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One of the general mechanisms that give rise to the slow cooperative relaxation characteristic of classical
glasses is the presence of kinetic constraints in the dynamics. Here we show that dynamical constraints can
similarly lead to slow thermalization and metastability in translationally invariant quantum many-body
systems. We illustrate this general idea by considering two simple models: (i) a one-dimensional quantum
analogue to classical constrained lattice gases where excitation hopping is constrained by the state of
neighboring sites, mimicking excluded-volume interactions of dense fluids; and (ii) fully packed quantum
dimers on the square lattice. Both models have a Rokhsar–Kivelson (RK) point at which kinetic and
potential energy constants are equal. To one side of the RK point, where kinetic energy dominates,
thermalization is fast. To the other, where potential energy dominates, thermalization is slow, memory of
initial conditions persists for long times, and separation of timescales leads to pronounced metastability
before eventual thermalization. Furthermore, in analogy with what occurs in the relaxation of classical
glasses, the slow-thermalization regime displays dynamical heterogeneity as manifested by spatially
segregated growth of entanglement.
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Introduction.—Interacting quantum systems generically
equilibrate: their long-time state after unitary evolution
under the Hamiltonian is, loosely speaking, indistinguish-
able from the time-integrated state, as concerns expectation
values of local observables [1–5]. Equilibration requires
(almost) no degeneracies in energy gaps and stationarity
is due to dephasing in the energy eigenbasis [6–8]. Most
quantum many-body systems, furthermore, are believed to
thermalize [6–8]: if A and B are partitions, the reduced state
in A at long times tends to TrB½e−βH�, with temperature 1=β
set by the constant hHi [6–8]. Expectation values in A hence
take thermal values, and memory of initial conditions is lost
except for the energy. This is the general setup for quantum
ergodicity,where the system acts as its own thermal reservoir
[6–8]. Thermalization can be seen as a consequence of the
eigenstate thermalization hypothesis (ETH) [9–12].
Exceptions to this scenario include integrable systems

[13] which equilibrate to a generalized Gibbs ensemble (i.e.,
being “as ergodic as possible” given their large number of
conserved quantities) [14,15]. Another notable exception is
many-body localization (MBL) [16–37] displayed bymany-
body quantum systems with quenched disorder; for reviews
see [38–40]. Under MBL conditions—typically when
the disorder exceeds some threshold—ETH breaks down,
dynamics becomes nonergodic, and the long-time state
depends on initial conditions.
One can compare the above to mechanisms for classical

nonergodicity. MBL is analogous to classical systems
with random fields or interactions, such as spin glasses
[41], where strong disorder leads to thermodynamic phase

transitions to nonergodic states. But classically, disorder is
not the only mechanism that impedes relaxation. Structural
glasses, such as those formed from supercooled liquids or
densified colloids, are nonthermalising without quenched
disorder [42–44]. The central ingredients are excluded-
volume (steric) interactions that lead to effective kinetic
constraints in the dynamics [45–47]. In contrast to spin-
glasses, it is debated [42–44,48,49] whether structural
glasses eventually undergo a phase transition to a truly
nonergodic state, or if, given enough time, they would
eventually thermalize. If the latter, they are dynamically
metastable, appearing nonergodic on experimental time-
scales. Similarly, an important open question in quantum
nonergodicity is whether MBL is possible in translational
invariant systems [50–59].
Here we address the question of slow quantum relaxation

in nondisordered systems due to dynamical constraints. We
consider systems that obey ETH—and thus thermalize
asymptotically—but where thermalization is slow due to
a separation of timescales that leads to pronounced meta-
stability. We consider two prototypical models, a one-
dimensional (1D) quantumanalogue to classical constrained
lattice gases [47,60–62] and quantum dimers on the two-
dimensional (2D) square lattice [63–65]. In both cases, we
show the existence of slow relaxing regimes when inter-
actions dominate over kinetic energy. As in classical glasses,
we find that metastability is associated to spatially hetero-
geneous relaxation dynamics.
1D constrained quantum lattice gas.—Consider hard-

core particles moving on a 1D strip of a triangular lattice
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with L sites (and periodic boundary conditions along the
strip) and N particles; see Fig. 1. The Hamiltonian is

HQLG ¼ −
1

2

X

hi;ji
Ĉijfλðσþi σ−j þ σþj σ

−
i Þ

− ð1 − λÞ½nið1 − njÞ þ njð1 − niÞ�g: ð1Þ

Here σþi ¼ j1iih0ij, σ−i ¼ j0iih1ij, ni ¼ σþi σ
−
i , with j0ii and

j1ii the empty and occupied states on site i, respectively,
and the sum is over nearest neighbors hi; ji. The operator
Ĉij ¼ 1 −

Q
knk is a dynamical constraint, where the

product is over all common-neighbor sites k of i and j.
As for classical constrained lattice gases [47,60–62], Ĉij

mimics steric restrictions: particles occupy finite volume
and impede motion of their neighbors; see Fig. 1(a). The
model conserves density but has no particle–hole sym-
metry. The effect of the constraints is only significant for
large fillings, where many moves possible in the uncon-
strained problem are blocked.
The first term of the summand in Eq. (1) describes

nearest-neighbor hopping with frequency λ, while the
second is an interaction energy between the same neighbors
of strength 1 − λ. Both terms vanish if the constraint on the
bond is not satisfied, and thus, only bonds for which Ĉij ≠ 0

contribute [66]. The system has a Rokhsar–Kivelson (RK)
point at λ ¼ 1=2 [63,69]: the Hamiltonian is equivalent to
(minus) the generator of classical stochastic dynamics and

the ground-state wave function is given by an equal
superposition of all classical states for each filling. For
0 < λ ≠ 1=2, HQLG is also related to classical dynamics,
being (minus) the “tilted” generator for ensembles of
trajectories whose probability is biased by ½λ=ð1 − λÞ�K
with K the total number of particle hops [70,71]. The
ground-state energy of HQLG then gives the large-deviation
[72] cumulant-generating function of K. For constrained
lattice gases, it is known [71] that this has a first-order
singularity at λ ¼ 1=2 in the large size limit, corresponding
to a quantum phase transition in the quantum problem; see
Fig. 1(b).
We consider evolution under the dynamics generated by

Eq. (1), jψðtÞi ¼ e−iHQLGtjψ0i, taking as initial states jψ0i
product states corresponding to classical configurations,
(discarding those with only isolated vacancies, which are
disconnected under HQLG). To quantify relaxation, we
study two-time correlation functions, in particular the
autocorrelator,

cðtÞ ¼ 1

L

X

i

hψ0jniðtÞnið0Þjψ0i
ϕð1 − ϕÞ −

ϕ

ð1 − ϕÞ ; ð2Þ

where niðtÞ is the Heisenberg-picture number operator and
ϕ ¼ N=L is the filling fraction. Equation (2) defines the
connected correlator, scaled to go from cð0Þ¼1 to cð∞Þ¼0.
Since jψ0i is a product state, hψ0jniðtÞnið0Þjψ0i reduces to
the expectation value hniðtÞi for initially occupied sites i.
Figure 2(a) shows cðtÞ and the time-averaged cðtÞ ¼

t−1
R
t
0 dt

0cðt0Þ (to smooth out short-scale fluctuations) for
one particular initial condition. For λ ¼ 0.8, the kinetic
term in HQLG dominates over the potential and thermal-
ization is fast. In sharp contrast, for λ ¼ 0.2, where
potential energy dominates over kinetic, cðtÞ displays a
pronounced separation of timescales, decaying fast to a

FIG. 1. Constrained 1D quantum lattice gas. (a) Particle hops,
with amplitude λ, are only allowed if at least one common neighbor
of the initial and final sites is empty (arrows indicate allowed
moves). For example, C can hop to both 4 and 5, but not to 3 due
to B. Each link for which the constraint is satisfied gives an
interaction energy 1 − λ. (b) Quantum phase transition at the RK
point: the ground state energy (Inset) has a first-order singularity at
λ ¼ 1=2 for large L (filling fractions N=L with L − N ¼ 4). (c),
(d) Effective hopping of vacancy dimers, indicating the potential
energy (in units of 1 − λ) of each configuration.

FIG. 2. (a) Decay of the normalized density autocorrelator with
time, for λ ¼ 0.8 (top) and λ ¼ 0.2 (bottom). The blue curve
is cðtÞ and the orange one cðtÞ. The inset shows the initial
configuration, with L ¼ 24 and N ¼ 20. (b) Density correlations
for all product initial states. The thick black curve corresponds
to the T ¼ ∞ average, ½cðtÞ�, over initial states at this filling
(L ¼ 24, N ¼ 20). Inset: autocorrelations for the initial state of
(a) for various λ versus rescaled time tλ2.
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nonzero plateau, and thermalizing only at much longer
times. Such two-step correlators are typical of classical
glassy systems [42–44]. Figure 2(b) shows cðtÞ for all
product-state initial conditions. For λ > 1=2, there is little
variation between initial conditions, and all correlators
decay rapidly. In turn, for λ < 1=2, there is a strong
dependence on initial conditions, some thermalizing fast,
while others thermalize much more slowly.
This can be understood as follows. For small λ, we can

consider the hopping term in HQLG perturbatively. The
simplest mechanism for relaxation is effective hopping of
dimers of vacancies, cf., Figs. 1(c) and 1(d), which requires
the hybridization of unperturbed states with energy V.
Dimers therefore diffuse with an effective rate scaling as λ2.
However, when a dimer encounters an isolated vacancy,
this mechanism breaks down as the corresponding states
become off-resonant; isolated vacancies therefore act as
barriers to dimer propagation. The separation of timescales
can be seen in the inset of Fig. 2(b), which shows cðtÞ for
the initial state of Fig. 2(a) for varying λ: the rate λ2

accounts for the whole correlators in the fast regime
(λ > 1=2) but only up to the plateau in the slow regime
(λ < 1=2) where subsequent relaxation requires more
complex collective processes.
Figure 3(a) shows the autocorrelator for an equal mixture

of all initial conditions (infinite-temperature average),
½cðtÞ�. It is dominated by slow-relaxing initial states [i.e.,
those with isolated vacancies, cf., inset of Fig. 2(a)] and
displays two-step behavior for λ < 1=2. The inset to
Fig. 3(a) shows the (time-averaged) autocorrelator cRKðtÞ
for an initial state that is the ground state at the RK point
λ ¼ 1=2 (an equal superposition of all basis states),
amounting to a quench from the RK point. In contrast to
the product states of the T ¼ ∞ mixture, this initial state is
entangled. Nonetheless, slow relaxation for λ < 1=2 is still
apparent.

An overall relaxation time τ can be defined from
½cðτÞ� ¼ ϵ. The values of τ for a threshold ϵ ¼ 10−1 are
shown in Figs. 3(b) and 3(c) as a function of λ: in (b) we fix
the number of vacancies L − N and change system size L,
while in (c) we fix the filling ϕ ¼ N=L. In both cases, there
is a clear change around the RK point, λ ¼ 1=2, from a
regime where the timescale grows modestly, to one where τ
increases substantially with decreasing λ. In particular from
Fig. 3(c), we expect that this behavior will persist in the
limit L, N → ∞ with ϕ fixed.
Metastability for λ < 1=2 is associated with dynamically

heterogeneous relaxation, as illustrated in Fig. 3(d). The
initial state is the product state of Fig. 2(a), which can be
written as ρ0 ¼ jψA0ihψA0j ⊗ jψB0ihψB0jwhere the system
is split into region A containing the vacancy dimer and
region B containing the isolated vacancies. The figure
shows three time regimes. Times t1 are for cðtÞ evolving
from cð0Þ ¼ 1 to its plateau value. This initial relaxation
only entangles region A, and the state is well approxi-
mated by jψAðtÞihψAðtÞj ⊗ jψB0ihψB0j, where jψAðtÞi ¼
e−iHAtjψAð0Þi withHA the restriction of Eq. (1) to A. Times
t2 correspond to the metastable regime, where region A is
thermalized while region B is not. The state here is
jψAðtÞihψAðtÞj ⊗ jψB0ihψB0j. Indeed, within regimes t1
and t2 the state ρðtÞ is almost entirely supported on the
subspace HA ⊗ jψB0i, where HA indicates the Hilbert
space of region A. Only on much longer timescales is
full entanglement established between regions A and B,
see Fig. 3(e).
Heterogeneity in the dynamics is further confirmed

by the behavior of the entanglement entropy SðtÞ ¼
−TrρAðtÞ ln ρAðtÞ, for different choices of A–B bipartition,
as shown in Fig. 4. This supports the picture of propagating
dimers entangling parts of the system: e.g., at t ¼ 102,
entanglement is large for partitions that allow the dimer to
visit both regions (dashed line in the left panel, and i ¼ 10

FIG. 3. (a) T ¼ ∞ average, time-averaged density autocorrelation, ½cðtÞ�, for varying λ. Inset: same but with the RK ground state as
initial condition, cRKðtÞ. The relaxation behavior is similar to the T ¼ ∞ average despite the fact that the RK state is entangled.
(b) Relaxation time τ extracted from the average T ¼ ∞ correlators, as a function of λ for the sizes shown for fixed number of vacancies
L − N ¼ 4. (c) Same for fixed filling fraction ϕ ¼ N=L ¼ 3=4. For the small sizes accessible to numerics, there is a small dependence
on the parity ofN. (d) Dynamically heterogeneous relaxation: average local occupation in the three time regimes of cðtÞ starting from the
initial configuration of Fig. 2(a). (For movies see Supplemental Material [73].) (e) Weight of the projection of ρðtÞ onto the subspace
HA ⊗ jψB0i (blue) showing that regimes t1 and t2 correspond to growth of entanglement in A only. The distance between the full time-
integrated states ρðtÞ and ρðtÞA ¼ jψAðtÞihψAðtÞj ⊗ jψB0ihψB0j tracks closely the evolution of cðtÞ, as seen from the (normalized)
Frobenius norm, DFrðρ; σÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðρ − σÞ2�

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ρ2� þ Tr½σ2�

p
(orange).
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in the right), but much smaller for those where the dimer is
hindered from crossing the boundary (solid line and i ¼ 3).
Square-lattice quantum dimer model.—The Hilbert

space of the quantum dimer model (QDM) consists of
all close-packed dimer configurations, where each site of
the lattice forms a dimer with one of its nearest neighbors
[63–65]. ETH in the square- and triangular-lattice QDM
has recently been studied in [74]. On the square lattice, the
Hamiltonian is

where the sum is over all plaquettes (squares) p of the
lattice. The first (kinetic) term flips adjacent parallel dimers
while the second (potential) counts the number of flippable

plaquettes. HQDM has an RK point at V ¼ 1 [63]. A
quantity conserved by HQDM [65]—cf., the occupation
N for the lattice gas—is the flux Φ, defined on an Lx × Ly

lattice by Φμ ¼ ð1=LμÞ
P

rð−1Þrxþrydrμ, where drμ is the
number of dimers, 0 or 1, on the link from site r in direction
μ ¼ x, y.
We consider dynamics starting from a dimer configura-

tion and define the two-time correlation cðtÞ ¼P
rμhdrμðtÞdrμð0Þi, where the sum is over all links and

the Heisenberg picture is again used. As for the lattice gas,
we denote by cðtÞ and ½cðtÞ� the time-integrated average
and infinite-temperature average of cðtÞ, respectively,
normalized so that cð0Þ ¼ 1 and cð∞Þ ¼ 0.
Figure 5(a) shows cðtÞ for all starting configurations with

Φ ¼ ð1; 1Þ on a 6 × 6 lattice with periodic boundary
conditions. For V ¼ 0.5, the decay of cðtÞ is consistently
fast, while for V ¼ 10, relaxation is instead either fast or
slow depending on initial configuration. The infinite-
temperature average ½cðtÞ� displays a plateau before the
correlation decays to its long-time limit; Fig. 5(b) shows
that this plateau appears for V ≳ 5. The distinction between
fast (small V) and slow (large V) dynamics is clearly visible
in the lower inset of Fig. 5(b), which shows the time τ at
which ½cðtÞ� ¼ ϵ for ϵ ¼ 0.1, 0.2, 0.3 that are below the
level of the plateau (≃0.34). For very large V, τ follows a
power law, but with the exponent depending on ϵ. While
the exponent may depend on the details of the relaxation,
which involves passing through multiple steps, the pres-
ence of a power law is likely physical. The same fast–slow
distinction is evident even before the appearance of the
plateau, as the upper inset of Fig. 5(b) shows, with a step
change in the time taken to reach thresholds ϵ ¼ 0.5, 0.7,
0.9 that are above the plateau.

FIG. 4. Spatial heterogeneity of entanglement. Left: Entangle-
ment entropy for two choices of partition, shown in upper inset,
for dynamics starting from configuration shown, for λ ¼ 0.2 and
(inset) λ ¼ 0.8. Right: Entanglement entropy as a function of the
location of the partition at various times t. The two partitions
consist of, respectively, sites i to iþ 11 and the complement,
iþ 12 to i − 1 (with periodic boundaries). Labels show t; going
upwards, each successive line has t increased by a factor of 10,
except the dashed line, which has t ¼ 101.5.

FIG. 5. Relaxation dynamics of the QDM on a 6 × 6 square lattice. (a) Normalized two-time dimer correlation cðtÞ for different initial
configurations in the (1,1) flux sector. Relaxation is slow for V ¼ 10 but fast for V ¼ 0.5 (inset). The red curves show the T ¼ ∞
average, ½cðtÞ�. (b) ½cðtÞ� for various V. Insets: times τ at which certain thresholds of cðtÞ are reached, versus V. (c) Spatial distribution of
potential energy (plaquette flippability) as a function of time at V ¼ 10, starting from two different dimer configurations, labeled I and II
in (a), with fast and slow relaxation, respectively (for movies see Supplemental Material [73]). For II, remnants of the initial state are
visible even at t ∼ 106. Inset: Correlation length ξ versus time for I and II. The evolution of ξmimics panel (a). Note ξ > 1 at long times,
indicating nontrivial quantum correlations.
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These results can be understood through a physical
picture similar to that for the lattice gas, in which spatial
inhomogeneities play an important role. Figure 5(c) shows
the expectation value of the potential energy for each
plaquette as time evolves, for two different initial configu-
rations at V ¼ 10. For configuration I (top), correlations
decay fast and relaxation becomes homogeneous quickly,
while for the slower configuration II (bottom), hetero-
geneity persists even at late times.
The inset to Fig. 5(c) shows the correlation length ξ2ðtÞ ¼P
r;r0D

2ðr − r0ÞG2
cðr; r0Þ=

P
r;r0G

2
cðr; r0Þ where Gcðr; r0Þ≡P

μ½hdrμðtÞdr0μðtÞi − hdrμðtÞihdr0μðtÞi�, and D2ðrÞ ¼
L2π−2

P
j sin

2ðπrjL−1Þ is the lattice distance accounting
for periodic boundary conditions. ξðtÞ eventually becomes
larger than the lattice spacing, implying that neighboring
degrees of freedom are correlated (unlike in the ground state
at this value of V). The time at which ξðtÞ grows towards
its asymptotic value coincides with the relaxation time of
autocorrelators, cf., Fig. 5(a).
Conclusions.—We have demonstrated slow relaxation

due to dynamical constraints in closed quantum systems
without quenched disorder. The two models studied exhibit
thermalization asymptotically, but for certain parameter
values, the relaxation is anomalously slow, strongly sensi-
tive to initial conditions, and spatially heterogeneous. Our
work should be contrasted with studies of two-component
systems [55,58], where timescale separation is due to the
distinction between heavy and light components. As in
the case of classical glasses [49], constrained dynamics—
either explicit or effective [75–80]—should be a generic
mechanism for slow and spatially fluctuating relaxation in
quantum systems.
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