
Learning to Design Games: Strategic Environments
in Reinforcement Learning

Haifeng Zhang1∗, Jun Wang2, Zhiming Zhou3, Weinan Zhang3, Ying Wen2, Yong Yu3, Wenxin Li1
1 Peking University

2 University College London
3 Shanghai Jiao Tong University

pkuzhf@pku.edu.cn, jun.wang@cs.ucl.ac.uk, wnzhang@sjtu.edu.cn

Abstract
In typical reinforcement learning (RL), the environ-
ment is assumed given and the goal of the learning
is to identify an optimal policy for the agent tak-
ing actions through its interactions with the envi-
ronment. In this paper, we extend this setting by
considering the environment is not given, but con-
trollable and learnable through its interaction with
the agent at the same time. This extension is moti-
vated by environment design scenarios in the real-
world, including game design, shopping space de-
sign and traffic signal design. Theoretically, we
find a dual Markov decision process (MDP) w.r.t.
the environment to that w.r.t. the agent, and de-
rive a policy gradient solution to optimizing the
parametrized environment. Furthermore, discon-
tinuous environments are addressed by a proposed
general generative framework. Our experiments on
a Maze game design task show the effectiveness of
the proposed algorithms in generating diverse and
challenging Mazes against various agent settings.

1 Introduction
Reinforcement learning (RL) is typically concerned with a
scenario where an agent (or multiple agents) taking actions
and receiving rewards from an environment [Kaelbling et
al., 1996], and the goal of the learning is to find an op-
timal policy for the agent that maximizes the cumulative
reward when interacting with the environment. Success-
ful applications include playing games [Mnih et al., 2013;
Silver et al., 2016], scheduling traffic signal [Abdulhai et al.,
2003], regulating ad bidding [Cai et al., 2017], to name just a
few.

In most RL approaches, such as SARSA and Q-learning
[Sutton and Barto, 1998], the model of the environment is,
however, not necessarily known a priori before learning the
optimal policy for the agent. Alternatively, model-based
approaches, such as DYNA [Sutton, 1990] and prioritized
sweeping [Moore and Atkeson, 1993], require establishing
the environment model while learning the optimal policy.
Nonetheless, in either case, the environment is assumed given

∗This work is done during Haifeng Zhang’s visit at UCL. Jun
Wang and Weinan Zhang are the corresponding authors of this paper.

and mostly either stationary or non-stationary without a pur-
posive control [Kaelbling et al., 1996].

In this paper, we extend the standard RL setting by consid-
ering the environment is strategic and controllable. We aim at
learning to design an environment via interacting with an also
learnable agent or multiple agents. This has many potential
applications, ranging from designing a game (environment)
with a desired level of difficulties in order to fit the current
player’s learning stage [Togelius and Schmidhuber, 2008] and
designing shopping space to impulse customers purchase and
long stay [Penn, 2005] to controlling traffic signals [Ceylan
and Bell, 2004]. In general, we propose and formulate the de-
sign problem of environments which interact with intelligent
agents/humans. We consider designing these environments
via machine learning would release human labors and ben-
efit social efficiency. Comparing to the well-studied image
design/generation problem [Goodfellow et al., 2014], envi-
ronment design problem is new in three aspects: (i) there is
no ground-truth samples; (ii) the sample to be generated may
be discontinuous; (iii) the evaluation of a sample is through
learning intelligent agents.

Our formulation extends the scope of RL by focusing on
the environment modeling and control. Particularly, in an
adversarial case, on one hand, the agent aims to maximize
its accumulative reward; on the other hand, the environment
tends to minimize the reward for a given optimal policy from
the agent. This effectively creates a minimax game between
the agent and the environment. Given the agent’s playing en-
vironment MDP, we, theoretically, find a dual MDP w.r.t. the
environment, i.e., how the environment could decide or sam-
ple the successor state given the agent’s current state and an
action taken. Solving the dual MDP yields a policy gradient
solution [Williams, 1992] to optimize the parametric environ-
ment achieving its objective. When the environment’s param-
eters are not continuous, we propose a generative modeling
framework for optimizing the parametric environment, which
overcomes the constraints on the environment space. Our ex-
periments on a Maze game generation task show the effec-
tiveness of generating diverse and challenging Mazes against
various types of agents in different settings. We show that our
algorithms would be able to successfully find the weaknesses
of the agents and play against them to generate purposeful
environments.

The main contributions of this paper are threefold: (i) we
propose the environment design problem, which is novel and

ar
X

iv
:1

70
7.

01
31

0v
4

 [
cs

.A
I]

 2
3

M
ay

 2
01

8

potential for practical applications; (ii) we reduce the prob-
lem to the policy optimization problem for continuous cases
and propose a generative framework for discontinuous cases;
(iii) we apply our methods to Maze game design tasks and
show their effectiveness by presenting the generated non-
trivial Mazes.

2 Related Work
Reinforcement learning (RL) [Sutton and Barto, 1998] stud-
ies how an intelligent agent learns to take actions through the
interaction with an environment over time. In a typical RL
setting, the environment is unknown yet fixed, and the fo-
cus is on optimizing the agent policies. Deep reinforcement
learning (DRL) is a marriage of deep neural networks [LeCun
et al., 2015] and RL; it makes use of deep neural networks as
a function approximator in the decision-making framework
of RL to achieve human-level control and general intelligence
[Mnih et al., 2015]. In this paper, instead, we consider a fam-
ily of problems that is an extension of RL by considering that
the environment is controllable and strategic. Unlike typical
RL, our subject is the strategic environment not the agent, and
the aim is to learn to design an optimal (game) environment
via the interaction with the intelligent agent.

Our problem of environment design is related to the well-
known mechanism design problem[Nisan and Ronen, 2001],
which studies how to design mechanisms for participants that
achieves some objectives such as social welfare. In most stud-
ies, the designs are manual. Our work focuses on automated
environment (mechanism) design by machine learning. Thus,
we formulate the problem based on MDP and provide solu-
tions based on RL. In parallel, the automated game-level de-
sign is a well-studied problem by applying search-based pro-
cedural content generation[Togelius et al., 2011]. For gen-
erating game-levels that conform to design requirements, ge-
netic algorithm (GA) is proposed as a searcher. Our work in-
stead providing sound solutions based on RL methods, which
bring new properties such as gradient direction searching and
game feature learning.

In the field of RL, our problem is related to safe/robust
reinforcement learning, which maximizes the expectation of
the return under some safety constraints such as uncertainty
[Garcıa and Fernández, 2015; Morimoto and Doya, 2005],
due to the common use of parametric MDPs. However, our
problem setting is entirely different from safe RL as their fo-
cus is on single agent learning in an unknown environment,
whereas our work is concerned with the learning of the en-
vironment to achieve its own objective. Our problem is also
different from agent reward design [Sorg et al., 2010], which
optimizes designer’s cumulative reward given by a fixed en-
vironment (MDP). However, the environment is learnable in
our setting. Another related work, FeUdal networks [Vezh-
nevets et al., 2017], introduces transition policy gradient to
update the proposed manager model, which is a component
of agent policy. This is different from our transition gradient
which is for updating the environment.

Our formulation is a general one, applicable in the setting
where there are multiple agents [Busoniu and De Schutter,
]. It is worth mentioning that although multi-agent reinforce-
ment learning (MARL) studies the strategic interplays among
different entities, the game (either collaborative or com-

petitive) is strictly among multiple agents [Littman, 1994;
Hu and Wellman, 2003]. By contrast, the strategic inter-
plays in our formulation are between an agent (or multiple
agents) and the environment. The recent work, interactive
POMDPs [Gmytrasiewicz and Doshi, 2005], aims to spread
beliefs over physical states of the environment and over mod-
els of other agents, but the environment in question is still
non-strategic. Our problem, thus, cannot be formulated di-
rectly using MARL as the decision making of the environ-
ment is in an episode-level, while policies of agents typically
operate and update in each time-step within an episode.

In addition, our minimax game formulation can also be
found in the recently emerged generative adversarial nets
(GANs), where a generator and a discriminator play a min-
imax adversarial game [Goodfellow et al., 2014]. Compared
to GANs, our work addresses a different problem, where the
true samples of desired environments are missing in our sce-
nario; the training of our environment generator is guided by
the behaviours of the agent (corresponding the GAN discrimi-
nator) who aims to maximize its cumulative reward in a given
environment.

3 RL with Controllable Environment
3.1 Problem Formulation
Let us first consider the standard reinforcement learning
framework. In this framework there are a learning agent and
a Markov decision process (MDP) M = 〈S,A,P,R, γ〉,
where S denotes state space, A action space, P state transi-
tion probability function,R reward function and γ discounted
factor. The agent interacts with the MDP by taking action a
in state s and observing reward r in each time-step, result-
ing in a trajectory of states, actions and rewards: H1...∞ =
〈S1, A1, R1, S2, A2, R2 . . .〉, St ∈ S, At ∈ A, Rt ∈ R,
where P[St+1 = s′|St = s,At = a] = P(s, a, s′) and
E[Rt|St = s,At = a] = R(s, a) hold.1 The agent se-
lects actions according to a policy πφ, where πφ(a|s) defines
the probability that the agent selects action a in state s. The
agent learns πφ to maximize the return (cumulative reward)
G =

∑∞
t=1 γ

t−1Rt.
In the standard setting, the MDP is given fixed while the

agent is flexible with its policy to achieve its objective. We
extend this setting by also giving flexibility and purpose to
M. Specifically, we parametrize P as Pθ and set the ob-
jective of the MDP as O(H), which can be arbitrary based on
the agent’s trajectory. We intend to design (generate) an MDP
that achieves the objective along with the agent achieving its
own objective:

θ∗ = argmax
θ

E
[
O(H)|Mθ = 〈S,A,Pθ,R, γ〉;

πφ∗ = argmax
πφ

E[G|πφ;Mθ]
]
. (1)

Adversarial Environment
In this paper, we consider a particular objective of the envi-
ronment that it acts as an adversarial environment minimiz-
ing the expected return of the single agent, i.e., O(H) =

1In this paper, we use St, At, Rt when they are in trajectories
while using s, a, r otherwise.

start end

blank wall

agent path

θ
Train Environment : min max G Train Agent : max G

Start

End

1

θ

 θ ϕ

2

θm

1ϕ

2ϕ

ϕ

nϕ

max G = -14

max G = -30

min max G = -38
max G = -38

G = -28

G = -22

G = -14

G = -40

G = -32

G = -30

G = -42

G = -40

G = -38

(agent path evolves)(maze map evolves)

Figure 1: An example of adversarial Maze design. The detailed
definition of the Maze environment is provided in Sec.4. In short,
an agent tries to find the shortest path from the start to the end in a
given Maze map, while the Maze environment tries to design a map
to make the path taken by the agent longer. In the direction of φ,
the parameter of an agent policy evolves, whereas in the direction of
θ, the parameter of the Maze environment evolves. The cumulative
rewardG is defined as the opposite number of the length of the path.∑∞
t=1−γt−1Rt = −G. This adversarial objective is use-

ful in the game design domain because for many games the
game designer need to design various game levels or set vari-
ous game parameters to challenge game players playing with
various game strategies. Thus, the relationship between the
environment(game) and the agent(player) are adversarial. We
intend to transfer this design work from human to machine by
applying appropriate machine learning methods. Formally,
the objective function is formulated as:

θ∗ = argmin
θ

max
φ

E[G|πφ;Mθ = 〈S,A,Pθ,R, γ〉]. (2)

In general, we adopt an iterative framework for learning θ
and φ. In each iteration, the environment updates its param-
eter to maximize its objective w.r.t. the current agent policy
then the agent updates its policy parameter by taking suffi-
cient steps to be optimal w.r.t. the updated environment, as
illustrated by Fig. 1 for learning the environment of a Maze.
Since the agent’s policy can be updated using well-studied
RL methods, we focus on the update methods for the envi-
ronment. In each iteration, given the agent’s policy parameter
φ∗, the objective of the environment is

θ∗ = argmin
θ

E[G|Mθ = 〈S,A,Pθ,R, γ〉;πφ∗]. (3)

In the following sections, we propose two methods to solve
this problem for continuous and discontinuous environments.

3.2 Gradient Method for Continuous Environment
In this section, we propose a gradient method for continuous
environment, i.e. the value of the transition probability for
any 〈s, a, s′〉 can be arbitrary in [0, 1]. Thus, the parameter
θ of the environment actually consists of the values of the
transition function P(s, a, s′) for each 〈s, a, s′〉. Our task is
to optimize the values of the transition function to minimize
the agent’s cumulative reward.

To update the environment, we try to find the gradient of
the environment objective w.r.t. θ. We derive the gradient
by taking a new look at the environment and the agent in the

opposite way, that the original environmentMA as an agent
and the original agent as a part of the new environmentME .
Viewing in this way, the original environmentMA takes ac-
tion AEt to determine the next state SAt+1 given the current
state SAt and the agent’s action AAt . Thus we define the state
sE inME as the combination 〈sA, aA〉. On the other hand,
given the original environment’s action AEt = SAt+1 , the
agent policy πAφ∗(s

A) acts as a transition in ME to deter-
mine AAt+1 as part of the next state SEt+1 = 〈SAt+1, A

A
t+1〉 in

ME . Furthermore, optimizing agent policy inME is equal
to optimizing environment transition inMA.

Theoretically, we reduce our transition optimization prob-
lem in Eq. (3) to the well-studied policy optimization problem
through a proposed concept of a duel MDP-policy pair.
Definition 1 (Duel MDP-policy pair). For any MDP-policy
pair 〈MA, πA〉, whereMA = 〈SA,AA,PA,RA, γA〉 with
start state distribution pA1 and terminal state set SAT , there
exists a dual MDP-policy pair 〈ME , πE〉, where ME =
〈SE ,AE ,PE ,RE , γE〉 with start state distribution pE1 and
terminal action set AET satisfying:

• SE = SA × AA = {〈sA, aA〉|sA ∈ SA, aA ∈ AA}, a
state inME corresponds to a combination of successive
state and action inMA;
• AE = SA = {sA|sA ∈ SA}, an action inME corre-

sponds to a state inMA;
• PE(sEi , aE , sEi′) = PE(〈sAj , aAk 〉, sA, 〈sAj′ , aAk′〉) ={

πA(aAk′ |sA) sA = sAj′
0 sA 6= sAj′

, the transition in ME de-

pends on the policy inMA;
• RE(sEi , aE) = RE(〈sAj , aAk 〉, sA) = RA(sAj , aAk), the

rewards inME are the same as inMA;
• γE = γA, the discounted factors are the same;
• pE1 (sE) = pE1 (〈sA, aA〉) = pA1 (s

A)πA(aA|sA), start
state distribution inME depends on start state distribu-
tion and the first action distribution inMA;

• AET = {sA|sA ∈ SAT }, terminal action in ME corre-
sponds to terminal state inMA;

• πE(aE |sE) = πE(sAi′ |〈sAi , aA〉) = PA(sAi , aA, sAi′),
policy inME corresponds to transition inMA.

We can see that the dual MDP-policy pair in fact describes
an equal mechanism as the original MDP-policy pair from
another perspective. Based on the dual MDP-policy pair, we
give three theorems to derive the gradient of the transition
function. The proofs are omitted for space reason.
Theorem 1. For an MDP-policy pair 〈MA, πA〉 and its du-
ality 〈ME , πE〉, the distribution of trajectory generated by
〈MA, πA〉 is the same as the distribution of a bijective tra-
jectory generated by 〈ME , πE〉, i.e. P[HA|MA, πA] =
P[HE |ME , πE], where HE = b(HA), HA = b−1(HE).
Theorem 2. For an MDP-policy pair 〈MA, πA〉 and its du-
ality 〈ME , πE〉, the expected return of two bijective state-
action trajectories, HA = b−1(HE) from 〈MA, πA〉 and
HE = b(HA) from 〈ME , πE〉, are equal.

1. Generate

Environments
2. Agent is trained in

each environment

3. Operate in the
environments with

updated policy

4. Agent returns
G ...G1 6

Agent
πµ

θ

θ
A

Environment
Generator

M

ϕw

θ1
AM θ2

AM θ3
AM

θ4
AM θ5

AM θ6
AM

 generator update
guide the

Figure 2: Framework dealing with discontinuous environment. Gen-
erator generates environment parameter θ. For eachMA

θ , the agent
policy is trained. Then the policy is tested in the generated environ-
ments and the returns are observed, which finally guide the generator
to update.

Theorem 3. For an MDP-policy pair 〈MA, πA〉 and its du-
ality 〈ME , πE〉, the expected return of 〈MA, πA〉 is equal
to the expected return of 〈ME , πE〉, i.e., E[GA|πA,MA] =
E[GE |πE ,ME].

Theorem 2 can be understood by the equivalence between
HA and HE and the same generating probability of them as
given in Theorem 1. Theorem 3 naturally extends Theorem 2
from the single trajectory to the distribution of trajectory ac-
cording to the equal probability mass function given by The-
orem 1.

Now we consider 〈MA
θ , π

A〉 and its duality 〈ME , πEθ 〉,
where PAθ and πEθ are of the same form about θ. Given θ, PAθ
and πEθ are exactly the same, resulting in E[GA|πA,MA

θ] =
E[GE |πEθ ,ME] according to Theorem 3. Thus optimizing
PAθ as Eq. (3) is equivalent to optimizing πEθ :

θ∗ = argmin
θ

E[G|MA
θ ;π

A
φ∗] = argmin

θ
E[G|πEθ ;ME

φ∗].

(4)

We then apply the policy gradient theorem [Sutton et al.,
1999] on πEθ and derive the gradient for PAθ :

∇θJ(θ) = E[∇θ log πEθ (aE |sE)QE(sE , aE)|πEθ ;ME
φ∗]

= E[∇θ logPAθ (sAi , aA, sAi′)V A(sAi′)|MA
θ ;π

A
φ∗],

(5)
where J(θ) is cost function, QE(sE , aE) and V A(sAi′) are
action-value function and value function of 〈ME , πEθ 〉 and
〈MA

θ , π
A〉 respectively; and can be proved equal due to the

equivalence of the two MDPs.
We name the gradient in Eq. (5) as transition gradient.

Transition gradient can be used to update the transition func-
tion in an iterative way. In theory, it performs as well as pol-
icy gradient since it is equivalent to the policy gradient in the
circumstance of the dual MDP-policy pair.

3.3 Generative Framework for Discontinuous
Environment

The transition gradient method proposed in the last section
only works for continuous environment. For discontinu-
ous environment, i.e. the range of the transition function
P(s, a, s′) is not continuous in [0, 1], we cannot directly take
the gradient of the transition function w.r.t. θ.

To deal with the discontinuous situation, we propose a gen-
erative framework to find the optimal θ alternative to the gra-
dient method. In general, we build a parametrized generator

to generate a distribution of the environment, then update the
parameter of the generator by evaluating the environments it
generates (illustrated in Fig. 2). Specifically, we generate en-
vironment parameter θ using a w-parametrized generator µw,
then optimize w to obtain the (local) optimal w∗ and a corre-
sponding optimal distribution of θ. Formally, our optimiza-
tion objective is formulated as

w∗ = argmin
w

Eθ∼µw
[
E[G|

MA
θ = 〈SA,AA,PAθ ,RA, γA〉;πφ∗]

]
. (6)

We model the generation process using an auxiliary MDP
Mµ, i.e., the generator µw generates θ and updates w in a
reinforcement learning way. The reason we adopt reinforce-
ment learning other than supervised learning is that in this
generative task, (i) there is no training data to describe the
distribution of the desired environments so we cannot com-
pute likelihood of generated environments and (ii) we can
only evaluate a generated environment through sampling, i.e.,
performing agents in the generated environment and getting
a score from the trajectory, which can be naturally modeled
by reinforcement learning by viewing the score as a reward
of the actions of the generator.

In detail, the generator µw consists of three elements
〈Mµ, πµw, f

µ〉. For generating θ, an auxiliary agent with pol-
icy πµw acts inMµ to generate a trajectory Hµ, after that θ is
determined by the transforming function θ = fµ(Hµ), i.e.,
the distribution of θ is based on the distribution of trajecto-
ries, which are further induced by playing πµw in Mµ. For
adversarial environments, the reward of the generator is de-
signed to be opposite to the return of the agent got in Mθ,
which reflects the minimization objective in Eq. (6). Thus, w
can be updated by applying policy gradient methods on πµw.

There are various ways to designing Mµ for a particular
problem. Here we provide a general design that can be ap-
plied to any environment. Briefly, we generate the environ-
ment parameter in an additive way and ensures the validity
along the generation process. In detail, we reshape the ele-
ments of θ as a vector θ = 〈x1, x2, . . . , xNθ 〉, xk ∈ Xk and
designMµ = 〈Sµ,Aµ,Pµ,Rµ, γµ = 1〉 to generate θ:

• Sµ = {vk = 〈x1, x2, . . . , xk〉|k = 0 . . . Nθ,∃vNθ =
〈x1, x2, . . . , xk, x′k+1 . . . x

′
Nθ
〉 = θ, s.t. PAθ ∈ PA};

• Aµ =
⋃
k=1...Nθ

Xk;

• Pµ is defined that for the current state vk =
〈x1, x2, . . . , xk〉 and an action xk+1, if xk+1 ∈ Xk+1

and vk+1 = 〈x1, x2, . . . , xk+1〉 ∈ Sµ the next state is
vk+1, otherwise vk;

• Rµ is defined that for terminal state vNθ =
〈x1, x2, . . . , xNθ 〉 = θ the reward is the opposite num-
ber of the averaged return got by πAφ∗ acting in MA

θ ,
otherwise the reward is 0.

In addition, the start state is v0 = 〈〉 and the terminal states
are vNθ = 〈x1, x2, . . . , xNθ 〉. Corresponding to this Mµ,
πµw(xk+1|vk;w) is designed to take an action xk+1 ∈ Xk+1

depending on the previous generated sequence vk, and the
transforming function fµ is designed as fµ(Hµ) = vNθ = θ.
Note that due to the definition of Sµ, any partial parameter
vt without potential to be completed as a valid parameter θ

Round 0

OPT

Round 100 Round 200 Round 300 Round 400

S

E

S

E

S

E

S

E

S

E

DQN

Round 0 Round 100 Round 200 Round 300 Round 400

S

E

S

E

S

E

S

E

S

E

Figure 3: Heatmaps of the blockage probability (soft wall, indicated
by the intensity of the color in the cell) distribution throughout 5×5
soft wall Maze learning against the OPT and DQN agents.

is avoided to be generated. This ensures any constraint on
environment parameter can be followed. On the other hand,
any valid θ is probable to be generated once πµw is exploratory
and of enough expression capacity.2

4 Experiments with Maze Design
4.1 Experiment Setting
In our experiment, we consider a use case of designing Maze
game to test our solutions over the transition gradient method
and the generative framework respectively. As shown in both
Figs. 4 and 5, the Maze is a grid world containing a map of
n × n cells. In every time-step, the agent is in a cell and
has four directional actions {N,S,W,E} to select from, and
transitions are made deterministically to an adjacent cell, un-
less there is a wall (e.g., the black cells as illustrated in Figs.
4 and 5), in which case no movement occurs. The minimax
game is defined as: the agent should go from the north-west
cell to the south-east cell using steps as few as possible, while
the goal of the Maze environment is to arrange the walls in or-
der to maximize the number of steps taken by the agent.

Note that the above hard wall Maze results in an environ-
ment that is discontinuous. In order to also test the case of
continuous environments, we consider a soft wall Maze as
shown in Fig. 3. Specifically, instead of a hard wall that com-
pletely blocks the agent, each cell except the end cell has a
blockage probability (soft wall) which determines how likely
the agent will be blocked by this cell when it takes transition
action from an adjacent cell. It is also ensured that the sum
of blockage probabilities of all cells is 1 and the maximum
blockage probability for each cell is 0.5. Thus, the task for
the adversarial environment in this case is to allocate the soft
wall to each cell to block the agent the most.

Our experiment is conducted on PCs with common CPUs.
We implement our experiment environment using Keras-RL
[Plappert, 2016] backed by Keras and Tensorflow. 3

4.2 Results for the Transition Gradient Method
We test the transition gradient method considering the 5 × 5
soft wall Maze case. We model the transition probability
function by a deep convolutional neural network, which is
updated by the transition gradient following Eq. (5). We con-
sider the two types of agents: Optimal (OPT) agent and Deep

2The generative framework could also be applied for continuous
environment generation although it results in low efficiency compar-
ing to directly updating the environment by gradient.

3Our experiment is repeatable and the code is at goo.gl/o9MrDN.

start end blank wall agent path

OPT

5×5
Return=16

6×6
Return=22

7×7
Return=30

8×8
Return=38

DFS

5×5
Return=28

6×6
Return=44

7×7
Return=64

8×8
Return=86

RHS

5×5
Return=28

6×6
Return=40

7×7
Return=56

8×8
Return=74

DQN

5×5
Return=10

6×6
Return=16

7×7
Return=30

8×8
Return=87

Figure 4: Best Mazes against OPT, DFS, RHS and DQN agents with
size ranging from 5× 5 to 8× 8.

Q-network learning (DQN) agent. The OPT agent has no pa-
rameters to learn, but always finds the optimal policy against
any generated environment. The DQN agent [Mnih et al.,
2013] is a learnable one, in which the agent’s action-value
function is modeled by a deep neural network, which takes
the whole map and its current position as input, processed
by 3 convolutional layers and 1 dense layer, then outputs the
Q-values over the four directions. For each updated environ-
ment, we train the DQN agent to be optimal, as Fig. 1 shows.

Fig. 3 shows the convergence that our transition gradient
method has achieved. The change of the learned environment
parameters, in the form of blockage probabilities, over time
are indicated by the color intensity. Intuitively, the most ef-
fective adversarial environment to block the agent is to place
two 0.5 soft walls in the two cells next to the end or the be-
ginning cell, as this would have the highest blockage proba-
bilities. We can see that in both cases, using the OPT agent
and the DQN agent, our learning method can obtain one of
the two most optimal Maze environments.

4.3 Results for Generative Framework
We now test our reinforcement learning generator by the hard
wall Maze environment. We follow the proposed general
generative framework to design µw = 〈Mµ, πµw, f

µ〉, which
gradually generates walls one by one from an empty map.
Particularly, πµw is modeled by a deep neural network that
takes an on-going generated map as input and outputs a po-
sition for a new wall or a special action for termination. Ac-
tions lead to generating walls that completely block the agent
are invalid and prevented. We test our generator against four
types of agents each on four sizes of maps (from 5 × 5 to
8 × 8). Although the objective for every agent is to mini-
mize the number of steps, not every agent has the ability to
find the optimal policy because of model restrictions of πφ or
limitations in the training phase. Therefore, besides testing
our generator against the optimal agent (the OPT agent) and

OPT

DFS

RHS

DQN

start end blank wall

Round 1
Return=14

Round 1
Return=16

Round 50
Return=18

Round 10
Return=19

Round 100
Return=30

Round 100
Return=60

Round 150
Return=36

Round 75
Return=59

Round 400
Return=36

Round 300
Return=70

Round 400
Return=58

Round 200
Return=69

Round 600
Return=38

Round 500
Return=86

Round 600
Return=74

Round 350
Return=87

Figure 5: Learning to design Mazes against OPT, DFS, RHS and
DQN agents in 8× 8 map.

the DQN agent, we also adopt other two imperfect agents for
our generator to design specific Mazes in order to understand
more about our solution’s behaviors. They are:

Depth-first search (DFS) agent. The DFS agent searches
the end in a depth-first way. In each time-step, without loss
of generality, the DFS agent is set to select an action accord-
ing to the priority of East, South, North, West. The DFS agent
takes the highest priority action that leads to a blank and un-
visited cell. If there are none, The DFS agent goes back to
the cell from which it comes.

Right-hand search (RHS) agent. The RHS agent is aware
of the heading direction and follows a strategy that always
ensures its right-hand cell is a wall or the border. In each
time-step, (i) the RHS agent checks its right-hand cell, if it is
blank, the RHS agent will turn right and step into the cell; (ii)
if not, then if the front cell is blank, the RHS agent will step
forward; (iii) if the front cell is not blank, the RHS agent will
continue turning left until it faces a blank cell, then steps into
that cell.

Note that DFS and RHS are designed particularly for dis-
continuous Mazes. We also limit the network capacity and
training time of the DQN agent to make it converge differ-
ently from the OPT agent. The learned optimal Mazes are
given in Fig. 4 for different agents with different Maze sizes.
The strongest Mazes designed by our generator are found
when playing against the OPT agent, shown in Fig. 4 (OPT).
We see that in all cases, from 5 × 5 to 8 × 8, our generator
tends to design long narrow paths without any fork, which
makes the optimal paths the longest. By contrast, the genera-
tor designs many forks to trap the DQN agent, shown in Fig. 4
(DQN), as the DQN agent runs a stochastic policy (ε-greedy).

In fact our generator could make use of the weakness from
the agents to design the maps against them. Fig. 4 (DFS)
shows the results that our generator designs extremely broad
areas with only one entrance for the DFS agent to search ex-
haustively (visit every cell in the closed area twice). Fig. 4
(RHS) shows the Mazes generated to trouble the RHS agent

(1) OPT (2) DFS

(3) RHS (4) DQN
Figure 6: Training curves for OPT, DFS, RHS and DQN agents in
8 × 8 map. The lines and the shadows show mean and variance of
generator return respectively.

the most by creating a highly symmetric Maze.
Next, Fig. 5 shows the snapshots of the results in different

learning rounds. They all evolve differently, depending on
the types of the agents. For the OPT agent, we find that our
generator gradually links isolated walls to form a narrow but
long path. For the DFS, our generator gradually encloses an
area then broadens and sweeps it in order to best play against
the policy that has the priority order of their travel directions.
Fig. 5 (RHS) shows that our generator learns to adjust the
wall into zigzag shapes to trouble the RHS agent. For the
DQN agent, with limited network capacity or limited training
time, it is usually the case that it cannot perfectly tell which
road to go during the learning. As such, the generator tends
to generate many forks to confuse the DQN agent.

Furthermore, Fig. 6 shows the process of training our gen-
erator against the four agents in 8 × 8 map. We find that
for OPT, DFS and RHS agents, the generator learns rapidly
at first and gradually converges. But for the DQN agent,
the learning curve is tortuous. This is because the ability
of the DQN agent is gradually improved so it does not ac-
curately and efficiently guide the learning of the generator.
Also when the ability of the DQN agent improves greatly and
suddenly, the learning curve for the generator may change its
direction temporarily. Theoretically, training the DQN agent
adequately in each iteration is a promising way towards to
monotony and convergence.

5 Conclusions
In this paper, we presented an extension of standard reinforce-
ment learning by considering that the environment is strate-
gic and can be learned. We derived a gradient method by
introducing a dual MDP-policy pair for continuous environ-
ment. To deal with discontinuous environment, we proposed
a novel generative framework using reinforcement learning.
We evaluated the effectiveness of our solution by considering
designing a Maze game. The experiments showed that our
methods can make use of the weaknesses of agents to learn
the environment effectively.

In the future, we plan to apply the proposed methods to
practical environment design tasks, such as video game de-
sign [Hom and Marks, 2007], shopping space design [Penn,
2005] and bots routine planning.

Acknowledgements
This work is financially supported by National Natural Sci-
ence Foundation of China (61632017) and National Key Re-
search and Development Plan (2017YFB1001904).

References
[Abdulhai et al., 2003] Baher Abdulhai, Rob Pringle, and

Grigoris J Karakoulas. Reinforcement learning for true
adaptive traffic signal control. Journal of Transportation
Engineering, 2003.

[Busoniu and De Schutter,] Lucian Busoniu and Bart
De Schutter. A comprehensive survey of multiagent
reinforcement learning.

[Cai et al., 2017] Han Cai, Kan Ren, Weinan Zhang, Klean-
this Malialis, Jun Wang, Yong Yu, and Defeng Guo. Real-
time bidding by reinforcement learning in display advertis-
ing. In Proceedings of the Tenth ACM International Con-
ference on Web Search and Data Mining, pages 661–670.
ACM, 2017.

[Ceylan and Bell, 2004] Halim Ceylan and Michael GH
Bell. Traffic signal timing optimisation based on genetic
algorithm approach, including drivers’ routing. Trans-
portation Research Part B: Methodological, 2004.

[Garcıa and Fernández, 2015] Javier Garcıa and Fernando
Fernández. A comprehensive survey on safe reinforcement
learning. JMLR, 2015.

[Gmytrasiewicz and Doshi, 2005] Piotr J Gmytrasiewicz
and Prashant Doshi. A framework for sequential planning
in multi-agent settings. JAIR, 2005.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In NIPS, pages 2672–2680, 2014.

[Hom and Marks, 2007] Vincent Hom and Joe Marks. Auto-
matic design of balanced board games. In Proceedings of
the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE), 2007.

[Hu and Wellman, 2003] Junling Hu and Michael P Well-
man. Nash q-learning for general-sum stochastic games.
Journal of Machine learning research, 2003.

[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L
Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 1996.

[LeCun et al., 2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. Deep learning. Nature, 2015.

[Littman, 1994] Michael L Littman. Markov games as a
framework for multi-agent reinforcement learning. In Pro-
ceedings of the eleventh international conference on ma-
chine learning, 1994.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 2015.

[Moore and Atkeson, 1993] Andrew W Moore and Christo-
pher G Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine learning,
1993.

[Morimoto and Doya, 2005] Jun Morimoto and Kenji Doya.
Robust reinforcement learning. Neural computation, 2005.

[Nisan and Ronen, 2001] Noam Nisan and Amir Ronen. Al-
gorithmic mechanism design. Games and Economic Be-
havior, 35(1-2):166–196, 2001.

[Penn, 2005] Alan Penn. The complexity of the elementary
interface: shopping space. In Proceedings to the 5th In-
ternational Space Syntax Symposium. Akkelies van Nes,
2005.

[Plappert, 2016] Matthias Plappert. keras-rl. https://
github.com/keras-rl/keras-rl, 2016.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. Nature,
2016.

[Sorg et al., 2010] Jonathan Sorg, Richard L Lewis, and
Satinder P Singh. Reward design via online gradient as-
cent. In NIPS, 2010.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press Cambridge, 1998.

[Sutton et al., 1999] Richard S Sutton, David A McAllester,
Satinder P Singh, Yishay Mansour, et al. Policy gradient
methods for reinforcement learning with function approx-
imation. In NIPS, 1999.

[Sutton, 1990] Richard S Sutton. Integrated architectures for
learning, planning, and reacting based on approximating
dynamic programming. In ICML, 1990.

[Togelius and Schmidhuber, 2008] Julian Togelius and Jur-
gen Schmidhuber. An experiment in automatic game de-
sign. In Computational Intelligence and Games, 2008.
CIG’08. IEEE Symposium On. IEEE, 2008.

[Togelius et al., 2011] Julian Togelius, Georgios N Yan-
nakakis, Kenneth O Stanley, and Cameron Browne.
Search-based procedural content generation: A taxonomy
and survey. IEEE Transactions on Computational Intelli-
gence and AI in Games, 3(3):172–186, 2011.

[Vezhnevets et al., 2017] Alexander Sasha Vezhnevets, Si-
mon Osindero, Tom Schaul, Nicolas Heess, Max Jader-
berg, David Silver, and Koray Kavukcuoglu. Feudal
networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1703.01161, 2017.

[Williams, 1992] Ronald J Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 1992.

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl

	1 Introduction
	2 Related Work
	3 RL with Controllable Environment
	3.1 Problem Formulation
	3.2 Gradient Method for Continuous Environment
	3.3 Generative Framework for Discontinuous Environment

	4 Experiments with Maze Design
	4.1 Experiment Setting
	4.2 Results for the Transition Gradient Method
	4.3 Results for Generative Framework

	5 Conclusions

