏𝒈𝟑 𝑨𝒏𝒈𝟐 𝑨𝒏𝒈𝟏
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Fig. 1. Experiment scenario in the field using NetRad.

A. DopNet Component and Architecture

The network structure of DopNet is illustrated in the follow-
ing Fig.2. The first two layers in DopNet are the convolution
(Conv) layers, denoted as Conv1 and Conv2, composed
of 64 and 128 kernel filters with the size of 32x32 and
11x11 respectively. The Conv layers are aimed to select local
features of the µD signature by convolving it with the kernels
and generate activation or correlation degree maps. This can
be regarded as the Conv layer outputs and these local maps
will be concatenated together in a hierarchical manner [30].

To increase the model capacity of the network, We adopt the
Rectified Linear Unit (ReLU) in DopNet, which is shown in
Eqn.(1). Note that we apply the ReLU function following each
layer output, except the output of the final layer. Additionally,
we utilize the Local Response Normalization (LRN) layer
developed and verified to decrease the saturation of ReLU
function [30]. The idea is introduced by the lateral inhibition,
which will normalize the activated map among different kernel
filters. The details are shown in Eqn.(2) where Iiw,h and Oi

w,h

are the input and output of the LRN layer activated by ith

kernel at position w,h after the ReLU layer, R is the radius
of the amount of kernels for the normalization, β can be
interpreted as the polynomial parameter chosen empirically
from trials and errors. This layer generalizes the network
by generating competition among different kernel activations.
Note that input of the LRN layer is always chosen as the
output after ReLU function.

Even with the non-linear and normalization layer, represen-
tation of the Conv outputs are still redundant. Therefore, the
pooling layer is used as a conventional non-linear operation
by only remaining the maximum among a small region of the

output activation map from Conv layers [30]. It is mostly
used to simplify the network model and to extract the most
useful information.

Following the Conv layers are the Fully Connected (FC)
layers which usually transform the local activation maps of
Conv layers to the label embedding. In DopNet, we adopt a
three-layer architecture with output activation number of 512,
128 and 2 respectively, directly transforming local features
to the representation of semantic categories.FC layers can
be regarded as a conventional linear projection operation,
defined and parameterized by the weight wfc and bias bfc,
but without convolutions. Due to the sparsity of the label
embedding, the output of FC layers Ofc can always be added
with the ReLU operation Another operation related with the
FC layers is the Dropout operation, which shuts down the
gradient flow and the updates of some neurons randomly for
each mini-batch of data so that the FC weight matrix can be
partially learned in a stochastic manner.

Lastly, the output of the final FC layer is a vector
Logit ∈ RNclass×1 with the class number Nclass, each
of which indicates the probability that the µD input belongs
to that class. As a model under optimization, the loss function
we used is the cross-entropy (CE) function, implemented by
calculating the CE between the final FC layer output and
the ground-truth label, y ∈ RNclass×1, as shown in the
Eqn.(3) and (4), where Logitsoft is the output after the
softmax operation and LCE is the final CE losses. Besides
the Softmax cross-entropy loss, we also add a regularization
term to balance the Mahalanobis and Euclidean distance for
better optimization schemes. In the next section, the balancing
term, together with the techniques used to prevent overfitting
are introduced.

ReLU(x) = max(x, 0) (1)

Oiw,h =
Iiw,h

( 1 +
∑i+R/2
i−R/2 (Iiw,h)

2 )β
(2)

Logitsoft =
exp(Logit)∑Nclass

i=1 exp(Logit[i])
(3)

LCE =

Nclass∑
i=1

y[i]× log(Logitsoft[i]) (4)

Lreg = γfc1 × ‖wfc=1‖2+
γfc2 × ‖wfc=2‖2+

γconv1 × ‖wc=1‖2 + γconv2 × ‖wc=2‖2
(5)

xaug = xwidth win,height win (6)

‖y − wfc2 × Ifc2‖22 = ‖wfc2 × IGTfc2 − wfc2 × Ifc2‖22
= (IGTfc2 − Ifc2)TwTfc2wfc2(IGTfc2 − Ifc2)

(7)

LME = ‖wTfc2wfc2 − I‖22 (8)
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Fig. 2. Architecture for DopNet.

B. DopNet Operations for Overfitting Preventions

Overfitting problems are common in DCNN models, due to
the fact that network parameters are biased or more discrimina-
tive to the seen training samples, thus reducing generalization
capabilities of the mode towards unknown testing samples.
Prevention of the overfitting problem in DopNet can be solved
from the following three perspectives:

1) Simplifying the network capacity: we adopt the
drop-out operation of the FC2 layer and add the
L2 regularization to the weight parameters of the
Conv and the FC layers, with details illustrated in
Eqn.(5), where γfc1,γfc2,γconv1,γconv2 are regu-
larization weights of the L2 norm of kernel filters in
FC1,FC2,Conv1,Conv2 layers respectively.

2) Increasing the diversity of training data by augmentation,
i.e. by cropping the original training data into smaller
patches, as showed in Fig.4. Due to the nature of the
time series of the µ-DS data, we generated more training
samples by cropping the data in the time domain using
different stride and window sizes. As our training µ-DS
data is x ∈ Rwinput×hinput , the augmented training
samples can be represented as the cropped data along
the time axis via different strides, as shown in Eqn.(6),
where widthwin, heightwin are the window sizes
in two dimensions. This operation, if stride sizes small
enough are chosen, will increase the number of training
samples, give additional data diversity, and improve the
robustness of the model as data generated under various
conditions will be used for training. In practice, this
time shifting simulates misalignment in time and small
Doppler offsets for the training data, two situations that
can practically happen for data collected in realistic
uncontrolled scenarios. More specifically, as shown in
Fig.4, an example of a target walking unarmed from
angle 1, received by node 1 is illustrated. Here, in the
5-second µ-DS, four black rectangular boxes indicate
four augmented data samples in the training stage. The
example shown in Fig.4 uses width win as 1 second,
while the height win chosen as 100 Hz, stride length
equals to the 1 second. It seems obvious that, the
augmented data samples can be generated by selecting
very small stride of the moving window, which will also
simulate small misalignment in realistic data.

3) Regularizing the final loss metric: we formalized the
Mahalanobis distance (M-dist) and Euclidean distance
(E-dist) between the ground-truth and predicted labels
in DopNet. Since M-dist is aimed to maintain the
discrimination capabilities while the E-dist to provide
generalization, a regularization term is designed and
incorporated in the DopNet by balancing the general-
ization and discrimination of the network weights. Note
that we balance the E-M distance only in the final FC2
layer and denote the input, output, weights and bias in
FC2 layer as Ifc2,Ofc2,Wfc2, bfc2. If we assumed
that the ground truth label y can be transformed from
the perfect input IGT

fc2 using the weight Wfc2 , then we
could write up the simple Euclidean loss between y and
Wfc2 × Ifc2 as the following Eqn.(7).
In this way, we argue that this E-dist term is actually
measuring the M-dist between ideal and predicted FC
inputs, parameterized by weight matrix wfc2. Since M-
dist is designed to ensure the discrimination capability
of the matrix, the regularized term denoted as LME ,
is added to balance the E-distance and M-dist, which
enforces the term wT

fc2wfc2 to be close to identity
matrix, as shown in Eqn.(8). By adjusting the balance
the E and M distance, we are actually controlling the
discrimination and generalization of the DCNN.

IV. SINGLE-CHANNEL(SC)-DOPNET

In this section, we introduce the single-channel (SC) Dop-
Net using the components illustrated in previous sections. We
introduce two phases and the relevant loss functions, including
the training phase and testing phase. To sum up, the output
total loss function in the training stage to optimize the DopNet
is shown in Eqn.(9). Once the network parameters are stored
and saved, in the test stage, given a test sample xtest, the
predicted label can be calculated by the simple max operation
of the Logitsoft in Eqn.(10), where Logitsoft is the output
after the Softmax operation (3) in the previous section.

min
w,b,k

LTotal = LCE + LReg + γMELME (9)

iclass = argmax
i

Logitsoft[i] (10)

Classification 
Loss
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Fig. 3. Architecture for MC-DopNet
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V. MULTI-CHANNEL(MC)-DOPNET

To address the diversity of aspect angle in practical sce-
narios, multi-static radar can be utilized to increase the clas-
sification robustness. This implies collecting simultaneous µ-
DS of a particular target and activity from different, spatially
distributed radar nodes. Since µ-DSs from different nodes
exhibit diversed local features, it is difficult to train a single
SC-DopNet local feature extractor which is sharable among
signatures of all nodes. It is also a more realistic scenario that
independent radar nodes would not aim to stream raw I/Q data
across a network but would share a higher level classification
decision into a centralised decision making system. Therefore,
we choose to design multiple SC-DopNet for each radar node
for MC-DopNet. The way to fuse these data into the multi-
channel decision enable by MC-DopNet is introduced and
discussed in this section. Two novel schemes are proposed
to combine multiple channel µ-DS for recognition. The first
has been formed the Greedy Importance Reweighting (GIR)
method and the second is the `21-Norm method. The MC-
DopNet architecture is shown in Fig. 3. Let us assume that data
from NMC multiple channels are now available; we propose
to build NMC individual SC-DopNet, where input of each
SC-DopNet is data from the single channel radar. Our GIR
and `21-Norm methods are proposed to fuse the outputs of
individual SC-DopNet in an end-to-end learning framework.

When feed-forwarding the training data samples from mul-
tiple channels through their respective SC-DopNet, the jth

single channel output after Softmax function is obtained using
Eqn.(3), denoted as Logitj , j ∈ [1,NMC ]. In general, we
proposed two strategies to guide the fusion of multiple channel
data: “win by sacrificing worst case” and “win by sacrificing
best case”, guiding the design of GIR and `21-Norm method
respectively. The “win by sacrificing worst case” strategy is
to increase the overall recognition rate from multiple channel
data by sacrificing the performance of channels with average
or bad data quality but only enhancing performance of the best
single channel. The “win by sacrificing best case” strategy is to
increase the overall recognition rate by degrading the channel
performance with the best data quality a little but improving
the performance of channel with the worst data quality.

(i) GIR Method: Our GIR method fuses multiple outputs
into one final result denoted as LogitGIR based on weighted
linear combinations of individual SC-DopNet result. Note that
the weights are also the parameters under DCNN training,
rather than conventional binary voting schemes which combine
multiple channel results under equal weights. The details are
shown in Eqn.(11). To sum up, the GIR method is a greedy
algorithm, because the higher weight from a given channel
will be learned and assigned automatically if, and only if, its
corresponding prediction output contributes more to decrease
the total loss function than other channels. In addition, due to
the sum of weights are forced to one, the lower weights of
the other channels will be learned. To sum up, GIR method
re-weights the weights of multiple channels so that the final
loss function is minimized by the greatest amount.

Specifically, our GIR method uses the weighted single
channel output as the fused prediction into the CE loss function

(see Eqn.(4)). Therefore, the multiple channel loss function is
proposed, which is similar to Eqn.(4) except that we replace
LCE by LGIR

CE , with the input LogitGIR in Eqn.(12), where
Lj

ME and γj
ME are the jth channel M-dist regularization and

its respective weight. Lj
Reg is the jth channel regularization

corresponding to network weights.

LogitGIR =

NMC∑
j=1

βjLogit
j , with

NMC∑
j=1

βj = 1, βj ≥ 0 (11)

min
w,b,k

LGIRTotal = LGIRCE +

NMC∑
j=1

γjMEL
j
ME + LjReg (12)

(ii) `21-Norm Method: Unlike the GIR method, `21-Norm
method prefers equal weights on outputs from all channels
and tries to enforce similar outputs from different channels.
In general, the potential advantage of `21-Norm method is
to enhance the output performance from the poor quality
channel, constrained by channels with better quality results.
More specifically, the `21-Norm method constrain the final
data representation of each node share the same structure. In
this way, data representation from the node with bad quality
is able to be compensated by the one with good quality.

Similar to the GIR method from the perspective of imple-
mentation, the `21-Norm method uses a regularization term
constrained on the multiple outputs Logitj from the last FC
layer of multiple SC-DopNets. The regularization term can
be shown in Eqn.(13),(14), where Logitjsoft is the output
of jth channel after the Softmax operation, Logitjsoft[i]
infers the probability output that the data from jth channel
belongs to the ith class. Finally, the loss function using the
`21-Norm method is shown in Eqn.(15), where LogitL21 is
the final output by averaging all single channel outputs with
equal weights.

LogitL21 =
1

NMC

NMC∑
j=1

Logitj (13)

LL21 =

Nclass∑
i=1

NMC∑
j=1

Logitjsoft[i]
2

(14)

min
w,b,k

LL21

Total = LL21

CE +

NMC∑
j=1

γjMEL
j
ME + LjReg + γL21

LL21

(15)

VI. IMPLEMENTATION

First the matched filter processing between the reference and
received echo signals are performed and the STFT operation
is used to obtain the spectrogram. The overlapping ratio is
chosen as 0.9 and the integration time for FFT is set as 0.3
seconds. Each µ-DS sample is recorded for 5 seconds and the
stride for cropping the µ-DS samples in the data augmentation
operation is chosen as 0.15 seconds. In addition, to increase the
challenge of testing, we are also cropping the testing data into
different dwell time but the stride is chosen as 0.3 seconds and
the cropping starting point is chosen randomly. We argue that
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this test scheme is a more realistic scenario, where we cannot
guarantee where the real-time test data starts, as the radar may
have been performing other tasks prior to extracting the µ-DS
of a specific target at a specific time.

All DopNet layers and data operations are implemented
using the Tensorflow software. The conventional Stochastic
Gradient Descent (SGD) method is used for optimizing the
parameters, with the momentum 0.9. The initialized learning
rate for FC layers and Conv layers are chosen as 0.001 and
0.0005 respectively. The decay policy for the learning rate is
the inverse decay and the decayed learning rate denoted as
lrdecay is following the Eqn.(16), where lrbase is initialized
base learning rate. The batch size is chosen as 50 and training
and test samples are shuffled by the Tensorflow FIFO-Queue
operation. The regularization weight for the Conv and FC
layers are chosen as 0.005.

lrdecay = lrbase × (1 + 0.001× epoch)−0.75 (16)

VII. RESULTS AND ABLATION STUDY OF SC-DOPNET

A. Raw and Augmented µ-DS

In this section, the raw µ-DS generated by STFT based
on the parameters outlined in the implementation section are
presented and illustrated. In addition, the data augmentation
procedure and their diverse µ-DS are presented in Fig.4(b)
with the raw input shown in Fig.4(a).

(a)

(b)

Fig. 4. (a)Raw Doppler signature of a target walking unarmed from angle 1,
using receiver node 1; Four black bounding boxes indicate four augmented µ-
DS, with window width of 1s and window height of 100Hz. (b) Augmentation
Results: (i), (ii), (iii) and (iv) are four augmented data examples generated
from the 5-second µ-DS signature shown in Fig.4. The augmentation method
and parameters are illustrated in Sec.III-B.

In Fig.5 and 6, the µ-DS related to three different angles,
armed or unarmed walking gait are shown. For angle 1 and 2,
the Doppler frequency related to the bulk movement is centred
around 42Hz, while the one from angle 3 is around 30Hz. This
is due to the relatively larger aspect angle for angle 3 than the
one for angle 1 and 2. Either for armed or unarmed gaits,
in general, frequency due to arms movement from angle 1 is
smaller than angle 2, while the one from angle 3 is much
smaller than the angle 1. The main reason might still be the
different Doppler aspect angles in the bi-static radar geometry.

It can be clearly seen that unarmed walking gait from Angle
1 and 2 are clearly distinguished from the armed ones by the
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Fig. 5. Raw Doppler Signature of Walking among three angle, node and
classes. All x-axis with unit of second while all y-axis with unit of Hz.
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Fig. 6. Raw Doppler Signature of Walking with rifle among three angle, node
and classes. All x-axis with unit of second while all y-axis with unit of Hz.

signatures from 20-30Hz caused by the arms swinging. From
Angle 3, shown in (h) and (i), the difference between unarmed
and armed is not obvious, but some vague differences in the
µ-DS map around 15Hz to 20Hz still exist.

B. Evaluating Radar Operational Parameters

In this section, we analysed the recognition rate using single
channel µ-DS data with different operational parameters such
as training percentage, dwell time, node geometry and all
the three aspect angles. The parameter sets evaluated in the
experiments are shown in the following Table I.

As shown in Fig. 7 to 10, in general, with all other variables
controlled, increasing the training percentage increases the
recognition rate. The reason is obvious, as it increases the

TABLE I
RADAR OPERATING PARAMETER SET UNDER EVALUATION.

Training Perc. {20%,40%,60%}
Dwell Time (Second) {1,1.5,2,2.5}

Aspect Angles (Degree) {-30,0,30}
Radar Node {N1,N2,N3}
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Fig. 7. Recognition rates for node 1, dwell time 1s, DopNet

20% 40% 60%
80

85

90

95

100

9
5.
9 98
.9

9
9
.6

97
.4

9
8
.5

98
.9

84
.8

91
.6 94
.3

Training Data Percentage

R
ec

og
ni

tio
n

R
at

es
%

Ang1 Ang2 Ang3

Fig. 8. Recognition Rates for Node 1, Dwell Time 1.5s, DopNet

training data diversity and eases the classifier task by decreas-
ing the test data samples. For training ratio at 0.6, no matter
at what dwell time, the recognition rates all achieve close to
100%. In addition, with the training ratio at 0.4, recognition
rate with dwell time of 2s and 2.5s already achieves very close
to 100%. However, the one with dwell time of 1s and 1.5s can
only achieve 98% approximately.

The following Fig.11 shows the averaged recognition rate
among all dwell time with respect to different angles and
training percentage. Among the three aspect angles, it could
be found that the average recognition rate from aspect angle
three is the lowest. The reason is that under movements from
aspect angle 3, the bi-static angle formed by target, transmitter
node 1 and the receiver node 2 is the largest that induces
the lowest Doppler frequency shifts and SNR of µ-DS. These
further lead to the bad discriminative quality of µ-DS from
armed and unarmed motions. It can also be inferred that
when trained on 20%, under all dwell time, recognition rate
of angle 2 outperforms angle 1 around 2%, but with the
increasing of training percentage, recognition rate of angle
1 is chasing up to equally the same as angle 2 and even
outperforms angle 2 at training percentage of 0.4 and 0.6
respectively. The main reason can be observed by comparing
Fig.5, 6 (a) and (d) that the Doppler frequency induced by
bulk movements from angle 1 varies larger than the one
from angle 2. Note that in our data augmentation steps, we
are truncating the whole 5 second spectrogram into smaller
parts (with shorter time duration), therefore among different
augmented truncations of the dataset, augmentation from angle
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Fig. 9. Recognition Rates for Node 1, Dwell Time 2s, DopNet
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Fig. 10. Recognition Rates for Node 1, Dwell Time 2.5s, DopNet

2 will induce more variations of bulk Doppler frequency and
the more of µ-DS frequency as well. This actually increases
the intra-class variations among the train and test datasets.
With the increasing training ratio, these intra-class variations
can be eliminated as more samples related to different bulk
movement Doppler shifts can be used to train the network.
Finally, around training ratio of 0.6, recognition rate of angle
1 outperforms angle 2, with the potential reason that Doppler
signatures induced by arms movement at unarmed scenario
from angle 2 has more SNR and higher Doppler frequency
shifts than angle 1, as shown in Fig.5 (a) and (d), (c) and
(f). These all relate to the node 1 as the transmitter and the
geometry of radar in the experiments.

Fig.12 shows the recognition rate of different angles with
respect to different dwell time. Due to average on training
ratio, we can deduce that for all angles, recognition rates
increase with the increasing dwell time from 1s to 1.5s.
However, with further increasing dwell time from 1.5s to 2.5s,
only the recognition rate from angle 2 increases further and
the one from angle 1 attain the similar result at dwell time
of 1.5s. Note that recognition result from angle 3 drops with
the further increase in dwell time. The potential reason for
this may be that there are few useful features for signatures
of angle 3 due to the large aspect angle.

C. Evaluating the Drop-out rate

In this section, we analyse the recognition rate with different
drop-out rates via experiments. Here, we only choose the
data from the following scenario: node 1, aspect angle 1,
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Fig. 11. Recognition Rate of Different Aspect Angles respective to Training
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Fig. 12. Recognition Rate of Different Aspect Angles respective to Dwell
Time, Average on Training Percentage.

dwell time of 1s. The drop rate ranges from 0.2 to 0.8 in
the step of 0.2 and we evaluated the respective recognition
rates. According to Fig.14,when trained with 20% and 40%
data, increasing the dropping rate from 0.2 to 0.8 on FC1 will
increases the recognition rates first (when increasing from 0.2
to 0.4) and then decreases them (when increasing the drop-
out rate from 0.4 to 0.8). This is due to the fact that the
model is first overfitting the data where the model parameter
number is so large as to over-parameterize the training data
completely but the generalization capability of the model to
the test data cannot be maintained. Increasing drop rate from
0.2 to 0.4 then ensures the network capability is relative to
generalization. When the dropping rate increases further, the
network parameters are relatively small to model the training
data, which decreases the capability of the model and the
recognition rate. In addition Fig.14 shows that when trained
with 60% of the data, increasing the drop-rate from 0.2 to 0.6
continuously increase the recognition rates and then further
increasing will decrease the recognition rate. The reason can
be attributed to previously described scenario.

D. Evaluating E-dist and M-dist

In this section, we analyze and evaluate the regulariza-
tion weight of the balancing E-M distances, by compar-
ing different recognition rates based on whether M or E
distance metric dominates. The experiments are conducted
using node 1, angle 1, dwell time 1s with 20% training
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Fig. 13. Recognition Rate of Different E-M Distance Regularization Weights.
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Fig. 14. Angle 1, Node 1, Dwell Time 1s with different drop rate

data. As shown in Fig.13 increasing the hyper-parameter
γME in Eqn.(9) from 0 to 1.5 based on the following set
{0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5} induces the results
increasing from 89.3% to top 96.9% and then dropping to
93.3%. At first, the M-distance dominates, but this is prone to
overfitting the data. Then due to the increasing of the balancing
weights, the good balance between M and E distance is able to
maintain both generalization and discrimination capability of
the network. Increasing the balancing weights further will then
drop the recognition rate again, as the model generalizes too
much but lose the discrimination capability. In this scenario,
we choose 0.05 as our optimal balanced hyper-parameter.

TABLE II
NODE 1, DWELL TIME 1S, DOPNET WITH DIFFERENT SNRS

SNR:-10 SNR:-5 SNR:5 SNR:10
Ang1 94.2% 95.5% 95.8% 96.0%
Ang2 96.1% 96.5% 96.9% 96.8%
Ang3 83.6% 84.3% 84.9% 85.3%

E. Evaluating the SNRs and Memory Usage

As shown in Table II, recognition rates based on different
SNR levels are shown. It could be observed that increasing
the SNR from -10 to 5 dB increases the recognition rate by
2% while recognition rate stays stably the same if we further
increase the SNR from 5dB to 10dB.
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In addition, we discuss memory usage of the network. In
the practical scenario, the dataset can be trained on the server
or computer cluster therefore only the weights of the network
need to be carried onto the site. We also report the memory
usage of the network weights in our single channel DopNet
as 44MB. For the all angles in test of 216/648 test samples
(each is a 0.3second µ-DS), the processing time of each testing
stage is 0.17/0.52 second in average. The processing time in
the test stage is roughly linearly proportional to the number
of test data and the ratio is 0.085 second per 100 samples. To
sum up, the SC-DopNet is big as 44MB and can predict one
test sample in 850 µs.

F. Comparison with Empirical Features and Classifiers
In Table III, we compared results of DopNet with other

features extraction methods (including the state-of-the-art SVD
and centroid features [7, 15, 16]) and classification methods
(including the Nave Bayes (NB) classifier, the Discriminative
Analysis (DA) method and Classification Tree (CT) method
[31]). The experiment setting for Table III is aimed to analyze
recognition performance under node 1 and each of all angles.
For each experiment, we report the best recognition rates
selecting different combination of features and we highlight
the best recognition rates by red. With increasing of dwell
time, under various classification methods, the recognition
rates all increase. Obviously, angle 1 is the angle with the
best recognition rate using other non-DopNet features and
recognition rates of DopNet outperform 1-2% under dwell
time from 1s to 2s. At dwell time of 2.5s, combination of SVD
and centroid features outperforms DopNet by 0.5%. However,
for experiment in angle 2, DopNet outperforms other methods
by 10%. For experiments in angle 3, DopNet outperforms
others by around 7% with 1s and 1.5s dwell time but achieves
only 2-3% better than the other methods in dwell time of 2s
and 2.5s.

In Table IV, we proposed a new measure where all three
angles from a single node are included in the dataset to
recognition armed and unarmed movements. We argue that
this is a more realistic scenario compared to mono-static
radar recognition, as µ-DS from all aspect angles can po-
tentially be the dataset. It can be observed that under this
more complicated task, recognition rates using non-DopNet
features and classification methods drop around 5% for node
1 compared with the average in Table III, however, DopNet
results achieve similar performance, achieving averaged 93.5%
under all dwell-time settings. For node 2, DopNet still outper-
forms others by approximately 10%. For the most difficult
result for node 3, it seems that adding all-angle signatures
increases the DopNets performances outperforming 15% than
the other features and achieving around 92.3% for all dwell-
time settings.

To sum up, compared with non-deep feature and classifier,
DopNet achieved in average 92.7%, outperforming the second
best feature and classifier (DA method) 4% when evaluating
for single angle in node 1 scenario. When mixing up µ-DS of
all angles, DopNet achieved the most robust results, in average
91.0%, outperforming the second best around 12.6%. This is
mainly due to DopNet’s large model capacity when handling

complex classification tasks, for example the classification of
all-angle scenario. From another perspective, since we do not
change the hyper-parameters, it is beneficial to train DopNet
using larger number of training data.

VIII. RESULTS, DISCUSSION AND ABLATION STUDY OF
MC-DOPNET

In the previous section, we analyzed detailed DopNet pa-
rameters using the single channel data. In this section, we
discussed the feasibility of extending the SC-DopNet to MC-
DopNet to optimize the processing from multiple multistatic
radar nodes. In addition, we evaluated our proposed two
methods, namely GIR and `21-Norm method, by comparing
with the conventional binary voting schemes. Specifically, the
recognition results are shown in Tables V, VI, VII respectively
generated respectively by Binary Voting (BV) method, GIR
method and the `21-Norm method. In these three tables, the
final fusion recognition rates, their respective recognition rate
using the single channel prediction output (but trained by
fusing all multiple channel data) and the learned weights (for
GIR method only) are shown and compared. Additionally, in
Fig.5 and 6, we show the raw µ-DS for all the nodes, angle
and classes to analyze its corresponding recognition rate.

A. Analysis of the results based on different node-angle com-
binations from multiple channels

In this section, the aim is to compare MC-DopNet results
using our proposed GIR and `21-Norm with the one using
conventional binary voting (BV) [7]. In general, the BV
method accepts the decision result if at least two out of three
nodes’ results are the same, given that our problem is the
binary classification. All experiments are conducted using 30
trials with randomly selected training and test samples. To
ensure fair testing, experimental settings are the same for all
three methods: dwell time at 1s, training with 20%, with the
same augmentation scheme and SC-DopNet architecture, as
introduced in previous sections.

Although results in Table V,VI and VII are trained based
on fusing multiple channel data, we argue that recognition
result based on certain node-angle combinations is an indirect
way to understand performance and mechanism of fusion
methods.Therefore, we propose to use recognition rates by
BV methods as baseline to measure the performance of certain
node-angle combination. The main reason is that the total loss
function of BV method is simply the sum of the loss functions
from three networks with equal weights. There are three
main findings by observing the Table V and corresponding
signatures in Fig.5 and 6.

1) Finding 1: It can be figured out in the first three columns
in Table V and VII that, for all angles independent
of the fusing method, recognition rates from Node 1
outperform Node 2 and 3 and those from Node 3
outperform Node 2. This matches the higher SNR µ-DS
and more discriminative features of Node 1 than Node
3 and the one of Node 3 than Node 2. The main reason
is the larger bi-static angle formed by receiver Node 2
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TABLE III
NODE 1, DWELL TIME: 1S-2.5S, 20% TRAINING, MONO-DATA ONLY, PERCENTAGE IN (%)

Features Best Combined SVD and Centroid Features DopNet
Dwell Time 1s 1.5s 2s 2.5s 1s 1.5s 2s 2.5s

Classifier NB DA CT NB DA CT NB DA CT NB DA CT Soft-max and Max
A1,N1 93.1 93.0 88.2 93.5 93.9 91.9 94.5 94.7 94.2 96.1 95.0 96.2 94.5 95.9 95.3 95.1
A2,N1 83.7 83.8 78.6 78.3 84.2 80.2 84.2 83.9 83.1 84.5 84.7 80.5 96.5 97.4 98.3 98.9
A3,N1 76.7 75.4 69.2 79.6 79.5 74.7 84.3 82.0 78.8 84.1 83.0 76.7 85.5 84.8 85.0 85.1

Average 84.5 84.1 78.7 83.8 85.9 82.3 87.7 86.9 85.4 88.2 87.6 84.5 92.2 92.7 92.8 93.0

TABLE IV
ALL NODES AND ALL ANGLES IN, DWELL TIME: 1S-2.5S, 20% TRAINING, MONO-DATA ONLY, PERCENTAGE IN (%)

Features Best Combined SVD and Centroid Features DopNet
Dwell Time 1s 1.5s 2s 2.5s 1s 1.5s 2s 2.5s

Classifier NB DA CT NB DA CT NB DA CT NB DA CT Soft-max and Max
N1 80.4 80.4 77.4 81.4 81.7 79.4 82.3 81.9 81.2 83.2 82.6 82.6 92.6 93.0 93.7 93.5
N2 70.9 70.0 64.7 73.1 72.8 66.9 73.1 72.7 68.9 73.0 72.8 68.3 80.2 83.6 83.2 83.9
N3 74.2 74.2 72.3 76.2 75.6 75.0 77.5 77.3 77.3 77.9 77.8 77.7 90.1 92.7 93.5 92.9

Average 75.2 74.9 71.5 76.9 77.5 76.7 77.6 77.3 75.8 78.0 77.7 76.2 87.6 89.8 90.1 90.1

TABLE V
DWELL TIME 1S, DOPNET, 20% TRAINING, BV METHOD, A INDICATES

ANGLE IN THE FOLLOWING TWO FIGURES.

Node 1 Node 2 Node 3 BV
Accuracy Accuracy Accuracy Accuracy
(weight) (weight) (weight)

A1 95.7 (0.333) 65.0 (0.333) 87.1 (0.333) 96.1
A2 96.5 (0.333) 77.3 (0.333) 93.5 (0.333) 99.0
A3 85.3 (0.333) 70.8 (0.333) 81.8 (0.333) 91.7

TABLE VI
DWELL TIME 1S, 20% TRAINING, GIR METHOD.

Node 1 Node 2 Node 3 BV
Accuracy Accuracy Accuracy Accuracy
(weight) (weight) (weight)

A1 97.3 (0.421) 50.7 (0.289) 49.3 (0.289) 98.2
A2 98.2 (0.434) 50.1 (0.283) 51.2 (0.283) 98.9
A3 88.8 (0.462) 51.7 (0.269) 48.3 (0.269) 89.5

and transmitter Node 3, which decreases both SNR and
the frequency shifts related with motions from Node 3.

2) Finding 2: From Table V, all recognition results from
A2 and A1 outperforms A3, no matter which node is se-
lected. This matches with our observation of the (a) and
(b) in Fig.5 and Fig.6, where better data quality (SNR)
from angle 1 and angle 2 induce better discriminative
quality than the angle 3, no matter from which node.

3) Finding 3: The recognition results from A2 always
outperform the A1. The main reason is that the Doppler
frequency induced by bulk movements from angle 1
varies larger than the one from angle 2. This can be
observed by comparing (a) and (d), (b) and (e) of Fig.5
and Fig.6 respectively. More detailed discussions can be
found in previous section VII-B.

In Table VI, when the GIR method is utilized, it can only
be found that recognition rate from node 1 outperforms the
others, but the one of node 2 and node 3 are basically the
same. Specifically, from the first column in Table V, VI and

TABLE VII
DWELL TIME 1S, DOPNET, 20% TRAINING, `21-NORM METHOD.

Node 1 Node 2 Node 3 BV
Accuracy Accuracy Accuracy Accuracy
(weight) (weight) (weight)

A1 94.9 (0.333) 72.8 (0.333) 85.7 (0.333) 95.9
A2 96.1 (0.333) 81.6 (0.333) 92.7 (0.333) 99.0
A3 83.6 (0.333) 72.9 (0.333) 79.9 (0.333) 93.4

VII, it can be figured out that node 1 recognition results from
whatever angle using GIR method outperforms `21-Norm and
BV method for around 3%. In addition, from the second and
third columns, recognition rates of GIR from node 2 and 3
drop significantly compared to other two methods. The reason
is the greedy nature of GIR which is aimed to increase the
weights from the best quality channel node 1 and decrease
the ones from other channels in the fusing mechanism. This
explanation can also be verified by the extremely unbalanced
weights, found in Table VI, where weight from node 1 with
all angles are larger than other nodes; meanwhile, weights of
node 2 and 3 are approximately the same.

It can be found that for all angles, `21-Norm method
outperforms the BV method from node 2 data but performs
worse than BV method from node 1 and 3. Specifically,
comparing the first row in Table V and VII, with the use of
`21-Norm method, the recognition rate from Node 2 (with the
worst data quality) increases from 65% (using BV method)
to 72.8% (using `21-Norm method), the recognition rate from
node 1 and 3 decreases from 95.7% (using BV method) to
94.9% (using `21-Norm) and from 87.1% (using BV method)
to 85.7% (using `21-Norm). Similar pattern can also be found
from observations of other rows in Table 5 V and VII. This
phenomenon can be interpreted by the nature of `21-Norm,
where similar prediction outputs are enforced among multiple
channels. From other words, to enhance the performance of
node 2 with the worst data quality, the `21-Norm sacrifices
the recognition rate from node 1 and 3 from the perspective
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TABLE VIII
NODE 1, DWELL TIME: 1S-2.5S, 20% TRAINING, MONO-DATA ONLY, PERCENTAGE IN (%)

Features Best Combined SVD and Centroid Features DopNet
Dwell Time 1s 1.5s 2s 2.5s 1s 1.5s 2s 2.5s

Classifier NB DA CT NB DA CT NB DA CT NB DA CT Soft-max and Max
A1,N1 93.1 93.0 88.2 93.5 93.9 91.9 94.5 94.7 94.2 96.1 95.0 96.2 94.5 95.9 95.3 95.1
A2,N1 83.7 83.8 78.6 78.3 84.2 80.2 84.2 83.9 83.1 84.5 84.7 80.5 96.5 97.4 98.3 98.9
A3,N1 76.7 75.4 69.2 79.6 79.5 74.7 84.3 82.0 78.8 84.1 83.0 76.7 85.5 84.8 85.0 85.1

TABLE IX
COMPARISON OF DOPNET RESULTS AND OTHER FEATURE EXTRACTION METHOD AND CLASSIFIERS. FOR FAIR COMPARISON, WE SELECT THE BEST

THRESHOLDING VOTING SCHEME AND FEATURES ARE THE BEST COMBINATIONS REPORTED IN THE PAPER [17]; PERCENTAGE IN (%).

Feat Best Combined SVD and Centroid Features DopNet DopNet
DT 1s 1.5s 2s 2.5s 1s 1.5s 2s 2.5s 1s 1.5s 2s 2.5s
Cls NB DA CT NB DA CT NB DA CT NB DA CT Soft-max(GIR) Soft-max(`21-Norm)
A1 91.1 91.3 89.2 92.4 92.3 91.8 93.5 93.7 93.5 95.6 95.7 93.2 98.2 97.2 98.2 98.5 95.9 95.9 95.4 94.9
A2 90.8 91.9 92.0 93.4 93.5 94.8 94.2 94.7 95.9 95.7 96.9 96.6 98.9 99.6 100.0 100.0 99.0 99.0 99.0 99.4
A3 79.4 79.4 77.2 81.7 82.6 80.0 84.3 84.7 82.1 83.4 84.2 83.4 89.5 89.1 88.2 88.7 93.4 92.3 93.5 93.0
All 80.9 80.7 80.7 82.1 82.9 83.9 83.3 84.0 85.6 84.5 84.4 86.9 93.7 94.3 94.9 94.3 93.2 94.7 94.6 95.6

of single channel recognition rates but such fusion mechanism
outperforms others from the total fused recognition rate.

B. Compare the fusion method using MC-DopNet

In this section, we focus on comparing the recognition
results based on multi-channel data using different fusion
methods. For fusion results based on angle 1, GIR method
achieves the best, approaching to 98.2% in average, outper-
forming the BV method (96.1%) and the `21-Norm method
(95.9%). Looking at the weights in Table VI, it seems that the
greedy-like algorithm assigns the biggest weight to the node
1 (around 0.421) while assigns equally (around 0.289) to the
other two. This matches our assumption and understanding of
the greedy algorithm discussed before in the three findings.

For recognition based on angle 2, no matter for BV, GIR
and `21-Norm exhibit similar and the best recognition result
(around 99%), due to the data having the highest SNR and
discriminative features. For results based on angle 3 with the
worst data quality, the `21-Norm method achieves the best
93.4% compared with BV method at 91.7% and GIR method
at 89.5%. The main reason has been discussed in section V.B

TABLE X
MEAN AND STANDARD DEVIATION OF RESULTS IN TABLE V BY BV

METHOD.

Mean Recognition Rate STD Recognition Rate
of All Nodes of All Nodes

A1 82.6% 12.9%
A2 89.1% 8.4%
A3 79.3% 6.2%

In addition, we investigate and discuss when, especially for
which angle, GIR and `21-Norm should be utilized to improve
fusion results. We generate Table X by calculating the mean
and STD of results using BV method (based on Table V). We
argue that the mean and STD of recognition results are useful
to determine the preferable method for certain angle.

It is easy to conclude from Table VI and VII that when fus-
ing multi-channel results for angle 2, the three fusion methods

achieve similar result due to its originally good discriminative
quality. However in Table VIII, when the mean recognition
accuracy is relatively high but the standard variation is very
large, like angle 1, the GIR method is more suitable for the
fusion task. For the low mean accuracy and low STD scenario,
`21-Norm might achieve the best to fuse these multi-channel
data.

C. Compare MC-DopNet with other methods

In this section, we compared our results with the state-of-
the-art SVD and centroid features, using the threshold voting
as the fusion method in Table IX. The experiment setting
is to recognize the µ-DS from a specific angle using all
three multi-static nodes. It can be observed that from Angle
1 and angle 2, MC-DopNet with GIR method achieves the
best, outperforming other methods by 3% to 5% depending
on different dwell time. For angle 3, MC-DopNet with `21-
Norm method outperforms all other methods by 6% to 17%
depending on different dwell time. For the most difficult test
scheme with all angle data in, MC-DopNet based methods
generally outperform 10% than others in average. The reason
has been explained in the previous three findings. Note that
for all features and methods, recognition rate from all angles
should be lower than the best single angle but still better than
the worst single angle result.

IX. CONCLUSION

Multistatic radar has been shown to address the problem of
degradation of classification performance due to unfavorable
aspect angles when extracting µ-DS. This paper proposed a
modified DCNN, namely DopNet, for recognition of armed
and unarmed personnel using µ-DS from multi-static radar
data. First, two effective schemes including data augmentation
and the balancing the E-dist and M-dist have been proposed, so
that DopNet can be trained from scratch and relevant features
and classifiers can be jointly learned in the same framework.
In addition, performances of SC-DopNet and the analysis of
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relevant operational parameters has been conducted. In order
to exploit effectively simultaneous information from different
radar channels for the MC-DopNet training, two fusion strate-
gies have been proposed to embed multi-static µ-DS. We also
discussed how to utilize the statistics of single channel results
to infer the selection of fusion strategies. Both SC-DopNet and
MC-DopNet have been evaluated by experimental data and the
results have been compared with other state-of-art methods
to prove its superior performances. Future work will focus
on investigating the performance of methods in challenging
scenarios, such as different body types, more challenging
activities under classification and even running or walking with
different objects carried. In addition, it is worth investigating
the effect of unseen body types and objects in the training
stage. Another future direction may consider more classes, for
example the case of walking carrying something in one hand
but not a weapon.
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“Operational assessment and adaptive selection of micro-
doppler features,” IET Radar, Sonar & Navigation, vol. 9,
no. 9, pp. 1196–1204, 2015.

[22] M. Ritchie, M. Ash, Q. Chen, and K. Chetty, “Through
wall radar classification of human micro-doppler using
singular value decomposition analysis,” Sensors, vol. 16,
no. 9, p. 1401, 2016.

[23] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
CoRR, vol. abs/1409.1556, 2014.

[24] Y. Kim and T. Moon, “Human detection and activity
classification based on micro-doppler signatures using
deep convolutional neural networks,” IEEE Geoscience
and Remote Sensing Letters, vol. 13, no. 1, pp. 8–12,
2016.



MANUSCRIPT SUBMITTED TO IEEE SENSOR JOURNAL 13

[25] Y. Kim and B. Toomajian, “Hand gesture recognition
using micro-doppler signatures with convolutional neural
network,” IEEE Access, vol. 4, pp. 7125–7130, 2016.

[26] Y. Kim, J. Park, and T. Moon, “Classification of micro-
doppler signatures of human aquatic activity through sim-
ulation and measurement using transferred learning,” in
Radar Sensor Technology XXI, vol. 10188. International
Society for Optics and Photonics, 2017, p. 101880V.
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