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Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell’s Theorem,
edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a
novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex
stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the
collapse and amplification mechanism, the two most important features of a consistent collapse model.
Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations
with available experimental data. We show that ξ ≥ 10−26 in order for the model to guarantee classicality of
macro-objects, and at the same time ξ ≤ 10−20 in order not to contradict experimental evidence. As a
comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real)
metric fluctuations reach a peak of ξ ∼ 10−21.
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I. INTRODUCTION

The possibility for quantum mechanics to be the limiting
case of an underlying nonlinear theory has been often
considered in the literature [1–6]. A straightforward moti-
vation is that linear models typically are an approximation
of nonlinear ones [5]. A stronger motivation is that they
open the way to solving the quantummeasurement problem
[7]. In this latter context, models of spontaneous wave
function collapse [8–11] provide a consistent phenomenol-
ogy describing the collapse of the wave function during a
measurement via extra nonlinear and stochastic terms
added to the dynamics. Due to their intrinsic nonlinearity,
these models also offer a way out for some of the puzzles in
quantum gravity and cosmology [12–14].
The common feature of all collapse models is a classical

noise, coupled nonlinearly to the quantum wave function.
The typical collapse equation, in the Itô form, is

dψ t ¼
�
−
i
ℏ
Ĥ0dtþ

ffiffiffi
λ

p X
j

ðÂj − hÂjitÞdWj;t

−
λ

2

X
j

ðÂj − hÂjitÞ2dt
�
ψ t; ð1Þ

where Ĥ0 is the standard quantumHamiltonian, fÂjgj is a set
of self-adjoint commuting operators, and hÂjit¼hψ tjÂjjψ ti
and Wj;t are a set of independent Wiener processes, which
force thewave function to collapse towards one of the common
eigenstates of the operators Âj [15]. The positive coupling
constant λ sets the strength of the collapse mechanism.
Equation (1) should be considered as a phenomenologi-

cal equation, raising the question of why it takes that form.
A justification comes from the following argument first
proposed by Adler [6]. Consider the Hamiltonian

Ĥ ¼ Ĥ0 þ iℏ
ffiffiffi
λ

p X
j

Âj wj;t; ð2Þ

where wj;t ¼ dWj;t=dt is a set of independent white noises.
It describes the coupling of a quantum system with external
classical noises through the operators Âj. It is a reasonable
phenomenological ansatz, except for the fact that the
second term is anti-Hermitian [16]. As a consequence,
the norm of ψ t is not conserved, jeopardizing the physical
meaning of the wave function. The obvious thing to do is to
replace ψ t with ψ t=kψ tk, but this brings in a serious
problem: the resulting equation is nonlinear, and also the
stochastic ensemble of states evolves nonlinearly, even in
the average. This leads to superluminal signaling [21]. The
problem can be avoided if one adds extra terms in Eq. (2),
such that the master equation for density matrix ρt ¼
E½jψ tihψ tj� associated with the ensemble becomes linear
(and of the Lindblad type [22–24]). These new terms are
precisely those which lead to Eq. (1). Appendix A contains
the derivation of what is outlined here.
In the sense explained above, the requirements of norm

conservation and no superluminal signaling added to
Eq. (2) give the desired collapse equation. The hope is
that a sensible nonlinear prequantum theory, which leads to
a dynamics for the wave function at the phenomenological
level, will naturally embody both requirements. The open
issue now is how to justify Ĥ in (2), in particular, why the
coupling should be anti-Hermitian, and what the suitable
choice is for the operators Âj, which select the basis along
which the collapse occurs. While there is no answer to the
first question—at least no more than the hope that the
prequantum theory will provide a natural answer—one can
say more about the second question.
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Quite often the literature suggests that the collapse is
driven by gravity [25–32]. This is the only possibility one
can have, to link the collapse to a known force, since all other
forces as we know them have been successfully quantized;
therefore, they cannot provide the anti-Hermitian coupling
needed for the nonlinear collapse. But there is a stronger
motivation. The collapse scales with the mass/size of the
system [8,9] and localizes the wave function in space.
Then, the natural candidate for the operators Âj is the local
mass density m̂ðxÞ ¼ P

imiδ
ð3Þðx − x̂iÞ, coupled to a noise

wðx; tÞ spread through space [33],

Ĥ ¼ Ĥ0 þ iℏ
ffiffiffi
ξ

p Z
d3xm̂ðxÞwðx; tÞ: ð3Þ

A random gravitational field naturally provides such a
coupling (see Appendix B), which would contain an anti-
Hermitian part if the field has an imaginary component. In
[34] arguments are presented as to why the metric could be
classical and complex-valued. For example, complex-valued
effective metrics appear in modified gravity theories, when
chiral deformations of general relativity are allowed [35].
Following this idea, we will explore the consequences of
assuming a complex nonwhite classical noise coupled to the
local mass density.
The paper is organized as follows. In Sec. II we derive, to

the first meaningful perturbative order, the general collapse
equation for thewave function, aswell as the associatedmaster
equation in the case of N complex–valued colored random
noises hiðtÞ, each coupled to an operator Âi. The literature so
far has considered only the case of real valued colored noises
[11]. In Sec. III we show the collapse mechanism. In Sec. IV
we consider specifically a noise field wðx; tÞ coupled to the
local mass density m̂ðxÞ and discuss the amplification
mechanism, one of the crucial properties of any collapse
model. In Sec.Vwe analyze the bounds on the spectrumof the
noise, which are set by current experiments. We conclude the
paper with a discussion of the results (Sec. VI).

II. MASTER AND COLLAPSE EQUATIONS

We have seen how the idea of a complex gravitational
stochastic background inducing the collapse of the wave
function leads to a collapse model where the noise is
complex valued and, in general, colored. Since this has not
been discussed in the literature so far, in this section we
derive the appropriate collapse equation and the master
equation, following the same strategy as in Appendix A for
a real valued white noise. The starting point is the following
generalized Schrödinger equation:

iℏ∂tjϕti ¼
�
Ĥ0 þ ξ

XN
i¼1

ÂihiðtÞ þ Ô

�
jϕti; ð4Þ

where Âi are arbitrary self-adjoint operators and hiðtÞ are N
complex Gaussian noises, with zero average and correla-
tion function

EQ½h�i ðtÞhjðτÞ� ¼ Dijðt; τÞ;
EQ½hiðtÞhjðτÞ� ¼ Sijðt; τÞ: ð5Þ

Dijðt; τÞ and Sijðt; τÞ are complex functions with magni-
tudes of order 1, and Ô is an operator yet to be defined. The
parameter ξ sets the strength of the noise, which is assumed
to be small. Following the scheme outlined in the intro-
duction, we will determine Ô by the requirement of non-
faster-than-light signaling.
Since the norm of jϕti is not conserved, we consider the

normalized state jψ ti¼jϕti=jjϕtjj, which solves the equation

iℏ∂tjψ ti ¼
�
Ĥt −

1

2
hĤt − Ĥ†

t it
�
jψ ti ð6Þ

with

Ĥt ¼ Ĥ0 þ ξ
XN
i¼1

ÂihiðtÞ þ Ô: ð7Þ

As expected, the normalized vector evolves according to
nonlinear stochastic dynamics. The stochastic ensemble of
pure states ρht ¼ jψ tihψ tj obeys the following dynamics:

iℏ∂tρ
h
t ¼

�
Ĥ0 þ ξ

XN
i¼1

ðÂihiðtÞ − ihAiithIiðtÞ

þ Ô −
1

2
hÔ − Ô†it

�
ρht − H:c: ð8Þ

Taking the expectation value to compute the dynamics for the
densitymatrixρt ¼ E½ρht �, one obtains, in general, a nonlinear
evolution for the ensemble, which implies the possibility of
faster-than-light signaling [21]. This can be avoided with a
proper choice of the operator Ô. Contrary to the white noise
case, identifying the correct form of Ô is very difficult (in
general, impossible) since the dependence of the right-hand
side of the above equation on the noise h is highly nontrivial.
This means that one is not able to compute the stochastic
average, and without such knowledge Ô cannot be deter-
mined. One way to circumvent the problem is to proceed
perturbatively [36]. We Taylor-expand ρht in terms of ξ,

ρht ¼ ρh0;t þ ξρh1;t þ ξ2ρh2;t þOðξ3Þ; ð9Þ
where, for t ¼ 0, all terms except the first one are zero. We
also expand Ô in powers of ξ [37],

Ô ¼ ξÔ1 þ ξ2Ô2 þOðξ3Þ: ð10Þ
Exploiting the perturbative series above, one can find a closed
equation for the average density E½ρht � and obtain the explicit
expression (C5) for each term of the series (10), such that the
average dynamic does not produce faster-than-light signaling
(see Appendix C for the detailed calculation). This fixes the
dynamical equation for the averaged density matrix to be, up
to the second order in ξ2,
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∂tρt ¼−
i
ℏ
½Ĥ0;ρt�−

ξ2

ℏ2

�XN
i;j¼1

Z
t

0

dτDR
ijðt;τÞ½Âi; ½Âjðτ− tÞ;ρt�� þ i

XN
i;j¼1

Z
t

0

dτDI
ijðt;τÞ½Âi;fÂjðτ− tÞ;ρtg�

�
þOðξ3Þ; ð11Þ

where the superscript R/I stands for the real/imaginary part [38]. Exploiting thenEq. (C5) in Eq. (6), the collapse equation for the
wave function turns out to be, up to second order in ξ2,

iℏ∂tjψ ti ¼
�
Ĥ0 þ ξ

�XN
i¼1

ðÂihiðtÞ − ihAiithIiðtÞ
�
þ iξ2

ℏ

XN
i;j¼1

Z
t

0

dτðSijðt; τÞ −Dijðt; τÞÞÂiðÂjðt − τÞ − hAjðt − τÞitÞ

−
iξ2

ℏ

XN
i;j¼1

Z
t

0

dτðSijðt; τÞ −D�
ijðt; τÞÞhAiitÂjðτ − tÞ − iξ2

2ℏ

XN
i;j¼1

Z
dτðSijðt; τÞ −Dijðt; τÞÞðhAiAjðτ − tÞit

− 2hAiithAjðτ − tÞitÞ−
iξ2

2ℏ

XN
i;j¼1

Z
dτðS�ijðt; τÞ −D�

ijðt; τÞÞðhAjðτ − tÞAiit − 2hAiithAjðτ − tÞitÞ
�
jψ ti: ð12Þ

It is interesting to write down the Markovian limit, which is obtained by imposing Dijðt; sÞ ¼ δðt − sÞ ~DijðtÞ and

Sijðt; sÞ ¼ δðt − sÞ ~SijðtÞ; one ends up with the following stochastic Schrödinger equation in the Stratonovich form:

iℏ∂tjψ ti ¼
�
Ĥ0 þ ξ

�XN
i¼1

ðÂihiðtÞ − ihAiithIiðtÞ
�
þ iξ2

ℏ

Xn
i;j¼1

ð ~SijðtÞ − ~DijðtÞÞ
�
ðÂi − hAiitÞðÂj − hAjitÞ þ

1

2
ðhAiAjit

þ hAjAiit − 2hAiihAijÞ
�
−
iξ2

ℏ

XN
i;j¼1

ð ~SIijðtÞ − ~DI
ijðtÞÞðhAiAjit − 2hAjAiitÞ þ

i2ξ
ℏ

Xn
i;j¼1

~DI
ijðtÞhAiitÂj

�
jψ ti: ð13Þ

This equation is a generalization of Eq. (7.43) in [10]. The
first two lines correspond to Eq. (7.43), with the replacement
γ → ~SijðtÞ − ~DijðtÞ, taking also into account that in our case
the operatorsAi are not assumed to commute; the third line is
associated with the complex part of the noise, while in [10]
the noise was assumed to be real.
Equations (11) and (12) are the main result of this

section, and will be used in the rest of the work.
In the next sections we will discuss the main con-

sequences of Eqs. (11) and (12): the collapse of the
wave function, the presence, under suitable conditions,
of an amplification mechanism, and some experimental
predictions.

III. COLLAPSE OF THE WAVE FUNCTION

We now establish under which conditions the dynamics
given by Eq. (12), when H0 ¼ 0, induce the collapse of the
state vector jψit into one of the eigenstates of Âi, assuming
that these operators commute with each other and therefore
have a common set of eigenstates. We will follow
the procedure outlined in Sec. II a of [36]. We neglect
the standard evolution since we are focusing only on the
collapse process. This approximation, in general not true, is
good for macroscopic objects. In fact, given the amplifi-
cation mechanism, which we will describe in the next
section, the effect of the collapse increases with the mass of
the system, becoming dominant with respect to the standard
evolution for large objects.

We consider the stochastic average of the variance
VAðtÞ ¼ hÂ2it − hÂi2t of an operator Â which commutes
with all Âi. One may prove that, for any n,

E½hÂnit� ¼ Tr½ρtÂn� ¼ Tr½ρ0Ân� ¼ E½hÂni0�: ð14Þ

Then, exploiting the perturbative series in Eq. (C2) and
performing the stochastic average, one can obtain

E½hAi2t � ¼ E½hAi0�

−
2ξ2

ℏ2

XN
i;j¼1

Z
t

0

dτ
Z

τ

0

dsðSRijðτ; sÞ −DR
ijðτ; sÞÞ

× hhAi0ðAi − hAii0i0hhAi0ðAj − hAji0i0
þOðξ3Þ: ð15Þ

Given the above result, one can now compute the stochastic
average of the variance VAðtÞ, arriving at

E½VAðtÞ� ¼ VAð0Þ −
2ξ2

ℏ2

XN
i;j¼1

Z
t

0

dτFijðτÞ

× ðhAAii0 − hAi0hAii0ÞðhAAjÞi0 − hAi0hAji0Þ
þOðξ3Þ; ð16Þ

where
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FijðτÞ ¼
Z

τ

0

dSðDR
ijðτ; sÞ − SRijðτ; sÞÞ: ð17Þ

According to [39] the positivity of Fðx; y; τÞ in the limit
t → ∞ is a sufficient condition to guarantee the reduction
properties of Eq. (12). In fact, whenever F is non-negative,
Eq. (16) implies that, for large times the covariance
ðhAAiiτ − hAiτhAiiτÞ converges to 0 for any realization
of the noise, with the only possible exception of a subset of
measure 0. In particular, when Â is equal to Ai, we have

lim
t→∞

hAiAiit − hAiithAiit ¼ lim
t→∞

VAi
ðtÞ ¼ 0: ð18Þ

This means that any initial state converges asymptotically,
with probability 1, to one of the eigenstates of the
operator Âi.
A related question is how fast the wave function

collapses. The decoherence rate of the associated master
Eq. (11) provides a good measure. If we set Ĥ0 ¼ 0, we
immediately obtain the decoherence rate in the basis of the
common eigenstates of the operators Âi,

ρtðα; βÞ ¼ exp

�
−
ξ2

ℏ2

XN
i;j¼1

Z
t

0

dτ
Z

τ

0

dsDR
ijðτ; sÞðαiαj − αiβj − αjβi þ βjβiÞ

þ iDI
ijðτ; sÞðαiαj þ αiβj þ αjβi þ βjβiÞ

�
ρ0ðα; βÞ

¼ exp

�
−
ξ2

ℏ2

XN
i;j¼1

Z
t

0

dτ
Z

τ

0

dsDijðτ; sÞðαiαj − βiβjÞ −D�
i;jðτ; sÞðαiβj þ αjβiÞ

�
ρ0ðα; βÞ; ð19Þ

where ρtðα; βÞ ¼ hαjρtjβi and jαi ðjβiÞ is one element of
the basis, i.e., Âijαi ¼ αijαi.
It is worth studying the case where there is only one

collapse operator and the correlation is real and delta
correlated in time, i.e.,

Dðτ; sÞ ¼ τ0δðτ − sÞ; ð20Þ

with τ0 a real parameter with the dimensions of a time.
Then Eq. (19) reduces to

ρtðα; βÞ ¼ e−
ξ2τ0t

ℏ2
ðα−βÞ2ρ0ðα; βÞ; ð21Þ

where the decoherence rate is constant in time and is
determined by τ0ξ

2.

IV. MASTER EQUATION FOR THE CENTER OF
MASS AND THE AMPLIFICATION MECHANISM

After the collapse of the wave function, the next
fundamental requirement for a good collapse model is
the amplification mechanism: the center of mass wave
function of a composite system should collapse with a rate
which increases with the size of the system. This is
necessary in order for the equation to preserve the quantum
properties of microscopic systems and, at the same time, to
guarantee the classical properties of macroscopic objects.
Instead of considering the problem in full generality as

done in the previous two sections, we focus our analysis to
the case of interest here: the collapse noise coupled to the
mass density operator m̂ðxÞ. In this case Eq. (11) takes the
form

∂tρt¼−
i
ℏ
½Ĥ0;ρt�−

ξ2c4

ℏ2

Z
dx

Z
dy

Z
t

0

dτDRðx−y; t− τÞ

× ½m̂ðxÞ; ½m̂ðy;τ− tÞ;ρt��

−
iξ2c4

ℏ2

Z
dx

Z
dy

Z
t

0

dτDIðx−y; t− τÞ

× ½m̂ðxÞ;fm̂ðy;τ− tÞ;ρtg�; ð22Þ
where DR and DI are the real and the imaginary parts
of the correlation function of the noise field [40]
Dðx; y; t; τÞ ¼ E½h�ðx; tÞhðy; τÞ�. In writing the above equa-
tion, we assumed that the noise is statistically homogeneous
over space and time: DR;Iðx; y; t; τÞ ¼ DR;Iðx − y; t − τÞ.
We consider a system of N pointlike particles. The mass
density function is

m̂ðxÞ ¼
XN
i¼1

miδðx − x̂iÞ

¼
XN
i¼1

mi

ð2πℏÞ3
Z

dQe
i
ℏQ·ðx−x̂iÞ: ð23Þ

Substituting Eq. (23) into Eq. (22) and performing the
integration over x and y, we arrive at the expression

∂tρt¼−
i
ℏ
½Ĥ0;ρt�−

ξ2c4

ℏ2

XN
i;j¼1

mimj

ð2πℏÞ3
Z

t

0

dτ
Z
dQ ~DRðQ;t−τÞ

× ½e− i
ℏQ·x̂i ;½ei

ℏĤ0ðτ−tÞei
ℏQ·x̂je−

i
ℏĤ0ðτ−tÞ;ρt��

−
iξ2c4

ℏ2

XN
i;j¼1

mimj

ð2πℏÞ3
Z

t

0

dτ
Z

dQ ~DIðQ;t−τÞ

× ½e− i
ℏQ·x̂i ;fei

ℏĤ0ðτ−tÞei
ℏQ·x̂je−

i
ℏĤ0ðτ−tÞ;ρtg�; ð24Þ
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where we defined

~DβðQ; t − τÞ ≔
Z

drDβðr; t − τÞei
ℏQ·r ð25Þ

with β ¼ R; I.
We are interested in describing the dynamics of the

center of mass of the composite system. In particular, we
have in mind the case of a rigid body. We introduce the
center of mass coordinates

X̂ ¼
XN
i¼1

mi

M
x̂i; P̂ ¼

XN
i¼1

q̂i; ð26Þ

and the relative coordinates8>>>>><
>>>>>:

r̂i ¼ x̂i − X̂ i ∈ ð1;…; N − 1Þ;
r̂N ¼ −

P
N−1
i¼1

mi
mN

r̂i;

p̂i ¼ q̂i −
mi
M P̂ i ∈ ð1;…; N − 1Þ;

p̂N ¼ −
P

N−1
i¼1 p̂i;

ð27Þ

where M ¼ P
N
i¼1 mi is the total mass of the system. The

operators r̂N and p̂N are not independent (they are defined in
terms of the other relative positions and momenta) but it is
convenient to keep them tomake the notation simpler. These
new variables obey the following commutation relations:

½X̂; P̂� ¼ iℏ ½r̂i; p̂j� ¼ iℏ

�
δij −

mi

M

�
½X̂; r̂i� ¼ ½X̂; p̂i� ¼ ½r̂i; r̂j� ¼ ½r̂i; P̂� ¼ 0 ð28Þ

for i; j ∈ ð1;…; N − 1Þ. We introduce the center of mass
density matrix as

ρCMt ≔ TrRELðρtÞ;
where TrRELð·Þ denotes the partial trace over the relative
coordinates. We study the effect of the partial trace on the
operators of Eq. (24). Assuming that Ĥ0 ¼ ĤCM

0 þ ĤREL
0 ,

the term in the first line simplifies as

TrRELð½ĤCM
0 þ ĤREL

0 ; ρt�Þ ¼ ½ĤCM
0 ; ρCMt �:

The double commutator in the third line can be expanded as
the sum of four terms,

TrRELð½e− i
ℏQ·x̂i ; ½ei

ℏĤ0ðτ−tÞei
ℏQ·x̂je−

i
ℏĤ0ðτ−tÞ; ρt��Þ

¼ TrRELðe− i
ℏQ·x̂ie

i
ℏĤ0ðτ−tÞei

ℏQ·x̂je−
i
ℏĤ0ðτ−tÞρtÞ

− TrRELðei
ℏĤ0ðτ−tÞei

ℏQ·x̂je−
i
ℏĤ0ðτ−tÞρte−

i
ℏQ·x̂iÞ

− TrRELðe− i
ℏQ·x̂iρte

i
ℏĤ0ðτ−tÞei

ℏQ·x̂je−
i
ℏĤ0ðτ−tÞÞ

þ TrRELðρtei
ℏĤ0ðτ−tÞei

ℏQ·x̂je−
i
ℏĤ0ðτ−tÞe− i

ℏQ·x̂iÞ: ð29Þ
We consider the first term on the right-hand side, as the
calculations for the remaining terms are similar. Exploiting
the commutativity of the relative and center ofmass degree of
freedoms, we rewrite the exponential operators in Eq. (29) as

e−
i
ℏQ·x̂i ¼ e−

i
ℏQ·X̂e−

i
ℏQ·r̂i ; e

i
ℏĤ0ðτ−tÞ ¼ e

i
ℏĤ

CM
0 ðτ−tÞei

ℏĤ
REL
0 ðτ−tÞ;

ð30Þ

so that

TrRELðe− i
ℏQ·x̂ie

i
ℏĤ0ðτ−tÞei

ℏQ·x̂je−
i
ℏĤ0ðτ−tÞρtÞ

¼ TrRELð½e− i
ℏQ·r̂i e

i
ℏĤ

REL
0 ðτ−tÞei

ℏQ·r̂je−
i
ℏĤ

REL
0 ðτ−tÞ�

× ½e− i
ℏQ·X̂e

i
ℏĤ

CM
0 ðτ−tÞei

ℏQ·X̂e−
i
ℏĤ

CM
0 ðτ−tÞ�ρtÞ: ð31Þ

We assume the motion of the relative coordinates to be a
small fluctuation around the equilibrium positions ri0 within
the solid (e.g., in a crystalline structure), i.e., r̂iðtÞ ¼
ri0 þ Δr̂iðtÞ, where the fluctuations Δr̂iðtÞ are negligible
with respect to the spatial correlation length of the noise
within the time t − τ. Under this approximation, the square
bracket in the second line of Eq. (31) becomes e−

i
ℏQ·ðri0−rj0Þ,

and we obtain

TrRELðe− i
ℏQ·x̂ie

i
ℏĤ0ðτ−tÞei

ℏQ·x̂je−
i
ℏĤ0ðτ−tÞρtÞ

≃ e−
i
ℏQ·ðri0−rj0Þe− i

ℏQ·X̂e
i
ℏĤ

CM
0

ðτ−tÞei
ℏQ·X̂e−

i
ℏĤ

CM
0

ðτ−tÞρCMt ;

which depends on center of mass operators only. The other
three terms on the right-hand side in Eq. (29) can be
computed in the same way, and therefore we get the overall
result

TrRELð½e− i
ℏQ·x̂i ; ½ei

ℏĤ0ðτ−tÞei
ℏQ·x̂je−

i
ℏĤ0ðτ−tÞ; ρt��Þ

¼ e−
i
ℏQ·ðri0−rj0Þ½e− i

ℏQ·X̂; ½ei
ℏĤ

CM
0 ðτ−tÞei

ℏQ·X̂e−
i
ℏĤ

CM
0 ðτ−tÞ; ρCMt ��:

Similarly, for the operators in the fifth line of Eq. (24) we
obtain

TrRELð½e− i
ℏQ·x̂i ;fei

ℏĤ0ðτ−tÞei
ℏQ·x̂je−

i
ℏĤ0ðτ−tÞ;ρtg�Þ

¼ e−
i
ℏQ·ðri0−rj0Þ½e− i

ℏQ·X̂;fei
ℏĤ

CM
0 ðτ−tÞei

ℏQ·X̂e−
i
ℏĤ

CM
0 ðτ−tÞ;ρCMt g�:

Combining the previous results, we arrive at the following
master equation for the center of mass

∂tρ
CM
t ¼−

i
ℏ
½ĤCM

0 ;ρCMt �

−
ξ2c4

ℏ2

1

ð2πℏÞ3
Z

t

0

dτ
Z

dQ ~DRðQ; t− τÞAðQÞ

× ½e− i
ℏQ·X̂; ½ei

ℏĤ
CM
0 ðτ−tÞei

ℏQ·X̂e−
i
ℏĤ

CM
0 ðτ−tÞ;ρCMt ��

−
iξ2c4

ℏ2

1

ð2πℏÞ3
Z

t

0

dτ
Z

dQ ~DIðQ; t− τÞAðQÞ

× ½e− i
ℏQ·X̂;fei

ℏĤ
CM
0 ðτ−tÞei

ℏQ·X̂e−
i
ℏĤ

CM
0 ðτ−tÞ;ρCMt g�; ð32Þ

with
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AðQÞ ≔
XN
i;j¼1

mimje−
i
ℏQ·ðri0−rj0Þ ¼ jρðQ=ℏÞj2; ð33Þ

where

ρðkÞ ≔
Z

dxρðxÞe−ikx ð34Þ

is the Fourier transform of the classical mass density
distribution ρðxÞ ≔ P

N
i¼1miδðx − rcli Þ.

The master equation (32) for the center of mass wave
function has the same structure as the single particle master
equation, with the addition of the amplifying factor AðQÞ,
which keeps track of the fact that we are dealing with a
composite object, not a pointlike particle.
Typically, the noise correlators DRðr; t − τÞ and

DIðr; t − τÞ are expected to have spatial cutoffs (the noise
correlation length), respectively rRC and rIC. As for the case
of the continuous spontaneous localization (CSL) model
[9], it is interesting to study the behavior of the amplifi-
cation factor in two limiting cases (for a more detailed
proof of what follows, see [41]):
(1) When the particles are at distances smaller than the

noise correlation lengths rRC; r
I
C, they contribute

coherently, giving a factor ∝ ðPimiÞ2.
(2) When the particles are at distances larger than the

noise correlation lengths rRC; r
I
C, they contribute

incoherently, giving a factor ∝
P

im
2
i .

Because of these two properties, a reasonable estimate of
the amplification factor in Eq. (33), is provided by Adler’s
formula [41,42],

Aβ ¼ AβðrβCÞ ¼ Nβðnβm0Þ2 with β ¼ R; I; ð35Þ

where Aβ refers to A in the second line of Eq. (32) for
β ¼ R and to A in the fourth line for β ¼ I; nβ is the number
of nucleons of mass m0 inside a sphere of radius r

β
C, while

Nβ denotes the number of such spheres necessary for
covering the entire object.

V. EXPERIMENTAL BOUNDS ON THE
GRAVITATIONAL NOISE SPECTRUM

Discussing the experimental constraints on the noise
correlator in its full generality is too difficult. We will limit
the discussion to a restricted class of Gaussian correlation
functions, in such a way that the collapse dynamics is
controlled by only two parameters (for a class of correlation
function that leads to a Hu-Paz-Zhang (HPZ) type master
equation, see Appendix D).
Specifically, we consider the Markovian limit by

imposing

~DRðQ; sÞ ≈ ~DRðQÞτ0δðsÞ; ð36Þ

with ½τ0� ¼ ½T� [see Eq. (20)]. From the definition of
Dijðt; τÞ in Eq. (5), using the definition of the Fourier
transform and Eq. (36), it is straightforward to show that
~DIðQÞ ¼ 0. In addition, to make contact with existing
phenomenology for the CSL model [9], we assume that
~DRðQÞ has the following form:

~DRðQÞ ¼ r3C expð−r2CQ2=ℏ2Þ; ð37Þ

where ½rC� ¼ ½L�. With these assumptions, after some
algebra, Eq. (32) reduces to

∂tρ
CM
t ¼ −

i
ℏ
½ĤCM

0 ; ρCMt � − ξ2c4r3Cτ0
ð2πℏÞ32ℏ2

×
Z

dQAðQÞ expð−r2CQ2=ℏ2Þ

× ½e− i
ℏQ·X̂; ½ei

ℏQ·X̂; ρCMt ��: ð38Þ

This equation should be compared with the CSL master
equation [9]

∂tρ
CM
t ¼ −

i
ℏ
½ĤCM

0 ; ρCMt � − λð4πr2CÞ3=2
ð2πℏÞ3

Z
dQ

AðQÞ
m2

0

× expð−r2CQ2=ℏ2Þ½e− i
ℏQ·X̂; ½ei

ℏQ·X̂; ρCMt ��: ð39Þ

In particular, Eq. (38) reduces to the CSL master
equation given in Eq. (39) by setting

ξ ¼ 4ℏπ3=4

m0c2

ffiffiffiffi
λ

τ0

s
: ð40Þ

To simplify the discussion, we assume the time cutoff to
be related to the space cutoff via τ0 ¼ rC=c. We can now set
bounds on ðξ; rCÞ [or equivalently on ðξ; τ0Þ] by using the
bounds already set for the CSL parameters ðλ; rCÞ. We have
summarized the most recent bounds in Fig. 1.
The primary feature of any good collapse model is to

suppress macroscopic linear superpositions. By choosing
an appropriate macroscopicity or classicality scale, one can
estimate the minimal strength the collapse should have.
Specifically, the lower bound (Macro) in Fig. 1 is obtained
by requiring that an object of size 0.01 mm is localized
within 10 ms [41,46]. This means that, more or less, the
smallest object visible to the naked eye is localized within
the perception time of a human observer. Needless to say,
this bound can change by several orders of magnitude
depending on the chosen criteria of classicality.
The coupling with the noise field not only suppresses

macroscopic superposition but, as a side effect, also makes
particles constantly jiggle, and this random motion can be
tested by noninterferometric experiments [47–49]. Here we
consider some of the most relevant such experiments,
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which set rather stringent bounds on the collapse param-
eters. The results are summarized in Fig. 1.
Consider first a charged particle: It is expected that the

random jitters (accelerations) make it emit photons. The
absence of this extra radiation, as it can be extracted by
analyzing the spectrum of emission from Germanium
measured over long times [44], can then be used to obtain
very good bounds (X-rays).
Another interesting bound on the size of the Brownian

motion induced by the collapse mechanism comes from
accurate monitoring of the motion of relatively large
masses, as is the case of the LISA pathfinder experiment
[43]. These bounds have been obtained from the bounds on
the parameters of the Markovian CSL model. However, for
such a large object, we expect that the dynamics do not
change significantly when we consider a colored noise: the
relevant time scale of evolution is much longer than the
considered values of the noise correlation time.
The last bound we consider is derived by studying the

evolution of a gas of cold atoms. The collapse induced
jigglingmakes the gas expandmore thanwhat is predicted by
standard quantum mechanics, and this difference becomes

appreciable if the gas is initially at very low temperature. The
absence of any appreciable difference [45] gives the bound
denoted by “Cold atoms” in Fig. 1. Although this bound is
less strong than the one obtained from the X-ray experiment,
it is the only one which has been shown to also persist for a
non-Markovian noise field.
We leave a more refined analysis of the other bounds, in

the regime where non-Markovian are expected to become
important, for future research.
We compare these results with the recent discovery of

gravitational waves [50], observed in frequency range from
35 to 250 Hz and with a peak strain of 1.0 × 10−21. Clearly,
gravitational waves are real, while here the claim is that the
collapse is caused by complex fluctuations of the metric.
Also, gravitational waves typically have longer wave-
lengths, while here the relevant part of the spectrum is
at high frequencies (Fig. 1). However, it is interesting to see
that in order to have an efficient wave function collapse, the
complex fluctuations need not be very strong. They can
well be several orders of magnitude weaker than the real
gravitational waves recently discovered. In turn, this could
explain why these complex fluctuations, if really existing,
have not yet been discovered.

VI. DISCUSSION AND CONCLUSIONS

Gravity-related models of spontaneous wave function
collapse are not new in the literature. We mention two of
them. The Diósi-Penrose model [29–32] has the same
structure as the model considered here, with two important
differences: (i) the noise is real and white in time, and
(ii) the spatial correlation function is proportional to
G=jx − yj. Although the model is certainly appealing in
many ways, we see no reason why the noise correlator
should have such a special form. Typically, noises have
rather complicated correlation functions, which have little
or no connection to the form of the interaction.
The Schrödinger-Newton equation [32,51,52] descends

from semiclassical gravity [53,54] and contains a gravita-
tional self-interaction term, which tends to suppress super-
positions in space. However, as discussed in [55], this
equation is not of the collapse-model type; in particular, it is
not capable of predicting the collapse of the wave function
in space with the correct quantum probabilities.
In this paper we have investigated a novel proposal,

where the collapse mechanism is driven by a complex
fluctuating metric, as first suggested by Adler [34]. The
correlation function should have a non-negligible contri-
bution also from relatively high frequency components
(∼1015 Hz), contrary to the current search for gravitational
waves, which focuses on much lower frequencies.
By imposing the condition of no superluminal signaling

(perturbatively up to the second order in the coupling
constant ξ, which sets the magnitude of the gravitational
noise),we derived the structure of the equation describing the
evolution of the state vector [Eq. (12)]. We then proved that

FIG. 1. ðξ; rCÞ or equivalently ðξ; τ0Þ parameter diagram of the
gravity induced collapse model in the Markovian regime given by
Eq. (38). The white area is the allowed region. The other shaded
regions are excluded: the orange-shaded region (LISA) from the
data analysis of LISA Pathfinder [43], the blue-shaded region
(X-rays) from data analysis of X-rays measurements [44], the
purple-shaded region from the data analysis with cold atom
experiments (Cold atoms) [45]. The green shaded region (Macro)
is obtained by requiring that the collapse is strong enough to
localize macroscopic objects [41,46]. As a reference, the hori-
zontal dashed line is the magnitude of the real gravitational waves
recently discovered by LIGO.
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this equation defines good collapse dynamics: it collapses the
state vector to the eigenstates of the preferred basis (in our
case, the position basis), and it has an amplification mecha-
nismwhich guarantees that, even for small ξ, collapse effects
become relevant for macroscopic objects.
In the last section we discussed experimental bounds on

the parameters of the model. Interestingly, the magnitude of
the complex fluctuations needed for the collapse to be
compatible with experimental data, and to guarantee the
localization of macroscopic objects, can be orders of
magnitude smaller than the recently discovered gravita-
tional waves. Very weak fluctuations suffice to justify
classicality as predicted by collapse models.
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APPENDIX A: JUSTIFICATION OF THE
COLLAPSE EQUATION

We present the procedure outlined in the introduction, to
justify the collapse equation. Here, to keep the notation
simple, we focus on the case with only one operator Â and
one noise wt. The generalization to the model described in
Eq. (2) can be trivially done, since the noises are
independent.
Let us consider theHamiltonian Ĥ¼Ĥ0þiℏð ffiffiffi

λ
p

ÂwtþÔÞ
and, in the Itô language, the stochastic differential equation

dϕt ¼ ½−iĤ0dtþ
ffiffiffi
λ

p
ÂdWt þ Ô�ϕt; ðA1Þ

throughout this section, we set ℏ ¼ 1. Wewill fix the form of
Ô by requiring no superluminal signaling.
The norm of ϕt is not conserved. In order to write the

equation for the normalized vector ψ t ¼ ϕt=kϕtk, let us
consider the process Nt ¼ hϕtjϕti. Using Itô rules
(dNt ¼ hdϕtjϕti þ hϕtjdϕti þ hdϕtjdϕti), one proves that
it satisfies the stochastic differential equation

dNt ¼ ½2
ffiffiffi
λ

p
hÂitdWt þ λhÂ2itdtþ hðÔ† þ ÔÞitdt�Nt;

ðA2Þ
where we have defined hÂit ¼ hϕtjÂjϕti=kϕtk2 ¼
hψ tjÂjψ ti, and similarly for all other operators. From this,
one can derive the equation for N−1=2

t ,

dN−1=2
t ¼

�
−

ffiffiffi
λ

p
hÂitdWt

þ
�
3

2
λhÂi2t −

1

2
λhÂ2it−

1

2
hðÔ†þ ÔÞit

�
dt

�
N−1=2

t ;

ðA3Þ

and next the equation for ψ t ¼ ϕtN
−1=2
t ,

dψ t ¼
�
−iĤ0dtþ

ffiffiffi
λ

p
ðÂ− hÂitÞdWt

þλ

�
3

2
hÂi2t −

1

2
hÂ2it− ÂhÂit

�
dt

þ
�
Ô−

1

2
hðÔ†þ ÔÞit

�
dt
�
ψ t: ðA4Þ

As we can see, the normalized vector evolves according to
nonlinear stochastic dynamics. The stochastic ensemble of
pure states ρWt ¼ jψ tihψ tj obeys the following dynamics:

dρWt ¼ −i½H; ρWt � þ λð4hÂi2t ρWt − hÂ2itρWt − 2ÂhÂitρWt
− 2ρWt ÂhÂit − ÂρWt ÂÞdt
þ ðÔ†ρWt þ ρWt Ô − hðÔ† þ ÔÞitρWt Þdt
þ ðextra termsÞdWt: ðA5Þ

When taking the expectation value to compute the
dynamics for the density matrix ρt ¼ E½ρWt �, the “extra
terms” average to 0, while the remaining terms generate a
nonlinear evolution for the ensemble. This can be avoided
by choosing O ¼ −ðλ=2ÞÂ2 þ 2λðÂ − hÂitÞhÂit, in which
case all nonlinear terms cancel, and the equation for ρt
becomes of the Lindblad type,

d
dt

ρt ¼ −i½Ĥ0; ρt� −
λ

2
½Â; ½Â; ρt��; ðA6Þ

in turn, Eq. (A1) reduces to Eq. (1). This completes the
argument.

APPENDIX B: NONRELATIVISTIC COUPLING
BETWEEN A GRAVITATIONAL BACKGROUND

AND THE LOCAL MASS DENSITY

The action of a matter field in curved space is described by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ðB1Þ

where Lm is the matter Lagrangian, gμν is the metric tensor,
and

ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½gμν�

p
. We consider a perturbation hμν

around the flat metric ημν, and we Taylor expand the action
around it,

S ¼
Z

d4x

�
Lð0Þ
m þ 1ffiffiffiffiffiffi−ηp ∂ð ffiffiffiffiffiffi−gp

LÞ
∂gμν

����
ημν

hμν

�
þOðhμνhδσÞ;

ðB2Þ
the apex (0) denotes the quantities in the flat spacetime ημν.
The stress energy tensor associated with the Lagrangian Lm
is defined as follows [56]:
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Tμν ¼ −2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp
LmÞ

∂gμν ; ðB3Þ

and Eq. (B2) can be rewritten in the form

S ¼
Z

d4x

�
Lð0Þ
m −

1

2
hμνTð0Þ

μν

�
; ðB4Þ

where from now on we neglect higher-order terms. In the
weak field limit, gravity couples to matter through the stress
energy tensor.
We now derive the nonrelativistic limit for a Klein-

Gordon Lagrangian,

Lð0Þ
m ¼ −ℏ2

2m

�
ημν∂μψ

�∂νψ −
ðmcÞ2
ℏ2

ψ�ψ
�
: ðB5Þ

The interacting Lagrangian becomes

Lð0Þ
int ¼−

1

2
hμνTð0Þ

μν

¼ ℏ
2m

�
∂μψ

�∂νψðhμν−hρρημνÞ−hρρ
mc2

2ℏ2
ψ�ψ

�
: ðB6Þ

The nonrelativistic limit can be obtained by rewriting the
relativistic wave function as follows:

ψðxÞ ¼ e
i
ℏmcx0φðxÞ; ðB7Þ

and assuming that the following relation holds:����mc
ℏ

φ

���� ≫ ji∂μφj; ðB8Þ

meaning that the rest energy associated to the field φ is
much bigger than the momentum energy. Inserting Eq. (B7)
into Eqs. (B5) and (B6), one obtains

Lð0Þ
m ¼ −

ℏ
2m

�
∂0φ

�∂0φ

þ i
mc
ℏ

ðφ�∂0φ − ð∂0φ
�ÞφÞ þ ∂iφ

�∂iφ

�
ðB9Þ

and

Lð0Þ
int ¼ −

1

2
hμνTð0Þ

μν

¼ −
ℏ2

2m

�
h00

�
∂0 − i

mc
ℏ

�
φ�

�
∂0 þ i

mc
ℏ

�
φ

− h0i
��

∂0 − i
mc
ℏ

�
φ�∂iφþ ∂iφ

�
�
∂0 þ i

mc
ℏ

�
φ

�

þ ðhij − hρρηijÞ∂iφ
�∂iφ

�
: ðB10Þ

Under the assumption in (B8), we arrive at the symmetrized
free Schrödinger Lagrangian (x0 ¼ ct),

Lð0Þ
m ≃ iℏ

2
ðφ�∂tφ − ∂tðφ�ÞφÞ þ ℏ2

2m
∂iφ

�∂iφ; ðB11Þ

and the interaction Lagrangian

Lð0Þ
int ¼ −

mc2

2
h00φ�φ: ðB12Þ

The conjugate momenta associated with the total
Lagrangian L ¼ Lð0Þ

m þ Lð0Þ
int are

π ¼ ∂L
∂ð∂tφÞ

¼ iℏ
2
φ�;

π� ¼ ∂L
∂ð∂tφ

�Þ ¼ −
iℏ
2
φ; ðB13Þ

and the Hamiltonian density is

HðxÞ ¼ π∂tφ
� þ π�∂tφ − L

¼ ℏ2

2m
∂iφ

�∂iφþmc2

2
h00φ�φ; ðB14Þ

leading, after integration by parts, to the Hamiltonian

H ¼
Z

d3xφ�ðx; tÞ
�
−
ℏ2

2m
∂i∂i þmc2

2
h00ðx; tÞ

�
φðx; tÞ:

ðB15Þ

Promoting the field φðxÞ ðφ�ðxÞÞ and its conjugate
momenta πðxÞ ðπðxÞ�Þ to operators

φðx; tÞ → φ̂ðx; tÞ;
πðx; tÞ → π̂ðx; tÞ ðB16Þ

and imposing the canonical quantization rule, i.e.,

½φ̂ðx; tÞ; π̂ðx; tÞ� ¼ ½φ̂†ðx; tÞ; π̂†ðx; tÞ�
¼ iℏδðx − yÞ; ðB17Þ

one obtains the Hamiltonian

Ĥ ¼
Z

d3xφ̂†ðxÞH1ðxÞφ̂ðxÞ; ðB18Þ

where

H1ðx; tÞ ¼ −
ℏ2

2m
∂i∂i þmc2

2
h00ðx; tÞ ðB19Þ

is the single-particle Hamiltonian expressed in the posi-
tion basis.
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APPENDIX C: STOCHASTIC SCHRÖDINGER EQUATION
AND NON-FASTER-THAN-LIGHT SIGNALING

The calculations leading to the main result of this paper are rather involved. In this appendix we provide the technical
details of the derivation of Eq. (12) and Eq. (13). The perturbation expansion obtained by combining Eq. (8) with Eq. (9)
and Eq. (10) gives the following system of equations:

iℏ∂tρ
h
0;t ¼ Ĥ0ρ

h
0;t − H:c:

iℏ∂tρ
h
1;t ¼ Ĥ0ρ

h
1;t þ

�XN
i¼1

ðÂihiðtÞ − ihAii0t hIiðtÞ þ Ô1 þ
1

2
hÔ1 − Ô†

1i0t
�
ρh0;t − H:c:

iℏ∂tρ
h
2;t ¼ Ĥ0ρ

h
2;t þ

�XN
i¼1

ðÂihiðtÞ − ihAii0t hIiðtÞ þ Ô1 −
1

2
hÔ1 − Ô†

1i0t
�
ρh1;t

−
�XN

i¼1

ihAii1t hIiðtÞ − Ô2 þ
1

2
hÔ1 − Ô†

1i1t þ
1

2
hÔ2 − Ô†

2i0t
�
ρh0;t − H:c:; ðC1Þ

where hAint ¼ TrðÂρhn;tÞ, and similarly for the other operators. We can formally solve the above system of equations as
follows:

ρh0;t ¼ eiĤ0tρ0e−iĤ0t

ρh1;t ¼ −
i
ℏ

XN
i¼1

Z
t

0

dτ

�
Âiðτ − tÞhiðτÞ − ihAii0τhIiðτÞ þ Ô1ðτ − tÞ − 1

2
hO1 −O†

1i0τ
�
ρh0;t þ H:c:

ρh2;t ¼ −
i
ℏ

XN
i¼1

Z
t

0

dτ

�
Âiðτ − tÞhiðτÞ − ihAii0τhIiðτÞ þ Ô1ðτ − tÞ − 1

2
hO1 −O†

1i0τ
�
eiĤðt−τÞρh1;τe

−iĤðt−τÞ

−
i
ℏ

XN
i¼1

Z
t

0

dτ

�
ihAii1τhIiðτÞ − Ô2ðτ − tÞ þ 1

2
hÔ1 − Ô†

1i1τ þ
1

2
hO2 −O†

2i0τ
�
ρh0;t þ H:c:; ðC2Þ

where ÂiðtÞ is the operator Âi in the interaction picture at time t,

ÂiðtÞ ¼ e
i
ℏĤ0tÂie−

i
ℏĤ0t; ðC3Þ

and similarly for the operator Ô. Now we are in the position to compute a closed equation for the averaged density matrix
E½ρht �. We plug the solutions in Eq. (C2) into Eq. (9); in this way, the stochasticity is entirely contained in polynomials of h,
whose correlations are known. We can then explicitly compute the stochastic average of each term. Collecting all pieces
together, we arrive at the following perturbative equations for the ensemble, which are valid up to order ξ2:

iℏ∂tρ0;t ¼ Ĥ0ρ0;t − H:c:

iℏ∂tρ1;t ¼ Ô1ρ0;t þ
1

2
hO1 −O†

1i0t ρ0;t − H:c:

iℏ∂tρ2;t ¼ −
i
ℏ

XN
i;j¼1

Z
t

0

dτSijðt; τÞðÂi − hAii0t ÞðÂjðτ − tÞ − hAjðτ − tÞi0t Þρ0;t

þ i
ℏ

XN
i;j¼1

Z
t

0

dτDijðt; τÞðÂjðτ − tÞ − hAjðτ − tÞi0t Þρ0;tðt; τÞðÂi − hAii0t Þ

þ i
ℏ

XN
i;j¼1

Z
t

0

dτðSijðt; τÞ −Dijðt; τÞÞhAiðAjðτ − tÞ − hAjðτ − tÞi0t Þi0t ρ0;t

þ Ô2 þ
1

2
hO2 −O†

2i0t ρ0;t − H:c: ðC4Þ
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The above equations are again nonlinear. The nonlinear terms can be removed by choosing

Ô1 ¼ 0

Ô2 ¼ þ i
ℏ

XN
i;j¼1

Z
t

0

dτðSijðt; τÞ −Dijðt; τÞÞÂiðÂjðt − τÞ − hAjðt − τÞi0t Þ

−
i
ℏ

XN
i;j¼1

Z
t

0

dτðSijðt; τÞ −D�
ijðt; τÞÞhAii0t Âjðτ − tÞ: ðC5Þ

Substituting this expression into Eq. (C4) and resumming the Taylor series, one arrives at

∂tρt ¼ −
i
ℏ
Ĥ0ρt −

ξ2

ℏ2

Z
t

0

dτ
XN
i;j¼1

Dijðt; τÞðÂiÂjðτ − tÞρt − Âjðτ − tÞρtÂiÞ þOðξ3Þ þ H:c:; ðC6Þ

or equivalently,

∂tρt ¼ −
i
ℏ
½Ĥ0; ρt� −

ξ2

ℏ2

XN
i;j¼1

Z
t

0

dτDR
ijðt; τÞ½Âi; ½Âjðτ − tÞ; ρt��

−
iξ2

ℏ2

XN
i;j¼1

Z
t

0

dτDI
ijðt; τÞ½Âi; fÂjðτ − tÞ; ρtg� þOðξ3Þ:

APPENDIX D: RELATION TO THE HPZ
MASTER EQUATION

Let us start with the center of mass master equation given
by Eq. (32) with the free particle Hamiltonian ĤCM

0 ¼ P̂2

2m,
where P̂ is the center of mass momentum operator. We
make two assumptions regarding the noise correlation
functions ~DRðQ; sÞ, ~DIðQ; sÞ and the center of mass state
ρt. Loosely speaking, we restrict to a nearly Markovian
regime and assume that the exchanged momentum between
noise and system is small. Mathematically, we give the
sufficient conditions to expand the operators to quadratic
order, i.e., to order OðX̂2Þ, OðP̂2Þ, OðX̂ P̂Þ:
(a) The noise correlation times are small and the state ρt is

such that

e
i
ℏĤ

CM
0 s ≈ 1þ i

ℏ
ĤCM

0 s ¼ 1þ i
ℏ
P̂2

2m
s: ðD1Þ

(b) The noise momentum correlations are small and the
state ρt is such that

e
i
ℏQ·X̂ ≈ 1þ i

ℏ
Q · X̂ −

1

ℏ2
ðQ · X̂Þ2: ðD2Þ

Moreover, the noise momentum correlations depend
only on the modulus Q ¼ jQj,

~DRðQ; sÞ ¼ ~DRðQ; sÞ;
~DIðQ; sÞ ¼ ~DIðQ; sÞ; ðD3Þ

which is equivalent, as follows from Eq. (25), to
assuming a noise correlation isotropic in space
DRðr;sÞ¼DRðr;sÞ andDIðr;sÞ¼DIðr;sÞwith r¼ jrj.

(c) The noise correlation time τ0 is small with respect to
the evolution time t.

Applying the above assumptions (a), (b), and (c), using the
formula in Eq. (35) for the amplification factors and the
identity

Z
dQfðQÞðQ ·XÞðQ · YÞ

¼
�Z

∞

0

dQfðQÞQ4

�
4π

3
X · Y; ðD4Þ

where fðQÞ denotes a generic function, we can perform the
Q integration in Eq. (32). After some algebra we obtain the
simplified master equation

dρCMt
dt

¼ −
i
ℏ

X3
j¼1

�
P̂j

2

2m
; ρt

�
− η

ARðrRCÞ
m2

0

X3
j¼1

½X̂j; ½X̂j; ρt��

þ Π
ARðrRCÞ
m2

0

X3
j¼1

½X̂j; ½P̂j=m; ρ̂��

− iϒ
AIðrICÞ
m2

0

X3
j¼1

½X̂j; fP̂j=m; ρtg�; ðD5Þ

where
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η ¼ m2
0c

4ξ2

6π2ℏ7

Z
∞

0

dQ
Z

∞

0

dτ ~DRðQ; τÞQ4; ðD6Þ

Π ¼ m2
0c

4ξ2

6π2ℏ7

Z
∞

0

dQ
Z

∞

0

dττ ~DRðQ; τÞQ4; ðD7Þ

ϒ ¼ −
m2

0c
4ξ2

6π2ℏ7

Z
∞

0

dQ
Z

∞

0

dττ ~DIðQ; τÞQ4 ðD8Þ

are three phenomenological parameters [given assumption
(c), these do not depend on t], while ARðrRCÞ=m2

0

and AIðrICÞ=m2
0 are dimensionless amplification factors,

related to the size and shape of the composite object as well

as to the noise spatial correlation cutoffs rRC and rIC
(see Sec. IV).
Equation (D5) has the same structure as the HPZ master

equation [57], except for the absence of the HPZ term that
breaks translational invariance. The reason why the HPZ
master equation breaks translational invariance lies in its
founding assumption: a particle in a harmonic potential
coupled to a bath of oscillators. In our case, loosely
speaking, the external oscillators correspond to the com-
plex noise, while the harmonic potential, which explicitly
breaks translational invariance, is absent. Our noise does
not break translational invariance, as we have assumed
explicitly that the correlation function is translationally
invariant (see Sec. IV).
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