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ABSTRACT 

The behaviour of regular multi-span simply-supported bridges is strongly dependent on the behaviour of its 

piers. The response of a pier is governed, in general, by different mechanisms: flexure, shear, second order 

effects, lap-splice of longitudinal bars or their buckling. The flexural behaviour is an important part of the 

problem, and it can be characterised through the equivalent plastic hinge length and the Moment-Curvature 

law of the fixed end. In this paper, a procedure to calculate the Moment-Curvature relationship of circular 

RC sections is proposed which is based on defining the position of few characteristic points. The analytical 

formulation is based on adjusted polynomial functions fitted on a database of fibre-based analyses. The 

proposed solution is based on three parameters: dimensionless axial force, mechanical ratio of longitudinal 

reinforcement, geometrical ratio of transverse reinforcement. A benchmark case is presented to compare the 

solution to a FEM non-linear analysis. Even if it is based on few input data, this solution allows to have good 

indicators on the material performances (e.g. yielding, spalling, etc). For these reasons, the proposed approach 

is deemed to be particularly effective in performing quick yet accurate mechanics-based regional-scale 

assessment of bridges. 

 

INTRODUCTION 

The seismic vulnerability of existing structures has become a 

relevant theme in earthquake engineering, and great attention 

has been devoted to bridge structures, in order to perform 

vulnerability inventory at a regional scale. In fact, for example, 

most of the Italian RC bridges were built around the 1960s 

referring to codes with no "anti-seismic philosophy". Moreover, 

a bridge can often be a crucial node of a transport web and thus 

its performance should be guaranteed even in the aftermath of 

an earthquake. Hence, having an inventory of the structural 

performances of the bridges in a region is crucial in order to 

plan mitigation actions. This might be also needed to quickly 

assess a large group of damaged bridges in the aftermath of an 

earthquake. The 2016 Kaikoura Earthquake is a clear example 

of this situation [1]. 

Considering the large amount of structures involved and the 

shortage of resources, it is cost-ineffective to perform detailed 

structural analyses (e.g. non-linear analyses) for the whole 

portfolio [2]. Therefore, a multi-level approach is usually 

preferred, by starting from a large-scale analysis at the regional 

level, in which a first screening and prioritisation is performed 

by using poor data and simplified models. In the successive 

stages, the accuracy and detail of the assessment is 

progressively refined for specific subsets of elements at risk. 

Traditionally, regional-scale analysis resorts to typological or 

semi-empirical vulnerability methods that involve the use of 

calibrated indexes, e.g. [3]. As a possible approach to manage 

the regional scale, some researchers have proposed the 

definition of simplified capacity curves for typological classes 

fitted on detailed nonlinear analyses for a representative number 

of “ideal” sample case studies [4]. Alternatively, other classes 

of simplified methods allow to assess the performance of 

relatively regular bridges based on a rational mechanical 

approach, although under simplified assumptions. Provided that 

the deck remains elastic and the bearings do not fail, the energy 

dissipation capacity of a bridge is concentrated in the piers [5]. 

Therefore, the vulnerability of the whole structure can be 

expressed by studying the capacity curves of the piers, modelled 

as equivalent SDOF systems, in the transverse and in the 

longitudinal direction. In this last case, each pier can still be 

considered as an independent oscillator by considering the 

“effective” mass pertaining to the adjacent spans. Depending on 

the direction of the analysis, it is therefore necessary to consider 

two distinct simplified models characterised by different 

parameters [6-8]. Based on the fixity condition of the piers, an 

appropriate shear span length can be defined, and the Force-

Displacement flexural behaviour is defined by the Moment-

Curvature relationship of a critical section. For simply 

supported bridges, the critical section is located at the base. For 

a detailed analysis of a single bridge, Moment-Curvature is 

typically calculated with a software (e.g. KSU_RC [9], Cumbia 

[10], etc). The flexural capacity curve can be possibly modified 

by the occurrence of additional failure mechanisms such as 

shear, longitudinal bars buckling, lap-slice, second order 

effects. 

In view of a regional-scale analysis for a large portfolio of 

bridges and of the derivation of probabilistic fragility curves 

[11-13], it is particularly desirable to have a rapid yet accurate 

formulation of the Moment-Curvature relationship, which is the 

specific objective of this paper (Figure 1). In particular, in this 

study it is proposed a polynomial analytic solution fitted against 

an extensive dataset of sectional analyses that guarantees an 

accurate, rapid and computationally inexpensive flexural 

characterisation of the sections of the piers. Alternatively, for a
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Figure 1: Regional-scale seismic vulnerability of bridges.

detailed assessment, such a rapid formulation can be used to 

verify and validate the results of the numerical Moment-

Curvature analyses. Once the simplified Moment-Curvature is 

calculated, the aforementioned additional mechanisms can be 

easily introduced in the model by using acknowledged literature 

studies (shear failure [14], longitudinal bars buckling [15], lap-

splice [16], second order effects [17]).  

In the paper, the solution for circular sections is presented, but 

it can be generalised to other section shapes, which are currently 

being studied. 

METHODOLOGY FOR DERIVING THE 

ANALYTICAL SIMPLIFIED 𝑴−𝝋 FORMULATION 

The Moment-Curvature (𝑀 − 𝜑) relationship of RC circular 

sections is calculated by defining the position of few 

characteristic points. Each of these is defined in analytical form 

depending on 3 parameters (also used in other literature studies, 

e.g. [18, 19]): dimensionless axial force, mechanical ratio of 

longitudinal reinforcement, volumetric ratio of transverse 

reinforcement. To do so, a database of Moment-Curvature 

diagrams was created conducting fibre-based analyses (from 

now on referred to as "exact" numerical solution). The 

numerical analyses were carried out using the software by 

Esmaeily and Peterman [9]. The results were processed using 

MATLAB in order to define the characteristic points of each 

(𝑀 − 𝜑) curve. Finally, based on least squares method linear 

regression, a polynomial relation was calculated for each 

characteristic moment or curvature (from now on referred to as 

simplified analytical solution). The approach herein proposed is 

based on realistic stress-strain relationships for concrete and 

steel and for this reason the results are particularly accurate. The 

reliability of the proposed solution is proved analysing a 

numerical case study pier and comparing the results with a FEM 

non-linear analysis, showing good agreement. 

Definition of the Characteristic Points 

Each software-based (𝑀 − 𝜑) curve was analysed with a 

MATLAB function specifically designed for this study. Having 

as input the Moment-Curvature law in tabular form, the 

function extracts 7 characteristic points corresponding to 

different limit states of the section (see Figure 2). Based on 

these points, a multi-linear approximation of the (𝑀 − 𝜑) curve 

can be obtained (an example is given in Figure 3). 

The chosen characteristic points are: 

Cracking: For the cracking point, a strain of 𝜀𝑐𝑡 is measured in 

the furthermost concrete fibre in the section (see Figure 2). 

More specifically, this is the point for which Eq. 1 is satisfied. 

In this equation, 𝐷 is the diameter of the cross-section, 𝑛. 𝑎. is 

the neutral axis depth, 𝑐 is the clear cover, 𝑓𝑐𝑡 is the concrete 

flexure tensile strength (Eq. 6), 𝜀𝑐 is the strain in the furthermost 

compressed concrete core fibre; 

 𝐷 − 𝑛. 𝑎.

𝑛. 𝑎. −𝑐
𝜀𝑐 = 𝜀𝑐𝑡   𝑤ℎ𝑒𝑟𝑒   𝜀𝑐𝑡 =

𝑓𝑐𝑡
𝐸𝑐

 (1) 



147 

 

 

 

Figure 2: Strain state of the section in the characteristic points.

Concrete Yielding: Defined as the point on the (𝑀 − 𝜑) curve 

that corresponds to a strain of 𝜀𝑐𝑦 = 0.002 in the extreme core 

concrete fibre in compression. 

First Yield: The minimum value between concrete yielding and 

the point on the (𝑀 − 𝜑) curve that corresponds to the first 

tension yielding of the reinforcement bar furthest from the 

neutral axis [17]; 

Nominal: This points corresponds to a compressive strain of 

𝜀𝑐 = 0.004 in the extreme core concrete compression fibre or 

𝜀𝑠 = 0.015 in the furthermost tension rebar, whichever occurs 

first [17]; 

Spalling: The point on the (𝑀 − 𝜑) response for which the 

spalling strain 𝜀𝑠𝑝 = 0.0045 is induced in the extreme fibre of 

the cover concrete (Figure 2) according to Eq. 2; 

 𝑛. 𝑎.

𝑛. 𝑎. −𝑐
𝜀𝑐 = 𝜀𝑠𝑝 (2) 

Peak of Confined Concrete: This point represents the 

curvature that induces a strain, in the extreme core concrete 

fibre, equal to its strain at peak stress in the stress-strain 

relationship (Figure 5). This point can be used to understand the 

starting of the softening of the concrete; 

Ultimate: The last point of the (𝑀 − 𝜑) curve. The failure of 

the section can be due to the achievement of the ultimate 

compressive strain in confined concrete or strain at ultimate 

stress in the extreme tension rebar. 

The transformation in dimensionless form (𝑚 − 𝜒) is done with 

Equations 3 and 4, in which R is the radius of the cross-section 

and 𝑓𝑐 is the unconfined concrete strength. 

 
𝑚 =

𝑀

𝜋𝑅3𝑓𝑐
 (3) 

 𝜒 = 𝜑𝑅 (4) 

CONSTRUCTION OF THE DATABASE 

Basic Parameters 

The parameters involved in the definition of the flexural 

behaviour of RC circular sections are several: radius 𝑅, clear 

cover 𝑐, axial force 𝑁, compression strength of concrete in 

unconfined conditions 𝑓𝑐, tension strength of concrete 𝑓𝑐𝑡, 
concrete modulus of elasticity 𝐸𝑐, yielding strength of 

longitudinal and transverse reinforcement 𝑓𝑦𝑠, 𝑓𝑦ℎ, moduli of 

elasticity of the steel 𝐸𝑠, 𝐸ℎ, number and diameter of 

longitudinal reinforcement bars 𝑛𝑙, 𝑑𝑙, diameter and spacing of 

transverse reinforcement 𝑑ℎ, 𝑠.  

 

Figure 3: Simplified Moment-Curvature relationship. 

It is clear that, for the purpose of this work, it is inconvenient to 

have such a large number of parameters and, for this reason, 

some assumptions were adopted: 

 concrete tensile strength 𝑓𝑡 (for uniform tensile stress) was 

related to its compression strength (𝑓𝑐) according to Eq. 5, 

provided in the Italian code [21]. Moreover, Eq. 6 was used 

in order to consider the tensile strength appropriate for 

flexure actions (𝑓𝑐𝑡). This choice is not likely to limit the 

field of application of the final formulations, since it only 

affects the cracking point of the Moment-Curvature law; 

    𝑓𝑡 = 0.3𝑓𝑐
2/3

 (5) 

 𝑓𝑐𝑡 = 1.2𝑓𝑡 (6) 

 longitudinal and transverse reinforcement steel have the 

same yield stress (𝑓𝑦𝑠, 𝑓𝑦ℎ respectively) and elastic modulus 

(𝐸𝑠, 𝐸ℎ respectively), according to Eq. 7; 

 𝑓𝑦ℎ = 𝑓𝑦𝑠   𝑎𝑛𝑑   𝐸ℎ = 𝐸𝑠 (7) 

 longitudinal reinforcement is composed by 𝑛𝑙 evenly 

distributed bars of equal diameter 𝑑𝑙. The total area of 

longitudinal steel is defined with Eq. 8; 

 
𝐴𝑠 =

𝑛𝑙(𝜋𝑑𝑙
2)

4
 (8) 
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 the clear cover, 𝑐, is proportional to the radius of the section 

according to Eq. 9; 

 𝑐 = 0.05𝑅 (9) 

 the diameter is fixed to 1𝑚. This was done considering that 

the relationship between a given limit state curvature and 

the diameter of the section is linear (see, for example [17], 

in which this is shown for yielding and ultimate curvature). 

The remaining parameters of the problem were grouped into 3 

dimensionless parameters based on dimensional analysis (axial 

force ratio 𝜐, mechanical ratio of longitudinal reinforcement 𝜔, 

volumetric ratio of transverse reinforcement 𝜌𝑠𝑝) so that a given 

circular RC section can be completely defined by them. 

The idea is that a variation in 𝜐 (Eq. 10) can be interpreted as a 

variation in the normal force 𝑁, the concrete compression 

strength 𝑓𝑐 or the radius 𝑅. An analogous idea applies for 

Equations 11 and 12. 

 
𝜐 =

𝑁

𝜋𝑓𝑐𝑅
2
 

(10) 

 
𝜔 =

𝐴𝑠𝑓𝑦
𝜋𝑓𝑐𝑅

2
 (11) 

 
𝜌𝑠𝑝 =

4𝐴𝑠𝑝
(2𝑅 − 2𝑐)𝑠

 (12) 

Range of the Parameters 

The discrete values of the basic parameters used to construct the 

database are listed in Table 1. It is clear that some of the studied 

values are greater than the maximum expected ones for real 

existing bridge piers. Those were added to the database for the 

sake of completeness, and to study the trends of the 

characteristic points of the (𝑀 − 𝜑) curve. 

Table 1: Range of the parameters. 

Parameter Values 

𝜐 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 

𝜔 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 

𝜌𝑠𝑝 0, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01 

For the analyses in the database, the values 𝑅 = 1𝑚 and 𝑓𝑐 =
31.83𝑀𝑃𝑎 were fixed and the value of 𝑁 corresponding to 𝜐 

was calculated according to Eq. 10. Analogously, 𝑓𝑦 =

450𝑀𝑃𝑎 and 𝑛𝑙 = 22 were fixed so the cross-sectional area of 

a single rebar was calculated using Equations 11 and 8. It is 

worth mentioning that since the relationship between steel yield 

stress and strength of the cross-section can be assumed to be 

linear [17], this choice is unlikely to limit the scope of the 

simplified formulations proposed in this paper. 

Fixing the clear cover (Eq. 9), the spacing of the stirrups (𝑠 =
0.1𝑚), and the other above-mentioned values, the cross-

sectional area of the stirrup was calculated using Eq. 12. 

Execution of the Analyses 

Based on the chosen discrete values of the input parameters, a 

Moment-Curvature analysis was conducted for each 

combination of them (11x6x7=462 combinations). The 

analyses were carried out with the software KSU-RC [9]. The 

fibre discretisation of the cross-section adopted in the analyses 

is shown in Figure 4. 

The relationship proposed in Mander et al., 1988 [20] was used 

for concrete, considering the confined and unconfined 

behaviour (Figure 5). It is worth mentioning that confined 

concrete ultimate strain was limited to 0.02 when the 

calculation according to reference [20] yielded higher values. 

The behaviour of steel was modelled with the stress-strain 

relationship shown in Figure 6, proposed in Reference [9]. The 

curve is linear up to yielding, with a plateau up to a strain of 𝐾1 

times the yielding strain and followed by a parabolic shape. The 

peak corresponds to a strain of 𝐾2 times the yielding strain and 

a strain of 𝐾3 times the yielding strain corresponds to the 

ultimate strain point at rupture. 𝐾4 is the tensile strength to yield 

stress ratio. These parameters were fine-tuned to be 

representative of a commercial steel with a nominal yield stress 

ranging between 400 and 500 MPa (e.g. the Italian B450C [21] 

and the New Zealand grade 500 [22, 23]). 𝐾1 = 10 was used to 

model the length of the yield plateau. Recent research [24] 

corroborates this choice. The remaining parameters are: 𝐾2 =
30,  𝐾3 = 55, 𝐾4 = 1.3. It is worth mentioning that 0.06 was 

adopted as steel ultimate strain, to implicitly consider low cycle 

fatigue failure, as suggested in the 2017 New Zealand 

guidelines for seismic assessment [22]. Figure 6 shows that, 

with these assumptions, the adopted stress-strain relationship is 

in close agreement with the widely utilised curve proposed in 

King et al., 1986 [25]. This is deemed to indirectly demonstrate 

the suitability of the adopted stress-strain curve. 

 

Figure 4: Cross-section fibre model.
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Figure 5: Concrete stress-strain relationship. 

 

Figure 6: Steel stress-strain relationship 

POST PROCESSING 

A study was conducted to investigate the variability of the 

characteristic moments and curvatures with respect to the 

fundamental parameters chosen. In Figure 7, the trend of the 

most meaningful characteristic points is represented as a 

function of the dimensionless axial force, 𝜐, and a fixed value 

of both longitudinal (𝜔) and transverse reinforcement (𝜌𝑠𝑝) 

ratios. In Appendix A some more synthetic plots are represented 

that account for the variability of the parameters 𝜔 and 𝜌𝑠𝑝. In 

such plots (Figure 13 to Figure 18), the mechanical ratio of the 

longitudinal reinforcement, 𝜔, is fixed, each characteristic point 

has a different line colour (e.g. green is for yielding), and the 

line width increases with the increase of the volumetric ratio of 

transverse reinforcement (the dashed line is for unconfined).  

CURVE FITTING 

By knowing the values of the characteristic moments and 

curvatures for each case in the database, 14 polynomials in three 

variables (axial load ratio, mechanical ratio of longitudinal 

reinforcement, volumetric ratio of transverse reinforcement) 

were calibrated to fit the data based on a least square method 

linear regression. It is noteworthy that the cases in which 𝜌𝑠𝑝 =

0 were studied only for control purposes and so they were 

excluded from the fitting. For the same reason, the cases with 

𝜐 = 0.9 and 𝜐 = 1 were excluded too. It is worth mentioning 

that the results of the parametric analysis, Figure 13 to Figure 

18, can be adopted to manually construct “by-hand” the 

capacity curve of a given RC circular section. Nonetheless, it is 

deemed that the adjusted polynomial functions are more 

effective if a great number of applications is needed, since they 

can be easily implemented in a spreadsheet or a computer 

routine. 

 

Figure 7: Trend of the characteristic moments and 

curvatures for 𝝎 = 𝟎. 𝟒 and 𝝆𝒔𝒑 = 𝟎. 𝟎𝟎𝟔. 

The degree of the polynomials in each of the three variables was 

chosen based on the trends represented in Figure 13 to Figure 

18. The coefficients of the fitting were defined in such a way 

that a p-value smaller than 5% was obtained for all of them. 

Although this is not a statistical study, it is worth mentioning 

that the adjusted R-squared parameter is 0.99 for the moment 

polynomials and ranges between 0.90 and 0.99 for the curvature 

ones. The structure of the polynomials is described in Equations 

13 and 14, while the 𝑎𝑖 coefficients for each function are given 

in Table 5 and Table 6, in Appendix A. 

𝜒𝑐ℎ𝑎𝑟 = 𝑎0 + 𝑎1𝜐 + 𝑎2𝜔 + 𝑎3𝜌𝑠𝑝 + 𝑎4𝜐
2 + 𝑎5𝜐𝜔

+ 𝑎6𝜔
2 + 𝑎7𝜐𝜌𝑠𝑝 + 𝑎8𝜔𝜌𝑠𝑝

+ 𝑎9𝜐
3 + 𝑎10𝜐

2𝜔 + 𝑎11𝜐𝜔
2

+ 𝑎12𝜐
2𝜌𝑠𝑝 + 𝑎13𝜐𝜔𝜌𝑠𝑝

+ 𝑎14𝜔
2𝜌𝑠𝑝. 

(13) 

𝑚𝑐ℎ𝑎𝑟 = 𝑎0 + 𝑎1𝜐 + 𝑎2𝜔 + 𝑎3𝜌𝑠𝑝 + 𝑎4𝜐
2 + 𝑎5𝜐𝜔

+ 𝑎6𝜔
2 + 𝑎7𝜐𝜌𝑠𝑝 + 𝑎8𝜔𝜌𝑠𝑝

+ 𝑎9𝜐
3 + 𝑎10𝜐

2𝜔 + 𝑎11𝜐𝜔
2

+ 𝑎12𝜐
2𝜌𝑠𝑝 + 𝑎13𝜐𝜔𝜌𝑠𝑝

+ 𝑎14𝜔
2𝜌𝑠𝑝 + 𝑎15𝜌𝑠𝑝

2 . 

(14) 

ULTIMATE CURVATURE CORRECTION FACTOR 

Concrete compressive strength was not explicitly considered as 

an input value for the database, since the analyses were 

conducted assuming 𝑓𝑐 = 31.83𝑀𝑃𝑎. According to the energy-

based assumptions in Mander's model, the ultimate strain of 

confined concrete depends on the compressive strength of 

unconfined concrete. In particular, fixing the ratio of transverse 

reinforcement, the greater the compressive strength the less the 

ultimate strain of confined concrete. For a given value of 𝜌𝑠𝑝, 

the relationship between ultimate strain of confined concrete 

and strength of unconfined concrete is parabolic (as shown in 

Figure 8). A similar pattern is to be expected for the ultimate 

curvature, strongly correlated to concrete ultimate strain. 

To capture this trend, a sensitivity analysis with respect to 𝑓𝑐 
was carried out and a correction factor for the ultimate curvature 

polynomial was calculated. A group of RC sections was defined 
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with different values of 𝑓𝑐 but equal value of the parameters 𝜐, 

𝜔 and 𝜌𝑠𝑝 (Eqs. 10, 11 and 12). For each of them, a Moment-

Curvature analysis and a post-processing were conducted, 

calculating the ultimate dimensionless curvature 𝜒𝑢(𝑓𝑐). The 

same values, named 𝜒𝑢(31.83), were predicted with the 

ultimate curvature polynomial. The ratios of the above-

mentioned parameters were used to fit the 2nd-order 

polynomial “Correction Factor (CF)”, shown in Eq. 15. This 

allows to take into account the appropriate value of the concrete 

strength and correct the ultimate curvature prediction according 

to Eq. 16. Basically, the ultimate curvature is calculated 

multiplying the value predicted according to the ultimate 

curvature polynomial (depending on 𝜐, 𝜔, 𝜌𝑠𝑝) to correction 

factor (which depends on 𝑓𝑐). 

 
𝐶𝐹 =

𝜒𝑢(𝑓𝑐)

𝜒𝑢(31.83)
= 

= 0.000738𝑓𝑐
2 − 0.078268𝑓𝑐 + 2.747041 

(15) 

 𝜒𝑢(𝑓𝑐) = 𝐶𝐹𝜒𝑢(31.83) (16) 

Figure 9 shows, respectively for 𝑓𝑐 = 20𝑀𝑃𝑎 and 𝑓𝑐 =
50𝑀𝑃𝑎, the comparison of the "exact" (𝑀 − 𝜑) diagram (dash-

dot line), the simplified one with (solid line) or without (dashed 

line) using the correction factor. It is clear that using the "non-

corrected" polynomial, the ultimate curvature is under-

predicted for 𝑓𝑐 = 20𝑀𝑃𝑎 and over-predicted for 𝑓𝑐 = 50𝑀𝑃𝑎. 

The "corrected" version leads to a very good match with the 

"exact" solution in terms of ultimate curvature. 

 

Figure 8: Ultimate strain of confined concrete with respect 

to the unconfined concrete strength for an equal value of 

volumetric ratio of transverse reinforcement. 

ACCURACY OF THE FUNCTIONS 

The polynomials that allow the construction of the (𝑀 − 𝜑) 
curve were tested with the procedure that follows. A group of 

10 RC circular sections was defined with random yet plausible 

values of the input parameters (shown in Table 7, in Appendix 

A). Each “test case” was analysed (with the same procedure 

used for the database) to obtain the characteristic moments and 

curvatures. Then the polynomials herein proposed were used to 

predict the same values (the ultimate curvature was multiplied 

by the correction factor).  

 

 

Figure 9: Role of the ultimate curvature correction factor.  

According to Eq. 17, the error (𝐸𝑅𝑅) of each prediction was 

calculated and a global error (𝐸𝑅𝑅𝑔𝑙𝑜𝑏) was defined by Eq. 18 

(shown in Table 2). For the characteristic moments, an under 

prediction lower than 11% is registered, except for the ultimate 

moment (15.9%). On the other hand, more scatter is registered 

for the characteristic curvatures, with a considerably smaller 

absolute error. These trends are shown in detail in Figure 10 

through predicted vs measured plots, comprehensive of the full 

dataset used for the curve fitting. This gives a complete 

overview of the accuracy of the proposed model.  

 𝐸𝑟𝑟 = 100|
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
| [%] (17) 

 𝐸𝑟𝑟𝑔𝑙𝑜𝑏 =
∑ 𝐸𝑟𝑟𝑖
10
𝑖=1

10
 [%] (18) 

NUMERICAL APPLICATION 

The aim of this section is to demonstrate that the proposed 

simplified procedure to evaluate the Moment-Curvature 

diagram of an RC cross-section is a reliable input for the 

assessment of the performance of a bridge pier. Therefore, a 

numerical validation of the above-mentioned procedure is 

presented herein. It is assumed that the geometric and 
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Table 2: Global error [%] of the functions, related to 10 Test sections. 

  CR Yc Y P N SP U mCR mYc mY mP mN mSP mU 

ERRglob 10.1 10.4 6.6 11.9 5.7 5.6 4.9 6.0 10.7 11.1 7.1 4.2 3.9 15.9 

 

 

 

Figure 10: Predicted vs measured plots. 
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mechanical parameters of an ideal bridge pier, belonging to a 

simply-supported bridge, are the ones listed in Table 3 

It is worth noting that the behaviour of the pier depends on the 

presence of seismic restraints and this can be taken into account 

in a simplified way by considering the effective mass pertaining 

to the pier itself [6]. For this reason, it is necessary to conduct 

two separate analyses, one for the transverse and one for the 

longitudinal direction, varying the axial force on the pier. 

The flexural behaviour of the base section of the pier was 

predicted using the characteristic polynomials (Equations 13 

and 14) and transformed in dimensional form according to 

Equations 3 and 4. The Force-Displacement (𝐹 − 𝛿) was 

calculated according to Equations 19 and 20, in which 𝜑 is the 

curvature, 𝜑𝑌 is the yield curvature, 𝑀 is the moment, 𝐿 is the 

length of the pier and 𝐿𝑝 (= 0.64𝑚) is the plastic hinge length, 

calculated according to Priestley and Park, 1987 [26]. 

This curve might be "corrected" in order to take into account 

the different mechanisms, but the benchmark case was chosen 

in such a way that the collapse was only governed by axial force 

and bending: therefore, no additional action was needed. In 

Figure 11, the simplified (𝑀 − 𝜑) diagrams are compared to 

the "exact" numerical sectional analysis, carried out with 

KSU_RC [9], SAP2000 [27] and Cumbia [10]. A very good 

match is registered, with a modest overestimation of the 

moment in the post-yielding branch (numerical values are 

discussed below). 

 

𝛿 =

{
 

 
𝜑𝐿2

3
                                                         𝑖𝑓 𝜑 ≤ 𝜑𝑌

𝜑𝑌𝐿
2

3
+ (𝜑 − 𝜑𝑌)𝐿𝑝(𝐿 − 0.5𝐿𝑝)      𝑖𝑓 𝜑 > 𝜑𝑌

 (19) 

 
𝐹 =

𝑀

𝐿
 (20) 

The pier was also modelled by means of 12 “beam” elements 

using the FEM software SAP2000 V18 [27]. Using the "Fiber P 

M2 M3 hinge", the cross-section was discretised into 600 fibres 

assigning the same constitutive laws used in the database. The 

pier was studied through a displacement-control Pushover 

analysis under a horizontal force applied to the tip of it. The 

obtained capacity curve is compared to the one calculated 

according to Eq. 19 (Figure 12). The results obtained with the 

simplified procedure are particularly close to the “exact” FEM 

solution, reflecting the trends registered for the Moment-

Curvature. This is confirmed in Table 4, which shows the 

analytical-to-numerical errors, calculated for force and 

displacement at the peak of the curve (peak, Fpeak) and at the 

ultimate condition (u, Fu). 

Table 3: Geometric and mechanical properties of the example pier. 

 L D c nl dl dh s fc fys N   sp 

 (m) (m) (m) (-) (mm) (-) (mm) (MPa) (MPa) (MN) (-) (-) (-) 

Transverse 6 2 0.05 30 26 16 70 20 450 13.87 0.221 0.114 0.006 

Longitudinal 6 2 0.05 30 26 16 70 20 450 17.85 0.284 0.114 0.006 

 

Figure 11: Moment-Curvature: comparison between "exact" and simplified procedure, transverse and longitudinal direction. 

 

Figure 12: Comparison of the pier capacity curves, transverse and longitudinal directions.
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Table 4: Simplified vs refined FEM analyses: numerical 

comparison of the results. 

 dpeak Fpeak du Fu 

Transverse 11.43% -0.55% 0.43% -4.03% 

Longitudinal 10.48% -1.41% -0.18% -3.64% 

CONCLUSIONS AND FURTHER DEVELOPMENTS 

This paper deals with the development of a polynomial solution 

for the characterisation of the flexural behaviour of RC circular 

bridge piers. In particular, it is proposed to calculate the 

Moment-Curvature relationship of RC circular sections by 

defining the position of few characteristic points. Each of these 

is defined in analytical form depending on 3 parameters: 

dimensionless axial force, mechanical ratio of longitudinal 

reinforcement, volumetric ratio of transverse reinforcement. 

The solution is based on polynomial functions fitted against a 

large database of fibre-based numerical Moment-Curvature 

diagrams. The proposed procedure was compared to a refined 

non-linear FEM model showing good match. 

The polynomial formulation is particularly effective within the 

framework of the regional seismic assessment of RC bridges, in 

order to perform a large number of analyses and derive 

probabilistic fragility curves. The use of such a mechanically-

based method, instead of commonly-used empirical methods 

based on calibrated indices, guarantees much more accuracy 

and management of uncertainty. On the other hand, the intrinsic 

simplicity of the proposed solution allows to perform the 

required large number of analyses with a negligible 

computational effort. The formulation is well suited for the 

implementation within computer-based automatic procedures. 

Other significant section shapes are currently being analysed, in 

order to provide a more flexible and general assessment tool. 
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LIST OF SYMBOLS 

 𝑎𝑖 ith coefficient of the characteristic 

polynomials 

 𝐴𝑠𝑝 cross-sectional area of one stirrup 

 c clear cover of the cross-section 

 𝐶𝐹 ultimate curvature correction factor 

 D diameter of the cross-section 

 𝛿 displacement at the tip of the pier 

 𝑑ℎ diameter of one stirrup 

 𝑑𝑙 diameter of one longitudinal bar 

 𝜀𝑐 concrete strain 

 𝜀𝑐𝑡 concrete strain @ tensile strength 

 𝜀𝑠𝑝 concrete spalling strain 

 𝐸𝑐 concrete elastic modulus 

 𝐸ℎ transverse steel elastic modulus 

 𝐸𝑠 longitudinal steel elastic modulus 

 𝐸𝑟𝑟 error for a single entry of the test series 

 𝐸𝑟𝑟𝑔𝑙𝑜𝑏 global error of one polynomial (related to 

the test series) 

 𝐹 force 

 𝑓𝑐 unconfined concrete cylinder compressive 

strength 

 𝑓𝑐𝑡 concrete tensile strength (flexure) 

 𝑓𝑡 concrete tensile strength (pure tension) 

 𝑓𝑦ℎ transverse steel yield stress 

 𝑓𝑦𝑠 longitudinal steel yield stress 

 𝜑 curvature 

 𝜑𝑌 yield curvature 

 𝜒 dimensionless curvature 

 𝜒𝑐ℎ𝑎𝑟 curvature for one characteristic point 

 𝜒𝑢(𝑓𝑐) dimensionless ultimate curvature for a 

given value of 𝑓𝑐 
 𝜒𝑢(31.83) dimensionless ultimate curvature for 𝑓𝑐 =

31.83𝑀𝑃𝑎 

 𝐿 length of the pier 

 𝐿𝑝 equivalent plastic hinge length 

 M moment 

 m dimensionless moment 

 𝑚𝑐ℎ𝑎𝑟 moment for one characteristic point 

 𝑛𝑙 number of longitudinal bars in the cross-

section 

 N axial load 

 n.a. neutral axis depth 

 R radius of the cross-section 

 𝜌𝑠𝑝 volumetric ratio of transverse 

reinforcement 

 𝑠 spacing of the stirrups 

 𝜐 axial load ratio 

 𝜔 mechanical ratio of longitudinal 

reinforcement

APPENDIX A: DETAILED RESULTS 

Table 5: Coefficients of the polynomials: characteristics curvatures. 

  χCR χYc χY χP χN χSP χU 

a0 0.000141687 0.0070035 0.0014652 0.013347 0.009525018 0.014913 0.030808 

a1 0.001179796 -0.025165 0.0041811 -0.054825 -0.016328061 -0.046539 -0.11685 

a2 9.51055E-05 -0.011074 0.00051892 -0.030016 -0.003856943 -0.020517 -0.073578 

a3 0 0 0 1.220752 0 0.010199 5.6901 

a4 0.000641769 0.035666 -0.0133308 0.083624 0.008869441 0.061621 0.15133 

a5 -0.000996454 0.033249 0 0.085899 0.007162256 0.058635 0.19562 

a6 0 0.0072763 -0.00027668 0.019272 0 0.012705 0.051627 

a7 0 0 0 -2.225166 0 0 -6.0449 

a8 0 0 0 0 0 0 -5.1263 

a9 0 -0.017657 0.0087833 -0.0442 0 -0.028807 -0.062491 

a10 0 -0.020321 0.00045295 -0.051413 0 -0.034787 -0.11249 

a11 0 -0.013063 0 -0.033684 0 -0.022416 -0.08808 

a12 0 0 0 1.5519 0 0 1.7707 

a13 0 0 0 0.95216 0 0 4.2011 

a14 0 0 0 -0.68209 0 0 1.3887 
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Table 6: Coefficients of the polynomials: characteristics moments. 

  mCR mYc mY mP mN mSP mU 

a0 0.039104 0.030715 0.010733 0.054625 0.033077 0.05462 0.008101 

a1 0.24991 0.76049 0.90246 0.52452 0.62906 0.52452 0.691763 

a2 0.019069 0.56557 0.46595 0.59541 0.66 0.59541 0.79591 

a3 0 0.69419 0.25179 -3.2 -0.02506 -3.19999 2.8189 

a4 -0.1041 -1.1359 -1.4939 -0.55922 -0.60654 -0.55922 -0.77233 

a5 0.13464 -0.91382 -0.49555 -0.17954 -0.20421 -0.17953 -0.50387 

a6 0 0 0 -0.02893 -0.034895 -0.02893 -0.18153 

a7 0 -2.8708 0 18.285 6.0638 18.2849 0 

a8 0 -2.3298 0 -1.68543 -1.3176 8.39364 0 

a9 0 0.31306 0.58997 0 0 0 -0.047563 

a10 0 0.80451 0.42036 0 0 0 0.50502 

a11 0 0 0 0 0 0 0.1109 

a12 0 3.3991 0 0 0 0 21.238 

a13 0 1.3589 0 0 0 0 -11.155 

a14 0 0 0 0 0 0 6.6317 

a15 0 0 0 0 0 0 -40.959 

 

Table 7: Test series RC sections, geometric and mechanical properties. 

D c nl dl dh s fc fys N   sp 

(m) (m) (-) (mm) (-) (mm) (MPa) (MPa) (MN) (-) (-) (-) 

1.2 0.06 18 26 14 60 30 380 23 0.678 0.107 0.010 

1.4 0.06 17 26 12 70 45 350 31 0.448 0.046 0.005 

1.5 0.06 15 32 14 70 26 380 12 0.261 0.100 0.006 

2.1 0.04 20 32 16 40 33 390 18 0.158 0.055 0.010 

2.5 0.04 23 20 16 50 42 500 75 0.364 0.018 0.007 

1.7 0.04 25 20 12 50 37 400 53 0.631 0.037 0.006 

1.6 0.07 19 26 14 50 48 360 70 0.726 0.038 0.008 

2.0 0.07 19 20 12 45 24 300 36 0.478 0.024 0.005 

2.3 0.07 25 18 16 40 29 350 66 0.548 0.018 0.009 

1.9 0.05 23 26 14 50 32 440 40 0.441 0.059 0.007 
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Figure 13: Trend of characteristic moments and curvatures for 𝝎 = 𝟎. 𝟎𝟓 and the full range of 𝝆𝒔𝒑. 

 

Figure 14: Trend of characteristic moments and curvatures for 𝝎 = 𝟎. 𝟏 and the full range of 𝝆𝒔𝒑. 

 

Figure 15: Trend of characteristic moments and curvatures for 𝝎 = 𝟎. 𝟐 and the full range of 𝝆𝒔𝒑. 
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Figure 16: Trend of characteristic moments and curvatures for 𝝎 = 𝟎. 𝟒 and the full range of 𝝆𝒔𝒑. 

 

Figure 17: Trend of characteristic moments and curvatures for 𝝎 = 𝟎. 𝟔 and the full range of 𝝆𝒔𝒑. 

 

Figure 18: Trend of characteristic moments and curvatures for 𝝎 = 𝟎. 𝟖 and the full range of 𝝆𝒔𝒑. 

 


