
Energy-aware Routing in
Software-Defined Network using

Compression

Frédéric Giroire1, Nicolas Huin1, Joanna Moulierac1 and
Truong Khoa Phan2

1CNRS, Laboratoire I3S, UMR 7172, UNS, CNRS, Inria, COATI, 06900 Sophia Antipolis,
France

2Department of Electronic and Electrical Engineering University College London

Email: joanna.moulierac@unice.fr

Software-defined Networks (SDN) is a new networking paradigm enabling
innovation through network programmability. Over past few years, many
applications have been built using SDN such as server load balancing, virtual-
machine migration, traffic engineering and access control. In this paper, we focus
on using SDN for energy-aware routing (EAR). Since traffic load has a small
influence on the power consumption of routers, EAR allows putting unused links
into sleep mode to save energy. SDN can collect traffic matrix and then computes
routing solutions satisfying QoS while being minimal in energy consumption.
However, prior works on EAR have assumed that the SDN forwarding table switch
can hold an infinite number of rules. In practice, this assumption does not hold
since such flow tables are implemented in Ternary Content Addressable Memory
(TCAM) which is expensive and power-hungry. We consider the use of wildcard

rules to compress the forwarding tables.
In this paper, we propose optimization methods to minimize energy consumption
for a backbone network while respecting capacity constraints on links and rule
space constraints on routers. In details, we present two exact formulations using
Integer Linear Program (ILP) and introduce efficient heuristic algorithms. Based
on simulations on realistic network topologies, we show that using this smart rule
space allocation, it is possible to save almost as much power consumption as the

classical EAR approach.

Keywords: Software defined networks; Energy-aware Routing; Forwarding tables;
Compression with wildcards; Algorithms; Green Networking.

Received April 2017

1. INTRODUCTION

The environmental footprint of the Information and
Communication Technology (ICT) sector is a growing
concern. According to [1], the sector’s own emissions
are expected to increase to 1.43 billion tons carbon
dioxide equivalent, with 43% attributed to data centers
and telecommunication networks. The reduction of
CO2 emissions and the economic savings associated are
thus an important issue in the scientific community.

Recent studies show that the traffic load of
routers only has a small influence on their energy
consumption [2, 3, 4]. Instead, the dominating factor
is the number of active elements on routers such as
ports, line cards, base chassis, etc. Therefore, in order
to minimize the energy consumption, fewer network
elements should be used while preserving connectivity

and QoS.

Software Defined Network is a rising networking
paradigm that proposes a centralized management of
the network, in contrast with the current decentralized
networks. The approach consists in separating the
control plane from the data plane. The routers and
switches become simple forwarding devices while one or
multiple controllers do the heavy lifting by computing
paths and instructing the routers how to handle the
packets in the network using the OpenFlow protocol
[5]. Reshaping the traffic is thus easier on an SDN since
the controllers have a total knowledge of the topology
and its usage. This flexibility eases the deployment of
green policies on the network. The traffic can be easily
aggregated on a subset of the network with a change in
the Forwarding Information Base (FIB) of the switches
and the unused link shut down.

The Computer Journal, Vol. ??, No. ??, ????

2 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

To store the forwarding rules given by the controller,
the switches use Ternary Content Address Memory
(TCAM), an expensive and power hungry memory type.
Moreover, the OpenFlow rules are more complex than
their legacy counterpart. While the legacy rules match
on only two fields, the OpenFlow rules can match on
40 fields in its version 1.3. The size of the forwarding
tables is thus a scarce resource in an SDN, the maximum
number of rules in a switch can vary from 750 to several
thousands in current hardware [6, 7]. This limit can
even be lower if we consider the use of IPv6 traffic.
The capacity of the forwarding table is a non-negligible
constraint of the deployment of SDN.

In this paper, we use Software Defined Networks
to deploy an Energy Aware Routing (EAR) which
routes the demands on the network respecting the
capacity constraints of the links and of the forwarding
tables while minimizing the energy consumption of the
network. We use wildcard rules to reduce the size of the
forwarding tables. These wildcard rules aggregate rules
with the same action on corresponding fields. We study
in particular two kinds of compression of forwarding
tables: default port compression, using a wildcard
forwarding all packets to a default port, and multi-field
compression, using additional wildcards aggregating all
flows with a field having a specific value (for example,
all flows going to a specific destination). We name the
problem considered here, Energy Aware Routing with
Compression (EARC).

A short version of this work has been presented in
[8]. To our best knowledge, this previous publication
was the first work that defines and formulates the
optimizing rule space problem in SDN for EAR. We
provided an Integer Linear Programs to solve optimally
EARC for the default port compression, a heuristic
algorithm to provide solutions for large networks,
and preliminary results about their compression
and scalability properties. However, the previous
proposition only used a very simple compression. In this
work, we used the compression methods we proposed
in [9] and tested on a data center networks. We adapted
them to solve more efficiently the EARC problem.

In brief, our added contributions to the EARC
problem are:

• We considered multi-field compression to optimize
rule space in SDN for EAR.

• We provide a new Integer Linear Program to
solve optimally EARC for two levels multi-field
compression in Section 4.

• As EAR (and thus EARC) is known to be
NP-hard [10], we consider heuristic algorithms
for EARC that are effective for large network
topologies in Section 5. The algorithm has three
main modules: a compression module in charge of
compressing the routing table, a routing module
responsible for finding a route for each demand
satisfying the capacity constraints and an energy

module deciding which network link to turn off.
In particular, we study several solutions for the
compression problem.

• In Section 6, we compare the different solutions
of the compression problem. We validate them on
random forwarding tables as well as on network
tables originating from simulations on networks of
the SNDlib library [11].

• Using real-life data traffic traces from SNDlib,
we quantify energy savings achieved by our
approaches. Moreover, we also present other QoS
aspects such as routing length and link load of EAR
solutions in Section 7.

2. RELATED WORK

2.1. Classical Energy-aware Routing

Starting from the pioneering work of Gupta [12], the
idea of power proportionality has gained a growing
attention in networking research area. The power
consumption of network equipment has been shown to
be largely independent of the network load in [3, 2, 4].
Indeed, these papers show that the baseline power
consumption with no traffic represents around 80% of
the global power consumption when the router is fully-
loaded. Therefore, the part induced by the traffic is
roughly negligible compared to the fact to switch on
an equipment. Therefore, people suggested putting
network components to sleep in order to save energy.

Although power savings are worthwhile, performance
effects must be minimal, and fault tolerance must
be satisfied. Several algorithms have been proposed
to find feasible routing solutions while satisfying QoS
constraints and being minimal in power consumption.
For instance, the authors in [3, 2] use mixed integer
programming to optimize router power in a wide area
network. Furthermore, other works on saving energy
for data centers have also been presented [13, 14]. In
general, these works show that up to 50% of network
energy can be saved while maintaining the ability to
handle traffic surges and guaranteeing QoS.In [15],
the authors present a two-stage routing scheme where
a simple distributed multipath finding algorithm is
firstly performed to guarantee loop-free routing, and
then a distributed routing algorithm is executed for
energy-efficient routing in each node among the multiple
loop-free paths. In [16], the authors propose a new
framework for energy minimization in Data Center
Networks and model the energy-saving problem with
both VM assignment and network routing with respect
to energy conservation.

2.2. Energy-aware Routing with Software De-
fined Network

Some recent works [17, 18, 19, 20] consider the
problem of optimizing the power consumption in SDN
using an energy-aware traffic engineering approach

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 3

that minimizes the number of links. They present
formulation of the optimization problem involving
routing requirements for control and data plane
communications. They evaluate their propositions
through simulations. They ensure some performance
constraints that are crucial for the correct operation of
SDN such as bounded delay for the control plane traffic
and load balance between controllers. [21] presents a
general state of the art of energy efficiency approaches
in software defined networking. However, these works
do not address the problem of limited rule space.

2.3. Limited Rule Space in OpenFlow Switches

To support a vast range of network applications,
OpenFlow rules are more complex than forwarding
rules in traditional IP routers. For instance, access-
control requires matching on source - destination IP
addresses, port numbers, and protocol [22] whereas a
load balancer may match only on source and destination
IP prefixes [23]. These complicated matching can
be well supported using TCAM since all rules can
be read in parallel to identify the matching entries
for each packet. However, as TCAM is expensive
and extremely power-hungry, the on-chip TCAM size
is typically limited. Several works have tackled the
distribution of the forwarding policies on a network
considering the table size constraints. In [24] and [25],
the authors propose similar solutions in which the set
of end points policies of the network is divided and
then spread over the network so that every packet
is affected by all the policies. However, the routing
policies are not taken into consideration. In both [26]
and [27], routing policies are dealt with by changing
the path of the flows to take advantages of the table
space from all the switches of the network. This type of
solutions (including the one proposed in this paper) do
however change the path used to route a flow and thus
impact the QoS of the network. We go further than
only changing paths by considering compression. In
order to evaluate the impact on QoS of changing paths,
we study the induced network delays of our method
in Section 7. [28, 29] use compression methods to
deal with limited rule space, as we do in our work.
In [28] the authors introduce XPath which identifies
end-to-end paths using path ID and then compresses
all the rules and pre-install the necessary rules into the
TCAM memory. This solution requires contacting the
controller for every new flow entering the network to
obtain the corresponding path ID. In [29], the authors
suggest to following the concept of lost prefix matching
with priorities for compression, using the Espresso [30]
heuristic. They show that their algorithm leads to 17%
savings only. In this paper, we use different compression
methods, which are very efficient, as we use wildcards
to aggregate rules based on several fields. This leads
to savings over 80% in terms of numbers of rules for
practical network forwarding tables. The compression

solution using multi-field compression was tested with
experiments on a small SDN platform for data center
networks in [9]. The experiments show that this is a
realistic solution and that the impact of compression
on failure rate and delay is negligible. In the present
work, we extend this work by proposing new solutions
for the combined problem of routing, compressing and
minimizing the energy consumption, in the new context
of ISP networks.

2.4. Energy Savings with OpenFlow

Since, as stated, the power consumption of router is
mostly independent of traffic load, people suggested
putting network components to sleep to save energy.
OpenFlow is a promising method to implement EAR
in a network. Without setting entries manually, the
SDN controller can collect traffic matrix, performs
routing calculation and then installs new routing rules
on routers using OpenFlow. For instance, the authors
in [13] have implemented and analyzed ElasticTree on
a prototype testbed built with production OpenFlow
switches. The idea is to use OpenFlow to control traffic
flows so that it minimizes the number of used network
elements to save energy. Similarly, the authors in [14]
have set up a small testbed using OpenFlow switches
to evaluate energy savings for their model. OpenFlow
switches have also been mentioned in existing work
as an example of the traffic engineering method to
implement the EAR idea [7]. However, as we can see,
the testbed setups with real OpenFlow switches are
quite small. For instance, in [13], 45 virtual switches
onto two 144-port 5406 chassis switches are used; or
in [14], there is a testbed with ten virtual switches
on a 48-port Pronto 3240 OpenFlow-enabled switch.
We argue that when deploying EAR in real network
topologies, much more real OpenFlow switches should
be used and they have to handle a large number of
traffic flows. In this situation, limited rule space in
switches becomes a serious problem since we can not
route traffic as expected. Therefore, we present in next
sections a novel optimization method to overcome the
rule placement problem of OpenFlow for EAR.

3. PROBLEM DEFINITION

Energy Aware Routing with Compression
(EARC) We consider a backbone network as a
directed graph G = (V,A). The nodes in V describe
routers and the arcs in A represent connections or
links between those routers. The links have a limited
capacity. We denote by Cuv the capacity of a link (u, v).
The nodes have a limited memory space to store rules
and we note Cu the maximum number of rules can be
installed at router u. We denote by Dst the demand
of traffic flow from node s to node t such that Dst ≥
0, s, t ∈ V, s 6= t. The objective is to find a feasible
routing for all traffic flows, respecting the capacity

The Computer Journal, Vol. ??, No. ??, ????

4 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

and the rule space constraints and being minimal in
energy consumption. We name the problem Energy
Aware Routing with Compression (EARC). Note that
EAR refers to the same problem without rule space
constraints. The energy consumption of the network
is given by the number of active links in our model.
We consider that routers have to stay powered on in
backbone networks as they are as they are entry and
exit points of the traffic.

Power Model. Campaigns of measures of power
consumption (see, e.g., [3] and [4]) show that a
network device consumes a large amount of its
power as soon as it is switched on. Following this
observation, on/off power models have been proposed
and studied [31]. Later, researchers and hardware
constructors have proposed more energy proportional
hardware models [32]. To encompass those different
models, see [33] for a discussion, we use a hybrid
power model in which the power of an active link uv
is expressed as

P on
uv +

bwuv

Cuv
Pmax
uv

where P on
uv represents the energy used when the link

uv is switched on, bwuv the bandwidth that is carried
on uv, and Pmax

uv the energy consumed by uv when it
is fully capacitated, i.e., when the amount of carried
bandwidth equals the transport capacity (Cuv) of link
uv. We assume that links can be put into sleep
mode, by putting to sleep both endpoint interfaces.
Routers cannot be put into sleep mode, as there are
the sources/destinations of network traffic.

Compression problem A forwarding table is com-
posed of multiple entries that match flows with corre-
sponding action(s). In OpenFlow 1.0, the matching can
be done on 12 fields from the packet header. For each
field, the matching rule can use a specific value or a
wildcard (noted ∗) that can accept any value. The ac-
tion associated with a matching rule can be to drop the
packet, modify the header, or forward to a specific port.

In the following, we consider the action to be limited
to a forward to outgoing ports. We also limit the use
of the wildcard to the source and destination addresses.
However, our solution also applies if other fields are
considered such as ToS (Type of Service) field or
transport protocol. We compress a table by using either
the aggregation by source (i.e (s, ∗, p)), by destination
(i.e (∗, t, p)) or by the default rule (i.e (∗, ∗, p)). When
only the default rule is used, we talk of default port
compression, and, when all the wildcard may be used,
of multi-field compression.

An example is given in Table 1. Table 1(a) represents
the original table. Table 1(b) provides the result using
default port compression and Table 1(c) the one using
multi-field compression, that is when all three types
of wildcard rules can be used to obtain the optimal

compressed table. Since multiple entries can correspond
to the same couple of source and destination, rules are
considered in the order of the table. A rule on top of
the table has priority over a rule below. Indeed, in
Table 1(c), if we exchange the priorities of the rules
(1, ∗, Port−6) and (∗, 4, Port−4), a flow from source 1
to destination 4 is no longer forwarded through Port-4
like in the original table.

4. INTEGER LINEAR PROGRAMMING

We propose two Integer Linear Programs to solve the
EARC problem. In the first one, EARC-LP-Default,
only the default port compression is allowed, while
multi-field compression is used in the second, EARC-
LP-Multi. The first program thus is less powerful but
runs faster. We were able to obtain optimal solutions
for small networks using both ILP.
The following notations are used in both formulations:

• xuv ∈ {0, 1}, where xuv = 1 if the link (u, v) is
active or not.

• D: the set of all traffic demands to be routed.
• Dst ∈ D: demand of traffic flow from s to t.
• Cuv: capacity of a link (u, v).
• Cu: maximum number of rules can be installed at

router u.
• N+(u) and N−(u): set of outgoing and incoming

neighbors of u, respectively.

4.1. EARC with default port Compression
(EARC-LP-Default)

In this version of the problem, a flow can be routed
following the FIB that contains only perfect match rules
(rules with no wildcard that match exactly the source
and destination address), or via the default port. The
following notations are used in the formulation of the
ILP:

• fstuv ∈ {0, 1}, where fstuv = 1 if (s, t) that is routed
on the link (u, v) by a distinct rule. We call fstuv as
normal flow.

• gstuv ∈ {0, 1}, where gstuv = 1 if (s, t) that is routed
on the link (u, v) by a default rule. gstuv is called
default flow to distinguish from the normal flow
fstuv.

• fuv ∈ R+: sum of the flows routed on the link
(u, v).

• kuv ∈ {0, 1}, where kuv = 1 if the default port of
the router u is pv.

We want to minimize the power consumption of the
network (1).

min
∑

(u,v)∈A

(
P on
uv xuv + Pmax

uv

fuv
Cuv

)
(1)

The flow conservation constraints (2) express that
the total flows entering and leaving a router are equal

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 5

Flow Output port

(0, 4) Port-4
(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 5) Port-4
(1, 6) Port-6
(2, 4) Port-4
(2, 5) Port-5
(2, 6) Port-6

(a) Without compression

Flow Output port

(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 6) Port-6
(2, 5) Port-5
(2, 6) Port-6
(∗, ∗) Port-4

(b) Default port compres-
sion

Flow Output port

(1, 5) Port-4
(2, 6) Port-6
(1, ∗) Port-6
(∗, 4) Port-4
(∗, ∗) Port-5

(c) Multi-field compression

TABLE 1: Examples of routing tables: (a) without compression, (b) with default port compression (only (∗, ∗) rule),
(c) with multi-field compression (three possible aggregation rules), giving the routing table with minimum number
of rules.

(except the source and the destination nodes). Note
that a normal flow entering a router can become a
default flow on an outgoing link and vice versa.

∑
v∈N(u)

fstvu + gstvu − gstuv − fstuv =


−1 if u = s,

1 if u = t,

0 else

∀u ∈ V, (s, t) ∈ D (2)

A flow cannot be routed as both a default flow and a
normal one (3).

fstuv + gstuv ≤ 1 ∀(u, v) ∈ A, (s, t) ∈ D (3)

Link capacities constraints are given by Equation (4)
and no flow is allowed to be forwarded on a disabled
link.

fuv =
∑

(s,t)∈D

Dst(fstuv + gstuv) ≤ Cuvxuv ∀(u, v) ∈ A

(4)

The total number of rules in the table of a router is
equal to the sum of the normal flow forwarded from the
router. It cannot exceed the table capacity Cu minus
the reserved rule for the default port (5).

∑
(s,t)∈D

∑
v∈N(u)

fstuv ≤ Cu − 1 ∀u ∈ V (5)

Finally, we limit the number of default port to one
per router (6). A demand can only be forwarded on an
edge as a default flow if is the edge of the default port
(7).

∑
v∈N(u)

kuv ≤ 1 ∀u ∈ V (6)

gstuv ≤ kuv ∀(u, v) ∈ A, (s, t) ∈ D (7)

4.2. EARC with multi-field Compression

In this version, we consider that the forwarding table
contains several wildcard rules. These rules can match
any flow that comes from a source s (i.e., (s, ∗, p)) or
goes to a destination t (i.e., (∗, t, p)). The following
notations are used for the formulation of the ILP:

• S, set of all sources.
• T , set of all destinations.
• fstuv ∈ {0, 1}, where fstuv = 1 if the flow (s, t) is

routed on the link (u, v).
• fuv ∈ R+: sum of the flows routed on the link

(u, v).

or each router u, we also define the following sets of
variables used for the compression of the tables, similar
to the ones defined in Section 5.1.2. We use the notation
pv to define the port connected to the router v.

• rustpv
∈ {0, 1}, where rustpv

= 1 if the rule (s, t, pv)
exists.

• gsutpv
∈ {0, 1}, where gsutpv

= 1 if the wildcard rule
(∗, t, pv) exists.

• gtuspv
∈ {0, 1}, where gtuspv

= 1 if the wildcard rule
(s, ∗, pv) exists.

• dup ∈ {0, 1}, where dupv
= 1 if pv if the default port.

• oust ∈ {0, 1}, where oust = 1 if the wildcard rule for
the source s has higher priority than the one for
the destination t.

• outs ∈ {0, 1}, where outs = 1 if the wildcard rule for
the destination t has higher priority than the one
for the source s. By definition, oust = 1− outs.

We want to minimize the power consumption of the
network (8).

min
∑

(u,v)∈A

(
P on
uv xuv + Pmax

uv

fuv
Cuv

)
(8)

Flow conservation is ensured via the following set of

The Computer Journal, Vol. ??, No. ??, ????

6 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

constraints:

∑
v∈N+(u)

fstuv −
∑

v∈N−(u)

fstvu =


1 if u = s,

−1 if u = t,

0 else

∀u ∈ V, (s, t) ∈ D (9)

The sum of the flows on a link cannot exceed its
capacity. Moreover, if the link is disabled, no flow can
be forwarded on it (10).

fuv =
∑

(s,t)∈D

Dstfstuv ≤ Cuvxuv ∀(u, v) ∈ A

(10)

The following sets of constraints are similar to the
ones presented for Comp-LP. The principal change is
that the table is no longer an input of the problem
and depend on the routing of the demands. Thus, if
a demand (s, t) is forwarded on the link (u, v), there
must exists a corresponding rule on the router u (11).
Moreover, a non aggregated rule can only exists if the
demand (s, t) is forwarded on the link (u, v) (12).

rustpv
+ gsutpv

+ gtuspv
+ dupv

≥ fstuv ∀(u, v) ∈ A, (s, t) ∈ D
(11)

rustpv
≤ fstuv ∀(u, v) ∈ A, (s, t) ∈ D

(12)

The total number of rules in the table of a router u
cannot exceed its capacity Cu

∑
v∈N+(u)

dupv
+

∑
(s,t)∈D

rustpv
+
∑
t∈T

gsutpv
+
∑
s∈S

gtuspv

 ≤ Cu

∀u ∈ V
(13)

We limit to one the number of default port (14), the
number of wildcard rules for one source (15) and for one
destination (16).∑

v∈N+(u)

dupv
≤ 1 ∀u ∈ V (14)

∑
v∈N+(u)

gsutpv
≤ 1 ∀u ∈ V, t ∈ T (15)

∑
v∈N+(u)

gtuspv
≤ 1 ∀u ∈ V, s ∈ S (16)

For a given demand (s, t) routed on a link (u, v1),
if a matching wildcard rule exists with different port
than pv1 , the table must contain the unaggregated
rule (s, t, pv1) or another wildcard rule, (s, ∗, pv1) or
(∗, t, pv1), with a higher priority (it means that it will
appeared before in the forwarding table). This is to

impose that the flow will be effectively routed through
the right port pv1 .

∀u ∈ V, (s, t) ∈ D, v1 6= v2 ∈ N+(u) :

rustpv1
+ gsutpv1

≥ gtuspv2
− 1 + fstupv1

(17)

rustpv1
+ outs ≥ gtusv2

− 1 + fstupv1
(18)

rustpv1
+ gtuspv1

≥ gsutpv2
− 1 + fstupv1

(19)

rustpv1
+ oust ≥ gsutpv2

− 1 + fstupv1
(20)

Finally, we remove cyclic order dependencies between
rules.

1 ≤ ous1t1 + out1s2 + ous2t2 + out2s1 ≤ 3

∀u ∈ V, s1 6= s2 ∈ S, t1 6= t2 ∈ T (21)

Both linear programs run for small networks. In
particular, we were able to obtain optimal solutions for
the atlanta network from SNDLib, which has 15 nodes
and 22 bi-directional links, see Section 7. However,
the running time increases very quickly as the Energy
Aware Routing problem is NP-Hard [10]. Thus, we
propose efficient heuristic algorithms for larger networks
in the following section.

5. HEURISTIC ALGORITHMS

As the linear programs proposed in the previous section
do not run for medium and large networks, we propose
here efficient heuristic algorithms. The problem can be
decomposed into three sub-problems:

• First, the compression problem consists in reducing
the size of a single table by using aggregation rules:
the default rule for default port compression, and,
additionally, source or destination rules for the
multi-field compression.

• Second, the routing problem goal is to compute and
assign a path in the network for each demand, while
respecting the link and forwarding table capacities.

• Last, the energy saving problem goal is to
shut down a maximum number of links while
maintaining a valid routing in the network for all
the flows.

The heuristic algorithm is thus composed of three
different modules designed to solve these sub-problems.
For the compression module, we propose multiple
heuristics for the two levels of compression (default port
and multi-field compression).

5.1. Compression module

We propose several solutions to solve the compression
problem: First, Comp-Default, giving optimal solutions
for the default port compression. We then provide an

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 7

integer linear program, Comp-LP, which gives optimal
solutions for the multi-field compression. However, as
the problem is NP-Hard (see [34] for a proof), the
program does not scale to large tables (also see Section 6
for compression time and a discussion). We thus
provide two heuristic algorithms for the compression
problem, Comp-Greedy and Comp-Direction.

5.1.1. Default Rule (Comp-Default)
When using only the default port compression, finding
the optimal solution is simple. The algorithm finds the
most occurring port p∗ in the forwarding table, remove
all the rules with p∗, and add the default rule (∗, ∗, p∗)
at the end of the table.

5.1.2. Integer Linear Programming (Comp-LP)
We first define the following notations. We then
formulate the problem as an Integer Linear Program.
Note that a large number of constraints are similar to
the one of EARC-LP-Multi. We yet decided to provide
here the full program to avoid confusion, even if it is at
the cost of some repetitions for the reader.

• R, set of rules in the forwarding table
• S, set of sources in the forwarding table
• T , set of destinations in the forwarding table
• P, set of ports of the router
• rstp ∈ {0, 1}, where rstp = 1 if the rule (s, t, p)

exists
• gstp ∈ {0, 1}, where stp = 1 if the wildcard rule

(∗, t, p) exists
• gtsp ∈ {0, 1}, where tsp = 1 if the wildcard rule

(s, ∗, p) exists
• dp ∈ {0, 1}, where dp = 1 if p is the default port of

the table
• ost ∈ {0, 1}, where ost = 1 if the wildcard rule for

the source s has higher priority than the one for
the destination t.

• ots ∈ {0, 1}, where ots = 1 if the wildcard rule for
the destination t has higher priority than the one
for the source s. By definition, ost = 1− ots.

We want to minimize the total number of rules in the
compressed table (22).

min
∑

(s,t,p)∈R

rstp +
∑
p∈P

(∑
t∈T

gstp +
∑
s∈S

gtsp

)
(22)

All original rules must have a corresponding rule in
it (23).

rstp + gstp + gtsp + dp ≥ 1 ∀(s, t, p) ∈ R (23)

There can be at most one default port (24), one
wildcard rule per source (25) and one wildcard rule per

destination (26) in the table.∑
p∈P

dp ≤ 1 (24)

∑
p∈P

gstp ≤ 1 ∀t ∈ T (25)

∑
p∈P

gtsp ≤ 1 ∀s ∈ S (26)

For every rule (s, t, p) in the original table, if a
matching wildcard rules exists with a different port,
i.e., (s, ∗, p′ 6= p) or (∗, t, p′ 6= p), either the original
rule (s, t, p) or a matching wildcard rule with the right
port exists with a higher priority, (27) to (30).

rstp + gstp ≥ gtsp′ ∀(s, t, p) ∈ R, p′ ∈ P \ {p}
(27)

rstp +ots ≥ gtsp′ ∀(s, t, p) ∈ R, p′ ∈ P \ {p}
(28)

rstp + gtsp ≥ gstp′ ∀(s, t, p) ∈ R, p′ ∈ P \ {p}
(29)

rstp +ost ≥ gstp′ ∀(s, t, p) ∈ R, p′ ∈ P \ {p}
(30)

Finally, we remove the cyclic order dependencies
between rules.

1 ≤ os1t1 + ot1s2 + os2t2 + ot2s1 ≤ 3

∀s1 6= s2 ∈ S, t1 6= t2 ∈ T (31)

5.1.3. Most savings heuristic (Comp-Greedy)
For this heuristic algorithm, we add wildcard rules
for sources or destination in a greedy way, based on
the highest potential compression ratio. The potential
compression ratio of a source s (or destination t) is
equal to the number of rules with the most repeated
port p among all the rules with s (or t) over the
total number of rules with s (or t). At each step, we
compute the potential compression ratio of all sources
and destinations. We then add the wildcard rule
corresponding to the source or destination with the
highest potential compression ratio, and we remove all
the rules matching the wildcard rule. Note that at each
step, the compression ratios of the other sources can be
affected. We thus recompute them at each step.

5.1.4. Direction Based Heuristic (Comp-Direction or
Comp-Dir in short)

We present a second heuristic which is a 3-
approximation of the compression problem [34].

This heuristic computes three different compressed
routing tables and, then, chooses the smallest one. An
example can be seen in Figure 2. We consider the
routing table given in Fig. 2(a).

To compute the first compressed table, the algorithm
considers all the sources one by one. For each source s,

The Computer Journal, Vol. ??, No. ??, ????

8 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

Flow Out. port

(0, 4) Port-4
(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 5) Port-4
(1, 6) Port-6
(2, 4) Port-4
(2, 5) Port-5
(2, 6) Port-6

(a) Original table

Flow Out. port

(0, 4) Port-4
(1, 5) Port-4
(2, 4) Port-4
(2, 5) Port-5
(0, ∗) Port-5
(∗, ∗) Port-6

(b) Source and default

Flow Out. port

(1, 4) Port-6
(1, 5) Port-4
(0, 6) Port-5
(∗, 4) Port-4
(∗, 5) Port-5
(∗, ∗) Port-6

(c) Dest. and default

Flow Out. port

(0, 5) Port-5
(0, 6) Port-5
(1, 4) Port-6
(1, 6) Port-6
(2, 5) Port-5
(2, 6) Port-6
(∗, ∗) Port-4

(d) Default only

TABLE 2: The three compressed tables of the Comp-Direction heuristic on the example presented in (a): (b)
Compression using source aggregation rule and then default rule; (c) Compression using destination aggregation rule
and then default rule; (d) Default port compression. The heuristic selects the smallest table among (b), (c) and (d).

it finds the most occurring port p∗, and replace all the
matching rules with (s, ∗, p∗). If there is a coincidence
of the number of times a port occurs, we choose one
port randomly for the matching rule. The remaining
rules (s, t, p 6= p∗) stay unchanged and have priority
over the wildcard rule. Once all the sources have been
considered, we do a pass over all the wildcard rules. We
aggregate them by finding the most occurring port in
the wildcard rules and by setting it as the default port.
The default port rule has the lowest priority of all the
rules. The first compressed table is given in Fig. 1(b).

The second compressed routing table is obtained with
the same method, but when considering an aggregation
by destinations ((∗, t, p∗) rules) and not by sources. The
second compressed table can be seen in Fig. 1(c).

The third and last one (Fig. 1(d)) is the result of a
single aggregation using the best default port.

5.2. Routing module

The routing module takes as input a sub-network H
given by the energy savings module and tries to find
a feasible routing. Its principle is to try to spread the
flows over the sub-network as much as possible in order
to avoid to overload a link or a routing table.

The module uses a shortest-path algorithm with an
adaptive metric in a residual graph HR, defined in the
following. At the beginning of the algorithm HR = H.
We route the demands one by one. Consider we have
already routed k demands and that we are in step k.
The residual graph is HR

k . For a demand between two
nodes s and t of load d, we create a new subgraph H ′Rk
by first removing all arcs with capacities lower than
d. We then consider routers with a full forwarding
table. For such a router u, we distinguish two cases.
If its forwarding table does not contain any wildcard
rule which could route the demand (s, t), we remove
the router u from the residual graph. On the contrary,
if such a wildcard rule exists3, we keep the router u

3It should be of the form (s, ∗, p), (∗, t, p) or (∗, ∗, p), where p

in the residual graph, but we remove all outgoing links
corresponding to a port different than p.

We then compute a route by finding a shortest path
between s and t in H ′Rk with the set of weights defined
below.

The weight wuv of a link depends (1) on the total
flow using the link corresponding to demands previously
routed, and (2) on the table’s usage of router u also
corresponding to demands previously routed. We note
wc

uv the weight corresponding to the link capacity and
wr

uv the weight corresponding to the rule capacity. They
are defined as follows:

wc
uv =

fuv + d

Cuv

where Cuv is the capacity of the link (u, v) and fuv the
total flow on (u, v). The more the link is used, the
heavier the weight is. This favors the use of links with
lower load, leading to load-balancing. And

wr
uv =

{
|Ru|
Su

if 6 ∃ wildcard rule for (s, t, v)

0 otherwise

where Su is the maximum table size of router u and
Ru is the set of rules for router u. The weight is
proportional to the usage of the table.

Finally, the weight wuv of a link (u, v) is given by:

wuv = 1 + αwc
uv + βwr

uv (32)

The importance of links is given by the parameter α
and the one of tables by β. If α is larger than β, we
give more weight to links.

If a path is found for a demand, we build the residual
graph HR

k+1 for the next step of the algorithm. For each
arc (u, v) of the path, we add the rule (s, t, v) to the
router u if no corresponding wildcard rule exists. If the

represents also the output port of u towards v. Note that several
wildcard rules may be present in the forwarding table of u. In
this case, we consider the first one in the order of priority, as it
will be the one routing the demand (s, t)

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 9

table is full, one of the compression methods previously
described is used to reduce the size of the table4.We
also reduce the capacity of the arc by d from the one
in HR

k . If no path is found, the routing module returns
that no feasible routing was found.

Setting the parameters of routing module. The
metric to find a path for each demand (Equation 32)
combines link usage and link capacity with table
capacity and table usage. We compared several choices
of metrics in [35] for different networks. The results in
terms of energy savings are similar for metrics 3:1 and
1:3 (with slightly better results for the first one), and
they are both always better than metric 1:1. Therefore,
we choose the metric 3:1 for the remaining of the paper.

5.3. Energy savings Module

The energy savings module uses a greedy approach to
select the links to switch off. It tries to remove links
that are less loaded and to accommodate their traffic
on other links in order to reduce the total number of
active links.

The algorithm is simple. We start with the full
network. We launch the routing module to try to find
a feasible routing for all the demands. If such a routing
exists, we try to remove the edge with the lowest load.
We then re-launch the routing module on the network
without the considered edge. If a feasible routing is
found, we continue and try to switch off another edge.
If no feasible routing is found, we put back the edge, and
we try to remove the edge with the second lowest load.
An edge, which was selected and could not be removed,
is not considered anymore. The algorithm stops when
all edges have been selected once.

6. COMPRESSION OF FORWARDING TA-
BLES

We test here the compression module. The goal is to
evaluate typical compression ratios, compression times
and to compare the different solutions proposed in
Section 5.1: the solution using default port compression
(Comp-Default) and the three solutions using the multi-
field compression: the optimal one from the Linear
Program (Comp-LP), when it is possible to compute
it, the Direction Based Heuristic (referenced as Comp-
Direction or Comp-Dir in short), and last, the Most
savings heuristics (Comp-Greedy). As instances, we
consider random routing tables as well as network
routing tables coming from simulations on SNDlib
instances [11].

4Note that, if at some point, the compression method cannot
further compress the table, the algorithm should remember this
fact to avoid relaunching a useless compression each time and
increasing the execution time.

6.1. Random tables

In this section, we focus on the compression of random
tables. The following parameters are used to generate
the random tables studied:

• the number of sources and destinations n
• the number of ports of the switch p
• the density of the corresponding matrix 0 ≤ d ≤ 1

For a pair source-destination, there is an entry in the
table with probability d, and in this case, the exiting
port is chosen uniformly at random among the p ports.

We show the average compression ratio of the
solutions proposed in Section 5.1 as a function of the
parameters used to build the random matrices. We vary
the number of ports in the experiments of Figure 1, the
number of network nodes (corresponding to the number
of sources and destinations) in Figure 2, and the table
density in Figure 3. Each point represents the average
of the results for 10 random forwarding tables for the
comparison with the LP and 20 for the heuristics.

Gap from optimal for small tables. For small
routing tables, we are able to compute the optimal
compressed tables using the linear program (see
Figure 1(a), Figure 2(a) and Figure 3). As an example,
in Figure 1(a), we compare Comp-LP and the other
three solutions on a set of random tables with n = 15
sources/destinations, a density of 0.5 with a number
of ports between 2 and 9. Without surprise, the ILP
compresses better than the other 3 solutions with 68%
ratio at only two ports to 32% with nine ports. The two
heuristics present the same compression with a ratio
of 59% at two ports and 23% at nine ports. Finally,
the only use of the default port yields to the worst
compression as it compresses 53% of the rules with
2 ports and only 15% at nine ports. Similarly, the
difference of compression ratio in Figure 3 is between 4
and 10% when comparing the optimal solution with the
Comp-Greedy and Comp-Direction heuristics. Default
port is the less efficient solution with a compression
ratio around 23%, when the compression ratio of Comp-
Greedy and Comp-Direction heuristics is around 30%.
In Figure 2(a), we vary the number of network nodes
between 5 and 11. The global comparison between
solutions is similar, except that, when there is a small
number of network nodes, Comp-Greedy does not
behave well and provides worse results than Comp-
Default. The explanation is that, for small tables,
Comp-Greedy adds source and destination aggregation
rules that are not necessary, as a default rule works well.
Because of the order between source and destination
rules, most of these rules cannot be aggregated when
we add the default rule, leading to an inefficiency. The
problem disappears for larger numbers of network nodes
(larger than 10), and thus would not appear for ISP
networks which have more network nodes.

Comparison between heuristics for larger tables.
However, the ILP does not scale well for larger

The Computer Journal, Vol. ??, No. ??, ????

10 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

1 2 3 4 5 6 7 8 9
ports

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

Comp-LP

Comp-Greedy

Comp-Default

Comp-Dir

(a) ∼ 112 rules (n = 15, d = 0.5)

1 2 3 4 5 6 7 8 9
ports

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

Comp-Dir

Comp-Greedy

Comp-Default

(b) ∼ 101 250 rules (n = 450, d = 0.5)

FIGURE 1: Compression ratio as a function of the number of ports for the four compression methods.

5 6 7 8 9 10 11
of network nodes

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

Comp-LP

Comp-Greedy

Comp-Default

Comp-Dir

0 200 400 600 800 1000
of network nodes

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

Comp-Greedy

Comp-Default

Comp-Dir

FIGURE 2: Compression ratio as a function of the number of network nodes (that is the number of sources and
destinations) for the four compression methods.

0.0 0.2 0.4 0.6 0.8 1.0
Density

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

Comp-Greedy

Comp-Default

Comp-Dir

FIGURE 3: Compression ratio as a function of the forwarding tables density for the four compression methods.

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 11

tables. In Figure 1(b), we only compare the two
heuristics and Comp-Default on tables with n = 450
sources/destinations and a density of 0.5. First, we
notice that the two heuristics Comp-Greedy and Comp-
Direction obtain the best results. However, the Comp-
Default solution is not far behind with a ratio between
49% and 11% for the random tables. We will see
later that the difference is significantly higher for real
network tables. Comp-Greedy behaves better than
Comp-Direction, with a compression ratio between 55%
and 16% to be compared to a compression ratio between
52% and 14% for Comp-Direction.

Impact of the parameters. The compression ratio
is very sensitive to the number of ports, see Figure 1.
The compression ratio varies from 55% to 18% when the
number of ports varies from 2 to 9 for a random matrice
with around 100,000 rules. Similar results are observed
for small tables with variations from 70% to 35%. We
observe higher compression ratio for smaller numbers
of ports. This is expected as, for example, the impact
of setting a default port is higher when the number of
ports is lower. For two ports, using a default port saves
at least 50% of the rules.

Conversely, the density and the size (number of
network nodes) of the forwarding tables do not have
an important impact on the compression ratio. For the
experiments in Figures 2, the compression ratio varies
only by a few percents when the number of network
nodes increases from 5 to 11, and then from 50 to 1000;
and similarly, when the density goes from 0.1 to 1, even
if it represents a 10-fold increase of the number of rules
in the table (Figure 3). However, density and size of the
forwarding tables have an impact on the compression
time as discussed below.

Compression time. We study the time to compress
forwarding tables. This time depends mostly on
the number of entries in the forwarding table, as
presented in Figure 4. The compression time using
linear programming (Comp-LP) is a lot higher than the
one using heuristic algorithm: around 1000 s for only
125 rules, when it takes a lot less than 1 ms for the
heuristics. We thus had to present the results for Comp-
LP independently in Figure 4(a) with a different log-
scale ([0, 107]), compared to ([0, 104]) for Figure 4(b).
We observe that the compressing time of Comp-LP
increases exponentially with the number of rules. It
reaches the limit of one hour we had set for tables with
slightly more than 150 rules. Note that a network with
10 nodes cannot have more than 90 entries in a routing
table (in the extreme case of one central node seeing
all the possible flows). Thus, we know that we can use
Comp-LP for networks with a number of nodes reaching
10 as all traffic usually is not routed through a single
node. In fact, we show in Section 7, that LP runs on
the SNDlib Atlanta network with 15 nodes, but that it
is not usable for larger networks.

On the contrary, the compression time of the

heuristic algorithms is very low and does not increase
exponentially, but linearly with the number of rules. A
large network with 100 nodes cannot have more than
10,000 entries in a routing table. A forwarding table
of this size is compressed in less than 10 ms (around
10 ms for Comp-Greedy, 1 ms for Comp-Direction, and
less than 1 ms for Comp-Default). It is even possible
to compress a routing table of size 1M rules (for a
network of more than a thousand nodes) in around a
1s for Comp-Greedy and less than 10 ms for Comp-
Direction and Comp-Default. The heuristic algorithms
for compression can thus be used for very large networks
and have a very low execution time.

6.2. Network tables

We now compare the solutions on tables from routing on
backbone networks using the routing and compression
module presented in Section 5.1 and 5.2. We use four
of the SNDlib instances shown in Figure 5:

- atlanta network with 15 nodes and 44 directed
links,

- germany50 network with 50 nodes and 176 directed
links,

- zib54 network with 54 nodes and 216 directed links,
and

- ta2 network with 81 nodes and 162 directed links.

For each network, we compute a routing of all
demands without considering a limit on the number
of rules. We then extract the forwarding tables for
all routers. We then compress each of them with the
different compression solutions. Since the ILP does not
scale, we only compare it with the other solutions on
the atlanta network, see Figure 6(a). On the other
three networks, we compare the EARC-H-Direction,
EARC-H-Greedy and EARC-H-Default solutions, see
respectively Figures 6(b),(c)(d) for germany50, ta2, and
zib54 networks.

Compression Rates. The first global observation is
that the solutions achieve higher compression rates for
network tables than for random tables, with median
values around 80% for all networks. This shows the
efficiency of the algorithms for practical cases. The
explanation of this phenomenon is that real network
tables have a larger number of repeating ports traffic
originating from a source or going to a destination, than
random matrices.

We remark that some tables show a compression ratio
near 100% for all solutions for zib54 and ta2. These
tables correspond to the two routers with only one
outgoing port (the two routers in black in Figure 5).
Thus, only the default port can be used to route all the
demands.

Comparison of the solutions. In the atlanta
network, we see that the difference of efficiency between
the heuristics, Comp-Direction, and Comp-Greedy,

The Computer Journal, Vol. ??, No. ??, ????

12 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

0 50 100 150 200 250
of rules

0

100

101

102

103

104

105

106

107

T
im

e
 (

m
s)

Comp-LP

Comp-Greedy

Comp-Default

Comp-Dir

(a) Linear Program

102 103 104 105 106 107

of rules

0

100

101

102

103

104

T
im

e
 (

m
s)

Comp-Greedy

Comp-Default

Comp-Dir

(b) Heuristic Algorithms

FIGURE 4: Compression times of forwarding tables as a function of the number of rules in the tables for four
methods of compression (two different scales for Time).

(a) atlanta (b) germany50 (c) zib54

(d) ta2

FIGURE 5: The four SNDlib topologies used. Each edge corresponds to two directional links.

and the linear program for compression, Comp-LP,
is smaller than in the case of random tables. The
compression rate of Comp-Direction is almost the same
as the one of Comp-LP, with a median ratio of 81%. As
real network tables are easier to compress than random
tables, we thus can suppose that the results of the
heuristics on larger networks should be good. And, in

fact, we obtain very high compression rates: the median
is 83% for germany, 86% for ta2 and zib54.

Last, we observe that the difference between the two
levels of compression is more significant for real network
tables than for random tables. The median ratios of the
Comp-Default solution are about 30% lower than the
one from the Comp-Greedy heuristics. This shows the

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 13

Comp-Dir Comp-GreedyComp-Default Comp-LP
0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

(a) atlanta

Comp-Dir Comp-Greedy Comp-Default
0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

(b) germany50

Comp-Dir Comp-Greedy Comp-Default
0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

(c) ta2

Comp-Dir Comp-Greedy Comp-Default
0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

p
 r

a
ti

o

(d) zib54

FIGURE 6: Compression ratio of the three different heuristics on 4 different SNDlib topologies.

importance of considering multi-field compression.
The two heuristics using multi-field compression,

EARC-H-Direction and EARC-H-Greedy, show similar
results on all networks. While the Comp-Greedy
heuristic provides better compression ratios on random
tables, the advantage for real network tables is for
the Comp-Direction heuristic: the median ratio is 4%
higher for germany50, ta2, and zib54, and 8% for
atlanta. We use both heuristics in the simulations of
next section in which we obtain results for the EARC
problem on practical network instances.

7. ENERGY SAVINGS

In this section, we study the energy saved over multiple
periods of time and the four following networks:
atlanta, germany50, ta2, and zib54. We compare the
results obtained for the different solutions proposed to
solve the EARC problem, the EAR problem without
compression and classical routing (CR) without energy.

For the power parameters, we look at the powerlib
database [36] that collects representative data for major
network devices such as routers, switches, transponders.
In this database, the scope of the values for the maximal
power is huge, going, as an example, from 10W to
9000W for IP router components. Therefore, in order to
present results that do not rely on a specific equipment
from a specific vendor, we choose for the parameters
of the power model a classical On-Off power model.
Several other papers are dealing with this same power
model, and among others, we can cite the very well-
known and most-cited paper in this area: [3].

The different solutions are summarized in Table 3.
Unless specified, the limit of the forwarding table is
750 rules. The number corresponds to the capacity
of a NEC PF5820 switch. We considered a typical
daily pattern of traffic as shown in Figure 7. Data
come from a typical France Telecom link. For each
network considered, we rescale the traffic based on the
traffic matrices provided by SNDib. We then divide the

The Computer Journal, Vol. ??, No. ??, ????

14 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

Compression Name Short name Routing Energy Compression
kind in figures algo

default port EARC-LP-Default LP (Sec. 4.1)
multi-field EARC-LP-Multi LP (Sec. 4.2)

default port EARC-H-Default EARC-Default Heur Opt. Comp-Default (Sec. 5.1.1)
multi-field EARC-H-LP Heur LP Comp-LP (Sec. 5.1.2)
multi-field EARC-H-Greedy EARC-Greedy Heur Heur Comp-Greedy (Sec. 5.1.3)
multi-field EARC-H-Direction EARC-Dir Heur Heur Comp-Direction (Sec. 5.1.4)

none EAR yes yes none (but no limit on the number of rules)
none EAR-with-limit yes yes none (with limit on the number of rules)
none Classic Routing CR yes no none (but no limit on the number of rules)

TABLE 3: Names of the solutions to solve the EARC problem (and of the EAR problem without compression for
comparison).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Tr
af

fic
 [n

or
m

ali
ze

d]

Daily time (h)

D1

D2

D3

D2

D4 D4

D5

D3

D3

0.3

0.4

0

0.6

0.8

1.0

0 5 10 15 20 24

FIGURE 7: Daily traffic in multi-period

day into five periods, with different levels of traffic as
shown in Figure 7. D1 represents the off-peak hours
with the least amount of traffic on the network and
D5 the peak hours. We choose a small number of
periods as network operators prefer to carry out as few
as possible changes of configurations of their network
equipments to minimize the chance of introducing errors
or producing routing instability. Moreover, most of
the energy savings can be achieved with a very small
number of configurations, see for example [37]. Energy
savings is computed as the number of links to sleep
divided by the total number of links of the network
(|E|).

The need for more space In Figure 8, we show
the number of overloaded routers (with more than 750
installed rules) when applying the heuristic proposed
in [10] for Energy Aware Routing. This EAR heuristic
does not take into account the table size constraint. As
a result, we see that for almost every traffic patterns
(except for D5 on germany50), an EAR needs more than
750 rules to be deployed. In germany50, up to 10% of
the devices are overloaded. For zib54, this number goes
up to 11% and 16% for ta2. This confirms that in order
to be able to deploy energy policies on an SDN, the
table size problem needs to be resolved.

Optimal vs. Heuristic solution We compare
for a small network, atlanta (15 links and 44 links),
the solutions using linear programming and heuristic

algorithms. We considered solutions for different rule
capacities on routers: 100, 750 and 2000 rules.

Both linear programs, LP-Default and LP-Multi,
proposed in Section 4 can be run on the atlanta network
(but not on larger networks such as germany50, zib54
and ta2). As expected, LP-Multi, which solves the
problem using more complex wildcards, has a longer
execution time as it has more variables: around 8 min
for 750 and 2000 rule capacities, to be compared with
23 s and 33 s for EARC-LP-Default. For 100 rule
capacities, we observe a sharp increase as both ILPs
take around 11 minutes to find the optimal solution.
Both LPs find the same optimal solution, with a savings
of 52.27%. This is due to the fact that Atlanta is a
small network with nodes of small degrees. The need for
compression is not high, and both levels of compression
achieve the same results.

We ran two heuristic algorithms with two different
compression modules proposed in Section 5.1, EARC-
H-Direction with the Comp-Direction heuristic and
EARC-H-LP, which solves optimally the compression
problem each time a table has to be compressed when
flows are routed. Both heuristics provide solutions of
the same values, 40.91% of energy savings. However,
the computation times are a lot higher for EARC-H-LP:
more than 30 s compared to 14 ms for the heuristic. The
computation time will prevent us from using EARC-H-
LP on larger networks. As a matter of fact, we recall
the compression time of tables using the LP increases
exponentially, see Figure 4. However, we observe that
both solutions provide the same level of energy savings

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 15

0

3

6

9

12

1 2 3 4 5

Traffic matrices

D1

Traffic matrices

#
 o

v
e
rl
o

a
d

e
d
 r

o
u
te

rs
 (

%
)

D2 D3 D4 D5

(a) Germany50 network

0

3

6

9

12

1 2 3 4 5

Traffic matrices

D1

Traffic matrices

#
 o

v
e
rl
o

a
d

e
d
 r

o
u
te

rs
 (

%
)

D2 D3 D4 D5

(b) Zib54 network

0

3

6

9

12

15

18

1 2 3 4 5

traffic matrices

D1

Traffic matrices

#
 o

v
e
rl
o

a
d

e
d
 r

o
u
te

rs
 (

%
)

D2 D3 D4 D5

(c) Ta2 network

FIGURE 8: Number of overloaded routers in three networks with unlimited rule-space algorithm

TABLE 4: Energy savings (in %) and computation times (in millisecond) for the ILP and the heuristics on the
atlanta network

Rule capacity
EARC-LP-Default EARC-LP-Multi EARC-H-Direction EARC-H-LP
savings time savings time savings time savings time

100 52.27 641 940 52.27 694 302 40.91 ∼ 14 40.91 3381

750 52.27 33 830 52.27 486 759 40.91 ∼ 14 40.91 3311

2000 52.27 23 640 52.27 487 386 40.91 ∼ 14 40.91 3300

for the three rule capacities. The EARC-H-Direction
heuristic is very efficient, and we use it to get solutions
for larger networks. In particular, the running times
for the whole set of demands is around 2 seconds for
Germany50 and zib54 (between 1450 ms and 2785 ms),
and between 3753 ms and 5921 ms for ta2 network.
Therefore, the time to find a route for a single demand
is quite small (0.97ms for the worst case).

Energy savings during the day In Figure 9,
we compare the multiple solutions proposed for the

compression module. We also check the possibility of
an SDN routing without compression (corresponding
to a simple EAR). The ILP is not considered in the
comparison as the networks are too big to be optimally
resolved in an acceptable time.

Importance of compression. First, we see that, as the
networks grow in size, not all heuristics give a valid
SDN routing. No compression is needed to find a valid
SDN routing on germany50. However, it is impossible
to find a routing satisfying the capacity constraint for
zib54 and ta2 without using a compression algorithm.

The Computer Journal, Vol. ??, No. ??, ????

16 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

0 5 10 15 20
Hours

50
52
54
56
58
60
62
64
66

E
n
e
rg

y
 s

a
v
in

g
s

(%
) EAR

EARC-Dir

EARC-Default

EARC-Greedy

EAR-With-limit

(a) germany50

0 5 10 15 20
Hours

44

46

48

50

52

54

56

58

E
n
e
rg

y
 s

a
v
in

g
s

(%
) EAR

EARC-Dir

EARC-Default

EARC-Greedy

(b) zib54

0 5 10 15 20
Hours

54

56

58

60

62

E
n
e
rg

y
 s

a
v
in

g
s

(%
) EAR

EARC-Dir

EARC-Greedy

(c) ta2

FIGURE 9: Energy savings of the different heuristics during the day with a limit of 750 rules.

Moreover, multi-field compression should be used to find
a valid routing for ta2. Indeed, it is impossible to find
a valid routing for ta2 while using only default port
compression.

Results of the heuristics. On germany50, all heuristics
give similar results between 52% for the peak hours and
up to 65% during the night. They are all small within
a margin of about 2% from one another. The EARC-
H-Greedy and EARC-H-Direction heuristics show the
best results and no compression gives the worst ones in
all periods.

For the zib54 network, the difference between the
heuristics is more visible. Between 46% and 56% is
saved during the day. Once again, either the EARC-H-
Greedy or EARC-H-Direction heuristics gives the best
results depending on the periods. The only exception
is during the D2 periods, where the EARC-H-Default
compression shut about 1% more links than the other
two heuristics.

Finally, in the ta2 network, the EARC-H-Greedy
heuristic saves slightly more energy than the EARC-
H-Direction one as the former saves almost 2% more

than the latter.
The amount of saved energy by the heuristics for each

network is different. The explanation is that the order
in which each link is shut down depends on its charge.
A small change in the routing thus can affect the total
energy saved.

EAR vs. EARC. We compare the results of the
proposed solutions with the one of the classic EAR
approach in which no limit on the number of rules is
considered. We show that by using an efficient way
to route demands and compress forwarding tables, it is
possible to save almost as much power consumption as
the EAR approach (curve named No Limit in Figure 9).
Indeed, we see that for the zib54 network, we succeeded
to save the same amount of energy when using the
best of all solutions. The solution EARC-H-Direction
alone is very close to the EAR one. Only half a
percent of energy is lost for some periods of time. On
germany50, the results of the heuristics are almost as
good. For some periods of time, no solutions can do as
well as EAR, but the difference again is only of half a
percent. In general, the results of EARC-H-Greedy are

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 17

withing 1% of the one of EAR. For the network ta2, the
difference between EAR and our solutions is higher but
stays with 2%.

Path lengths As we shut down links, we remove
some shortest paths in the network, and thus raise the
minimum delay between nodes. To study this effect, we
look at the length of the paths in our EAR solutions
and compare it to a routing obtained not using the
energy saving module. For these comparisons, we use
the Direction heuristic.

In Figure 10, we show the distribution of the stretch
ratio of the path used in EARC-H-Direction compared
to a classic routing (CR). The first observation is
that the behavior is similar for the three topologies:
the median stretch is about 2 in the off-peak hour
period (corresponding to the demand D1) and decreases
to about 1.3 in the peak hours (demand D5). The
explanation is that, as expected, in the off-peak hours,
a large number of links can be switched off, and the
paths are the longest. For larger demands, more links
are on, and the stretch decreases.

Note that the median value is not very high.
However, the third quartile value of the off-peak hours
is quite high: 7, 6 and 5.25 for germany50, zib54,
and ta2, respectively. These values are mostly due to
paths of small lengths stretched all the way through
the network to attain their destination (corresponding
for example to nodes linked by a switched-off edge).
Nevertheless, we show below that these somehow large
values of stretch do not cause a problem of too large
delays on the networks.

Delays In Figures 11, 12 and 13, we show the delay of
the paths in the three networks, for both the classical
routing and an EARC solution (EARC-H-Direction).
We consider an optical network in which the delay
is proportional to the distance [38], and we used the
distances given by the geographical coordinates in
SNDlib for the germany50 network. We got an average
value of 1.8 ms per link. Since the coordinates are not
given for the other two topologies, we used the same
average value for zib54 and ta2.
The delays for the classical routing are similar for the
three networks with a median of 8 ms and a maximum
of 15 ms during all periods. For the EARC solution,
the values are much higher. Larger delays are shown
during the off-peak hours as expected. The germany50
network shows the largest delays among the three
topologies. The explanation is that more energy can
be saved for this network. Its median delay is between
11 ms and 16 ms, and the maximum delay is below
50 ms. The delay on the two larger networks is slightly
less impacted as fewer links can be turned off. The
maximum delay observed on zib54 and ta2 is about
40 ms and the medians fluctuate between 14 ms and 9 ms
for zib54 and 14 ms and 10 ms for ta2.

Note that the maximum delay observed is always
below 50 ms. This is an important fact, as this value is
often chosen by Service Level Agreements (SLAs) as the
maximum allowed delay for a route in a network [39].
Thus, even if new routes computed by our algorithms
may sometimes display a high value of stretch, this will
not be a problem for network operators.

Link load When we turn off links, we aggregate the
flows on the remaining links. The load of them is thus
increased. In Figure 14, we compare the link load of all
network links (switched off and switched on) for energy
aware routing and for classical routing. In Figure 15,
cumulative distributions are given considering only the
switched on links. Results are provided only for off-
peak traffic (D1) and rush hour traffic (D5) in the first
figure for clarity reason, while all five demand matrices
are considered in the other.

The first observation is the percentage of links with a
null load (switched off links), e.g., for germany50 62%
with the demand D1 and 54% with D5. The load on
the remaining links is highly increased: for germany50
again, we see that no link has a load higher than 15%
for the CR for the D1 (higher than 50 % for D5) , when
45% of the links have a load higher than this value for
EARC (40% for D5). Similarly, for zib54 and ta2, more
than 80% of the links have a load smaller than 10% for
D1 for CR and of 30% for D5, when more than 50% of
the switched on links have a load higher than 50% for
EARC.

Note that, in the germany50 network, there is a very
notable difference between the D1 and D5 period. In
the off-peak hours, only 30% of the switched-on links are
above 75% compared to 52% in the peak hours. In the
other two networks, the difference between periods as
the difference as the range of energy savings is smaller.
For zib54, in the off-peak hours, the maximum link
utilization is 86% and the minimum is 2% while in the
peak hours, 19% of the links are above this usage and
the minimum is 6%.

8. DISCUSSION

8.1. Generalization to Larger Number of Fields

In fact, our method can be generalized to any number
of fields. Indeed:

1. The LPs can be generalized to a larger number of
fields. With the current efficiencies of both state of
the art linear solvers such as Cplex and computers,
such LPs would run only for 2 fields. This is why
we use this particular (simpler case) as example of
our method in the paper.

2. The compression algorithm can itself be general-
ized to any number of fields as explained in [40].
We used a algorithm giving a 3-approximation al-
gorithm when considering 2 fields. In fact, there
exists a 2f − 1 approximation algorithm, where

The Computer Journal, Vol. ??, No. ??, ????

18 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

D1 D2 D3 D4 D5
0

1

2

3

4

5

6

7

S
tr

e
tc

h
 r

a
ti

o

(a) germany50

D1 D2 D3 D4 D5
0

1

2

3

4

5

6

S
tr

e
tc

h
 r

a
ti

o

(b) zib54

D1 D2 D3 D4 D5
0

1

2

3

4

5

6

S
tr

e
tc

h
 r

a
ti

o

(c) ta2

FIGURE 10: Stretch ratio of the paths given by a EARC solution (EARC-H-Direction) compared to the one given
by a classic routing (without energy savings) on the germany50 network with different traffic matrices.

D1 D2 D3 D4 D5
0

10

20

30

40

50

D
e
la

y
 (

m
s)

(a) Classic Routing

D1 D2 D3 D4 D5
0

10

20

30

40

50

D
e
la

y
 (

m
s)

(b) EARC

FIGURE 11: Average delay by path on the germany50 network

f is the number of fields. The general idea is to
compress on each possible subsets of fields using a
greedy algorithm, and them select the best com-
pression over all subset of fields.

8.2. Prefix Aggregation

In this paper we performed exact matching for the rules,
and put wildcard on the whole source or destination
field. Note that IP prefix aggregation can be easily
added to our model after having compressing the table.
It will allow to reduce more the number of entries.
We will apply this second-step compression on the
entries that contain no wildcard, but only on source
or destination not both.

9. CONCLUSION

To our best knowledge, this is the first work considering
rule space constraints of OpenFlow switch in energy-

aware routing (EAR). We argue that, in addition to
capacity constraint, the rule space is also important as
it can change the routing solution and affects QoS. We
proposed solutions using forwarding table compression,
defining the problem of energy-aware routing with
compression (EARC) for SDN networks. We succeed in
modeling the problem using Integer Linear Programs,
even for complex compression for which a flow may be
routed according to two packet header fields. We also
provide efficient heuristic algorithms for large networks.

Based on simulations with real traffic traces, we show
that using wildcard rules our smart rule allocation can
achieve high energy efficiency for a backbone network
while respecting both the capacity and the rule space
constraints. Thanks to forwarding table compression,
the energy savings are almost as high as in the case
of classic EAR without a limit on the number of
forwarding rules. We also evaluate the impact of the
proposed solutions on path delay. We show that, if
the delay is inevitably increased, the maximum delay

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 19

D1 D2 D3 D4 D5
0

10

20

30

40

50

D
e
la

y
 (

m
s)

(a) Classic Routing

D1 D2 D3 D4 D5
0

10

20

30

40

50

D
e
la

y
 (

m
s)

(b) EARC

FIGURE 12: Average delay by path on the zib54 network.

D1 D2 D3 D4 D5
0

10

20

30

40

50

D
e
la

y
 (

m
s)

(a) Classic Routing

D1 D2 D3 D4 D5
0

10

20

30

40

50

D
e
la

y
 (

m
s)

(b) EARC

FIGURE 13: Average delay by path on the ta2 network.

always stays below typical values given by Service Level
Agreements.

REFERENCES

[1] Webb, M. et al. (2008) Smart 2020: Enabling the low
carbon economy in the information age. The Climate
Group. London, 1, 1–1.

[2] Chiaraviglio, L., Mellia, M., and Neri, F. (2012)
Minimizing isp network energy cost: formulation and
solutions. IEEE/ACM Transactions on Networking
(TON), 20, 463–476.

[3] Chabarek, J., Sommers, J., Barford, P., Estan, C.,
Tsiang, D., and Wright, S. (2008) Power awareness
in network design and routing. INFOCOM 2008. The
27th Conference on Computer Communications. IEEE,
Phoenix, AZ, USA, April, pp. 457–465. IEEE.

[4] Mahadevan, P., Sharma, P., and Banerjee, S. (2009)
“A Power Benchmarking Framework for Network
Devices”. IFIP NETWORKING, Aachen, Germany,
may, pp. 795–808. Springer Berlin Heidelberg.

[5] McKeown, N., Anderson, T., Balakrishnan, H.,
Parulkar, G., Peterson, L., Rexford, J., Shenker, S.,
and Turner, J. (2008) Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun.
Rev., 38, 69–74.

[6] Hp 2920 switch series.

[7] Curtis, A. R., Mogul, J. C., Tourrilhes, J.,
Yalagandula, P., Sharma, P., and Banerjee, S.
(2011) Devoflow: Scaling flow management for high-
performance networks. SIGCOMM Comput. Commun.
Rev., 41, 254–265.

[8] Giroire, F., Moulierac, J., and Phan, K. (2014) Opti-
mizing rule placement in software-defined networks for

energy-aware routing. IEEE Global Communications
Conference (GLOBECOM), Austin, United States, De-
cember, pp. 2523–2529. IEEE.

[9] Rifai, M., Huin, N., Caillouet, C., Giroire, F., Lopez-
Pacheco, D., Moulierac, J., and Urvoy-Keller, G.
(2015) Too Many SDN Rules? Compress Them
with MINNIE. 2015 IEEE Global Communications
Conference (GLOBECOM), San Diego, CA, USA, Dec,
pp. 1–7. IEEE.

[10] Giroire, F., Mazauric, D., and Moulierac, J. (2012)
Energy efficient routing by switching-off network
interfaces. In Kaabouch, N. and Hu, W.-C. (eds.),
Energy-Aware Systems and Networking for Sustainable
Initiatives, chapter 10, June, pp. 207–236. IGI Global,
Hershey, Pennsylvania (USA).

[11] Orlowski, S., Pióro, M., Tomaszewski, A., and Wessäly,
R. (2010) SNDlib 1.0–Survivable Network Design
Library. Networks, 55, 276–286.

[12] Gupta, M. and Singh, S. (2003) Greening of the
internet. Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols
for computer communications, Karlsruhe, Germany,
August, pp. 19–26. ACM.

[13] Heller, B., Seetharaman, S., Mahadevan, P., Yiak-
oumis, Y., Sharma, P., Banerjee, S., and McKeown, N.
(2010) Elastictree: Saving energy in data center net-
works. NSDI, San Jose, CA, USA, April, 28-30, pp.
249–264. USENIX Association.

[14] Wang, X., Yao, Y., Wang, X., Lu, K., and Cao, Q.
(2012) Carpo: Correlation-aware power optimization
in data center networks. INFOCOM, 2012 Proceedings
IEEE, Orlando, FL, USA, March, pp. 1125–1133.
IEEE.

[15] Zhou, B., Zhang, F., Wang, L., Hou, C., Anta, A. F.,

The Computer Journal, Vol. ??, No. ??, ????

20 F. Giroire, N. Huin, J. Moulierac and T.K. Phan

0.0 0.2 0.4 0.6 0.8 1.0
Link Load

0

20

40

60

80

100

lin
k
s

(%
)

(a) germany50

0.0 0.2 0.4 0.6 0.8 1.0
Link Load

0

20

40

60

80

100

lin
k
s

(%
)

(b) zib54

0.0 0.2 0.4 0.6 0.8 1.0
Link Load

0

20

40

60

80

100

lin
k
s

(%
)

D1 EARC

D1 CR

D5 EARC

D5 CR

(c) ta2

FIGURE 14: Comparison of the cumulative distribution function of the link load for Energy Aware Routing with
Compression (EARC) and classic routing (CR). Results for off peak traffic (D1) and rush hour traffic (D5) are
provided.

0.0 0.2 0.4 0.6 0.8 1.0
Link Load

0

20

40

60

80

100

lin
k
s

(%
)

(a) germany50

0.0 0.2 0.4 0.6 0.8 1.0
Link Load

0

20

40

60

80

100

lin
k
s

(%
)

(b) zib54

0.0 0.2 0.4 0.6 0.8 1.0
Link Load

0

20

40

60

80

100

lin
k
s

(%
)

D1

D2

D3

D4

D5

(c) ta2

FIGURE 15: Cumulative distribution function of the link load of the switched on links using EARC for the five
demand matrices (D1 is off peak traffic and D5 is rush hour traffic.)

Vasilakos, A. V., Wang, Y., Wu, J., and Liu, Z.
(2016) Hdeer: A distributed routing scheme for energy-
efficient networking. IEEE Journal on Selected Areas
in Communications, 34, 1713–1727.

[16] Wang, L., Zhang, F., Aroca, J. A., Vasilakos, A. V.,
Zheng, K., Hou, C., Li, D., and Liu, Z. (2014)
Greendcn: A general framework for achieving energy

efficiency in data center networks. IEEE Journal on
Selected Areas in Communications, 32, 4–15.

[17] Fernandez-Fernandez, A., Cervello-Pastor, C., and
Ochoa-Aday, L. (2016) Achieving energy efficiency:
An energy-aware approach in SDN. 2016 IEEE
Global Communications Conference (GLOBECOM),
Washington, DC, USA, Dec, pp. 1–7. IEEE.

The Computer Journal, Vol. ??, No. ??, ????

Energy-aware Routing in SDN using Compression 21

[18] Wang, R., Jiang, Z., Gao, S., Yang, W., Xia, Y.,
and Zhu, M. (2014) Energy-aware routing algorithms
in software-defined networks. Proceeding of IEEE
International Symposium on a World of Wireless,
Mobile and Multimedia Networks 2014, Sydney,
Australia, June, pp. 1–6. IEEE Computer Society.

[19] Özbek, B., Aydoğmuş, Y., Ulaş, A., Gorkemli, B., and
Ulusoy, K. (2016) Energy aware routing and traffic
management for software defined networks. 2016 IEEE
NetSoft Conference and Workshops (NetSoft), Seoul,
South Korea, June, pp. 73–77. IEEE.

[20] Awad, M. K., Rafique, Y., Alhadlaq, S., Hassoun,
D., Alabdulhadi, A., and Thani, S. (2016) A greedy
power-aware routing algorithm for software-defined
networks. 2016 IEEE International Symposium on
Signal Processing and Information Technology, ISSPIT
2016, Limassol, Cyprus, December 12-14, pp. 268–273.
IEEE.

[21] Assefa, B. G. and Ozkasap, O. (2015) State-of-the-
art energy efficiency approaches in software defined
networking. ICN 2015, x, 268.

[22] Casado, M., Freedman, M. J., Pettit, J., Luo, J., Gude,
N., McKeown, N., and Shenker, S. (2009) Rethinking
enterprise network control. IEEE/ACM Trans. Netw.,
17, 1270–1283.

[23] Wang, R., Butnariu, D., and Rexford, J. (2011)
OpenFlow-based Server Load Balancing Gone Wild.
USENIX Workshop on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and Services,
Boston, MA, USA, March, pp. 12–12. USENIX
Association.

[24] Kanizo, Y., Hay, D., and Keslassy, I. (2013) Palette:
Distributing tables in software-defined networks. IN-
FOCOM, 2013 Proceedings IEEE, Turin, Italy, April,
pp. 545–549. IEEE.

[25] Kang, N., Liu, Z., Rexford, J., and Walker, D.
(2013) Optimizing the “one big switch” abstraction in
software-defined networks. Proceedings of the Ninth
ACM Conference on Emerging Networking Experiments
and Technologies, New York, NY, USA, December
CoNEXT ’13, pp. 13–24. ACM.

[26] Nguyen, X.-N., Saucez, D., Barakat, C., and Turletti,
T. (2015) OFFICER: A general Optimization Frame-
work for OpenFlow Rule Allocation and Endpoint Pol-
icy Enforcement. INFOCOM, Kowloon, Hong Kong,
April, pp. 478–486. IEEE.

[27] Cohen, R., Lewin-Eytan, L., Naor, J., and Raz, D.
(2014) On the effect of forwarding table size on sdn
network utilization. INFOCOM, Toronto, Canada,
April, pp. 1734–1742. IEEE.

[28] Hu, S., Chen, K., Wu, H., Bai, W., Lan,
C., Wang, H., Zhao, H., and Guo, C. (2015)
Explicit path control in commodity data centers:
Design and applications. Proceedings of the 12th
USENIX Conference on Networked Systems Design and
Implementation, Berkeley, CA, USA, May NSDI’15, pp.
15–28. USENIX Association.

[29] Braun, W. and Menth, M. (2014) Wildcard compres-
sion of inter-domain routing tables for openflow-based
software-defined networking. Software Defined Net-
works (EWSDN), 2014 Third European Workshop on,
Budapest, Hungary, Sept, pp. 25–30. IEEE Computer
Society.

[30] Theobald, M., Nowick, S. M., and Wu, T. (1996)
Espresso-hf: A heuristic hazard-free minimizer for two-
level logic. Proceedings of the 33rd Annual Design
Automation Conference, New York, NY, USA, June
DAC ’96, pp. 71–76. ACM.

[31] Saravanan, K. P., Carpente, P. M., and Ramirez,
A. (2015) Exploring multiple sleep modes in on/off
based energy efficient hpc networks. 2015 33rd IEEE
International Conference on Computer Design (ICCD),
New York, NY, USA , Oct, pp. 54–61. IEEE.

[32] Niccolini, L., Iannaccone, G., Ratnasamy, S., Chan-
drashekar, J., and Rizzo, L. (2012) Building a power-
proportional software router. Presented as part of the
2012 USENIX Annual Technical Conference, Boston,
MA, USA, June, pp. 89–100. USENIX Association.

[33] Idzikowski, F., Chiaraviglio, L., Cianfrani, A.,
Vizcáıno, J. L., Polverini, M., and Ye, Y. (2016) A
survey on energy-aware design and operation of core
networks. IEEE Communications Surveys & Tutorials,
18.

[34] Giroire, F., Havet, F., and Moulierac, J. (2015)
Compressing two-dimensional routing tables with
order. 7th Network Optimization Conference (INOC),
Varsaw, Poland, May, pp. 1–8. Electronic Notes in
Discrete Mathematics.

[35] Giroire, F., Huin, N., Moulierac, J., and Phan,
K. (2016) Energy-aware routing in software-defined
networks with table compression (using wildcard rules).
Research report 8897. Inria, Sophia Antipolis.

[36] Van Heddeghem, W., Idzikowski, F., Vereecken, W.,
Colle, D., Pickavet, M., and Demeester, P. (2012) Power
consumption modeling in optical multilayer networks.
Photonic Network Communications, 24, 86–102.

[37] Araújo, J., Giroire, F., Moulierac, J., Liu, Y.,
and Modrzejewski, R. (2016) Energy efficient content
distribution. Computer Journal, 59, 192–207.

[38] Choi, B.-Y., Moon, S., Zhang, Z.-L., Papagiannaki, K.,
and Diot, C. (2007) Analysis of point-to-point packet
delay in an operational network. Computer networks,
51, 3812–3827.

[39] Giroire, F., Nucci, A., Taft, N., and Diot, C. (2003)
Increasing the robustness of ip backbones in the absence
of optical level protection. INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer
and Communications, San Franciso, CA, USA, March,
pp. 1–11. IEEE.

[40] Giroire, F., Havet, F., and Moulierac, J. (2018) On
the complexity of compressing two dimensional routing
tables with order. Algorithmica, 80, 209–233.

The Computer Journal, Vol. ??, No. ??, ????

