
Texygen: A Benchmarking Platform for Text Generation Models

Yaoming Zhu†, Sidi Lu†, Lei Zheng†, Jiaxian Guo†, Weinan Zhang†, Jun Wang‡, Yong Yu†∗

†Shanghai Jiao Tong University, ‡University College London
{ymzhu,steve_lu,wnzhang}@apex.sjtu.edu.cn

ABSTRACT
We introduce Texygen, a benchmarking platform to support re-
search on open-domain text generation models. Texygen has not
only implemented a majority of text generation models, but also
covered a set of metrics that evaluate the diversity, the quality
and the consistency of the generated texts. The Texygen platform
could help standardize the research on text generation and facili-
tate the sharing of fine-tuned open-source implementations among
researchers for their work. As a consequence, this would help in
improving the reproductivity and reliability of future research work
in text generation.

1 INTRODUCTION
The open-domain text generation problem aims at modeling the
sequential generation of discrete tokens. It has rich real-world ap-
plications, including, but not limited to, machine translation [2],
AI chat bots [9], image captioning [15], question answering and
information retrieval [13]. While we have witnessed various imple-
mentations of its practical use, the fundamental research on text
generative models has also made significant progress. Notably, since
maximum likelihood estimation (MLE) [11] is not a perfect objective
function for this sequential generation problem (due to“exposure
bias” explained in [6]), researchers have been looking for alternative
optimization methods and objective functions.

The success of Generative Adversarial Network (GAN) [4] has
inspired people to investigate adversarial training over textual,
discrete data. Sequence Generative Adversarial Network, a.k.a. Se-
qGAN, for example, is one of the very early attempts at applying
REINFORCE algorithm [14] to solving the discrete optimization of
GAN objective. Since then, many methods about improving Seq-
GAN are proposed to further develop SeqGAN in many aspects;
examples include gradient vanishing (MaliGAN [3], RankGAN [10],
BRA in LeakGAN [5]), long-term robustness (LeakGAN).

There are three main challenges on evaluating sequential gener-
ation of textual data. First, the criterion of what is a good text gen-
eration model is still unclear. Although researchers have developed
some metrics such as perplexity [7], oracle generated log-likelihood
[16], Turing-test-based human scores and the BLEU metric [12],
there is no single metric that is comprehensive enough for measur-
ing the performance of a text generation model. Thus, evaluation
over multiple metrics is required to draw definitive answers. Sec-
ond, there is no obligation for researchers to make their source
code publicly available, thus making reproducing the reported ex-
perimental results difficult. Third, text generation suffers from a
so-called quality-diversity tradeoff problem, i.e., to-some-extent
shrink to a restricted output pattern with mode collapse, which, on
the other hand, causes researchers to release those models which
∗W. Zhang is the corresponding author.

only actually adjust the tradeoff balance. To our knowledge, there
is not a good metric focused on the diversity of the text generation.
Thus, there is a significant need for a reliable platform that provides
a thorough evaluation of the existing text generation models and
facilitate the development of new ones in a common framework.

In this paper, we release Texygen1, a fully open-sourced bench-
marking platform for text generation models. Texygen not only
includes a majority of the baseline models, but also maintains a
variety of metrics that evaluates the diversity, quality and the con-
sistency of the generated texts. With these metrics, we can have
a much more comprehensive study of different text generation
models. We hope this platform could help the progress of standard-
izing the research on text generation, increase the reproducibility of
research work in this field, and encourage higher-level applications.

2 THE TEXYGEN PLATFORM
Texygen provides a standard top-to-down multi-dimensional eval-
uation system for text generation models. Currently, Texygen con-
sists of two elements: well-trained baseline models and automat-
ically computable evaluation metrics. Texygen also provides the
open source repository of the platform, in which researchers can
find the specification and manual of APIs for implementing their
models for Texygen to evaluate.

2.1 Baseline Models
In the current version of Texygen, we implement various likelihood-
based models such as vanilla MLE language model, SeqGAN [16],
MaliGAN [3], RankGAN [10], TextGAN (feature matching) [17],
GSGAN (GAN with Gumbel Softmax trick) [8] and LeakGAN [5].
These baseline models contain supervised likelihood-based meth-
ods with and without tricks, adversarial methods and hierarchical
methods. Although more models will be added, we believe the cur-
rent coverage in the collection is sufficient for good comparison of
any arbitrary new model. Here we briefly introduce these models.

Vanilla MLE. Given a sequence piece st = [x0,x1, ...,xt−1] and
the next token to be sampled from the model xt ∼ πθ (x |st ), a
vanilla MLE language model [11] adopts an explicit likelihood-
based modeling of language, with the form:

max
θ

∑
x

∑
t

logπθ (xt |st )

where x iterates over training data sentences and t iterates over
the token sequence of each sentence. By maximizing the likelihood
estimation, MLE manages to have an estimation of the generation
procedure.

SeqGAN. SeqGAN [16] adopts a discriminativemodel that is trained
to minimize the binary classification loss between real texts and
1https://github.com/geek-ai/Texygen
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generated texts. Meanwhile, besides the pretraining procedure that
follows MLE metric, the generator uses the REINFORCE algorithm
to optimize the GAN objective

min
ϕ

− E
Y∼pdata

[
logDϕ (Y )

] − E
Y∼Gθ

[
log(1 − Dϕ (Y ))

]
.

For the sake of variance reduction, SeqGAN uses Monte Carlo
search to compute the Q-value for generating each token.

MaliGAN. The basic structure of MaliGAN [3] follows that of
the SeqGAN. To stablize the training and alleviate the gradient
saturating problem, MaliGAN rescales the reward in a batch with
sizem by

rD (xi )′ =
rD (xi )∑m
f =1 rD (xf )

− b,

where rD (·) is the reward function from the discriminator, b is the
moving average of rD (·) as the baseline.
RankGAN. RankGAN [10] replaces the discriminator of SeqGAN
with a ranker Rϕ , which optimizes the ranking loss

Lϕ = E
s∼pdata

[
logRϕ (s |U ,C−)] − E

s∼Gθ

[
logRϕ (s |U ,C+)

]
,

where
Rϕ (s |U ,C) = log

(
exp(γα(s |u))∑

s ′∈C exp(γα(s ′ |u))

)
α(s |u) = cos(ys ,yu )

GSGAN. Gumbel Softmax trick is a reparametrization trick used
to replace the multinomial stochastic sampling in text generation
[8]. It claims that

argmax [softmax(h + д)] ∼ softmax(h),
where д is a Gumbel distribution with zero mean and unit variance.
Note that since this process is differentiable, thus backpropagation
can be directly applied to optimize the GAN objective.

TextGAN. Adversarial feature matching for text generation [17]
proposes a method that optimizes the MMD loss, which is the
reconstructed feature distance, by adding a reconstruction term in
the objective, i.e.,

Lrecon = ∥z − ẑ∥.

LeakGAN. LeakGAN [5] is a hierarchical reinforcement learning
framework with two modules called Manager and Worker respec-
tively. In general, the Manager learns to generate a sequence of
subgoals for the sequence and the Worker learns to fulfill it.

2.2 Metrics
Texygen implements five text generation metrics so far, covering
various aspects as categorized below. It also provides user-friendly
APIs to retrieve results of their own models and generated text.

2.2.1 Document Similarity based Metrics. The most intuitive
measurement of generated documents quality is how the documents
resemble the natural language, or, the training dataset.

BLEU. BLEU [12] is a widely used metric evaluating the word
similarity between sentences or documents.

EmbSim. Inspired by BLEU, we propose EmbSim to evaluating
the similarity between two documents, whose name stands for

“embedding similarity”. Instead of comparing sentences words by
words, we compare the word embeddings.

First, word embedding is evaluated on real data using a skip-
gram model. For each word embedding, we compute its cosine
distance with the other words, and then formulate it as a matrixW ,
whereWi, j = cos(ei , ej ) with ei , ej being the word embeddings of
the word i and j from real data. We callW the similarity matrix of
real data.

Similarly, we get the similarity matrixW ′ of generated data,
whereW ′

i, j = cos(e ′i , e ′j ) with e ′i and e
′
j being the word embedding

of the word i and j from generated data using the same skip-gram
model.

The EmbSim is defined as

EmbSim = log
( N∑
i=1

cos(W ′
i ,Wi )/N

)

where N is the total number of words, andWi andW ′
i denote the

i-th column ofW andW ′ respectively.

2.2.2 Likelihood-based Metrics. Based on MLE, which aims at
minimizing the cross-entropy between the true data distribution
p and the generated data distribution q from the model, we can
design metrics to evaluate how good data and model is fitted by
measuring the likelihood. These models require details about not
only data but the model as well.

NLL-oracle. Negative log-likelihood (NLL) is originally introduced
in SeqGAN [16], which is specifically applied on synthetic data
experiment and tells how good the generated data is fitted by the
oracle language model. In NLLoracle, a randomly initialized LSTM
is regarded as a true model, i.e., the oracle. Text generation models
need to minimize average negative log-likelihood of generate data
on oracle LSTM, i.e. Ex∼q logp(x), where x denotes the generated
data.

Since an LSTM is regarded as a true model, the metric can calcu-
late the average loss on every sentence, word by word

NLLoracle = −EY1:T∼Gθ
[
T∑
t=1

log(Goracle(yt |Y1:t−1))],

where Goracle denotes the oracle LSTM, and Gθ denotes the gener-
ative model.

NLL-test. We propose NLLtest, a simple metric evaluating the
model’s capacity to fit real test data, which is dual to NLLoracle.

NLLtest = −EY1:T∼Greal
[
T∑
t=1

log(Gθ (yt |Y1:t−1))],

where Greal denotes the distribution of real data.
NLLtest can only be applied to autoregressive generator like RNN

sinceGθ (yt |Y1:t−1) is involved to calculate the likelihood of certain
word based on previous ones given a generator.

2.2.3 Divergence based Metrics. GAN models often suffer from
mode collapse problems, which lead to generator collapsing to
produce only a single sample or a small family of very similar
samples. Thus, in open-domain text generation tasks, we include
metrics that encourage to generate more diverse patterns.

Self-BLEU. We propose Self-BLEU, a metric to evaluate the diver-
sity of the generated data. Since BLEU aims to assess how similar

2



Generator

Discriminator

DataloaderOracle Reward

Metrics

GAN

utils part model part

Figure 1: Texygen architecture.

two sentences are, it can also be used to evaluate how one sentence
resembles the rest in a generated collection. Regarding one sentence
as hypothesis and the others as reference, we can calculate BLEU
score for every generated sentence, and define the average BLEU
score to be the Self-BLEU of the document.

A higher Self-BLEU score implies less diversity of the document,
and more serious mode collapse of the GAN model.

3 PLATFORM ARCHITECTURE
Texygen is implemented over TensorFlow [1]. As shown in Fig. 1,
the system consists of two parts with three major classes, highly
decoupled with each other, and easy for customization.

In the utils part, we provide user Metrics class and Oracle class.
The former has three subclasses designed for calculating BLEU
score, NLL loss and EmbSim, while the latter one enables user to
initialize three different types of Oracle: LSTM-based, GRU-based
and SRU-based. The default oracle is LSTM.

In the model part, we enable users to begin the training process
by only interacting with the GAN class (as a major class) without
concerning about the classes for the generator, the discriminator
and the reward (for RL-based GANs). Texygen also provides two
different types of training processes in the GAN class: synthetic
data training and real data training. The former one uses the oracle
LSTM to generate data, while the latter one uses real-world datasets
(e.g., COCO image caption2).

4 EXPERIMENT
4.1 Training Setting

Data. In our synthetic data training, the total number of words is
set to be 5,000 and the sentence length is set to be 20, and the oracle
will generate 10,000 sentences. In the real data training, we select
20,000 sentence from the image COCO captions, with half of them
as the training set, the rest as the test set.

GAN Setting. The default initial parameter of all generator fol-
lows a Gaussian distribution N(0, 1). We use MLE training as the
pretraining process for all baseline models except GSGAN, which
requires no pretraining. In pretraining, we first train 80 epochs for
a generator, and then 80 epochs for a discriminator. The adversarial
training comes next. In each adversarial epoch, we update the gen-
erator once and then update the discriminator for 15 mini-batch
gradients. In LeakGAN, after every 10 adversarial epochs, there are
5 MLE training epochs for both the generator and the discriminator.
The total number of adversarial training epochs is 100.

Evaluation Metrics. NLLoracle and NLLtest are applied to syn-
thetic data training. Since the oracle LSTM cannot generate words
2http://cocodataset.org/
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Figure 2: NLL-oracle loss comparison throughout training.
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Figure 3: NLL-test loss comparison throughout training.

with semantic meaning, we do not calculate the BLEU score or
EmbSim on synthetic data. On the other hand, the BLEU score, the
Self-BLEU score and EmbSim are applied to real data training.

4.2 Synthetic Data Experiment
The training curves of NLLoracle and NLLtest are depicted in Figs. 2
and 3 respectively. LeakGAN converges more quickly and achieves
good performance on these twometrics. TextGANgets bestNLLoracle
results, while gets worstNLLtest performance on pretraining epochs.
Due to model similarity, SeqGAN, MaliGAN and RankGAN have
almost identical curves until adversarial epochs, after which Mali-
GAN becomes less competitive compared to the other two.

4.3 Real Data Experiment
The training curves of EmbSim is depicted in Fig. 4. LeakGAN
achieves very high similarity at the beginning epochswhile TextGAN
has rather slow improvement. All GAN models achieve the best
results on pretraining steps. Once the adversarial training starts,
only LeakGAN still maintains its EmbSim score, while other base-
line models’ EmbSim scores decrease compared to the pretraining
epochs.

In this part, GSGAN is excluded, since it fails to generate any sen-
tences with semantics in our experiment. The generated instances
can be accessed from Texygen webpage.

The BLEU score on training data, test data is shown in Tables 1
and 2 respectively. LeakGAN outperforms other baseline models on
the metric, and its performance on test dataset shows it has rather
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Figure 4: EmbSim comparison throughout training.
Table 1: BLEU score on training data

SeqGAN MaliGAN RankGAN
BLEU-2 0.917 0.887 0.937
BLEU-3 0.747 0.697 0.799
BLEU-4 0.530 0.482 0.601
BLEU-5 0.348 0.312 0.414

LeakGAN TextGAN MLE
BLEU-2 0.926 0.650 0.921
BLEU-3 0.816 0.645 0.768
BLEU-4 0.660 0.596 0.570
BLEU-5 0.470 0.523 0.392

Table 2: BLEU score on test data
SeqGAN MaliGAN RankGAN

BLEU-2 0.745 0.673 0.743
BLEU-3 0.498 0.432 0.467
BLEU-4 0.294 0.257 0.264
BLEU-5 0.180 0.159 0.156

LeakGAN TextGAN MLE
BLEU-2 0.746 0.593 0.731
BLEU-3 0.528 0.463 0.497
BLEU-4 0.355 0.277 0.305
BLEU-5 0.230 0.207 0.189

good generalization capacity. MaliGAN has the lowest BLEU score
among all models.

The Self-BLEU score is shown in Table 3. It is clear that all models
generate less diverse documents compared to original training
data. LeakGAN and TextGAN suffer more serious mode collapse
problem compared to the other models, while MLE and MaliGAN
can generate documents with the highest diversity.

More detailed empirical study will be made available on Texygen
project webpage. For instance, LeakGAN tends to generate longer
sentences, while TextGAN is prone to generating short sentences.

5 CONCLUSION AND FUTUREWORK
Texygen is a text generation benchmarking platform enabling re-
searchers to evaluate their own models and compare them with
existing baseline models fairly and conveniently from different per-
spectives. Texygen has already designed and implemented various
evaluation metrics in order to provide a comprehensive benchmark.

Table 3: Self-BLEU score
SeqGAN MaliGAN RankGAN

BLEU-2 0.950 0.918 0.959
BLEU-3 0.840 0.781 0.882
BLEU-4 0.670 0.606 0.762
BLEU-5 0.489 0.437 0.618

LeakGAN TextGAN MLE
BLEU-2 0.966 0.942 0.916
BLEU-3 0.913 0.931 0.769
BLEU-4 0.848 0.804 0.583
BLEU-5 0.780 0.746 0.408

We also discovered that not all metrics in NLP are suitable for text
generation. For instances, context free grammar (CFG) is a widely
used metric on text grammar analysis, and has been used as a metric
in some related work [8]. However, in practice, we found that it
cannot distinguish different models and is even prone to favoring
ones with more severe mode collapse, as these models may only
learn a few grammars. For the future work of this project, we will
keep updating new models and designing novel metrics for better
benchmarking the text generation tasks.
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