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Abstract—Unmanned aerial vehicle (UAV) based aerial base
stations (BSs) can provide rapid communication services to
ground users and are thus promising for future communication
systems. In this paper, we consider a scenario where no functional
terrestrial BSs are available and the aim is deploying multiple
aerial BSs to cover a maximum number of users within a certain
target area. To this end, we first propose a naive successive
deployment method, which converts the non-convex constraints in
the involved optimization into a combination of linear constraints
through geometrical relaxation. Then we investigate a deployment
method based on K-means clustering. The method divides the
target area into K convex subareas, where within each subarea, a
mixed integer non-linear problem (MINLP) is solved. An iterative
power efficient technique is further proposed to improve coverage
probability with reduced power. Finally, we propose a robust
technique for compensating the loss of coverage probability in
the existence of inaccurate user location information (ULI). Our
simulation results show that, the proposed techniques achieve
an up to 30% higher coverage probability when users are not
distributed uniformly. In addition, the proposed simultaneous
deployment techniques, especially the one using iterative algo-
rithm improve power-efficiency by up to 15% compared to the
benchmark circle packing theory.

Index Terms—Unmanned aerial vehicles, user coverage, air-
to-ground communication, clustering algorithm

I. INTRODUCTION

LOW-ALTITUDE unmanned aerial vehicles (UAVs)
have been increasingly appealing to future wireless

communication systems. UAVs which are cost-effective,
interoperable, flexible and likely to have a higher probability
of line-of-sight (LoS) channels are promising in a various
scenarios for both civilian and military use [1]–[3]. UAV-based
communication applications involve three main categories,
namely relaying, information dissemination/data collection
and ubiquitous coverage [4]. UAVs serving as relaying
nodes are studied to provide reliable wireless communication
between distant users with blocked direct links while
increasing the system throughput [5]–[8]. Optimizing the
flying trajectory is of particular interest when UAVs are
dispatched to disseminate information [9], [10]. Last but
not least, as UAVs can be quickly deployed, UAV-based
aerial base stations (BSs) are attracting increasing interest as
a means to provide fast wireless services to ground users.
For instance, UAVs can be deployed to ease the burden
of terrestrial base stations in extremely crowded areas by
offloading users from ground cells when specific rate or
distance requirement is satisfied [11], [12]. Moreover, fast
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service recovery or supply can be offered by such flying BSs
when fixed communication infrastructures are damaged.

With the rising interest in the above areas, the challenges in
the practical use of aerial BSs are becoming pertinent. When
the aerial BSs are utilized for emergency communications
such as search-and-rescue, the priority is finding the optimal
locations of UAVs so that a maximum number of users can
be covered. Meanwhile, since built-in batteries are used for
supplying power in most cases, limited on-board energy is
another factor that constrains the endurance of aerial BSs [4],
[13]–[15]. It has been proven that prolonged operation time
can be achieved by reducing the transmit power of aerial BSs
when quality-of-service (QoS) requirements are met [16],
[17]. The effect of inter-cell interference (ICI) and aggregate
interference is also considered when multiple aerial BSs are
deployed [18], [19].

The aerial BS coverage problem was first studied in [20],
which gave an air-to-ground (AtG) channel model used to
find the optimal altitude of UAVs that can lead to maximum
coverage area on the ground. [21] also proposes a generic
AtG channel model which considers the effect of small-scale
fadings. Instead of just maximizing the coverage area, recent
research has become increasingly focused on algorithms
trying to cover the maximum number of users [17], [22]–[24].
Specifically, [17] solved a 3-D circle placement problem
by formulating it as a mixed integer non-linear problem
(MINLP), while [22] made a further step by considering
explicit QoS constraints. In [24], optimal location of an
aerial BS is obtained through an exhaustive search in girds.
However, all the works mentioned above considered only the
case of a single flying BS which limits their use. In most
real situations, it is necessary to deploy multiple UAVs at the
same time to cover a majority of users in a specific target
region. The work in [18] extends the number of utilized
UAVs to two with a careful consideration of ICI. Mozaffari et
al. [25] proposed a circle packing technique so that the total
area covered by multiple aerial BSs is maximized, however
the method did not consider user distributions. A 100% user
coverage probability is shown through a spiral algorithm in
[26]. However, the study ignores the effect of ICI, and the
interference issue needs to be tackled with overlaid techniques.

In this paper, we study the efficient deployment of multiple
UAVs so the maximum user coverage probability is achieved,
where we define the coverage probability as the ratio of
number of covered users to the total number of users within a
specific target area. Following [25], [26], we assume that the
locations of users are known with the help of high-accuracy
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GPS systems and each aerial BS has enough capacity to
supply all the users it covers. We consider a scenario where
multiple UAVs are deployed in a target area without ground
BSs’ coverage. This is relevant in rural area coverage in
cases where terrestrial BSs are absent, and in natural disaster
scenarios where terrestrial coverage is disabled. Rotary-wing
UAVs which have the ability to move in arbitrary direction
as well as hold still in the air are assumed as the carrier for
aerial BSs [4]. Our aim is to study the efficient placement
of multiple aerial BSs in order to obtain a maximum user
coverage probability while avoiding the influence of ICI. The
UAV placement problem is modelled as a circle placement
problem and no coverage overlap is allowed so that ICI
between aerial BSs is intrinsically avoided. Our simulation
results demonstrate that the proposed circle placement
methods achieve higher user coverage probability than the
benchmark circle packing theory (CPT) [25]. Moreover, the
increased coverage probability is achieved with significantly
reduced transmit power in certain scenarios. The existence of
inaccurate user location information (ULI) is also considered,
and clearly increased robustness against inaccurate ULI is
obtained when proposed robust technique is applied.

For clarity, we summarize the main contributions of this
paper as follows

• Geometrical Relaxation: we propose a geometrical relax-
ation scheme where the optimal locations of UAVs are
obtained in a ’step-by-step’ fashion, in which the next
UAV is always deployed in a position such that it covers
the most number of remaining users in the target area
until there is no space for accommodating more UAVs.
The formulation of such a problem includes an increased
number of non-convex constraints to avoid interference
between any two aerial BSs. The non-convex constraints
are addressed with a simple geometrical relaxation which
converts each non-convex constraint into four linear con-
straints that can be easily solved.

• K-means Deployment: a more efficient technique which
can be easily applied to any size of target area is proposed
with the help of K-means clustering algorithm [27],
where the best locations of aerial BSs are found within
several subareas which are convex regions.

• Power Efficient K-means Deployment: we then propose
an iterative algorithm to further improve the user cov-
erage probability while drastically reducing the required
transmit power of aerial BSs.

• Robust Deployment with imperfect ULI: the coverage
performance in the existence of imperfect ULI is also
considered, and a robust technique to compensate the per-
formance loss with minimum transmit power is proposed
accordingly by shifting the locations of aerial BSs within
a bounded circular region before increasing the radii of
coverage areas.

• Complexity Analysis: we derive the computational com-
plexity of the proposed techniques analytically in terms of
the floating-point operations required. It is shown mathe-
matically that the complexity of the K-means deployment

scales linearly with the number of UAVs and the number
of users, while an additional quadratic scaling with the
number of UAVs is observed for the robust techniques.

The remainder of this paper is organized as follows. Sec-
tion II introduces system model. The successive deployment
method based on geometrical relaxation is proposed in Section
III. Section IV and Section V propose two simultaneous de-
ployment methods based on K-means clustering, and Section
VI considers the situation of inaccurate ULI. Computational
complexity of the proposed techniques are analyzed in Section
VII and numerical results are shown in Section VIII. Finally,
the paper is concluded in Section IX.

II. SYSTEM MODEL

We consider a square geographical target area with side
length Ls containing a set of low-mobility users denoted by
M as shown in Fig. 1. We assume K multiple aerial BSs
are deployed within the region in order to provide wireless
communication to as many ground users as possible. Note
that, as UAVs can move freely, such deployment of aerial BSs
can be done regularly in order to accommodate any changes in
the user positions. We note that trajectory design is out of the
scope of this paper and we will only focus on each snapshot
of users within the area.

A. Path loss model
We assume that each aerial BS is equipped with a directional

antenna, and we denote the half-power beamwidth of the
antenna by θB . Following [11], [25], the antenna gain can
be approximated by

G =

{
G0,−

θB
2 ≤φ≤

θB
2 ,

g(φ),otherwise, (1)

where G0 ≈ 29000
θB2 is the main lobe gain of the directional

antenna. For simplicity, we assume g(φ) which corresponds
to the power gain outside of the main lobe is negligi-
ble. If we denote the location of user i in the set M as
(xi, yi), the horizontal location and the altitude of the k-
th UAV as (xck, yck) and hk, k = 1, 2, ...K respectively,
then the ground distance between user i and UAV k is

rik =

√
(xi − xck)2 + (yi − yck)2. Thus, the coverage area

of the k-th aerial BS can be approximated as a circle region
centered at (xck, yck), with radius Rk = hk tan

(
θB
2

)
, and the

user i is associated with the k-th aerial BS, when we have
rik ≤ Rk.

For ease of exposition, and following [10], [26], [28], we
assume that the AtG communication channels are dominated
by LoS links. Note that, the high probability of LoS channels is
one of the main reasons that motivates us to deploy aerial BSs.
In addition, recent field experiments carried out by Qualcomm
have also verified that the AtG channel is indeed dominated by
the LoS link [29]. Under the LoS models, we have negligible
small-scale fadings, and the channel quality depends only on
the BS-user distance, which follows the free space path loss
model given by

PLik = 20 log

(
4πfcdik

c

)
(2)
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Fig. 1. System model

where fc is the carrier frequency of the system and c is
the light speed. In addition, dik represents the Euclidean
distance between user i and the k-th aerial BS, which is given
by dik=

√
rik2 + hk

2. In this paper, the service threshold is
defined in terms of the received power of user i, which is
denoted by P ir . If the transmit power of the k-th aerial BS is
P kt , P ir in dB is given by

P ir = P kt +G− PLik (3)

It can be seen that the users on the border of the circle coverage
area will suffer more severe path loss than other users, and the
received power of any user who is located within the coverage
area should be larger than or equal to the threshold value Pmin.
Therefore, a reduced transmit power is required for aerial BSs
deployed at a lower altitude. Note that when multiple UAVs
are deployed, the interference effect needs to be addressed.
With the use of directional antennas and following the LoS
channel model, ICI can be intrinsically avoided when there is
no overlap between coverage areas of aerial BSs.

B. User Distribution

Without loss of generality, in this paper, we assume a
random user distribution which is obtained through a spatial
point process (SPP). We assume three types of SPPs, namely
homogeneous Poisson process, inhomogeneous Poisson pro-
cess and Poisson cluster process [30], [31]. The three SPP
models are able to describe a majority of user distributions in
real scenarios. Let D denote a bounded set, X(D) denote a
counting measure of D which calculates the random number
of points in D, and µ(D) is a mean measure of D, giving the
expected number of points.

1) Homogeneous Poisson process: In homogeneous Pois-
son process, all user points are uniformly and independently
distributed within the target area W . The point density equals
to a constant λs, which describes the average number of user
points generated in a unit area. Therefore, for any user (xi, yi),
we have

P ((xi, yi) ∈ S) =
S

W
(4)

for any subarea S of the target area W . Note that the number
of user points generated follows Poisson distribution with
µ(D) = λs ·W , which is X(D) ∼ Poisson(λs ·W ).

2) Inhomogeneous Poisson process: Inhomogeneous Pois-
son process is a more general SPP model which introduces
inhomogeneity. The constant point density λs is replaced by
an intensity function λ(x, y), which varies with locations in
the target area. An example intensity function can be

λ(x, y) = c(x2 + y2) (5)

where c is a constant. Then we have

µ(D) = E {X(D)} =
∫
D

λ(x, y)dxdy (6)

where E {.} is the expectation operator. The correspond-
ing number of generated user points is thus X(D) ∼
Poisson(µ(D)), with µ(D) obtained from (6).

3) Poisson cluster process: Users often gather around
points of interest in real scenarios, in which case their dis-
tributions involves clustering. In order to describe this kind of
user distribution, a Poisson cluster SPP is utilized [31]. Firstly,
a set of parent points Sp is generated following homogeneous
Poisson process with constant point density λp. Then for each
c ∈ Sp, children points are independently generated following
Poisson process with intensity function λc(x, y). Note that
children points are distributed in circles around corresponding
parent points to form clusters.

III. PROPOSED SUCCESSIVE DEPLOYMENT METHOD WITH
GEOMETRICAL RELAXATION (SD-GR)

In this section, we propose a method based on succes-
sive circle placement to find the optimal locations of aerial
BSs such that a maximum user coverage probability can be
achieved. Following [25], and as shown in Fig. 2(a), we
assume that all UAVs have the same antenna beamwidth θB
and altitude H and thus have the same coverage radius R, that
is

hk = H, k = 1, 2, ...,K (7)
Rk = R, k = 1, 2, ...,K

H = R tan(θopt)

Therefore, placing multiple UAVs is equivalent to placing
multiple circles in the horizontal plane such that the number
of enclosed user points is maximized. UAVs are placed in a
successive method, where at each step the placement of the
aerial BS aims to cover the maximum number of remaining
users in the target area while ensuring that there is no overlap
in coverage areas with all previously deployed BSs. The
location of the first UAV can be found by utilizing the method
proposed in [17]. Let C1 denote the coverage area of the first
UAV and Boolean variable ui ∈ {0, 1}, i ∈ M denote the
status of user i such that the user is enclosed by C1 when
ui = 1 and is not covered by the first UAV when ui = 0.
Then the circle placement problem is formulated as

maximize
xc1,yc1,ui

∑
i∈M

ui (8)

subject to

(xi − xc1)2 + (yi − yc1)2 ≤ R2 +M(1− ui),∀i ∈M
ui ∈ {0, 1},∀i ∈M
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(a) non-convex region (b) four convex regions

Fig. 2. Converting the non-convex region into convex regions with geomet-
rical relaxation

where (xc1, yc1) is the horizontal location of the first UAV, i.e.
the center of the coverage region, and M is a large constant
that can be any value larger than the square of the largest
distance between any two points in the target area. It can be
seen that the first constraint of (8) reduces to

(xi − xc1)2 + (yi − yc1)2 ≤ R2,∀i ∈M (9)

when ui = 1 which is equivalent to saying that user i is
covered by the first UAV, and the objective function of (8)
is increased by 1 correspondingly. In addition, when ui = 0,
any choice of (xc1, yc1) within the target area will satisfy the
first constraint of (8) due to the very large constant M [17].
However, since ui = 0, user i is not covered by the first aerial
BS and the objective function is not increased.

When we want to deploy the second UAV, an additional
constraint ensuring no overlapping between coverage areas,
and therefore no ICI, is needed. To ensure this, the distance
between the two UAVs in the horizontal dimension should be
larger than 2R. Therefore, the placement of the second UAV
is formulated as

maximize
xc2,yc2,ui

∑
i∈M

ui (10)

subject to

(xi − xc2)2 + (yi − yc2)2 ≤ R2 +M(1− ui),∀i ∈M
(xc2 − xc1)2 + (yc2 − yc1)2 ≥ 4R2

ui ∈ {0, 1},∀i ∈M

where (xc2, yc2) is the horizontal location of the second UAV.
Unfortunately, the additional constraint is non-convex which
makes (10) extremely hard to solve. Although the integer
variables in (8) can be addressed with advanced mixed integer
programming techniques, using solvers such as MOSEK [17],
the optimization problem (10) which is a MINLP problem with
non-convex constraint can not be straightforwardly solved.
Even if we apply semidefinite relaxation (SDR) techniques to
convert the quadratic programs into the form of semidefinite
matrix which makes the non-convex constraint of (10) convex,
a problem with both positive semidefinite matrix and integer
variables is still unsolvable with existing techniques [32].

In Fig. 2(a), the circle in white with radius R represents the
coverage area of the first aerial BS, and the circle with radius
2R represents the area where there cannot be any placement of
additional UAVs without inflicting ICI. Accordingly, the region

outside the green circle with radius 2R is the geometrical
representation of the non-convex constraint in (10). We notice
that such a non-convex region which specifies all the feasible
locations of the second UAV in the horizontal dimension can
be divided into four linear regions which are convex. This is
done by approximating the green circular area by a square
area such that the original green circle is surrounded by the
square as illustrated in Fig. 2(b). Therefore, instead of solving
(10), we can solve four MINLP problems with different linear
constraints, and each of the four problems has the following
form

maximize
xc2,yc2,ui

∑
i∈M

ui (11)

subject to

(xi − xc2)2 + (yi − yc2)2 ≤ R2 +M(1− ui),∀i ∈M
yc2 ≥ yc1 + 2R, if (xc2, yc2) ∈ A1

xc2 ≤ xc1 − 2R, if (xc2, yc2) ∈ A2

yc2 ≤ yc1 − 2R, if (xc2, yc2) ∈ A3

xc2 ≥ xc1 + 2R, if (xc2, yc2) ∈ A4

ui ∈ {0, 1},∀i ∈M

where A1, A2, A3 and A4 are the four convex regions
shown in Fig. 2(b). The maximum number of covered users
as well as the location of the second UAV is then found
among the results of four MINLP problems. Note that the
overlapping in the four convex regions will not affect the
final result and is thus allowed. If the optimal location of
the second UAV is inside the overlapping area, two of the
four optimization problems will give the same solution which
contains a maximum number of covered users. However, the
effective area for placing the second UAV is slightly reduced
as a result of considering the infeasible region as a square
region.

The optimization problem of placing the k-th UAV (k > 1)
is formulated as

maximize
xck,yck,ui

∑
i∈M

ui (12)

subject to

(xi − xck)2 + (yi − yck)2 ≤ R2 +M(1− ui),∀i ∈M
(xck − xcj)2 + (yck − ycj)2 ≥ 4R2, j = 1, 2, ..., k − 1

ui ∈ {0, 1},∀i ∈M

where (xck, yck) and (xcj , ycj) denote the horizontal location
of the k-th UAV and the j-th UAV respectively. For each of the
k−1 non-convex constraints, geometrical relaxation is utilized
to convert it into four linear constraints as illustrated above.
As each linear constraint only specifies one of the four feasible
regions generated by a certain UAV, the true feasible region
for the k-th UAV is the intersection of (k − 1) sets, where
each set is the union of four feasible regions. Evidently, the
total feasible region which is non-convex consists of several
convex regions of rectangular shape. The total number of
convex regions depends on specific deployment but can be
found through an elimination method. To be specific, for
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Fig. 3. An example of feasible region definition, with two deployed aerial
BSs, for the positioning of the third BS

each of the k − 1 UAVs, one of the four generated feasible
regions is selected and logic function is used to find the
intersection of these k − 1 selected regions to make sure
the coverage area of the next aerial BS does not interfere
with any previously deployed aerial BSs. A total of 4k−1

intersections should be generated and we denote each inter-
section as Cz, z = 1, 2, ..., 4k−1. After obtaining all the 4k−1

intersections, we eliminate all sets which are null sets, i.e.
Cz = ∅ or sets which turn out to be subsets of other generated
sets, i.e. Cz ⊆ Cq, q = 1, 2, ..., 4k−1, q 6= z, and the remaining
intersections are the feasible regions we should search for.
Fig. 3 shows an example of obtaining feasible regions for
placing the third aerial BS, whose horizontal center is denoted
by (xc3, yc3). Region C1 is one of the feasible regions we
should search for. The region is formed by taking the in-
tersection of {xc3, yc3|xc1 + 2R ≤ xc3 ≤ Ls, 0 ≤ yc3 ≤ Ls}
which is one of the convex regions of the first aerial BS, and
{xc3, yc3|0 ≤ xc3 ≤ Ls, yc2 + 2R ≤ yc3 ≤ Ls} which is one
of the convex regions associated with the second UAV. Another
region C2, however, turns out to be a subset of another gen-
erated region {xc3, yc3|0 ≤ xc3 ≤ Ls, 0 ≤ yc3 ≤ yc2 − 2R},
and is thereby eliminated. We denote the total number of
feasible regions for deploying the k-th UAV as Nk

M . In this
case, (12) can be reformulated as Nk

M MINLP problems, each
has the following form

maximize
xm
ck
,ym
ck
,ui

∑
i∈M

ui (13)

subject to

(xi − xmck)
2
+ (yi − ymck)2 ≤ R2 +M(1− ui), ∀i ∈M

(xmck, y
m
ck) ∈ Cmk

ui ∈ {0, 1},∀i ∈M

where Cmk is the m-th feasible region of the k-th aerial
BS, (xmck, y

m
ck) is the optimal location of the k-th UAV in

region Cmk , m = 1, 2, ..., Nk
M . If we denote the number of

covered users by solving the m-th optimization problem as
Nm, and denote the maximum Nm for all m as Nmax, we have

Algorithm 1 Algorithm for placing the k-th UAV with geo-
metrical relaxation
Inputs: user locations, (xi, yi) ∈ M; radius of coverage

area, R; locations of all deployed UAVs (xcj , ycj), j =
1, 2, ..., k − 1

Output: number of users covered by the k-th UAV, Uk; the
location of the k-th UAV, (xck, yck)

Initialization: j=1; z=1; m=0.
1: while j < k do
2: converting the constraint (xck − xcj)2+(yck − ycj)2 ≥

4R2 into four linear constraints which are xck ≥ xcj +
2R, xck ≤ xcj − 2R, yck ≥ ycj + 2R, and yck ≤
ycj − 2R respectively.

3: j = j + 1.
4: end while
5: For each of the k − 1 UAVs, one of the four linear

constraints is selected to form the intersection of these
k− 1 regions. A total of 4k−1 intersections are generated
and denoted as Cz, z = 1, 2, ..., 4k−1.

6: while z < 4k−1 do
7: if Cz = ∅ then
8: eliminate Cz
9: else if Cz ⊆ Cq, q = 1, 2, ..., 4k−1, q 6= z then

10: eliminate Cz
11: else
12: m = m+ 1, Cmk = Cz .
13: obtain (xmck, y

m
ck), and Nm by solving (13)

14: end if
15: z = z + 1.
16: end while
17: Nmax = max(Nm), Uk=Nmax,m = 1, 2,...,Nk

M .
18: (xck, yck) = (xmck, y

m
ck)|Nm=Nmax

.

(xck, yck) = (xmck, y
m
ck)|Nm=Nmax . In addition, Uk = Nmax,

where Uk denotes the number of covered users by the k-
th aerial BS. For clarity, the proposed geometrical relaxation
method is summarized in Algorithm 1.

IV. PROPOSED SIMULTANEOUS DEPLOYMENT METHOD
WITH K-MEANS CLUSTERING (SD-KM)

The shortcoming of the above proposed algorithm is that it
introduces exponentially increasing computational complexity
due to the need to solve 4k−1 logic combination operations
as well as multiple MINLP problems for finding the optimal
location of the k-th UAV, which makes its use prohibitively
complex when a large number of aerial BSs are needed. As a
result, there is a strong motivation for a mechanism in which
multiple aerial BSs can be deployed simultaneously without
introducing non-convex constraints. In this section, a method
which simultaneously deploys multiple UAVs is proposed
with the help of K-means clustering.

K-means clustering, which is a well-known partitional
clustering method has been utilized in a variety of disciplines
[33]. In our particular scenario, we notice that the whole target
coverage area can be divided into K subareas with boundaries
forming the Voronoi diagram, by assigning user points into
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K clusters. The intelligent division of the target area brings
great benefit to the deployment of multiple UAVs in several
senses. First, each subarea which is bounded by few straight
lines or line segments is a convex region. Within each convex
region, we can solve an optimization problem similarly to (8)
to find the best location of a UAV so a maximum number
of user points within that subarea is enclosed. In addition,
the boundary lines of Voronoi diagram ensure that the circles
placed in each subarea will not overlap with each other, so the
ICI is intrinsically avoided. Furthermore, a number of K UAVs
can be deployed simultaneously in corresponding subareas, so
the latency and dependence on previously deployed aerial BSs
with successive circle placement is solved. Last but not the
least, K-means clustering finds potential clustering properties
among user points. The clustering properties indicate a rea-
sonable number of UAVs to be deployed, hence avoiding the
use of excessive UAVs and saving both costs and power. The
details of the proposed method are illustrated in the following
two subsections.

A. Applying K-means clustering and partitioning the target
area

We assume the user set M contains a total of Utot users
and we denote arrays storing the location of user points by
ui, where ui = [xi, yi], i = 1, 2, ..., Utot. The aim of applying
K-means clustering is organizing the Utot user points into K
clusters Ck, k ∈ [1,K], with the k-th cluster, k = 1, 2, ...,K,
containing Nk user points, out of which Uk ≤ Nk user points
are covered. The partition is very much based on a sum-of-
squared-error criterion [33] which is defined as

e =

K∑
k=1

Utot∑
i=1

uki‖ui −mk‖2 (14)

where ‖.‖ denotes the frobenius norm of a vector. uki here
is a Boolean variable, indicating the state of i-th user of the
k-th cluster. We have uki = 1 when (xi, yi) ∈ Ck and uki =
0 otherwise. In addition, mk is an array storing the center
location of the k-th cluster. Note that the center of a certain
cluster is obtained by calculating the mean value of all user
points classified into that cluster, which can be written as

mk = [mkx,mky] =

{
1

Nk

Utot∑
i=1

ukixi,
1

Nk

Utot∑
i=1

ukiyi

}
(15)

where k = 1, 2, ...,K. Then the procedure of applying the
K-means clustering is concluded in four steps.

1) Randomly choose K points in the target area as the
center points and store them in mk

2) Allocate each user point in M to the cluster with the
closest center Cj , i.e., (xi, yi) ∈ Cj when the Euclidean
distance between ui and the center of cluster j is smaller
than the Euclidean distance between ui and any other
cluster centers.

‖ui −mj‖ < ‖ui −mk‖ , (16)
i = 1, 2, ..., Utot, k = 1, 2, ...,K, j 6= k

3) Recalculate the cluster centers as the mean position of
all user points in each cluster.

4) Repeat the above two steps until there is no change for
mk.

Note that K-means clustering assumes the number of clus-
ters to generate is known, which is not true for our case. Either
excessive or inadequate number of generated subareas can
affect the number of users covered. The number of required
clusters highly depends on user distributions, so variable K
might be utilized for various scenarios. For all cases, we first
start with a maximum K value, denoted as Kmax, making sure
adequate number of subareas are generated even for the case
showing the least clustering property (uniform distribution).
Then we try to reduce the number of K since user points might
gather at some locations. As excessive partition can split a
single cluster into several parts, which severely deteriorate the
performance of the proposed method, we set a threshold dth
indicating the minimum allowed distance between two cluster
centers. If min(‖mj −mk‖) < dth , j 6= k, this signifies that
some of the generated clusters are too small as a result of
using too large K value. Then we reduce the value of K by
one and reapply the K-means clustering. The above procedure
continues until we have min(‖mj −mk‖) ≥ dth.

B. Solving the optimization problem within each region

After partitioning the user points into K clusters and,
subsequently, dividing the whole target area into K subareas,
we first need to find the largest allowed coverage area within
each subarea to avoid ICI. As the shape of each subarea is
a polygon, it is likely that certain subareas can only accom-
modate circles with radii smaller than R . Assume the k-th
subarea is formed with Sk line segments or straight lines, each
line is expressed in the form of y = aklx+bkl, l = 1, 2, ..., Sk,
where akl and bkl represent the slope and offset of the l-th
boundary line of the k-th subarea respectively. It is known that
for any point (xd, yd), if yd−aklxd−bkl < 0, the point is in the
region below the line. On the contrary, if yd−aklxd−bkl > 0,
the point is in the region above the line. We note that the
boundary lines of each subarea also implicate a feasible region
for placing the circle center as well as restricting the length of
radius. To be specific, the distance between the circle center
and each boundary line should be no smaller than the length
of radius of the circle. Therefore, the region for placing the
circle can be found by shifting the boundary lines of each
subarea. If the cluster center mk is in the region below a
certain boundary line of the k-th subarea, the corresponding
new line specifying the region for placing the circle center can
be obtained by shifting the line downward along the y-axis
by Lkl. Similarly, shifting the original boundary line upward
along the y-axis by Lkl leads to the corresponding new line
when mk is in the region above the original boundary line.
Here, Lkl denotes the length to be shifted along the y-axis of
the l-th boundary line of the k-th subarea, and is calculated
through

Lkl =
Rkmax

cos(|akl|)
, k = 1, 2, ...,K, l = 1, 2, ..., Sk (17)
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Fig. 4. The case for optimizing the radius in K-means circle placement
algorithm: (a) flexibility in reaching additional users, (b) reducing power for
a given user coverage area.

where Rkmax denotes the maximum allowed radius of the circle
placed in the k-th subarea and |.| calculates the amplitude
of a number. Therefore, Rkmax can be found by solving the
following optimization problem.

maximize
xck,yck,Rkmax

Rkmax (18)

subject to

yck − aklxck − bkl + Lkl ≤ 0,

if mky − aklmkx − bkl ≤ 0

yck − aklxck − bkl − Lkl ≥ 0,

if mky − aklmkx − bkl ≥ 0

k = 1, 2, ...,K, l = 1, 2, ..., Sk

The radius of the k-th circle is then Rk = min(R,Rkmax).
With fixed radii, we can find the optimal placement of circles
for covering maximum number of user points within their
corresponding subareas by solving the following problem

maximize
xck,yck,ui

∑
i∈M

ui (19)

subject to

(xi − xck)2 + (yi − yck)2 ≤ Rk2 +M(1− ui),∀i ∈M

yck − aklxck − bkl +
Rk

cos(|akl|)
≤ 0,

if mky − aklmkx − bkl ≤ 0

yck − aklxck − bkl −
Rk

cos(|akl|)
≥ 0,

if mky − aklmkx − bkl ≥ 0

ui ∈ {0, 1},∀i ∈M
k = 1, 2, ...,K, l = 1, 2, ..., Sk

The above optimization problem is a MINLP problem without
non-convex constraints and is nearly as easy to solve as (8).
Note that with the help of K-means clustering, we only need
to solve K optimization problems of this type and K < Kmax

is obtained in most cases as illustrated in the first subsection.

V. ENERGY EFFICIENT SIMULTANEOUS DEPLOYMENT
METHOD WITH VARIABLE RADIUS (SD-KMVR)

In the preceding section, a simultaneous deployment method
has been proposed to take advantage of dividing the whole
target area into K convex subareas. However, the proposed
method based on K-means clustering can be further improved

Algorithm 2 Iterative algorithm for placing the k-th UAV
Inputs: Initial radius Rk; an intermediate value storing the

change of radius, rit.
Output: Set containing all covered user points, Mk

cov; the
location of the k-th UAV, (xck, yck); the optimal radius
rk.

Initialization: rit = 0, rk = Rk
1: while rit 6= rk do
2: rit = rk
3: obtain (xck, yck) andMk

cov by solving (19) and replac-
ing Rk with rit.

4: obtain rk by solving (20).
5: end while

in terms of both the coverage probability and power efficiency.
First, the maximum circle area does not always cover a
maximum number of user points in an irregular polygon
region, so variable radius may introduce further improved
performance gain. As can be seen in Fig. 4(a), user points may
gather in a relative narrow region where circles with large radii
can not reach. More user points can thus be enclosed when
a smaller coverage area is placed. Furthermore, the radii of
coverage areas and hence the transmit power of aerial BSs
can be further reduced because there might be no user points
right on the border of the circles. In Fig. 4(b), original circle
in red obtained by the SD-KM in the previous section, can be
shrunk into the circle in green which covers the same set of
user points with a reduced transmit power.

In order to address both problems at the same time, an
iterative algorithm is proposed. We assume aerial BS has
a minimum allowed coverage area with radius Rmin, then
the variable radius of the k-th circle rk has a range of
Rmin ≤ rk ≤ Rk. We first obtain the circle center (xck, yck)
as well as the set containing the covered user points, denoted
as Mk

cov with size Uk by solving (19) with radius Rk. Then,
we fix both (xck, yck) andMk

cov, aiming to find the minimum
rk which can cover the same set of user points by solving the
problem,

minimize rk (20)
subject to

rk
2 ≥ (xi − xck)2 + (yi − yck)2,∀i ∈Mk

cov

Rmin ≤ rk ≤ Rk

After solving rk, we replace Rk with rk and solve (19)
again to find the updated user points enclosed by the new
circle. The above procedure repeats until the radius rk does
not change anymore. Algorithm 2 summaries the proposed
iterative algorithm. In addition, as the radii of the K coverage
areas are reduced and all the aerial BSs have the same antenna
beamwidth θB , the altitude of the k-th UAV can be found by

hk =
rk

tan
(
θB
2

) (21)

Therefore, the 3-D location of the k-th aerial BS is marked
as (xck, yck, hk). Furthermore, the reduced radii also reduce
the path loss between UAVs and users according to (3) and
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Fig. 5. An example deployment of SD-KMVR in the existence of inaccurate
ULI, with small circles in red representing real user locations and dots
representing estimated user locations.

thus reduce the required transmit power of aerial BSs since
we have

P kt = Pmin + PL(rk)−G (22)

where P kt is the required transmit power of the k-th aerial
BS and Pmin is the threshold receive power, below which the
communication link is failed. The total required power of the
system is thus the sum of transmit power of all aerial BSs
which is a function of both K and rk,

Ptotal =
K∑
k=1

P kt = K(Pmin −G) +
K∑
k=1

PL(rk) (23)

Clearly, the iterative algorithm is more power efficient than
the proposed SD-KM algorithm at the cost of increasing the
computational complexity.

VI. IMPERFECT ULI AND ROBUST DEPLOYMENT

In the practical UAV deployment the ULI may contain
errors. Consequently, the coverage probability of the proposed
techniques may decrease drastically as a result of estimating
user locations inaccurately. In this section, we formulate a
robust technique which is applicable to both SD-KM and
SD-KMVR to preserve the best coverage performance in the
existence of inaccurate ULI. We model the estimated location
of user i as (

∼
xi,
∼
yi) = (xi + exi, yi + eyi), where exi and

eyi are estimation errors following Gaussian distribution with
zero mean and standard deviation σ in meters. For illustration,
Fig. 5 shows an example deployment of SD-KMVR in the
existence of imperfect ULI with σ = 50 m and Ls = 3500
m. The small circles in red represent real user locations,
and SD-KMVR is applied based on estimated user locations
represented by dots. It can be seen that, user points which
are closer to the centers of aerial BSs have better immunity
to estimation errors. The coverage probability decreases when
the users which are considered to be covered are actually out
of the coverage range of the corresponding aerial BSs.

It is clear that increased robustness against imperfect ULI

Algorithm 3 Robust deployment of aerial BSs
Inputs: Placement details obtained from SD-KM or SD-

KMVR technique: radius of coverage areas, Rk; horizon-
tal location of aerial BSs, (xck, yck); location of covered
user points, (xi, yi),∀i ∈Mk

cov

Output: New horizontal location of aerial BSs, (x∗ck, y
∗
ck);

new radius of coverage areas, R∗k.
1: Find the minimum distance between (xck, yck) and the

boundary lines of the corresponding subarea.
2: Obtain (x∗ck, y

∗
ck) by solving (26).

3: Calculate the minimum distance between (x∗ck, y
∗
ck) and

the boundary lines of the corresponding subarea.
4: Obtain R∗k from (27).

can be achieved by increasing the radii of coverage areas. If
we assume the maximum deviation between estimated location
and real location for any user point is dth, where dth ≈ 3σ,
the performance loss of coverage probability for the k-th aerial
BS can be completely compensated when

Lkmin = |Rk − rik| ≥ dth,∀i ∈Mk
cov (24)

where Lkmin denotes the minimum difference between rik and
Rk of the k-th subarea. There is clearly a trade-off between
robustness and required transmit power with regard to the
radius. Therefore, the aim of the robust design, which is
maximizing the number of covered user points in the existence
of inaccurate ULI, is equivalent to maximizing Lkmin with min-
imum transmit power. We note that the user points are usually
distributed unevenly within the corresponding coverage area
for both SD-KM and SD-KMVR techniques. This causes a
part of user points having a much larger ground distance to
the aerial BS than the rest of user points. Therefore, shifting
the circle center to minimize the maximum ground distance
between user points covered by the k-th aerial BS and the k-th
circle center can reduce the resulting radius and thus reduce
the required transmit power. We denote the distance between
(xck, yck) and the boundary lines of the corresponding subarea
as dkl, l = 1, 2, ..., Sk. Then the minimum value among all the
Sk distances is dkmin = min(dkl). In order to avoid ICI, the
horizontal center of the k-th aerial BS can only move within
a circular area with radius dkmin. Therefore, the corresponding
optimization problem is formulated as

minimize
x∗
ck
,y∗
ck

max
i∈Mk

cov

(

√
(x∗ck − xi)

2
+ (y∗ck − yi)

2
) (25)

subject to√
(x∗ck − xck)

2
+ (y∗ck − yck)

2 ≤ dkmin

k = 1, 2, ...,K

Here, (x∗ck, y
∗
ck) is the new horizontal center of the k-th aerial

BS to optimize, based on the center coordinates (xck, yck) ob-
tained by either SD-KM or SD-KMVR. Note that the objective
function of the above optimization problem implicitly includes
the constraint that all the originally covered user points are still
covered. (25) is equivalent to minimizing an auxiliary variable
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Fig. 6. Computational complexity: (a) average execution time of solving a
single MINLP problem by MOSEK solver, K = 1; (b) CDF of number of
iterations required for K-means clustering and SD-KMVR, K = 9, λs = 10
users/km2

dk representing the maximum ground distance between k-th
aerial BS and covered user points according to

minimize
x∗
ck
,y∗
ck

dk (26)

subject to√
(x∗ck − xi)

2
+ (y∗ck − yi)

2 ≤ dk, i ∈Mk
cov√

(x∗ck − xck)
2
+ (y∗ck − yck)

2 ≤ dkmin

k = 1, 2, ...,K

After obtaining the new center location (x∗ck, y
∗
ck), we recalcu-

late the minimum ground distance between the k-th aerial BS
and the corresponding boundary lines and denote it as dk

∗

min.
The maximum allowed radius within the k-th subarea is then
Rk

∗

max = min(R,Rk+d
k∗

min). Therefore, the radius of the k-th
coverage area R∗k is

R∗k =

{
dk + dth, if dk + dth ≤ Rk

∗

max

Rk
∗

max, if dk + dth > Rk
∗

max

(27)

Note that the radius R∗k is not necessarily larger than Rk,
especially when the technique is applied to SD-KM. Therefore,
a reduced transmit power is sometimes obtained. For clarity,
the above procedure is summarized in Algorithm 3.

VII. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we study the computational complexity of
the proposed techniques in terms of floating-point operations
required. Following [34], [35], the computational costs are
calculated based on real-valued additions, subtractions, multi-
plications, divisions and comparisons.

A. Complexity of SD-GR

For deploying the k-th aerial BS (k > 2), we first need to
find a total of 4k−1 candidate sets. Each of the 4k−1 sets is
an intersection of k − 1 sets, and forming each intersection
needs 4(k−2) comparisons in the worst case for both x and y
dimensions. Therefore, the complexity of finding the candidate

regions for all the K aerial BSs needs
K∑
k=3

2(k − 2)4k floating-

point operations, which can be simplified as

C1
GR = O{16K − 14

9
· 4K+1} (28)

In the elimination process, the complexity arises from the
search for feasible regions from all candidate sets. There are a

total of
K∑
k=2

4K−1 candidate sets, and the resulting complexity

is obtained as

C2
GR = O{1

3
· 4K+1} (29)

The average complexity of solving (13) does not have a closed
form solution, and it is in general difficult to determine. Since
this complexity is involved in all the deployment schemes, we
denote this as CMINLP, and represent the complexity of all
schemes as a function of this complexity. Therefore, the total
computational complexity for SD-GR technique is

CGR = C1
GR+C

2
GR+KCMINLP (30)

= O{6K − 11

9
· 4K+1}+KCMINLP

To characterize the complexity of solving a single MINLP,
instead of an analytical expression, we employ the average
execution time against various user density as shown in Fig.
6 (a).

B. Complexity of SD-KM

We then consider the complexity of K-means clustering.
Here, we denote the average number of iterations until con-
vergence as nit. The cumulative distribution function (CDF)
describing the convergence for K-means clustering is shown
as the dashed line in Fig. 6 (b). Within each iteration,
the proposed scheme involves three steps. The first stage
calculates the Euclidean distance between each user point
and cluster centers, which involves two subtractions, two
multiplications, one addition and one square root. For Utot

user points and K clusters, calculating all Euclidean distances
requires O{6KUtot} floating-point operations. The second
stage allocates each user point to the cluster with the closest
center, which takes O{Utot(K − 1)} comparisons. Further-
more, we need to recalculate the cluster centers following (15),
which includes Utot multiplications, Utot − 1 additions and
one division for both x and y dimensions. Then the costs
for the third stage is O{4KUtot}. Therefore, the resulting
computational complexity of k-means clustering is

O{nit(6KUtot + Utot(K − 1) + 4KUtot)} ≈ O{KUtotnit}
(31)

To obtain a reasonable value of K, the proposed al-
gorithm repeats the above steps for NKM times until
min(‖mj −mk‖) ≥ dth as shown in Section IV, and we have

C1
KM = O{NKMKUtotnit} (32)

Moreover, we need to calculate the maximum allowed radius
within each cluster according to (18). Following [36], (18) is
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED TECHNIQUES

Method Computational costs
SD-GR O{ 6K−11

9
· 4K+1}+KCMINLP

SD-KM O{NKMKUtotnit +
K∑

k=1

(3 + Sk)
1.5}+KCMINLP

SD-KMVR O{NKMKUtotnit +
K∑

k=1

(3 + Sk)
1.5

+nvr
it

K∑
k=1

(Uk + 1)1.5}+ (nvr
it + 1)KCMINLP

Robust O{NKMKUtotnit +
K∑

k=1

(3 + Sk)
1.5}

SD-KM +KCMINLP +O{
K∑

k=1

Uk +K2}

Robust O{NKMKUtotnit +
K∑

k=1

(3 + Sk)
1.5

SD-KMVR +nvr
it

K∑
k=1

(Uk + 1)1.5}+ (nvr
it + 1)KCMINLP

+O{
K∑

k=1

Uk +K2}

a convex problem solved by interior-point methods with the
following complexity:

CIP = O{(E + F )1.5E2} (33)

where E is the number of variables, and F is the number
of constraints in an optimization problem. As we have a
total of Sk constraints and 3 variables for solving the k-th
optimization problem, the computational costs of finding all
maximum allowed radius is

C2
KM ≈ O{

K∑
k=1

(3 + Sk)
1.5} (34)

The computational complexity of solving (19) is again approx-
imated by CMINLP. Accordingly, the total computational cost
of SD-KM is

CKM = C1
KM + C2

KM +KCMINLP (35)

= O{NKMKUtotnit +
K∑
k=1

(3 + Sk)
1.5}

+KCMINLP

C. Complexity of SD-KMVR

The SD-KMVR technique is based on SD-KM technique
and thus involves all operation costs of SD-KM. In addition,
SD-KMVR is an iterative algorithm, and we denote the aver-
age number of iterations required as nvrit . CDF of the number
of required iterations for SD-KMVR technique is also shown
in Fig. 6 (b). Within each iteration, the costs of solving (19) is

CMINLP and the costs of solving (20) is O{
K∑
k=1

(Uk + 1)
1.5},
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Fig. 7. Aerial BS placement with proposed techniques

since the number of constraints of (20) is Uk. Therefore, the
overall costs of SD-KMVR technique is

CKMVR = CKM +O{nvrit
K∑
k=1

(Uk + 1)
1.5} (36)

+nvritKCMINLP

= O{NKMKUtotnit +
K∑
k=1

(1 + Sk)
1.5

+

nvrit

K∑
k=1

(Uk + 1)
1.5}+ (nvr

it + 1)KCMINLP

D. Complexity of Robust Technique

The additional computational costs of applying the robust
technique come from (25), which is again solved by interior-
point method. Based on (25), E = 2 and F = Uk +K − 1,
which leads to

Crobust ≈ O{
K∑
k=1

Uk +K2} (37)

For clarity, the computational complexity of the proposed
techniques is summarized in Table I. Note that the benchmark
CPT is originally designed for maximizing the coverage area
instead of maximizing the number of users covered, so the
location of aerial BSs is fixed for a specific target area when
R is given, and the technique has negligible complexity. To
complement the above complexity analysis, in Fig. 12 in the
following we show a complexity comparison of the proposed
SD-KM, SD-KMVR and robust techniques in terms of average
execution time.

VIII. SIMULATION RESULTS AND ANALYSIS

In this section, we assume multiple aerial BSs are vertically
deployed with the same antenna beamwidth. Therefore, with
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Fig. 8. User-coverage probability for different types of user distribution: (a)
with perfect ULI, (b) with imperfect ULI, (c) with robust technique, K=4

the parameters shown in Table II, the radius R corresponds to
a received power threshold Pmin = −67 dBm is calculated as
R= 707 m. The minimum radius of each coverage area and
the minimum allowed distance between clusters are assumed
to be Rmin = R

2 and dth = R
2 respectively. The value of

Kmax is set equal to the number of circles resulting from
CPT. Three different spatial point processes are utilized for
modeling the user distribution, which are Homogeneous Pois-
son process (HPP) with λs= 5 users/km2, Inhomogeneous
Poisson process (IPP), with λ(x, y) = 5(x2 + y2) users/km2

and Poisson cluster process (PCP) respectively. Specifically,
the parent points of cluster process are generated following
HPP with λp = 1 users/km2 and the children points are
generated with

λc(x, y) =
α

2πσ2
e−

1
2σ2

(x2+y2) (38)

where α = 0.9 and σ = 0.02. To evaluate the benefit of the
proposed algorithms, numerical results based on Monte Carlo
simulations of the proposed SD-GR, SD-KM, SD-KMVR
and the robust techniques are compared with the performance
of CPT which serves as the benchmark. Note that due to
the exponentially increasing computational complexity of
SD-GR as shown in Section VII, the maximum K value we
use for the SD-GR algorithm is four. The horizontal center
of all deployed UAVs must fall inside the target area, and
we assume the coverage areas outside the target area will
not cause further interference to users outside the interested
region.

To illustrate the function of the proposed solutions, example
drone placement distributions are shown based on simulation
for the benchmark CPT, SD-GR, SD-KM, and SD-KMVR in
Fig. 7, assuming a PCP distribution of users and Ls = 3 km.
The benchmark CPT simply places circles with same size in
a way that maximum coverage is achieved and none of these
circles overlap. For CPT, the number of circles Ncp to be
placed in a square target area depends on the size of target
area, which is Ncp =

⌈
Ls
2R

⌉2
where d.e is a ceiling function.
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Fig. 9. User-coverage probability versus number of UAVs deployed, K=16,
15 and 10 for HPP, IPP and PCP correspondingly

TABLE II
SIMULATION PARAMETERS

parameter fc c θB Pt

value 2.5 Ghz 3 · 108 m/s 95◦ 30 dBm

A. Coverage Probability

Intuitively, it can be seen that, coverage probability highly
depends on the user distribution when CPT is applied. In
addition, SD-GR method always aims to cover the most
number of users in the remaining region but the placement of
the UAVs is restricted by the previously deployed BSs, which
limits the achievable performance. The SD-KM method aims
to find the clustering properties among user points and is thus
more robust to the change of user distributions. However, the
shape of subareas limits the movement of UAVs within each
Voronoi cell, which may lead to users gathering in a relative
narrow region of the subarea uncovered. This drawback
is solved by applying SD-KMVR, which also reduces the
transmit power to a large extent.

The above effects, are captured in Fig. 8 (a), which il-
lustrates the achieved user-coverage probability, for different
types of user distributions. For a fair comparison of the
achievable coverage probability, a target area with Ls = 4R
is assumed, within which all four methods can horizontally
deploy a maximum of four circles. It can be observed that
the coverage probability of all techniques are affected by user
distributions. Note that the performance of CPT decreases
while the achieved coverage probability of all the other tech-
niques increase when the user points tend to have an uneven
distribution, especially when clusters are formed. Specifically,
the proposed SD-KMVR technique achieves an up to 30%
higher coverage probability than the benchmark. The result is
expected, because CPT places circles in fixed locations for a
given target area no matter how the users are distributed, which
highly deteriorate the coverage performance when clusters
are formed outside the coverage areas. On the contrary, our
proposed algorithms are not restricted to fixed locations, but
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Fig. 10. Coverage probability with additional constraint specifying the
maximum number of served user. Ls = 4R.

instead can be flexibly placed according to the change of
user distribution. When heterogeneity of user distribution is
introduced, especially when clusters are formed, user points
are located closer to each other and there is correspondingly a
better chance to cover more users within each applied circles.
More than 90 percentage of users are covered by applying the
proposed techniques when users are distributed following PCP.

The coverage performance of the proposed techniques with
imperfect ULI is shown in Figure. 8 (b). It can be seen that
the performance of all techniques except CPT decreases when
introducing imperfect ULI. The performance of CPT remains
unchanged because the placement rule of CPT is irrelevant to
ULI. Note that SD-KM method shows much better immunity
to imperfect ULI than SD-KMVR. This is as expected, since
SD-KM method utilizes a larger coverage area causing a larger
distance between user points and the border of circles than SD-
KMVR. The performance loss is greatly compensated when
the proposed robust technique is applied as shown in Figure. 8
(c). The increased coverage probability is achieved as a result
of increasing coverage area as well as relocating the aerial
BSs. In real scenarios, only a limited number of UAVs may
be available for deployment. Therefore, it is meaningful to
examine the coverage probability of the proposed techniques
versus the number of available aerial BSs. We assume Ls = 5
km, the K value used for HPP, IPP and PCP are 16, 15 and 10
respectively, which are the average K values we need for target
areas of this size, and the corresponding results are shown
in Fig. 9. As expected, no matter what user distribution is,
the proposed SD-GR technique significantly outperforms other
techniques since the UAVs are always deployed in a position
such that a maximum number of remaining user points are
covered. Moreover, it can be seen that SD-KMVR achieves an
up to 10% performance gain compared to SD-KM. The SD-
KM, SD-KMVR and the CPT techniques have comparable
performance when users are distributed uniformly. This is
because when users are uniformly distributed, the K-means
clustering method will divide the target area in a similar way
as we using CPT. When users are distributed following a
non-uniform distribution, CPT outperforms the proposed SD-
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Fig. 11. Required number of aerial BSs and total transmit power versus size
of target area

KM and SD-KMVR methods when only a small number of
UAVs are available. In this case, a similar number of UAVs
are deployed in a more tight way than the circle packing
technique, causing reduced coverage areas of certain aerial
BSs and hence a smaller number of covered users within these
areas. When CPT is utilized, circles placed at positions where
the user points are densely located can thus cover more user
points due to the larger coverage area. However, when clusters
are present, the proposed SD-KM and SD-KMVR technique
regain the superiority as the UAVs are deployed at positions
where clustering properties are found.

For real deployment, we have a limited number of users
that can be served at a same time due to specific multiplexing
methods. The additional constraint specifying the maximum
number of served users, i.e.,

∑
i∈M

ui ≤ Umax, where Umax

denotes the limitation on the number of users, needs to be im-
posed. For comparing the coverage probability of the proposed
techniques with and without the additional constraint, we
assume the users are distributed following PCP, and the result
with Umax = 30 is shown in Fig. 10. It can be seen from Fig.
10 that, SD-GR technique suffers the severest performance
degradation compared to the other two techniques. This result
is as expected, since SD-GR always tries to cover the greatest
number of remaining users in the target area, and the first few
aerial BSs deployed by this method covers much more users
as can be seen in Fig. 9.

B. Energy Efficiency

In Fig. 11, we compare the number of required aerial
BSs and the required total transmit power for SD-KM, SD-
KMVR, Robust SD-KM, Robust SD-KMVR and CPT. It can
be seen that, SD-KM and SD-KMVR as well as their robust
techniques require a smaller number of UAVs compared to
CPT when users are not uniformly distributed in the target
area. Note that the gap between the proposed algorithms and
CPT becomes larger as the size of the target area increases,
with SD-KM and SD-KMVR reducing the number of UAVs
required down to 60% of that for CPT. An up to 15% power
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Fig. 12. Average execution time for the proposed techniques: (a) versus
various user density, K = 9 (b) versus various number of aerial BSs, λs = 5
users/km2

is saved by applying SD-KMVR when users are distributed
following PCP. In addition, though SD-KM and SD-KMVR
require the same number of aerial BSs to be deployed in
order to maximize the coverage probability, the SD-KMVR
technique saves up to 10% power as can be seen. Robust SD-
KMVR consumes approximately 1% more power than SD-
KMVR as a result of increasing the coverage area, but a clearly
reduced transmit power is still obtained compared to SD-KM
technique. It is worth highlighting that, Robust SD-KM is even
more power efficient than SD-KM, which means the minimum
distance between covered user points and the border of the
corresponding coverage area after relocating the circle center
is larger than dth in most cases. Indeed, the reduced number
of UAVs saves operation costs and the reduced transmit power
can prolong the operation time of aerial BSs.

C. Computational Complexity

In Fig. 12, we characterize the complexity of SD-KM, SD-
KMVR and their robust techniques in terms of the average
execution time. The user points are distributed following HPP
and an Intel Core i7-6700 2.6GHz CPU computer is used for
performing the simulation. The average execution time versus
various user densities is shown in Fig. 12(a) with K=9, while
the average execution time versus various number of aerial
BSs is presented in Fig. 12(b) with λs = 5 users/km2. It can
be observed from both figure that, SD-KMVR technique takes
more execution time than SD-KM, and the complexity of SD-
KMVR increases more faster. To be specific, the execution
time of SD-KMVR increases approximately 40% and 105%
faster than SD-KM, as the number of user points and the
number of aerial BSs increase correspondingly. Similar trends
is found for Robust SD-KMVR and Robust SD-KM. Note that
the robust techniques also introduce increased computational
complexity, which is consistent with the analytic results shown
in Section VII.

IX. CONCLUSION

In this paper, we have studied the efficient deployment
of multiple aerial BSs in order to maximize the number of

covered users while avoiding ICI. A successive deployment
method converting each non-convex constraint into four linear
constraints is firstly proposed with geometrical relaxation.
In order to reduce the computational complexity, we then
propose a simultaneous deployment method based on K-
means clustering, which converts the target area into K convex
subareas and find the optimal location of UAVs within each
subarea. Moreover, an iterative algorithm is utilized to reduce
the required transmit power while further improve the coverage
probability. To increase the robustness against imperfect ULI,
a robust technique which relocates the aerial BSs before
increasing the radius of coverage areas is proposed. Simulation
results show that the proposed algorithms increase the cover-
age performance by up to 30%. In addition, SD-GR method
is suitable for scenarios where a small number of UAVs are
available, and the iterative algorithm achieves an up to 15%
improved power efficiency at a cost of increased computational
complexity. Performance loss in the existence of inaccurate
ULI is also greatly compensated with the proposed robust
technique.
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