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ABSTRACT
We conduct an empirical study on discovering the ordered col-
lective dynamics obtained by a population of intelligence agents,
driven by million-agent reinforcement learning. Our intention is to
put intelligent agents into a simulated natural context and verify
if the principles developed in the real world could also be used
in understanding an arti�cially-created intelligent population. To
achieve this, we simulate a large-scale predator-prey world, where
the laws of the world are designed by only the �ndings or logical
equivalence that have been discovered in nature. We endow the
agents with the intelligence based on deep reinforcement learning
(DRL). In order to scale the population size up to millions agents,
a large-scale DRL training platform with redesigned experience
bu�er is proposed. Our results show that the population dynamics
of AI agents, driven only by each agent’s individual self-interest,
reveals an ordered pattern that is similar to the Lotka-Volterramodel
studied in population biology. We further discover the emergent
behaviors of collective adaptations in studying how the agents’
grouping behaviors will change with the environmental resources.
Both of the two �ndings could be explained by the self-organization
theory in nature.

KEYWORDS
Multi-agent reinforcement learning, deep Q-learning, population
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1 INTRODUCTION
By employing the modeling power of deep learning, single-agent
reinforcement learning (RL) has started to display, even surpass,
human-level intelligence on a wide variety of tasks, ranging from
playing the games of Labyrinth [31], Atari [33], and Go [43] to
other tasks such as continuous control on locomotions [27], text
generation [53], and neural architecture design [54]. Very recently,
multi-agent RL algorithms have further broadened the use of RL
and demonstrated their potentials in the setting where both of
the agents’ incentives and economical constraints exist. For ex-
ample, the studies [8, 25, 34, 49] have shown that with di�erent
multi-agent cooperative learning environments, the compositional
language naturally emerges. Researchers in [13, 40, 48] have also
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demonstrated that multiple agents can be trained to play the com-
bat game in StarCraft, and the agents have mastered collaborative
strategies that are similar to those of experienced human players.
Nonetheless, all of the aforementioned RL systems so far have been
limited to less than tens of agents, and the focuses of their studies
are rather in the optimization of a micro and individual level policy.
Macro-level studies about the resulting collective behaviors and
dynamics emerging from a large population of AI agents remain
untouched.

Yet, on the other hand, real-world populations exhibit certain
orders and regularity on collective behaviors: honey bees use spe-
ci�c waggle dance to transmit signals, a trail of ants transfer food
by leaving chemical marks on the routes, V-shaped formations of
bird �ocks during migration, or particular sizes of �sh schools in
the deep ocean. Even human beings can easily show ordered macro
dynamics, for example, the rhythmical audience applause after the
concerts, the periodical human waves in the fanatic football game,
etc. A stream of research on the theory of self-organization [2] ex-
plores a new approach to explaining the emergence of orders in
nature. In fact, the self-organizing dynamics appears in many other
disciplines of natural sciences [3]. The theory of self-organization
suggests that the ordered global dynamics, no matter how complex,
are induced from repeated interactions between local individual
parts of a system that are initially disordered, without external
supervisions or interventions. The concept has proven important
in multiple �elds in nature sciences [7, 23, 45].

As once the ancient philosopher Lucretius said: “A designing
intelligence is necessary to create orders in nature.” [38], an interest-
ing question for us is to understand what kinds of ordered macro
dynamics, if any, that a community of arti�cially-created agents
would possess when they are together put into the natural context.
In this paper, we �ll the research gap by conducting an empirical
study on the above questions. We aim to understand whether the
principles, e.g., self-organization theory [2], that are developed in
the real world could also be applied on understanding an AI pop-
ulation. In order to achieve these, we argue that the key to this
study is to have a clear methodology of introducing the micro-level
intelligence; therefore, we simulate a predator-prey world where
each individual AI agent is endowed with intelligence through a
large-scale deep reinforcement learning framework. The population
size is scaled up to million level. To maximize the generality, the
laws of the predator-prey world are designed by only incorporating
the natural �ndings or logic equivalence; miscellaneous potential
dynamics can thus be studied. We �rst study the macro dynamics
of the population size for both the predators and preys, and then
we investigate the emergence of one most fundamental collective
behavior – grouping. In particular, we compare the statistics and
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dynamics of the intelligent population with the theories and models
from the real-world biological studies. Interestingly, we �nd that
the arti�cial predator-prey ecosystem, with individual intelligence
incorporated, reaches an ordered pattern on dynamics that is simi-
lar to what the Lotka-Volterramodel indicates in population biology.
Also, we discover the emergence of the collective adaptations on
grouping behaviors when the environment changes. Both of the
two �ndings can be well explained based on the self-organization
theory. Moreover, the proposed million-agent RL platform could
serve as the initial steps to understand the behaviors of large-scale
AI population, driven by deep reinforcement learning. It could po-
tentially open up an interesting research direction of understanding
AI population by linking the �ndings from the AI world with the
natural science principles from the real world, thus contributing to
the research frontiers such as smart city [35] and swarm intelligence
[24].

2 RELATEDWORK
2.1 Reinforcement learning
Reinforcement learning (RL) [46] employs a goal-oriented learning
scheme that reinforces an agent to maximize its cumulative re-
wards through sequentially interacting with the environment. The
intelligence evolves by agent’s learning from the past experiences
and trying to perform better in the future. Recently, deep neural
networks succeed in marrying the RL algorithms; in particular, they
show remarkable performance in approximating the value function
[32], the policy function [27], or both the value and policy func-
tion (a.k.a. actor-critic) [31], all of which increase the “intelligence"
of traditional RL methods. Single-agent RL methods have been
extended to the multi-agent settings where multiple agents exist
and interact with each other. Q-learning methods such as minimax
Q-learning [19], Nash Q-learning [18] have been proposed.

In addition to the work where minimal or even no communica-
tion between learning agents are considered [9, 10, 30], a fundamen-
tal question to answer in multi-agent RL is how di�erent agents
should communicate so as to reach a coherent goal. Several di�eren-
tiable communication protocols have been proposed [12, 44], which
can be easily embedded into the error back-propagation training
scheme. The work in [40] employed bidirectional recurrent neural
networks to coordinate groups of agents to play StarCraft com-
bat games, and achieved human-level micro-management skills.
Beyond pursuing high performance on playing video games, re-
searchers recently start to shift the focus onto studying the commu-
nity of AI agents, and its corresponding attributes. A few concur-
rent studies [8, 25, 34, 49] were conducted in di�erent cooperative
learning environments, through which the emergence of compo-
sitional language has been found. Leibo et al. introduced agents’
self-interested policy learning into solving sequential social dilem-
mas, and discovered how agents’ behaviors would be in�uenced by
the environmental factors, and when con�icts would emerge from
competing over shared resources. Nonetheless, the multi-agent sys-
tems in those studies consider no more than tens of agents; it is
thus unfair to generalize the �ndings to the population level. Macro
dynamics of large AI population remain to be disclosed.

2.2 Population Biology
While our subject is computerized artifacts, our work is also re-
lated to the research conducted in natural sciences. The theory of
self-organization proposed in [2] serves as a fundamental way of
thinking to understand the emergence of orders in nature (even
though Physicists tend to challenge this theory because The Second
Law of Thermodynamics [5] states that the total level of disorders in
an isolated system can never decrease over time). Self-organization
theory believers think that the global ordered dynamics of a system
can originate from numerous interactions between local individuals
that are initially disordered, with no needs for external interven-
tions. The theory predicts the existence of the ordered dynamics in
the population. In fact, the self-organizing phenomena have been
observed in multiple �elds in natural sciences [7, 23, 45]. For exam-
ple, in population biology, one important discovery is the ordered
harmonic dynamics of the population sizes between predators and
preys (e.g., the lynx and snowshoe hare [15]), which is summarized
into the Lotka-Volterra model [28]. It basically describes the fact
that there is 90° lag in the phase space between the population sizes
of predators and preys (more details are discussed later in Section
5.1). Even though explainable via the self-organization theory, the
Lotka-Volterra models are summarized based on the statistics from
the ecological �eld studies. There is essentially no learning process
or individual intelligence involved. In this work, we chose a di�er-
ent approach by incorporating the individual intelligence into the
population dynamics studies where each agent is endowed with the
intelligence to make its own decision rather than is considered as
homogeneous and rule-based. Our intention is to �nd out whether
an AI population still creates ordered dynamics such as the Lotka-
Volterra equations, if so, whether the dynamics is explainable from
the perspective of the self-organization theory.

In multiple disciplines of natural sciences spanning from zoology,
psycholog, to economy [11, 17, 45], one of the most fundamental
thus important collective behaviors to study is: grouping – a popu-
lation of units aggregate together for collective decision-making.
Grouping is believed to imply the emergence of sociality and to
induce other collective behaviors [21]. In studying the grouping be-
haviors, traditional approaches include setting up a game with rigid
and reductive prede�ned interactive rules for each agent and then
conduct simulations based on the ad-hoc game [14, 20, 37]. Rule-
based games might work well on biological organisms that inherit
the same characteristics from their ancestors; however, they show
limits on studying the large-scale heterogeneous agents [4]. In con-
trast to rule-based gameswith no learning process involved, herewe
investigate the formation of grouping behaviors on a million-level
AI population driven by RL algorithms. Our intention is to �nd out
how the grouping behaviors in AI population emerge and change
w.r.t. the environmental factors such as the food resources, and if
there is any other collective behaviors emerging from grouping.

3 DESIGN OF THE LARGE-SCALE
PREDATOR-PREY WORLD

In this paper, we try to understand: 1) whether AI population create
any ordered patterns on population dynamics, and 2) the dynamics
of the collective grouping behaviors. Predator-prey interaction is
one fundamental relationship observed in nature. Here we intend
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Table 1: Natural Evidence of the Axioms in the Simulated
Predator-prey Environment

Axiom Examples in nature
Positive
Feedback

The observations on ants [6, 52] suggest that
when an ant discovers a food source through a
particular search trail, the path will soon serve as
the trigger for a positive feedback, by its leaving
chemical landmarks, through which other ants
start to follow.

Negative
Feedback

In the ant’s case, as the population size of ants
is limited, with increasing number of ants forage
the food from outside, the distribution of ants
between food sources will be stable [16].

Individual
Variation

Social insects as honey bees are evolved to be
highly variable in the directional sense, response
to sucrose, level of focus in food collection in
order to ensure the diversi�cation in ways of food
collection, otherwise one single food resource
will be depleted quickly [22, 39].

Response
Threshold

Bumble bees will start to fan so as to cool down
the hive when the temperature inside goes above
a threshold level [51].

Redundancy In the kingdom of bees, if the community su�ers
a drastic reduction in the number of worker bees,
younger bees will soon replace their positions to
guarantee that the whole community function
well [42].

Synchroni-
sation

In a concert, individuals with unique frequency
of applause could a�ect the frequency of the
crowd through implicit synchronisation [36]. Em-
pirically, audience applause are often achieved
through adjustments by individuals having an
unique frequency among the local average.

Sel�shness Easily observable in nature. A typical example
would be the Praying Mantis female who eats the
male head after mating as a reproductive strategy
to enhance fertilization [47].

to simulate a predator-prey world with million-level agents (shown
in Fig. 1). The world is deigned to be easily adaptable to incorporate
other environmental complexity to investigate the miscellaneous
dynamics as well as collective behaviors of AI population where
each individual agent is driven by purely self-interest.

3.1 The Axioms of Natural Environments
To avoid introducing any speci�c rules that could harm the gen-
erality of the observed results, we design the laws of the world
by only considering those real �ndings or logical equivalence that
have been observed in the natural system. We regard those laws
as the axioms of studying population dynamics and collective be-
haviors. Here we brie�y review the axioms accepted, and refer
the corresponding natural evidence to the Table.1. Note that these
axioms should not be treated separately, we consider instead how
the combination of these di�erent axioms could produce and a�ect
collective dynamics.

(1) Positive Feedback. Positive feedback enhances particular behav-
iors through reinforcement. It helps spread the information of
a meaningful action quickly between individuals.

(2) Negative Feedback. Negative feedback leads to homeostasis. It
helps stabilize the collective behaviors produced in favor of the
positive feedback from going to extremes.

(3) Individual Variation. Individual variation is of the essence to
guarantee the continual explorations of new solutions to the
same problem within a population.

(4) Response Threshold. Response threshold is the threshold beyond
which individuals will change their behaviors as a response to
the stimulus.

(5) Redundancy. Redundancy ensures functional continuity of the
whole population even when a catastrophic event happens.

(6) Synchronization. Synchronization is a special kind of positive
feedback in time rather than space. An example would be how
individual with unique frequency of applause a�ect the fre-
quency of the crowd in a concert.

(7) Sel�shness. Individuals always tend to maximize their own util-
ity. One will not behave altruistically for others until he can
bene�t more from behaving collectively than acting alone.

3.2 Realization of the Axioms
We realize the predator-prey world via designing a Stochastic Game.
We list the detailed rules of the game and its corresponding axiom.

3.2.1 Population Dynamics. In the predator-prey world (see
Fig. 1), the goal for the predator species is to survive in the ecosys-
tem and procreate their next generations (Axiom.7). Positions of
predator/prey/obstacles in the world are all initialized randomly
at the beginning. The environment is considered under an in�nite
horizon. While the population of both preys and predators can
be boomed by breeding o�springs (Axiom.5), they however face
the hazards of either being hunted as preys, or dying of starva-
tion as predators (Axiom.2). To realize the idea of starvation, we
make the health status of predator decrease with time by a con-
stant factor, which can also be restored by capturing and eating
preys (Axiom.1). Predators are assumed to have in�nite appetite;
the logical equivalence in nature is that a predator normally has
the ability of storing food resource for future survival. Each preda-
tor can have unique characteristics, e.g., identity vector, eyesight
and health status (Axiom.3). The unique characteristics of each
agent represents the diversity of the population. Each individual
agent make independent decision, and can behave di�erently even
given the same scenario. Predators can form a group to increase
the chance of capturing a prey (Axiom.1,4). Group members are
visible to predators within its view. If a single agent chooses the
action of “join a group”, the environment will select a group within
its view randomly, and the agent will become a member of that
group until it decides to “leave the current group” afterwards. Note
that a single predator may hunt for the prey alone as well as hunt
as a group member. As illustrated in Fig. 1, each prey is assigned
a square capture area with a capture radius ρ, which re�ects the
di�culty of being hunted (Axiom.4). Groups of predators, or singles,
will only be able to hunt the prey if they manage to stay within the
capture radius. Apart from the capture radius, another parameter,
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Predator       Prey       Obstacle        Health       ID       Group1       Group2 

2

1

3 4

6

1

2

3 4

6

3

Timestep t Timestep t+1
5

5

Figure 1: Illustration of the predator-prey world. In the 2-D world, there exist preys, predators, and obstacles. Predators hunt
the prey so as to survive from starvation. Each predator has its own health bar and limited eyesight view. Predators can form a
group to hunt the prey so that the chance of capturing can increase, but this also means that the captured prey will be shared
among all group members. When there are multiple group targeting the same prey, the largest group within capture radius
will win. In this example, predators {2, 3, 4} form a group and win the prey over the group {5, 6}. Predator 5 soon dies because
of starvation.

the capture threshold k (k=0,1,2,...), also re�ects the capturing di�-
culty of each prey (Axiom.4). Within the capture area, only meeting
the threshold will a group of predators become a valid candidate.
When there are multiple valid candidate groups targeting at the
same prey, the group with the largest group size will be the winner,
which mimics the law of jungle. When a group wins over other can-
didates, all the members in that group will share the prey equally
(Axiom.2). The trade-o� here is, in the pursuit of preys, grouping
is encouraged as large group can help increase the probability of
capturing a prey; however, huge group size will also be inhibited
due to the less proportion of prey each group member obtains from
the sharing (Axiom.7).

3.2.2 Grouping Behaviors. Considering synchronization of Ax-
iom.6 and sel�shness of Axiom.7, we incorporate a second type of
prey that can be captured by an individual predator alone, which
means we set the capture threshold k to 1 for that species. An anal-
ogy here is to think of tigers as the predators, sheep as the preys
whose captures require collaborative grouping between predators,
and rabbits as the preys that can be captured by a single predator.
These two kinds of preys can be considered as an abstraction of in-
dividual reward and grouping reward respectively. Predators have
to make a decision to either join a group for hunting the sheep or
conduct hunting the rabbit by itself in order to maximize its long-
term reward and the probability of survival (Axiom.1,2,7), which
introduces a trade-o� between acting alone and collaborating with
others. We keep alternating the environments by feeding these two
kinds of preys one after another (Axiom.6) and examine the dynam-
ics of grouping behaviors. To emphasize the dynamics of grouping
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(Obs, ID)

Q-value

(Obs, ID)
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(Obs, ID)
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(Obs, ID)
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Figure 2: Million-agent Q-learning System in the Predator-
prey World.
behaviors and also to avoid the in�uences from the systematic pref-
erences for grouping as a result of the changing population size, we
keep the population size of predators �xed by endowing them with
eternal longevity, which can also be considered as a short-term
observation during which there is little change of the predator pop-
ulation size. Under the environment, the optimal strategy for each
agent continuously varies over time and the predator population
has to learn to adapt their collective strategy correspondingly.

4 AI POPULATION BUILT BY MULTI-AGENT
DEEP REINFORCEMENT LEARNING

4.1 Multi-agent Markov Decision Process
In the designed predator-prey world, we build AI population un-
der the multi-agent deep reinforcement learning setting. Formally,
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Algorithm 1Million-agent Q-learning (in the case of population
dynamics in Section 3.2)

1: Initialize agent’s Q-network π i , agent’s identity vi .
2: Randomly initialize the environment s ∼ ρ0(S).
3: for time step=1,2,..., do
4: Procreate predators/preys o�springs with random posi-

tions.
5: for agent i=1,2,...,n do
6: Compute the local observation features O(i).
7: Compute the identity embedding I(i).
8: Compute the current state for agent: sit = (O(i),I(i)).
9: Take action ait ∼ π iθ (ai |si ) = ϵ-greedy(Qπ i (sit ,ait )).
10: Apply action ait , and get reward r it , next state sit+1.

Within the capture radius of each prey, the group of predators
meeting the threshold will become valid candidate, the
candidate with largest group size will be the �nal winer, and
the reward are shared among the group members equally.

11: Store tuple < s it , a
i
t , s

i
t+1, r

i
t > in the experience bu�er.

12: end for
13: while |B | ≥ batch size do
14: Sample a mini-batch from B.
15: Update the parameters of Q-function w.r.t. the loss:
16: (r it + γ maxa′∈A Qπ (s it+1, a′) −Qπ (s it , ait ))2
17: end while
18: Clear experience bu�er B.
19: Decay the health of predators who starve.
20: Reward (the group of) predator(s) who win the preys.
21: Remove the dead predators and preys from the map.
22: end for

the multi-agent Markov decision process (or, stochastic game) is
denoted by {S,A,T ,R,O,γ , ρ0,N }. S denotes the set of true en-
vironmental states, and ρ0(S) denotes the initial state distribution.
At each time step, each agent i ∈ {1, ...,N } in the predators popu-
lation (they have to hunt preys to survive) takes an action ai ∈ A
where A is the valid action space. The joint actions a ∈ AN

induce a transition of the environment based on the transition
function between states, T : S × AN → S. The reward func-
tion is de�ned by R : S × AN → RN , and γ ∈ [0, 1) denotes
the discount factor. The environment is partially-observed; each
agent can observe oi ∈ O(s,ai ). An agent gains “intelligence” by
learning a stochastic policy π iθ (ai |si = oi ) that could maximize
its expected cumulative reward in the predator-prey environment,
i.e., θ∗ := argmaxθE(s,a)[

∑∞
t=0 γ

tRit ]. The action-value function is
de�ned byQπ i (st ,at ) = Est+1:∞,at+1:∞ [

∑∞
l=0 γ

lRit+l |st ,at ]. Consid-
ering the exploration in the action space, ϵ-greedy methods can be
applied on selecting the action, π iθ (ai |si ) = ϵ-greedy(Qπ i (si ,ai )).

The action space A includes {forward, backward, left, right,
rotate left, rotate right, stand still, join a group, and leave a group}.
It is considered as invalid if a predator takes the “join a group”
action as a group member already, takes the “leave a group” action
as a single individual, or tries to cross the map boarders. Invalid
actions will not be settled by the environment. Within the horizon
of each individual agent, there are �ve channels for the observation
oi . The observation Oi

t ∈ Rm×n×5 is dependent on the agent’s
current position and orientation. The agent’s eyesight ranges up

to a distance limit towards the grids ahead and the grids to the
left and right. The type of object (predators/preys/obstacles/blank
areas) on the map occupy the �rst three channels, which are the
raw RGB pixels. The fourth channel is an indicator of whether
or not that object is a group member. The �fth channel is the
health status h ∈ R if the object is an agent, otherwise padded with
zero. Each agent is assigned with an unique identity embedding
vi ∈ R5, together with the local observation, it makes up the state
for each agent si = (oi ,vi ). Individual agent is supposed to make
independent decisions, and behave di�erently based on its local
observation as well as ID embeddings as the inputs of policy π iθ .

4.2 The Implementation
We designed a multi-agent reinforcement learning platform with
environmental optimizations in TensorFlow [1] tomake the training
of million-agent learning feasible. To the best of our knowledge,
we are the �rst1 to introduce the training environment that enables
simulating millions of agents driven by deep reinforcement learning
algorithms. The demonstration of the platform will be presented
during NIPS 2017, for double blind review, we omit the author
details here.

In particular, our setting is implemented through "centralised
training with independent execution". This is a natural paradigm
for a large set of computationally tractable multi-agent problems. In
the training stage, agents update the centralised Q-value function
approximated by a deep neural network:Qπ (si ,ai ) = Q((oi ,vi ),ai ).
Each individual agent, however, must rely on its local observation
as well as unique identity to make independent decisions during the
execution time. Apart from the standard setting of Q-learning [50]
and deep Q-learning [32], here we introduce a special experience
bu�er consdiering the GPU e�ciency as well as mitigating the
non-stationary issue in the o�-policy learning. At each time step,
all agents contribute its experienced transitions (sit ,ait , r it , sit+1) to
the bu�er, as shown in Fig. 2. We collect all the agents’ experience
of one time step in parallel and then update the Q-network using
the experience at the same time. This signi�cantly increases the
utilization of the GPU memory, and is essential to the million-agent
training. Based on the experience from the bu�er, the Q-network is
updated as:

Qπ (sit ,ait ) ← Qπ (sit ,ait )+α[r it +γ max
a′∈A

Qπ (sit+1,a′)−Qπ (sit ,ait )].
(1)

It is worth mentioning that the experience bu�er in Fig. 2 stores
the experience from the agents only for the current time step; this is
markedly di�erent from the replay bu�er that is commonly used in
the traditional DQN where the bu�er maintains a �rst-in-�rst-out
queue across di�erent time steps. Using the o�-policy replay bu�er
will typically lead to the non-stationarity issue for the multi-agent
learning tasks [29]. On the other hand, Mnih et al. introduced the
replay bu�er aiming at disrupting the auto-correlations between
the consecutive examples. In our million-agent RL setting, the ex-
periences are sampled concurrently from millions of agents, each
individual agent with di�erent states and policies; therefore, there
is naturally no strong auto-correlations between the training ex-
amples. Moreover, it is unlikely that the unwanted feedback loops

1The Github address of the platform will be presented in the �nal version of this paper.
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(a) (b)
Figure 3: Population dynamics in both the time space (1st row) and the phase space (2nd row). The orange circles denote the
theoretical solutions to the Lotka-Volterra equation, with the red spot as the equilibrium. The green-blue circles denote the
simulation results. a): The simulated birth rate of preys is 0.006. Fitted LV model: α = 0.0067, β = 3.75 × 10−7,δ = 6.11 × 10−7,γ =
0.001. b): The simulated birth rate of preys is 0.01. Fitted LV model: α = 0.0086, β = 3.57 × 10−7,δ = 9.47 × 10−7,γ = 0.0012, where
α in the LV model represents the birth rate.

arise since the sampled experiences will hardly be dominated by
one single agent’s decision. The results further testify the robust-
ness of our design of the experience bu�er. See Algorithm.1 for
the pesudocode of the population dynamics example described in
Section 3.2.

5 EXPERIMENTS AND FINDINGS
Two sets of experiments – understanding population dynamics &
collective behaviors – have been conducted. The environmental
parameter settings (e.g., the eyesight limit of predators), and the
code to reproduce the results with no needs for further adjustments
will be released in Supplementary Material in the �nal version.

5.1 Understanding the Population Dynamics
We �rst study the population dynamics with a community of preda-
tors and preys by tracking the population size of each species over
time. Speci�cally, we initialize 10,000 predators and 5,000 preys
randomly scattered over a map of size 1, 000 × 1, 000. All preda-
tors’ health status is set to 1.0 initially and decays by 0.01 at each
time step. In two comparing settings, the birth rates of preys are
set to 0.006 and 0.01 respectively. The Q-network has two hidden
layers, each with 32 hidden units, interleaved with sigmoid non-
linear layers, which then project to 9-dimensional outputs, one for

each potential action. During training, the predators learn in an o�-
policy reinforcement learning scheme, with exploratory parameter
ϵ = 0.1.

Surprisingly, we �nd that the AI population reveals an ordered
pattern when measuring the population dynamics. As shown in
Fig. 3, the population sizes of both predators and preys reach a
dynamic equilibrium where both curves present a wax-and-wane
shape, but with a 90◦ lag in the phase, i.e., the crest of one is aligned
with the trough of the other. The underlying logic of such ordered
dynamics could be that when the predators’ population grows be-
cause they learn to know how to hunt e�ciently, as a consequence
of more preys being captured, the preys’ population shrinks, which
will later cause the predators’ population also shrinks due to the lack
of food supply, and with the help of less predators, the population
of preys will recover from the shrinkage and start to regrow. Such
logic drives the 2-D contour of population sizes (see the green-blue
traits in the 2nd row in Fig. 3) into harmonic cycles, and the circle
patterns become stable with the increasing level of intelligence
agents acquire from the reinforcement learning. As it will be shown
later in the ablation study, enabling the individual intelligence is the
key to observe these ordered patterns in the population dynamics.

In fact, the population dynamics possessed by AI agents are
consistent with the Lotka-Volterra (LV) model studied in biology
(shown by the orange traits in Fig. 3). In population biology, the LV
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Figure 4: Population dynamics in the time space and the phase space. A new type of prey (green line) is introduced, which can
be captured by a single agent. The AI population shows ordered dynamics in the 3-D phase space.
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Figure 5: Population dynamics with the learning function of
AI population disabled. The simulation follows the same set-
ting as Fig. 3(b). No ordered dynamics are found any more.

model [28] describes a Hamiltonian system with two-species inter-
actions, e.g., predators and preys. In the LV model, the population
size of predators q and of preys p change over time based on the
following pair of nonlinear di�erential equations:

1
p

dp

dt
= α − βq, 1

q

dq

dt
= δp − γ . (2)

The preys are assumed to have an a�uent food resource and thus
can reproduce exponentially with rate α , until meeting predation,
which is proportional to the rate at which the predators and the prey
meet, represented by βq. The predators have an exponential decay
in the population due to natural death denoted by γ . Meanwhile,
they can also boost the population by hunting the prey, represented
by δp. The solution to the equations is a harmonic function (wax-
and-wane shaped) with the population size of predators lagging
that of preys by 90◦ in the phase. On the phase space plot, it shows
as a series of periodical circle V = −δ p + γ ln(p) − β q + α ln(q),
with V dependent on initial conditions. In other words, which
equilibrium cycle to reach depends on where the ecosystem starts.
Similar patterns on the population dynamics might indicate that
the orders from an AI population is induced from the same logic as
the ecosystem that LV model describes. However, the key di�erence
here is that, unlike the LV equations that model the observed macro
dynamics directly, we start from a microcosmic point of view – the
AI population is only driven by the self-interest (powered by RL)
of individual agent, and then reaching the macroscopic principles.

To further test the robustness of our �ndings, we perform an
ablation study on three of the most important factors that we think
of are critical to the generation of the ordered dynamics. First, we
analyze whether the observed pattern is restricted by the speci�c
settings of the predator-prey world. We expose the predator models,

which are trained in the environment where the birth rate of preys
is 0.006 in Fig. 3(a), into a new environment where the birth rate
of preys is 0.01. Fig. 3(b) shows that after a period of time for
adjustment, the predators adapt to the new environment, and the
AI agents as a whole manage to maintain the patterns. Second,
we break the binary predator-prey relationships by introducing
a second type of prey that does not require group hunting. As
shown in Fig. 4, in the case of three species which the LV model
may �nd challenging to analyze, we can still observe the ordered
harmonic circles in 3-D space. Third, we investigate the role of
individual intelligence by disabling the learning function in the
setting of Fig. 3(b). Fig. 5 shows that the AI population does not
possess any ordered dynamics anymore if the intelligence of each
individual agent is disabled. As such, the whole ecosystem explodes
with exponentially-increasing amount of preys and the extinction
of predators. The reason why predator goes extinct is that the
increased birth rate of preys leads to new distributions on the states,
thus the observations; consequently, the original optimal policy
of predators becomes suboptimal in the new environment. Given
that the number of preys increases exponentially, and the map size
is limited, the sheep will soon cover all the blank spaces and the
predators can barely aggregate any valid groups for hunting and
�nally die of starvation.

5.2 Understanding the Grouping Behaviors
Next, we investigate the dynamics of the collective grouping behav-
iors. In particular, we intend to �nd out the relationship between
environmental food resources and the proportion of the predators
that participate in the group hunting, which we refer to as the
“group proportion”. In the face of two kinds of preys (one requires
group hunting and the other does not), the predators have to make
a decision to either join a group for hunting a sheep or hunt a
rabbit itself alone. We conduct two experiments with the predator
population size equaling 10 thousands and 2 millions, the map size
equaling 103 × 103 and 104 × 104 respectively. Acting like a “zoo-
keeper”, we supplement the number of preys to a �xed amount if
the number drops below a certain threshold. For each supplement,
we alternate the types of preys to feed in. Suppose the number of
species A is below the threshold, we supply species B. The setting
of Q-network is the same as in the study on population dynamics.
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Figure 6: a) Grouping proportion in the predator-prey world where two kinds of preys are fed alternatively. ↑ points out the
time step that preys are fed. It tells that when the number of the prey sheep (that requires group hunting) increases, the
proportion of groups in AI population increases, and adapting to grouping becomes collective behaviors. Vice verse to the
case when the prey rabbit are fed. b) The same experiment on two-million AI population.

As the preys are alternatively fed, the predator’s policy needs
to react correspondingly to the new environment so as to survive.
As shown in Fig. 6(a) and 6(b), the moment right after the rabbits
are fed into the environment, the proportion of groups drastically
drop down to nearly 0. Predators collectively behave to be sel�sh
rather than to be altruistic to the group. With the number of rabbits
being captured, the proportion of grouping behaviors increases
mildly again, and meets a spike soon after the sheep are fed into
the environment, and reaches another dynamic equilibrium. In a
highly-variable environment, the population of predators show
the intelligence of adapting their hunting strategies collectively
without any external supervisions or controls.

5.3 Discussions
Judging from the ordered patterns of the AI population in the
predator-prey world, we have reasons to agree with Lucretius that
a designing intelligence is necessary to create orders in nature. In
fact, in understanding the emergence of orders in a system, the
theory of self-organization proposed in [2] considers that the global
ordered dynamics of a system can spontaneously originate from
numerous interactions between local individuals that are initially
disordered, with no needs of external interventions. The theory
predicts the existence of the ordered dynamics from numerous local
interactions between the individuals and the system. This could
potentially explain the ordered patterns observed on our AI popu-
lation that has been tested. Meanwhile, according to the theory, the
created order is independent of the complexity of the individual
involved. For example, the Lotka-Volterra dynamics also hold for

other natural systems such as the herbivore and the plants, or the
parasite and the host. Even though the LV models are based on a
set of equations with �xed interaction terms, while our �ndings
depend on intelligent agents driven by consistent learning process,
the generalization of the resulting dynamics onto an AI population
still leads us to imagine a general law that could unify the arti�cially
created agents with the population we have studied in the natural
sciences for long time.

Arguably, in contrast to the self-organization theory, reductionist
scientists hold a di�erent view that order can only be created by
transferring it from external systems. A typical example is The
Second Law of Thermodynamics [5] stating that the total entropy
(the level of disorder) will always increase over time in a closed
system. Such an idea has widely been accepted, particularly in
physics where quantitative analysis is feasible. However, we argue
that our �ndings from the AI population do not go against this law.
RL-based agents are not exceptions simply because the environment
they “live" in are not closed.Whenever a system can exchangematter
with its environment, an entropy decrease of that system (orders
emerge) is still compatible with the second law. A further discussion
on entropy and life [41] certainly goes beyond this topic, and we
leave it for future work.

6 CONCLUSIONS
We conducted an empirical study on an AI population by simulating
a predator-prey world where each individual agent was empowered
by deep reinforcement learning, and the number of agents is up to
millions. We found that the AI population possessed the ordered
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population dynamics consistent with the Lotka-Volterra model in
ecology. We also discovered the emergent collective adaptations
when the environmental resources changed over time. Importantly,
both of the �ndings could be well explained by the self-organization
theory from natural sciences.

In the future, we will conduct further experiments on our million-
agent RL platform by involving the ideas of leadership, cannibalism,
and irrationality for discovering other profound natural principles
in the full deep-RL-driven population. In return, we expect our
�ndings could also enlighten an interesting research direction of
interpreting the RL-based AI population using the natural science
principles developed in the real world, and apply the AI population
driven by RL for applications like smart cities or swarm intelligence.
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