
Real-Time Bidding with Multi-Agent Reinforcement Learning
in Display Advertising

Junqi Jin§, Chengru Song §, Han Li§, Kun Gai§, Jun Wang†, Weinan Zhang‡
§Alibaba Group, †University College London, ‡Shanghai JiaoTong University

{junqi.jjq, chengru.scr, lihan.lh, jingshi.gk}@alibaba-inc.com, j.wang@cs.ucl.ac.uk, wnzhang@sjtu.edu.cn

ABSTRACT
Real-time advertising allows advertisers to bid for each impression
for a visiting user. To optimize specific goals such as maximizing
revenue and return on investment (ROI) led by ad placements, adver-
tisers not only need to estimate the relevance between the ads and
user’s interests, but most importantly require a strategic response
with respect to other advertisers bidding in the market. In this paper,
we formulate bidding optimization with multi-agent reinforcement
learning. To deal with a large number of advertisers, we propose a
clustering method and assign each cluster with a strategic bidding
agent. A practical Distributed Coordinated Multi-Agent Bidding
(DCMAB) has been proposed and implemented to balance the trade-
off between the competition and cooperation among advertisers.
The empirical study on our industry-scaled real-world data has
demonstrated the effectiveness of our methods. Our results show
cluster-based bidding would largely outperform single-agent and
bandit approaches, and the coordinated bidding achieves better
overall objectives than purely self-interested bidding agents.

KEYWORDS
Bid Optimization, Real-Time Bidding, Multi-Agent Reinforcement
Learning, Display Advertising

Reference Format:
Junqi Jin, Chengru Song, Han Li, Kun Gai, JunWang,Weinan Zhang.
2018. Real-Time Bidding with Multi-Agent Reinforcement Learning
in Display Advertising. In 2018 ACM International Conference
on Information and Knowledge Management (CIKM ’18), October,
2018, Torino, Italy.

1 INTRODUCTION
Online advertising [5, 9] is a marketing paradigm utilizing the In-
ternet to target audience and drive conversions. Real-time bidding
(RTB) [26] allows advertisers to bid for every individual impression
in realtime when being generated. A typical RTB ad exchange em-
ploys the second price sealed-bid auction [30], and in theory (under
strong assumptions) the second price auction would encourage
truthful bidding. In practice, however, the optimal or equilibrium
bids are largely unknown, depending on various factors, including
the availability of market bid prices, the existence of budget con-
straints, performance objectives, (ir)rationality of opponent bidders.
As such, how to strategically optimize bidding becomes a central
question in RTB advertising [31].

The research on optimal bidding strategies so far has been fo-
cused largely on statistical solutions, making a strong assumption
that the market data is stationary (i.e. their probability distribu-
tion does not change over time in response to the current bidder’s
behaviors) [1, 21, 28, 32, 33]. Specially, Zhang et al. [32] shows
that budget-constrained optimal bidding can be achieved under the

condition that the environment (along with other ad bidders) is
stationary. Zhu et al. [33] proposes a two-stage bandit modeling
where each bidding decision is independent over time. Cai et al. [1]
and Wang et al. [28] leverage reinforcement learning to model the
bid optimization as a sequential decision procedure. Nonetheless,
in ad auctions, ad campaign bidders not only interact with the auc-
tion environment but, most critically, with each other. The changes
in the strategy of one bidder would affect the strategies of other
bidders and vice versa [25]. In addition, existing computational
bidding methods [21, 32] are mainly concerned with micro-level
optimization of one party (a specific advertiser or merchant)’s ben-
efit. But given the competition in the RTB auction, optimizing one
party’s benefit may ignore and hurt other parties’ benefits. From
the ad system’s viewpoint, the micro-level optimization may not
fully utilize the dynamics of the ad ecosystem in order to achieve
better social optimality [28, 33].

In this paper, we address the above issue by taking a game-
theoretical approach [20]. RTB is solved by multi-agent reinforce-
ment learning (MARL) [12], where bidding agents interactions
are modeled. A significant advantage over the previous methods
[1, 21, 28, 32, 33] is that our proposed MARL bidding strategy is ra-
tional as each bidding agent is motivated by maximizing their own
payoff; it is also strategic as each bidding agent will also provide a
best response to the strategic change of other bidders to eventually
reach to an equilibrium stage.

Our study is large-scale and developed in the context of a realis-
tic industry setting, Taobao (taobao.com), the largest e-commerce
platform in China. Taobao serves over four hundred million active
users. The RTB exchange itself serves more than one hundred mil-
lions active audiences every single day. To our best knowledge, this
is the first study of employing MARL for such large scale online ad-
vertising case, evaluated over real data. Previous studies on MARL
are mostly in theoretical nature, and the majority experiments are
done by simulated games [12, 17]. Our RTB can be considered one
of the earliest realistic applications of MARL.

Modeling large scale bidding by MARL is, however, difficult. In
Taobao e-commerce platform, there are a large number of con-
sumers and merchants. Modeling each merchant as a strategic
agent is computationally infeasible. To tackle this issue, we propose
that bidding agents operate in the clustering level. We cluster con-
sumers into several groups, each of which is considered as a "super-
consumer", and also cluster merchants into groups, each of which
is represented by a common bidding agent. The multi-agent formu-
lation is thus based on the interactions between super-consumers
and cluster-level bidding agents, as well as the interactions among
bidding agents. A technical challenge is the convergence of MARL
as all the cluster bidding agents explore the auction system simulta-
neously, which makes the auction environment non-stationary and
noisy for each agent to learn a stable policy. Inspired by multi-agent
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deep deterministic policy gradient (MADDPG) techniques [17], we
propose Distributed Coordinated Multi-Agent Bidding (referred as
DCMAB) method to stabilize the convergence by feeding all agents’
bidding actions to the Q function. During learning, each bidding
agent’s Q function evaluates future value according to all agents’
actions rather than only itself’s action.

Our solution is fully distributed, and has been integrated with
Taobao’s distributed-worker system, which has high-concurrency
and asynchronous requests from our consumers. Experiments are
conducted on real world industrial data. The results demonstrate
our DCMAB’s advantage over several strong baselines including a
deployed baselines in our system. We also find that when bidding
agents act from only self-interested motivations, the equilibrium
that converged to may not necessarily represent a socially optimal
solution [14, 27]. We thus develop a fully coordinated bidding model
that learns the strategy by specifying a common objective function
as a whole. The empirical study shows our DCMAB’s ability of
making merchants coordinated to reach a higher cooperative goal.

2 RELATEDWORK
Bid Optimization in RTB. Bidding optimization is one of the
most concerned problems in RTB, which aims to set right bidding
price for each auctioned impression to maximize key performance
indicator (KPI) such as click or profit [26]. Perlich et al. [21] first
introduced a linear bidding strategy based on impression evaluation,
which has been widely used in real-word applications. Zhang et al.
[32] went beyond linear formulation. They found the non-linear
relationship between optimal bid and impression evaluation. These
methods regard bidding optimization as a static problem, thus fail
to deal with dynamic situations and rationality of bidding agents.

More intelligent bidding strategies optimize KPI under certain
constraints and make real-time adaption, most of which are met
with reinforcement learning. Cai et al. [1] used a Markov Decision
Process (MDP) framework to learn sequentially allocating bud-
get along impressions. Du et al. [3] tackled budget constraint by
Constrained MDP. Wang et al. [28] utilized deep reinforcement
learning, specifically DQN, to optimize the bidding strategy. They
set high-level semantic information as state, and consider no budget
constraint. These tasks share a common setting, i.e., bid optimiza-
tion serves for one single advertiser, with its competitors as part of
the environment, which significantly differs from our settings.

Another popular method for budget allocation is the pacing
algorithm [13, 29] which smooths budget spending across time ac-
cording to traffic intensity fluctuation. Compared with our method,
pacing can be considered as a single agent optimization method
which does not explicitly model the influence from other agents’
actions in the auction environment. In addition, pacing cannot
coordinate agents to cooperate for a better equilibrium.

Like many other ad exchanges, in Taobao advertising system,
we treat advertisers equally. Meanwhile, we need to balance the
interests among consumers, advertisers and the platform. Thus,
we are motivated to construct a framework that simultaneously
takes different interests into consideration. Advertisers compete
for high quality impressions, while they should cooperate in the
sense of providing better user experience. In our work, we adopt
multi-agent reinforcement learning to achieve this goal.
Multi-agent Reinforcement Learning. In multi-agent literature,
how to design mechanisms and algorithms to make agents well

cooperate is the focus. Tan [25] compared cooperation with in-
dependent Q-learning, drawing the conclusion that additional in-
formation from other agents, if used properly, is beneficial for a
collective reward. Many studies afterwards focused on how to ef-
fectively coordinate agents to achieve the common goal, either by
means of sharing parameters [10] or learning communication pro-
tocol [7, 19]. Some of these studies [7, 10] adopted the framework
of centralized training with decentralized execution, allowing for
involving extra information to ease training. Lowe et al. [17] stud-
ied further in this direction and proposed MADDPG (Multi-agent
DDPG), in which the centralized critic is augmented with policies of
other agents. However, MADDPG was applied in a toy simulation
environment where the states update and transition tuple saving
can be performed frequently.

The most serious challenge in our task is that there are a huge
number of advertisers in Taobao, which exceeds the processing
capacity of almost all current multi-agent reinforcement learning
methods. If we model each advertiser as an individual agent, the re-
ward would be sparse for most agents. Besides, our bidding system
is implemented on distributed workers which process requests in
parallel and asynchronously. Considering all these factors, we ex-
tend the deterministic policy gradient (DPG) algorithm [16, 17, 22]
to our solution with improvements including 1) a clustering method
to model a large number of merchants as multiple agents and 2)
distributed architecture design to enable our framework to process
requests in distributed workers in parallel and asynchronously.

3 TAOBAO DISPLAY AD SYSTEM
Taobao’s advertisers are mostly the merchants who not only ad-
vertise but also sell products. Hereinafter, we call them merchants.
Taobao ad system can be divided into three parts as shown in Fig-
ure 1: First in the matching stage, user preferences are obtained by
mining behavior data, and when receiving a user request, matching
part recalls candidate ads (typically hundreds of ads) from the en-
tire ad corpus in real time based on their relevancy. Different from
recommender systems, the recall of the ads has to reflect the adver-
tisers’ willingness of bidding, i.e., their behavior targeting settings.
Second, the follow-up real-time prediction (RTP) engine predicts
the click-through rate (pCTR) and conversion rate (pCVR) for each
eligible ad. Third, after real-time bidding for each candidate ad is
received, these candidate ads are ranked by descending order of
bid × pCTR, which is called effective cost-per-mille (eCPM) sorting
mechanism. Finally, the ranked ads are displayed. For general RTB
auction settings, we refer to [26].

The change of bids will influence the ranking of candidate ads,
and further have the impact on the connections built between the
consumers and merchants. An ideal mapping is that the consumers
find their ideal products and the merchants target the right con-
sumers who have the intent to buy the advertised products. When
demands are precisely met by the supplies, the platform creates
higher connection value for the society. For better revenue opti-
mization, merchants authorize the platform to adjust their manually
set bids within an acceptable range. In summary, bids as key control
variables in the online advertising system and, if adjusted well, can
achieve a win-win-win situation for all consumers, merchants and
the platform’s interest.

In our e-commerce system, there are a large number of registered
merchants and registered consumers. Each auction is launched by a
consumer. According to information in this auction, each merchant
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Figure 1: An Overview of Taobao Display Advertising Sys-
tem. Matching, RTP and Rankingmodules sequentially pro-
cess user requests, and finally return specified quantity of
ads. These ads are shown in Guess What You Like of Taobao
App, tagged by Hot (as shown in red dashed box) and sur-
rounded with recommendation results.

under its budget constraint gives a bid price. If a merchant wins an
auction, the corresponding ad would be delivered to a consumer.
This consumer has a probability to click the ad (click-through rate,
CTR) to enter a landing page for the product, and then has a proba-
bility (conversion rate, CVR) to buy the merchant’s product with
price ppb (pay-per-buy) forming the merchants’ revenue. Given
predefined budget to achieve higher revenue is a general goal of
merchants. With the same predefined budget spent out, higher
merchants’ revenue means higher ROI (ROI = revenue/budдet ).
Higher total merchants’ revenue is also consumers’ and platform’s
motivations: for consumers, they are connected to the products
they want which means better consumer experience, while for the
platform, larger gross merchandise volume (GMV) means larger
long-term advertising revenue.Whenever amerchant’s ad is clicked,
the corresponding merchant’s unspent budget is subtracted by ad-
vertising cost according to generalized second price (GSP) auction
with CPC mechanism [4]. If a merchant loses an auction, he gets
no reward and pays nothing. If the budget runs out, the merchant
will not participate in any rest auctions.

Bidding in display advertising is often regarded as an episodic
process [1]. Each episode includes many auctions and each auction
is about one consumer’s page view in a very specific context. Auc-
tions are sequentially sent to the bidding agents. Each merchant’s
goal is to allocate its budget for the right consumers at the right
time to maximize its KPI such as revenue and ROI. All the mer-
chants competing together forms a multi-agent game. However,
when budgets are limited, the game of merchants’ bidding may
result in a suboptimal equilibrium. For example, the merchants
compete severely in early auctions and many merchants have to
quit early, and the low competition depth in the late bidding results
in low matching efficiency of consumers and merchants. Therefore,
all merchants setting bids for different consumers in appropriate
time according to various competition environments is essential
for Taobao ad system to achieve a socially optimal situation.

4 MULTI-AGENT ADVERTISING BIDDING
We first formulate RTB as a Stochastic Game and then present our
MARL approach and finally discuss our implementation details.

4.1 RTB as a Stochastic Game
We formulate RTB as a Stochastic Game, a.k.a. Markov Game [6],
where there are N bidding agents on behalf of merchants to bid
ad impressions. A Markov game is defined by a set of states S
describing the possible status of all bidding agents, a set of actions
A1, ...,AN whereAi represents action spaces of agent i . An action
a ∈ Ai is the bid adjustment ratio. According to t-th timestep state
st , each bidding agent i uses a policy πi : Si 7→ Ai to determine
an action ai where Si is state space of agent i. After the execution
of ai , the bidding agent i transfers to a next state according to the
state transition function T : S × A1 × ... × AN 7→ Ω(S) where
Ω(S) indicates the collection of probability distributions over the
state space. Each agent i obtains a reward (i.e., revenue) based on
a function of the state and all agents’ actions as ri : S × A1 ×
... × AN 7→ R. The initial states are determined by a predefined
distribution. Each agent i aims to maximize its own total expected
return Ri = ΣTt=0γ

t r ti where γ is a discount factor andT is the time
horizon. We describe the details of agents, states, actions, rewards
and objective functions in our setting as follows.
Agent Clusters. In our system, n registered merchants are de-
noted asm1,m2, ...,mn and l registered consumers are denoted as
c1, c2, ..., cl . Each auction is launched by a consumer with a fea-
ture x describing the consumer’s information in this auction. The
merchant’s product’s price is denoted as ppb (pay-per-buy). The
ideal way to formulate all merchants is to model each of them as an
agent. However, such arrangement is computationally expensive,
and in fact interactions between a specific consumer-merchant pair
are very sparse. As the number of agents increases, the exploration
noise becomes difficult to control. Thus, we propose a clustering
method to model the involved entities. With total revenue during
one day as clustering feature, n merchants are categorized as N
clusters M1, . . . ,MN . Similarly, with contributed revenue in one
day as feature, l consumers are categorized as L clustersC1, . . . ,CL .
We cluster consumers for building agents’ states and for computing
static features which enable the agents to evaluate features of auc-
tions from different consumer clusters and adjust bids accordingly.
Hereinafter, we use i as subscript of merchant cluster, and j for
consumer cluster. Normally N ≪ n, L ≪ l , and when we shrink
the cluster size and enlarge the cluster number, it approximates the
ideal case. The diagram of this modeling is as Figure 2.
State. Our state design aims to let bidding agents optimize their
budgets allocation based on both each impression’s value and spend-
ing trends along time. We consider cumulative cost and revenue
between merchantsMi and consumersCj from the beginning of an
episode up to now denoted as дi j = (costi j ,revenuei j ) as the general
information state. This is because all these дi j vectors characterize
important information as: (1) the budget spent status for an agent
to plan for the rest auctions; (2) the (cost, revenue) distribution of
consumers for an agent to distinguish quality from different con-
sumer clusters; (3) the (cost, revenue) distribution of other agents
for an agent to evaluate the competitive or cooperative environ-
ment. Besides, the consumer feature x is also added to the state
which includes slowly-changed consumer features such as their
total (cost, revenue) status updated every a period of time. This
feature x helps agents evaluate the auction better. We concatenate
all дi j as д = [д11,д12, . . . ,дNL] with x to form the state s = [д,x].
We suppose each merchant’s budget is predefined, therefore their
spent and unspent budgets information is maintained in the state.
The diagram of this modeling is showed in Figure 3.
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Figure 2: Merchants and consumers are grouped into clus-
ters separately. Eachmerchant cluster is an agent, which ad-
justs ad bids of included merchants for different consumer
clusters. For action ai j , i iterates the number of merchant
clusters, as j does for consumer clusters. bratiok stands for
base adjustment ratio of merchant k .

Action. Every merchant manually sets different fixed bids for dif-
ferent consumer crowds. W.l.o.g., we denote the fixed bid as bidk
across all the auctions, where k iterates over n merchants here-
inafter. For better budget allocation, the platform is authorized to
adjust bidk with a scalar α to generate final ˆbidk for execution,
ˆbidk = bidk × (1 + α) where α ∈ [−ranдe, ranдe], 0 < ranдe < 1
and we use ranдe = 0.9 in our experiment. As stated above, we
cluster n merchants into N clusters, then α should have N different
values for different merchant clusters. The actual bid adjust ratio
used is α = ai × bratiok as in Figure 2, where ai is the action of
agent i computed using learned neural networks and bratiok is
impression-level feature to measure value of a specific impression
for merchant k such as pCVR calculated according to impression-
level consumer-merchant information. The calculation of bratiok
is predefined and we would discuss it in detail in 4.3.
Reward and Transition. Reward is defined on the agent level.
Cooperative and competitive relationships can be modeled with
reward settings, i.e. competitive when every agent’s reward is self-
interested and cooperative when all agents’ reward is the same.
Taking competitive case as an example, when a merchant k belong-
ing to agent i executes ˆbidk and wins an auction with delivering
an ad to consumer of Cj , the reward of agent i increases by the
revenue (based on ppb) directly caused by this ad from this con-
sumer. And after the ad was clicked, the budget of merchant k
decreases by cost = pCTRnext (k ) × bidnext (k )/pCTRk according
to GSP mechanism where merchant next(k) is the next ranked
merchant of merchant k according to maximum eCPM ranking
score of pCTR × bid . The дi j in state is updated by accumulating
this (revenue, cost). Changes of дi j for all i, j including consumer
feature x changing form the transition of the states. If a merchant
loses the auction, it contributes nothing to its agent’s reward and
state. Actually, our framework is able to use general reward such
as revenue, cost, ROI, click, etc. In this paper, w.l.o.g., we consider
revenue as our reward under fixed budget constraint, and we as-
sume the merchant will spend out all his budget and use strategic
bidding method to maximize his revenue. As ROI = revenue/cost
and cost is equal to this fixed budget, maximizing revenue also
means maximizing ROI. Note that it’s possible to maximize ROI by
only choosing high ROI impressions and not bidding for low ROI

impressions even there is money left in the budget, in which case
although the merchant achieves a higher ROI, the revenue may be
small, and this case is not considered in this paper.

4.2 Bidding by Multi-Agent RL
Since the output action (bid adjustment) is in a continuous space,
we adopt deterministic policy gradient for learning the bidding
strategy. In the MARL setting, the Q function for agent i is given as

Qπ
i (s,a) = Eπ ,T [Σ

T
t=0γ

t r ti |s0 = s,a], (1)

where π = {π1, ...,πN } is joint policy across all agents and a =
[a1, ...,aN ] is joint action. s0 is initial state. RL makes use of tem-
poral difference recursive relationship with next time-step state s ′
and joint action a′ known as the Bellman equation:

Qπ
i (s,a) = Er,s ′[r (s,a) + γEa′∼π [Qπ

i (s
′,a′]]. (2)

When policy is deterministic, with a deterministic mapping function
µi () from state s to bidding action ai as Eq.(3) for agent i with
parameter θ µi . And µi () is commonly called actor.

ai = µi (s) = µi ([д,x]) (3)

With Eq.(3), above Eq.(2) becomes:

Q
µ
i (s,a1, ...,aN )
= Er,s ′[r (s,a1, ...,aN ) + γQ

µ
i (s
′, µ1(s ′), ..., µN (s ′))], (4)

Where µ = {µ1, ..., µN } is joint deterministic policy of all agents.
In MARL, the goal is to learn an optimal strategy for each agent,
which may have a different or even conflicted goal. The notion of
Nash equilibrium [11] is important, which is represented as a set
of policies µ∗ = {µ∗1, ..., µ

∗
2} such that ∀µi , it satisfies:

Q
µ∗

i (s, µ
∗
1(s), ..., µ

∗
N (s))

= Q
µ∗

i (s, µ
∗
i (s), µ

∗
−i (s)) ≥ Q

µ∗

i (s, µi (s), µ
∗
−i (s)), (5)

where we use compact notations for joint policy of all agents
except i as µ∗−i (s) = {µ

∗
1(s), ..., µ

∗
i−1(s), µ

∗
i+1(s), ..., µ

∗
N (s)}. In a Nash

equilibrium, each agent acts with best response µ∗i to others, pro-
vided all others follow policy µ∗−i (s). This gives the optimal action
at each state s for agent i and leads to equilibrium bidding strategy.

We solveQµ∗

i and µ∗i (s) in Eq. (5) by using an alternative gradient
descent approach, similar to the ones introduced in [17, 23], where
we gradient update agent’s Qµ

i and µi (s) while fixing all other
agent’s parameters (thus their outputs). Specifically, the critic Qµ

i
with parameter θQi is learned by minimizing loss L(θQi ) defined as

L(θQi ) = Es,a,r,s ′[(Q
µ
i (s,a1, ...,aN ) − y)

2], (6)

y = ri + γQ
µ′

i (s
′, µ ′1(s

′), ..., µ ′N (s
′)), (7)

where µ′ = {µ ′1, ..., µ
′
N } is target policies with delayed parameters

θ
µ′
i , Qµ′

i is target critic function with delayed parameters θQ
′

i , and
(s,a1, . . . ,aN , ri , s ′) is a transition tuple saved in replay memory
D. Each agent’s policy µi with parameters θ µi is learned as

∇θ µi J (µi ) = Es
[
∇θ µi µi (s)∇aiQ

µ
i (s,a1, ...,aN )|ai=µi (s)

]
. (8)

In the next section, we present a distributed implementation of
Eqs. (6), (7), and (8) within our distributed architecture.
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Figure 3: DCMAB Illustration. (a) DCMABworkflow in advertising system. The State Servermaintains agents’ states including
general information д, consumer distribution d and consumer static feature xq . EveryTp , states are merged and agents’ actors
are updated. Then µi

( [
д, x j

] )
is calculated for merchant cluster i and consumer cluster j, further multiplied by bratiok to form

final bid adjustment. (b) DCMAB network. Separate Actor and Q network for each agent. ai j is calculated through µi using д
and x j as input. In addition to states and actions, consumer distribution d is collected as input of all agents’ Q function.

4.3 Implementation & Distributed Architecture
A typical RL method such as original DPG saves a transition tuple
after every state transition, which is difficult to implement in a real-
world RTB platform for following reasons. (i) An operational RTB
system consists of many distributed workers processing consumers’
requests in parallel and asynchronously, demanding to merge all
workers’ state transitions. (ii) The states change frequently and
saving every request as a transition tuple would cost unnecessary
computation. In this section, we extend original gradient updates
to be adapted to real-world distributed-worker platform.

The state transition update and action execution are maintained
asynchronously. In other words, transition tuples and executing
actions are operated with different frequencies, where states that
merge among workers and tuples are saved periodically every a
time gap Tp . During each Tp , there are many requests processed.
For every request, according to different request features, the actor
µi generates different actions for execution. With our method, the
merge of states and transition updates at every Tp interval can be
handled by current industrial computation ability of distributed
workers. Note that although states are updated everyTp , the actions
are generated for every auction in real time. This framework brings
different frequencies of critic updates and actor executions. We
propose following techniques to organize critic and actor well.
Balance Computing Efficiency and Bid Granularity. For com-
puting efficiency, states are updated every Tp . For finer bid granu-
larity, we introduce impression-level feature bratiok to fine tune
bid price. As stated in State definition, consumer feature x consists
of static feature containing slowly changed information obtained
before oneTp starts. And real-time feature such as pCVR is also uti-
lized, which can only be acquired when a request visits the worker.

As shown in actor definition, we factorize the final bid adjust-
ment as α = ai × bratiok . ai is computed every Tp by µi ([д, x]),
where x is static consumer feature. While the real-time part is
used for bratiok in every impression. The concrete formulation
is bratiok = pCVRk/pCVR

avд
k , where pCVRk is on merchant-

consumer level (not merchant cluster and consumer cluster level)
for merchant k and pCVR

avд
k is 7-day historical average pCVRk

of this merchant k. pCVRk/pCVR
avд
k provides impression-level

information enabling a merchant to apply impression-level bid ad-
justment for high quality consumer request as Zhu et al. [33]. In
such settings, ai applies coarse adjustment to merchants within

a cluster, and bratiok discriminates among merchants within the
same cluster and reflects real-time conversion value.

Next, we focus on the learnable component ai , i.e. µi . Computing
µi ([д,x]) for every consumer is computationally costly before every
time interval Tp because of large numbers of consumers. Our solu-
tion is utilizing consumer clusters. For L consumer clusters, we de-
sign L cluster-specific versions of features for x as xq = [x1, ...,xL].
Each x j contains a one-hot embedding of consumer cluster j with
dimension L, and its historical (revenue, cost). We design this one-
hot embedding to enhance the discriminative ability on the ba-
sis of (revenue, cost). Before the beginning of each Tp , we com-
pute ai j = µi ([д,x j ]) for every merchant cluster i and consumer
cluster j pair for i = 1, ...,N , j = 1, ...,L. Within one interval Tp ,
for candidate ad of merchant k, we select ai j according to the
merchant cluster and consumer cluster pair, then multiplied by
bratiok and clipped by [−ranдe, ranдe] to form final adjusting ra-
tio α = min{max{ai j × bratiok ,−ranдe}, ranдe} for computing
ˆbidk = bidk × (1 + α). Note that ai and x in Eq.(3) are replaced by

ai j and x j due to extra dimension of consumer cluster.
Handle Impression-Level Information Summarization. We
save transition tuples to replay memory every time interval Tp ,
which requires to aggregate all impressions’ information during
Tp . Thus, we propose an aggregation method to summarize the
executions within Tp where we maintain a discrete distribution of
ai j as di j = #ai j/tot_num where #ai j stands for executed number
of ai j and tot_num for all executed number. We concatenate all di j
as d = [d11,d12, ...,dNL] and save d as a part of tuple everyTp . And
the critic function Q’s input is augmented as Q(sq ,aq1 , ...,a

q
N ,d)

where sq = [д,xq ] and aqi = [ai1, ...,aiL].
Our distributed gradient update aims to let agents optimize bud-

gets allocation according to consumer distributions and consumer
features every Tp while utilizing real-time feature such as pCVR in
every impression. We call our algorithm Distributed Coordinated
Multi-Agent Bidding (DCMAB) with critic and actor update rules:

y = ri + γQ
′
i (s

q ′,aq1
′, ...,aqN

′,d ′)
��
aqo ′=[µ′o ([д′,x ′1]), ...,µ′o ([д′,x ′L ])]

(9)

L(θQi ) = (y − γQi (sq ,aq1 , ...,a
q
N ,d))

2 (10)

∇θ µi J ≈ Σj∇θ µi µi ([д,x j ])∇aqi jQi (sq ,aq1 , ...,a
q
N ,d) (11)

The solution is as Figure 3 and pseudo code as Algorithm 1.



Algorithm 1: DCMAB Algorithm

1 Initialize Qi (sq ,aq1 , ...,a
q
N ,d |θ

Q
i ), actor µi ([д,x]|θ

µ
i ), target

network Q ′i , µ
′
i with θ

Q ′
i ← θ

Q
i , θ µ

′

i ← θ
µ
i for each agent i .

2 Initialize replay memory D

3 for episode = 1 to E do
4 Initialize a random process N for action exploration
5 Receive initial state s for all agents
6 for t = 1 to T do
7 For each agent i , compute aqi and add Nt .
8 for auctions in parallel workers in Tp do
9 For each agent i , compute bratio and combined

with a
q
i compute adjusting ratio α and execute.

10 For each agent i , save reward, cost and maintain
distribution d .

11 end
12 For each agent i , merge rewards, cost in last Tp to get

reward ri and update state to sq ′. Store
(sq ,d,aqi , ri , s

q ′) to replay memory.
13 sq ′ ← sq

14 for agent i=1 to N do
15 Sample a random minibatch of S samples

(sq ,d,aq1 , ...,a
q
N , ri , s

q ′,d ′) from D

16 Update critic by minimizing loss with Eqs.(9),(10).
17 Update actor with Eq. (11).
18 Update target network: θ ′ ← τθ + (1 − τ )θ
19 end
20 end
21 end

Online-Like Offline Simulator. An offline simulator can signifi-
cantly accelerate reinforcement learning algorithm research. Con-
sidering follow-up online deployment of the algorithm, we devel-
oped an offline simulator whose upstream and downstream data
flow environments are identical to online engine, and its distributed-
worker design can meet the online service engineering requirement.
All experiments in this paper is based on this offline simulator. Our
current move is transferring the offline system to online and de-
ploying our DCMAB algorithm for online A/B testing.

5 EXPERIMENTS
Our experiments are conducted over the data sets collected from
Taobao display ad system. The data is collected in Guess What You
Like column of Taobao App Homepage where three display ads
slots and hundreds of recommendation slots are allocated. As we
have collected the bid prices traded in the market as well as the
feedback and conversions from the consumers for the placed ads,
we would be able to replay the data to train and test our proposed
DCMAB in an offline fashion. The similar settings can be found in
other research work [1, 21, 28, 32, 33].

5.1 Data Sets and Evaluation Setup
Data sets. The data sets we used for experiments come from real-
world production. The display ads are located in Guess What You
Like column of Taobao AppHomepage where three display ads slots
and hundreds of recommendation slots are well organized. Based on

the log data, the saved procedures of consumers’ requests including
pCTR, pCVR, ppb along with the requests are used as procedure
replay to form an offline simulation platform. And pCTR, pCVR, ppb
are used to simulate the consumers’ behaviors for computing states
and rewards. We use the 1/20 uniformly sampled first three hours’
logged data from date of 20180110 as training data, and the 1/20
uniformly sampled first three hours’ logged data from 20180111 as
test data. Training and test of our algorithm are both based on the
offline simulation system due to the lack of real consumer feedback
data. All results reported are based on test data.

For merchants, when budget is unlimited, each merchant will
adjust bid price to the highest number and the solution is trivial.
To test optimized budget allocation along time, the budget for each
merchant should not be too large. Similar to the setting in [32], we
determine the budget as follows: let all merchants use manually set
bid with unlimited budgets and accumulate the total cost CT . Then
each merchant’s budget is set as a fraction of CT .

With notionCT , here are some statistics of the data: for training
set there are 203,195 impressions, 18,532 revenue (CT ) and 5,300
revenue (CT /3) where (CT ) means the setting where merchants are
endowed with unlimited budgets (in real situation this is impossible,
when merchants have limited budgets, they quit bidding when bud-
gets run out and the market depth decreases); for testing set there
are 212,910 impressions, 18,984 revenue (CT ) and 5,347 revenue
(CT /3); for both data sets, there are 150,134 registered consumers
and 294,768 registered merchants. All revenue unit is CNY.
Evaluation metrics. Evaluation is based on agents’ revenue, ROI
and CPA (cost per acquisition), and total traffic revenue, ROI and
CPA under predefined budgets and a number of auctions. We define
CPA as CPA = cost/click . The agent’s objective is to maximize its
revenue given the budget. We also analyze the influences of the
agents’ rewards changes on the converged equilibrium.
Evaluation flow. We built an offline simulator close to the real
online system with distributed workers processing consumers’ re-
quests. As stated in Section 4.1, with ranдe = 0.9, the feasible bid
region is bid ∗(1+α) ∈ [0.1∗bid, 1.9∗bid]where bid is a merchant’s
original bid andα is optimized by solving Eq. (5) using Eq. (9)(10)(11)
as in Algorithm 1. In each auction, according to the maximum eCPM
ranking, the top-ranked three merchants win. During our training,
as model learns, the model’s different bids lead to different ranking
results. Due to lack of consumers’ real feedback of all different rank-
ing results for all merchants, we use expected CPC (costk × pCTRk
where costk = pCTRnext (k ) × bidnext (k )/pCTRk is based on GSP
mechanism) and expected revenue (pCTRk ×pCVRk ×ppbk ) for of-
fline simulation. The system is based on 40-node cluster each node
of which has Intel(R) Xeon(R) CPU E5-2682 v4, 2.50GHz and 16 CPU
cores with 250 GB memory on CentOS. The model is implemented
with distributed TensorFlow. Our offline platform is consistent with
the online platform, in online deployment we only need to change
the reward from expectation to real feedback.
Episode length. To simulate the real online system, our simulation
platform updates states every hour. We use three hours’ auctions
for evaluation. The length of an episode includes three steps which
is the number of state transitions. The three-hour training data in-
cludes 203,195 impressions which is the number of actor executions.
Each training task takes about 4 hours with 40 distributed workers.



5.2 Compared Methods
With same settings, following algorithms are compared with our
DCMAB. Except manually set bids, all other algorithms use neural
networks as approximators. We also build a reward estimator for
contextual bandit as a critic. All algorithms’ critics include two
hidden layers with 100 neurons for the first hidden layer and 100
neurons for the second hidden layer with states as inputs to the first
layer and actions as inputs to the first hidden layer. All algorithms’
actors include 300 neurons for the first hidden layer and 300 neurons
for the second hidden layer with states as inputs and actions as
outputs. The activation function for hidden layers is relu, tanh for
output layer of actors and linear for output layer of critics.
• Manually Set Bids. They are the real bids set manually by hu-
man according to their experiences.

• Contextual Bandit. This algorithm [15] optimizes each time
step independently. Each impression’s bid is adjusted according
to only the feature in the impression (contextual feature). To
compare with DCMAB, we also add other agents’ actions as parts
of contextual feature. The key difference between this algorithm
and ours is that it doesn’t optimize budgets allocation along time.

• Advantageous Actor-critic (A2C) This [2, 18, 24] is an on-
policy actor-critic algorithm without a memory replay. The critic
function Q of A2C doesn’t take other agents’ actions as input.

• DDPG. DDPG [16] is an off-policy learning algorithm with a
memory replay. The critic function Q of this algorithm doesn’t
take other agents’ actions as input.

• DCMAB. This is our algorithm. We upgrade MADDPG [17] with
clustered agents modeling and redesign actor and critic structures
to adapt to distributed workers’ platform. The critic function Q
of this algorithm takes all agents’ actions as input.

5.3 Hyperparameter Tuning
5.3.1 Clustering Method. When a consumer request comes, ac-

cording to its requested marchant criteria, our system firstly selects
nc candidates of merchants from all n registered merchants where
nc ≪ n. And these nc candidates attend the bidding stage while
other n − nc merchants are filtered out. We consider one merchant
who is present in bidding stage as one presence. We rank all n
merchants according to their revenues in training data and group
them into clusters where these clusters have approximately equal
presences respect to all consumer requests in training data. This
clustering method makes the competitions among agent clusters
relatively balanced. The example of three clusters is as Figure 4.
Usually, clusters with higher revenues consist of small numbers
of merchants and contribute larger amount of revenue. The rea-
son is that most high-revenue merchants attend the bidding stage
more frequently. Consumers are also ranked according to their
revenues and grouped into clusters with each cluster having equal
proportion of requests to the ad platform. Note that it’s possible
to cluster merchants and consumers with more features than only
revenue according to specific business needs. This paper considers
revenue as an example method. This clustering preprocessing is
always done before training procedure according to recent log data
to ensure the clustering principle is up-to-date.

AgentCluster1

89.0%

AgentCluster2

6.0%
AgentCluster3

5.0%

Merchant number Percentage
AgentCluster1

15.0%

AgentCluster2 23.0%

AgentCluster3
62.0%

Total Revenue Percentage

Figure 4: Clusters of Merchants
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Figure 5: (a) Revenue(CNY) vs. Agent Number
(b) Revenue(CNY) vs. Budget Ratio

5.3.2 Number of Clusters. In our formulation, theoretically, more
clusters and smaller cluster sizes provide more possible adjusting
ratios meaning better possible solutions. We tried different cluster
numbers {1, 2, 3, 4, 5, 10, 30} as Figure 5(a). Two kinds of rewards
are used. ’Coord’ means all clusters’ rewards are the same as total
traffic revenue. ’Self-Interest’ means each cluster’s reward is its own
revenue. For both rewards, we use total traffic revenue as metric.

In Figure 5, horizontal axis is the number of agent clusters, and
vertical axis represents total traffic revenues. We draw the mean
episode reward as blue and red curves with corresponding colored
area as standard deviations. From the results, we find the best
performance is achieved when the number of clusters is 3 and
4. When cluster number increases from 1 to 3, the performance
increases showing the benefits of shrinking cluster size and adding
more clusters. When we further increase cluster number from 4 to
30, we find the performance drops. We observe as we increased the
number of agents, the agents’ policies learning easily converged to
worse equilibria as many agents competed severely in early stage
with high bid prices and quited auctions earlier. There exists better
strategies for these agents such as lowering bids in early stage
and competing for cheaper auctions in late stage. After cluster
number tuning, cluster number 3 appears to perform the best, and
our follow-up experiments shall fix the number of clusters as 3.

5.3.3 Budget Search. With the three agent clusters fixed, we
now measure the total revenue performance of our DCMAB with
manually set bids shown in Figure 5(b) where ’Coord’ means all
agents’ rewards are total revenue. The budget for each merchant is
searched from one-third to full amount of unlimited budget and in
all cases over 99% of the given budget is spent out, which means
higher revenue is always better. Compared with manually setting,
our DCMAB with coordinated rewards consistently maintain a
higher revenue even when budget is low due to the better budget
allocation. Manually setting bids acquires more revenue as the
budget increases because higher budget makes more merchants
stay in the market and deliver their ads to the consumers.



5.4 Experimental Results
In this section, we compare our DCMAB algorithm with the base-
lines to understand their learning abilities and performance.

5.4.1 Performance Comparisons. For performance test, we set
the best hyperparameters as tuned in the previous section. For in-
stance, we group merchants and consumers into 3 clusters, respec-
tively. Each merchant’s budget is set as CT /3. Each agent cluster’s
reward is set as its own episode revenue, which is a self-interest
reward. The results are reported in Figure 6, Table 2 and Table 1.

Table 2 lists the converged performances of different algorithms
(we consider the training performance not improving in last 50
episodes as converged). Each row shows an algorithm’s results.
The columns represent the results of different agent clusters’ and
their summed total revenue in one algorithm’s experiment. We
conducted 4 times of experiments for each algorithm and gave the
average revenues and standard deviations in Table 2.

We use Pareto improvement [8] as one cluster can improve its
revenue without hurting other clusters’ revenues. Among all algo-
rithms, our DCMAB has Pareto improvement over all other algo-
rithms except DDPG, which means all clusters’ revenue and total
revenue are improved. This verifies the effectiveness of our algo-
rithm. DDPG has Pareto improvement than Manual and Bandit.
Compared with on-policy algorithm A2C, DDPG and our DCMAB
perform better, illustrating the usefulness of sample memory. Com-
paredwith Bandit, other algorithms as A2C, DDPG and our DCMAB
verify the importance of budget allocation among different hours,
which points out the necessity of reinforcement learning modeling
rather than bandit modeling. Manually setting bids perform the
worst as it is a non-learning baseline.

DCMAB and DDPG result in different equilibria. AgentC1 and
AgentC3 getmore revenue inDCMAB than inDDPGwhile AgentC2
gets more revenue in DDPG than in DCMAB. Comparing these two
equilibria, we find DCMAB achieves a higher total revenue of 18199
than DDPG of 16359. From perspective of total matching efficiency
for connecting consumers to products, DCMAB gives better results.
Moreover, DCMAB gives a more stable equilibrium with all agents’
revenues and total revenue’s standard deviation lower than DDPG,
which verifies the merits of modeling all agents’ actions in DCMAB
rather than only modeling own action in DDPG.

Table 1 lists ROI, CPA normalized respect to manual bids of all
agents and their summation. ROI is defined as ROI = revenue/cost
where revenue is merchants’ income and cost is the money paid to
the platform by merchants. CPA is defined as cost/click where click
is the total click numbers from the consumers which is computed
as click =

∑
pCTR in our offline simulation. Table 1 COST columns

show cost spent percentage (cost/budдet ), we find almost all agents’
cost spent out which is reasonable for competing for more revenue
under constrained budgets. ROI columns show DCMAB achieves
highest ROI in AgentC1, AgentC3 and Total, and CPA columns
present DCMAB costs less money for same numbers of click in
AgentC1, AgentC3 and Total, which demonstrates ROI and CPA
optimization ability of DCMAB.

The learning is illustrated in Figure 6. We find our DCMAB
converges more stable than DDPG, verifying the effectiveness of
modeling all agents’ actions as inputs to action-value functions.
DCMAB and DDPG learn faster than A2C and bandit, showing the
merits of the deterministic policy gradient with a memory replay.

5.4.2 Coordination vs. Self-interest. This part studies how differ-
ent reward settings influence the equilibrium reached when agents
optimize revenue with all budgets spent out. First, we compare two
kinds of reward settings as Table 3 and Figure 7(a). Self-Interest
stands for each agent reward set with its own revenue; Coord stands
for all agents’ rewards set as total traffic revenue where all agents
are fully coordinated to maximize the same goal. We find Coord
achieves better total revenue than Self-Interest. Compared to the
Self-Interest equilibrium, in Coord’s equilibrium, while Agent1 and
Agent2 obtain less revenues, Agent3’s revenue is improved largely,
resulting in a total revenue improvement. The total revenue im-
provement of Coord shows the ability of DCMAB to coordinate all
agents to achieve a better result for overall social benefits.

In Table 4 and Figure 7(b), we analyze the performance when we
gradually add learned agents’ bids with coordination reward while
keeping other agents’ bids manually set. In Figure 7(b), Manual
means all agents are self-interested with manually set bids; Coord1
stands for that only bids of agent cluster 1 are learned with total
revenue reward while other two agents’ bids are manually set; Co-
ord2 stands for Agent1 and Agent2’s bids are learned with rewards
of total revenue while Agent3’s bids are manually set; Coord means
all agents’ bids are learned with rewards of the total revenue.

Compared to Manual, the total revenue of Coord1 setting is im-
proved from 5347 to 9004. The improvement mainly comes from
Agent1 (from 231 revenue to 4040 revenue), while Agent2 (817
to 806) and Agent3 (4299 to 4157) do not contribute to the total
improvement. This illustrates that the flexibility of theMARL frame-
work from our approach in adjusting the coordination level depend-
ing on the specific needs in practice.

With Coord2, total revenue is improved more than Coord1 and
it mainly comes from Agent1 (from 231 to 3370) and Agent2 (from
817 to 7088) while Agent3 drops a little. As more merchants join
the cooperation, total revenue is further improved from Coord1 of
9004 to Coord2 of 14569. By comparing Coord2 and Coord1, we find
Agent2’s revenue increases largely from 806 to 7088, while Agent1’s
revenue unfortunately drops from 4040 to 3370. This shows Co-
ord2 rearranges traffic allocation and would inevitably harm the
performance of some agents to achieve better overall revenue.

Finally, when all agents cooperate for total revenue, it achieves
the highest total revenue. As all agents’ rewards aim at total revenue,
we find Agent1 and Agent2 reach a compromise with dropped rev-
enue compared to Coord1 and Coord2. And Coord rearranges the
traffic to unleash Agent3’s potential to improve the total revenue
resulting in a larger improvement of total revenue from Coord2
14569 to 19501. In terms of total revenue, from Coord1, Coord2
to Coord, the gradually added coordination verifies our DCMAB’s
ability to reinforce all agents to cooperate for a predefined global
goal. From a system perspective, higher total revenue means the
consumers’ better experiences for better connections to the com-
modities they like. From a long-term perspective, maximizing total
revenue also encourages merchants to improve their business oper-
ational efficiency and provide better products to consumers.

6 CONCLUSIONS
In this paper, we proposed a Distributed Coordinated Multi-Agent
Bidding solution (DCMAB) for real-time bidding based display
advertising. The MARL approach is novel and for the first time
takes into the interactions of all merchants bidding together to opti-
mize their bidding strategies. It utilizes rich information from other



Table 1: ROI/CPA/COST from Self-Interest Bidding Agents

AgentC1 AgentC2 AgentC3 Total

Indices ROI CPA COST ROI CPA COST ROI CPA COST ROI CPA COST

Manual 100.00% 100.00% 99.65% 100.00% 100.00% 99.71% 100.00% 100.00% 99.42% 100.00% 100.00% 99.52%
Bandit 121.38% 82.43% 99.87% 159.41% 62.73% 99.53% 102.63% 97.39% 99.64% 112.14% 84.23% 99.63%
A2C 103.30% 96.57% 99.39% 106.85% 93.58% 99.60% 170.91% 58.55% 99.66% 158.38% 68.09% 99.62%
DDPG 577.87% 17.27% 99.51% 976.80% 10.23% 99.18% 164.29% 60.85% 99.76% 305.75% 24.26% 99.58%
DCMAB 690.18% 14.46% 99.38% 584.63% 17.10% 99.43% 275.11% 36.34% 99.57% 340.38% 24.84% 99.51%
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Figure 6: Learning Curves Compared with Baselines. Revenue unit: CNY

Table 2: Revenue(CNY) from Self-Interest Bidding Agents

AgentC1 AgentC2 AgentC3 Total

Manual 231 817 4299 5347
Bandit 281±21 1300±50 4422±171 6003±123
A2C 238±7 872±104 7365±2387 8477±2427
DDPG 1333±1471 7938±2538 7087±4311 16359±1818
DCMAB 1590±891 4763±721 11845±1291 18199±757

Table 3: Revenue(CNY) of Self-Interest/Full Coordination

Agent1 Agent2 Agent3 Total

Self-Interest 1590±891 4763±721 11845±1291 18199±757
Coord 1185±1359 698±100 17617±2583 19501±1144

Table 4: Revenue(CNY) for Different Coordination Levels

Agent1 Agent2 Agent3 Total

All Manual 231 817 4299 5347
1 PartiallyCoord 4040±2732 806±28 4157±145 9004±2728
2 PartiallyCoord 3370±218 7088±395 4110±16 14569±195
Fully Coord 1185±1359 698±100 17617±2583 19501±1144

agents’ actions, the features of each historic auction and user feed-
back, and the budget constraints etc. Our DCMAB is flexible as it can
adjust the bidding that is fully self-interested or fully coordinated.
The fully coordinated version is of great interest for the ad plat-
form as a whole because it can coordinate the merchants to reach
a better socially-optimal equilibrium for balancing the benefits of
consumers, merchants and the platform all together. We realized
our model in a product scale distributed-worker system, and inte-
grated it with the process auctions in parallel and asynchronously.
Experimental results show that our DCMAB outperforms the state-
of-the-art single agent reinforcement learning approaches. With
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fully cooperative rewards, DCMAB demonstrates its ability of co-
ordinating all agents to achieve a global socially better objective.
As the results from the offline evaluation are promising, we are in
process of deploying it online. We plan to conduct live A/B test in
Taobao ad platform with a particular focus on mobile display ads.
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