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H I G H L I G H T S

• Detailed radiation model coupled process simulation of fluidized beds.

• Combining the advantages of zone method and Aspen Plus.

• A case study on a 0.3 MW fluidized bed.

• A modest computing demand.
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A B S T R A C T

While providing a fast and accurate tool for simulating fluidized beds, the major limitations of classical zero-
dimensional ideal reactor models used in process simulations become irreconcilable, such as models built into
commercial software (e.g. Aspen Plus®). For example, the limitations of incorporating heat absorption by the
water wall and super-heaters and inferring thermal reciprocity between each reactor model/module. This paper
proposes a novel modelling approach to address these limitations by incorporating an external model that
marries the advantages of the zone method and Aspen Plus to the greatest extent. A steady state operation of a
0.3 MW atmospheric bubbling fluidized-bed combustor test rig was simulated using the developed modelling
approach and the results were compared with experimental data. The comparison showed that the predictions
were in agreement with the measurements. Further improvement is to be expected through incorporating more
realistic zoned geometry and more complex reaction mechanisms. In addition, the developed model has a re-
latively modest computing demand and hence demonstrates its potential to be incorporated into process si-
mulations of a whole power plant.

1. Introduction

Circulating Fluidized Bed (CFB) technology has been developed and
served as an effective means for burning solid fuels for many industrial
applications (such as coal combustion) since the 1980s due to its in-
herent advantages in fuel flexibility, high combustion intensity and low
emissions [1]. Although technical knowledge about the design and
operation of CFB is widely available for pilot plant and large scale units
[2], few researchers have conducted modelling of the whole CFB power
plant [3–7] and hence little is known about its dynamic performance
and operational flexibility, like oxy-fuel combustion [8] and co-firing
[9]. This was due to the challenges faced in modelling the highly
complex gas/solid chemical reactions coupled with fluid flow and heat
and mass transfer occurring in a CFB boiler.

One of the earliest simulation studies of fluidized beds is the
National Aeronautics and Space Administration (NASA)’s ‘Simulation of
fluidized bed coal combustors’ project conducted in the 1970s [10,11].
They developed a comprehensive model using in-house code to simu-
late the aforementioned physical and chemical processes in fluidized
beds. Although the model is imperfect from the current point of view, it
framed a modelling approach for fluidized beds and inspired the follow-
up studies. de Souza-Santos [12–18] also developed a comprehensive
model for the simulation of fluidized bed equipment, and the latest
version includes all sub-models related to combustion and gasification
of solid fuels and allows detailed simulation of boilers and gasifiers.
With the maturity of commercial software for process simulations [19],
various process simulators such as Aspen Plus® are available and have
been widely employed for process simulation purposes by industrial
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entities since the late 1990s. The commercial process simulators usually
have a powerful physical and chemical properties database, which is
they’re greatest advantage over models developed using in-house code.

Despite the advances in Aspen Plus for time-dependent dynamic
simulation and process control, no provision is currently available to
couple detailed heat transfer models with a process simulation as part
of a complete engineering solution. As a result, in fluidized bed mod-
elling the heat absorption by the water wall and super-heaters is usually
specified as model inputs explicitly rather than predicted directly by the
models. Furthermore, the modular modelling strategy does not involve
thermal reciprocity between each reactor module [20–28]. These as-
pects of modelling are particularly useful for the design and evaluation
of the operational flexibility of a fluidized bed boiler in supercritical
conditions [29]. This is due to the fact that, under supercritical con-
ditions, the boiler uses once-through circulation for the water wall and
if excessive heat flux on the furnace side occurs, this cannot be auto-
matically compensated for with a larger water flow rate in the tubes,
thus resulting in over-heating of the water membrane.

On the other hand, although Computational Particle Fluid Dynamics
(CPFD) is widely used to simulate fluidized bed combustion systems
and can predict the detailed local heat and mass transfer information

for the entire computational domain, it often takes several days, if not
weeks, to provide useful results for large industrial cases. Therefore,
CPFD models [30,31] are not feasible for incorporation into process
simulations of a whole power plant. Moreover, Selçuk et al. [32,33], by
using in-house codes investigated the radiative heat transfer char-
acteristics on a bubbling fluidized bed combustor test rig. However,
their developed fluidized bed combustion models relied on empirical
models, rather than on first principles, to calculate gas temperature
profiles and therefore may not generalise correctly in unknown situa-
tions.

As the combustion efficiency of fluidized bed combustor depends
largely on the heat recovered in the freeboard region, where the
dominant component of heat transfer is radiation [34], accurate mod-
elling of the radiative heat transfer in such systems is essential. Previous
work by Hu et al. [35] has been devoted to further improving the
classical zone method of radiation analysis (hereafter called zone
model) using in-house codes which can be applied to a wide range of
industrial furnaces. In this paper, the authors further extend the ap-
plication of the zone model by integrating it in an efficient manner with
process simulation in Aspen Plus, thus providing a more complete and
flexible solution for optimising the thermal performance of fluidized-

Nomenclature

Abbreviations

ABFBC Atmospheric Bubbling Fluidized-bed Combustor
CFB Circulating Fluidized Bed
CFD Computational Fluid Dynamics
CPFD Computational Particle Fluid Dynamics
FC Fixed Carbon
HHV high heating value
MCRT Monte-Carlo based Ray-Tracing
DEAs direct exchange areas
DFAs directed flux areas
TEAs total exchange areas
VM Volatile Matter
ULT ultimate analysis
WSGG weighted sum of mixed grey gases model

Symbols

ag,n, as,n weighting coefficient in mixed grey gas model [–]
Ai area of the i-th surface zone [m2]
An mie scattering coefficient [–]
b1, b2 correlation coefficients [–]
Bn mie scattering coefficient [–]
d32 sauter mean diameter [mm]
Dp mean particles diameter
Fair air flow rate [kmol h−1]
Fcoal coal flow rate [kg h−1]
Fr Froude number [–]
g gravitational constant, 9.81 [m s−2]
g g g s g, ,s ,s si j i j i j i j direct exchange areas [m2]
↼ ⎯⎯⎯⎯⎯ ↼ ⎯⎯⎯⎯⎯ ↼ ⎯⎯⎯⎯⎯ ↼ ⎯⎯⎯⎯G G G S S G S S, , ,i j i j i j i j directed flux area [m2]
G G G S S G S S, , ,i j i j i j i j total exchange areas [m2]
Gs mass flux of solid particles [kg s−1 m−2]
Hg gas enthalpy [kJ kg−1]
Iλ spectral radiation intensity [W m−2 sr−1]
k, k k,g s, kp constant of reaction rate; imaginary part of complex

index of refraction; grey gas, soot, or particles extinction
coefficient [–]

Ki extinction coefficient of gas zone i [m−1]
ṁ mass flow rate [kg s−1]

n index of infinite series within Mie equations; real part of
complex index of refraction [–]

P pressure [atm]
Qabs absorption efficiency factor [–]
Qext extinction efficiency factor [–]
Qsca scattering efficiency factor [–]
qċonv,i heat convection term of surface zone i [W m−2]
Qċonv,i heat convection term of gas zone i [W]
Qėnth,i enthalpy transport term of gas zone i [W]
Qṡ,i net radiation from the surface zone i [W]
Qġ,i net radiation absorbed by the gas zone i [W]
r radius [m]
Re real part of complex number [–]
s travelled distance [m]
t time [s]
T temperature [K]
Tbed mean bed temperature [K]
Tg,i or j temperature of gas zone i or j [K]
Tm mean bulk temperature [K]
Ts, i or j temperature of surface zone i or j [K]
Ttop mean top temperature [K]
U overall convective heat transfer coefficient [W m−2 K−1]
Ug superficial velocity [m s−1]
Umf critical fluidization velocity [m s−1]
Vi volume of gas zone i [m3]
x particle size parameter [–]
Z height [cm]
a delay index [–]
ε voidage [–]
εb voidage of the lower region [–]
ε∗ voidage under saturated conditions [–]
λ wave number [–]
λm mean wavelength [μm]
μ gas viscosity [N s m−2]
ρcoal density of coal [kg m−3]
ρg density of gas [kg m−3]
ρp density of particles material [kg m−3]
σ Stefan-Boltzmann constant (5.6687 × 10−8) [W m−2

K−4]
σsp scattering coefficient [–]
ϕ slip factor [–]
∊ emissivity [–]
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bed boilers. As far as the authors are aware, no other process simula-
tions of the fluidized bed boiler with similar features have been pub-
lished. The developed model is expected to be relatively modest in
computing demand and hence can be feasibly incorporated into dy-
namic simulations of a whole CFB power plant.

2. Object of the study

To demonstrate the proposed modelling approach, a 0.3 MW
Atmospheric Bubbling Fluidized-bed Combustor (ABFBC) test rig,
shown in Fig. 1, was chosen as the object for this study. The main
feature of the test rig is the modular combustor formed of five 1 m high
modules of internal cross-sectional area of 0.45 m × 0.45 m. The inner
walls of the modules are lined and insulated with alumina-based re-
fractory bricks of 6 cm in thickness. The first and fifth modules refer to
the bed (bottom) and cooler (top), respectively. The ones between them
are the freeboard modules. There exist two cooling surfaces in the
modular combustor, as shown in Fig. 1, providing 0.35 m2 and 4.3 m2

of cooling surfaces, respectively.
Previously, Selçuk et al. [32,33] have conducted experimental and

numerical studies on this test rig to investigate its heat transfer char-
acteristics. The experiments, consisting of two combustion tests with
and without recycling of fine particles from the cyclone, were carried
out by burning a typical lignite coal. For the purpose of demonstrating
the developed models, only the combustion test without particle re-
cycling was simulated in this study. The coal analysis is as shown in
Table 1 and the steady state operating conditions are presented in
Table 2.

3. Methodology of fluidized bed modelling

Due to the complexity of coal combustion in fluidized beds, only the

major steps of coal combustion are considered in the model, with some
simplifying assumptions. When the coal particles travel through a
fluidized bed combustor, drying, devolatilization, volatile combustion
and char combustion occur consecutively, as illustrated in Fig. 2. A
hydrodynamics model is also adopted to describe the influence of the
gas-phase superficial velocity on the char particle pore size profile
(which further influences the reaction rate of char combustion) along
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Fig. 1. Schematic of the 0.3 MW ABFBC test rig (adapted
from Fig. 1 in [36]).

Table 1
Analysis of the lignite coal [32,33].

Proximate analysis (as
received)

Ultimate analysis (dry basis) Sieve analysis

Component w% Component w% Size, mm w%

Moisture 13.7 C 38.1 4.000–3.350 11.5
Ash 36.4 H 3.2 3.350–2.360 20.2
VM 32.7 O 12.4 2.360–2.000 17.7
FC 17.2 N 1.4 2.000–1.700 16.8

HHV: 13.2 MJ/kg Scomb 2.7 1.700–1.180 15.7
d32: 1.26 mm Stotal 4.5 1.180–0.710 12.2
ρcoal: 1.58 g/cm3 Ash 42.2 0.710–0.000 5.9

Table 2
Operating conditions of the experiment [32,33].

Coal flow rate (Fcoal), kg h−1 101
Air flow rate (Fair), kmol h−1 22
Particle density (ρp), kg m−3 537
Mass flux of solid particles (Gs), kg s−1 m−2 0.03
Superficial velocity (Ug), m s−1 3
Mean bed temperature (Tbed), K 1146
Mean top temperature (Ttop), K 822
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the height of the freeboard region.

3.1. Devolatilization

With regard to the chemical formula for coal, it is treated for sim-
plicity as a homogeneous mixture of elemental substances, such as
carbon (C), hydrogen (H), oxygen (O), nitrogen (N) and Sulfur (S) as
given in Reaction (R1). In this step, coal is converted into those virtual
elementary substances in the simulation. As shown in Fig. 3, RYield1

(Aspen Plus reactor) is used to model this coal decomposition by spe-
cifying the yield distribution vector (Eq. (1)) via an In-Line Fortran
calculator 1 (Aspen Plus calculator block) according to the coal ultimate
analysis.

→ + + + + +α α α α α αCoal C H O N S H O,1 2 2 3 2 4 2 5 6 2 (R1)

= × −
…α ULT

100
100 Moisture

100
·i, ,5

i
(1)

3.2. Volatile combustion

During devolatilization, the Volatile Matter (VM) in coal is released
and combusted instantaneously. The VM consists of volatile C
(CISOLID2), H2, O2, N2, S and H2O. The volatile combustion is assumed
to be completed in the above bed region. Volatile C (CISOLID) is only
oxidized to CO due the O2-lean environment in this region and is en-
tirely consumed during the volatile combustion [20]. The amount of
volatile C can be calculated by the difference between the Fixed Carbon
(FC) in the proximate analysis and the total C in the ultimate analysis
(Table 1) as Eq. (2),

= ⎛
⎝ −

− ⎞
⎠

×Volatile C (CISOLID) C
100 Moisture

FC 100%.
(2)

RStoic3 (Aspen Plus reactor) is used to calculate this by specifying
the fractional conversion of key components via an In-Line Fortran
calculator 2 (Aspen Plus calculator block). For demonstrational pur-
pose, three reactions are considered in this process, but any other re-
action mechanisms can be easily incorporated:

+ →C(CISOLID) 0.5O CO,2 (R2)

+ →H 0.5O H O,2 2 2 (R3)

+ →S O SO .2 2 (R4)

3.3. Char combustion

The char particles resulting from the devolatilization process consist
of the FC (NCSOLID4) and ash. These particles are then burned to
produce a mixture of CO and CO2 in the entire fluidized bed boiler. Two
reactions are considered in this process:

⎜ ⎟ ⎜ ⎟+ → ⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠φ φ φ

C(NCSOLID) 1 O 2 2 CO 2 1 CO ,2 2
(R5)

+ →CO 0.5O CO .2 2 (R6)

These reactions are temperature-dependent and implemented in
Aspen Plus using a set of RCSTRs5 (1–10 in this case, Aspen Plus re-
actor) with user defined kinetics – USRKIN.f (Aspen Plus Subroutine),

Coal particle

Drying

Moisture

Devolatilization

Volatile
Char

Ash

Burnout

Fig. 2. Illustration of coal combustion pro-
cess in fluidized beds.

AirRYield RStoic

RCSTR
1
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2

RCSTR
n - 1

RCSTR
n

Subroutine:
(...)
USRKIN.f
…
End

Fortran
Calculator 

2

Fortran
Calculator 

1

Coal

Fortran
Calculator 

3

Exhaust
Steam line

Information line

Fig. 3. Flow sheet of fluidized bed combustion process based on Aspen Plus.

1 RYield reactor, performs the calculations based on the yield, which is defined as mole
or mass of each component per total mass input to the reactor [37].

2 CISOLID, conventional inert solid, is used for homogeneous solids that have a defined
molecular weight [37].

3 RStoic reactor, performs the calculations based on the reaction stoichiometry [37].
4 NCSOLID, nonconventional inert solid, is used for heterogeneous solids that have no

defined molecular weight [37].
5 RCSTR reactor, performs simulation of ideal reactors operated under specific condi-

tions (pressure and temperature or heat duty), valid phases, and user defined kinetics
[37].
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as listed in Table 3. Again, any other emission related reactions oc-
curring in the entire fluidized bed boiler can be easily incorporated,
such as SO2 absorption [20], fuel and thermal NOx formations [38], via
the user defined kinetics in the same way. Since those emission related
reactions are not the main exothermal reactions and do not affect
thermal performance appreciably, they are not considered in this study.

3.4. Hydrodynamics model

A lumped hydrodynamics model [40,41] was chosen to predict the
voidage profile in the free board region of the studied fluidized bed
combustor. According to the model, the free board region is divided
into a discrete number of intervals and consists of two zones: a lower
region and an upper region (Fig. 4).

In the lower region, because of the turbulent fluidization condition,
the voidage (ε) can be assumed to be a constant [42] for a given gas
superficial velocity (Ug); in the upper region, the value of ε in a certain
interval between heights Zi−1 and Zi can be calculated based on Eqs. (3)
and (4) via an In-Line Fortran calculator 3 (Aspen Plus calculator block)
at every iteration:

= − −
−

− = …∗
∗

−

− − −ε ε ε ε
a Z Z( )

(exp exp ) , i 1,3, ,n;aZ aZ
i

b

i 1 i
i i 1

(3)

=
+

∗ε
ϕG U ρ

1
1 /

,
s g p (4)

where ε∗ denotes the voidage under saturated conditions in the dilute
phase at the top of fluidized bed riser column; εb the voidage of the
lower region, εb ≈ 0.55 [40]; a represents the decay constant, and ex-
perimental data shows that Ug is inversely proportional to the decay
constant with a proportional constant of 4.0 s−1 [41,43]; ϕ represents
the slip factor, which is a function of Froude number (Fr) as given in
Eqs. (5)–(7),6

= + +ϕ
F

F1 5.6 0.47 ,
r

r
0.41

(5)

=F
U
gd

,r
mf
2

e (6)

=
−

U
d ρ ρ g

μ

( )

1650
.mf

e
2

p g

(7)

3.5. Zone method of radiation analysis

Due to the relatively simple geometry of the ABFBC, the freeboard
region is split into a finite number of isothermal volume and surface
zones along the height, as shown in Fig. 5. For modelling purposes, the
bottom and the top surfaces, which also include the cooling tubes, are
approximated each by an equivalent grey surface. An assumption of
plug flow is applied to the flow pattern, which is reasonable given that

the flow-induced enthalpy transport is predominantly in the long-
itudinal direction of the fluidized bed. However, even more compli-
cated zoning arrangement and flow pattern are also possible, see [35],
which depend on the requirements of a specific problem. An energy
balance is then formulated for each zone, taking into account radiation
interchange between all volume and surface zones, the enthalpy
transport, and the source term associated with combustion and heat
release [44]. Fig. 6 shows the flow sheet of the coupled solutions in
Aspen Plus for ABFBC modelling. In the simulation, the RCSTR block
temperatures are updated continuously by the zone model until an
appropriate convergent tolerance is satisfied; i.e. negligible tempera-
ture difference between successive iterations.

3.5.1. Models with internal zone energy balance
The radiation term in the energy balance equations is written in

terms of exchange factors known as the directed flux areas (DFAs)
(denoted by ↼ ⎯⎯⎯⎯⎯ ↼ ⎯⎯⎯⎯⎯ ↼ ⎯⎯⎯⎯⎯ ↼ ⎯⎯⎯⎯G G G S S G S S, , ,i j i j i j i j for gas-gas, gas-surface, surface-gas,
and surface-surface exchange, respectively, in Eqs. (8) and (9)). The
energy balances on all zones yield a set of simultaneous non-linear
equations which can be solved to determine the temperature and heat
flux on each zone.

For a system of N volume zones and M surface zones, the following
energy balances can be written.

∑ ∑= ↼ ⎯⎯⎯⎯⎯ + ↼ ⎯⎯⎯⎯⎯ − − +
= =

Q G G T G S σT K V σT Q Q̇ σ 4 ̇ ̇ ,
N M

g,i
j 1

i j g,j
4

j 1
i j s,j

4
i i g,i

4
conv,i enth,i

(8)

∑ ∑= ↼ ⎯⎯⎯⎯ + ↼ ⎯⎯⎯⎯⎯ − ∊ +
= =

Q S S T S G σT A σT A q̇ σ ̇ .
M N

s,i
j 1

i j j
4

j 1
i j g,j

4
i i i

4
i conv,i

(9)

For the i-th volume (gas) zone, Qġ,i represents the net rate of heat
transfer to the volume (gas) zone; Qċonv,i is the convection to all surfaces
in contact with the volume zone; for the plug flow pattern assumed in
this study where the enthalpy of the combustion products leaving one
zone is the enthalpy input to an adjacent zone, Qėnth,i can be expressed
as:

= −−
+

−
−Q m H T m H Ṫ ̇ ( ) ̇ ( ).enth,i i 1 g g,i 1 i g g,i (10)

Likewise, for the i-th surface zone, Qṡ,i represents the net rate of heat
transfer to the surface zone. If the surface temperature is not known, it

Table 3
Reaction kinetics in char combustion process.

No. Reaction rate Constant of reaction rate Ref.

R5 − =
+

dn
dt

P

k k

c O2
1

5,film

1

5,ash

= ×k T
d T5,film

0.292 4.26( / 1800)1.75

p

[39]

=
−

k k εp
y

y5,ash 5,film
2.5

1

=y r
r

core
particle

R6 − = k C C CdC
dt
CO

6 CO O2
0.3

H2O
0.5 = × −( )k 1.9 10 exp

T6 6 8056 [26]
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2

Fig. 4. Typical voidage profile alone the height of fluidized beds.
6 Gas density (ρg) of 0.316 kg/m3 and gas viscosity (μ) of 4.49 × 10−5 N s m−2 [2] are

used in this study.
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must be expressed as an additional equation in Ti relating, for example,
to a wall heat loss term or to the heat transfer to a load.

The DFAs in Eqs. (8) and (9) represent the radiant flux between each
zone-pair and can be expressed as an a-weighted summation of the total
exchange areas (TEAs) (denoted by G G G S S G S S, , ,i j i j i j i j ) for each of the
radiating grey gases. This is a well proven method, known as the
Weighted Sum of mixed Grey Gases (WSGG) model [44], to approx-
imate the radiative behaviour of real gases, defined as follows:

Gas – Surface directed flux area,

∑↼ ⎯⎯⎯⎯⎯ =
=

=G S a T G S( )( ) ,
N

k ki j
n 1

g,n s,j i j

g

g,n
(11)

Surface – Surface directed flux area,

∑↼ ⎯⎯⎯⎯ =
=

=S S a T S S( )( ) .
N

k ki j
n 1

s,n s,j i j

g

g,n
(12)

For a grey gas system, the total exchange areas are independent of
temperature and need only be calculated once for a given geometry, and for
fixed surface emissivity (ε) and attenuation coefficient (K). For a given
boundary condition, theseM+ N non-linear equations (M unknown surface
temperatures; N unknown gas temperatures) can be solved using the
Newton-Raphson method [45]. This method provides an approach of
computing successive approximations of the variables which converge to-
wards the solution. Furthermore, an updated Monte-Carlo based Ray-Tra-
cing (MCRT) algorithm [46] was used to calculate the radiation exchange
areas. This, together with the retrieved enthalpy flow data in Fig. 6, pro-
vides the input data that needs to be supplied to the zone model.

1
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-
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(bottom) surface
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Fig. 5. Illustration of zone method applied in the freeboard region of ABFBC.
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3.5.2. Radiation properties of gas media (non-grey gas with particles)
In fluidized beds, particulate matter in the form of soot and ash

particles exist in the gas medium and their sizes are close to, or larger
than, the wavelengths of emission and absorption. Hence the impact of
scattering due to particles can no longer be considered negligible
compared with emission and absorption. When a beam of radiation is
incident on an opaque particle, some of it will be absorbed and the
remaining scattered away from the direction of the incident beam. The
spectral attenuation of the beam by absorption and scattering can be
expressed by Eq. (13):

− = + + +dI
ds

k k k σ I( ) ,λ
λ λ λ λ λg, s, p, sp, (13)

where, kg,λ, ks,λ, and kp,λ are the absorption coefficients of gas, soot, and
particles at the specific wave number n, respectively. In this study,
Truelove’s WSGG model (Ng = 3, Ns = 2, =p p/ 1H O CO2 2 ) [47] was used
to calculate the gas radiative properties, and the grey gas parameters
used in this model are listed in Table 4.

For the evaluation of absorption and scattering of radiation by the
particles cloud, both the extinction efficiency factor (Qabs) and the
scattering efficiency factor (Qsca) were evaluated via the classical Mie
theory [48]. These are given by:

∑= + +
=

∞

Q
x

n Re A B2 (2 1) { },
n

n next 2
1 (14)

∑= + +
=

∞

Q
x

n A B2 (2 1)(| | | | ),
n

n nsca 2
1

2 2

(15)

where

= −Q Q Q .abs ext sca (16)

The details related to these equations can be found in Ref. [49]. An
in-house code was developed to evaluate these efficiency factors and
the code had been validated with benchmark data (Table 4.1 in [49]).
Then the absorption and scattering coefficients (kp,λ and σsp,λ) of the
suspended particles can be obtained by:

=k G Q λ
ρ D

3 ( )
2

,λp,
s abs

p p (17)

=σ G Q λ
ρ D

3 ( )
2

.λsp,
s sca

p p (18)

Similar to the non-grey gas properties, calculation of the absorption
and scattering coefficient of particles requires the evaluation of these
properties as a function of wavelength, which means a high computa-
tional cost. For engineering applications, grey approximation for the
suspended particles is a reasonable compromise. A mean wavelength
(λm) was used to represent the spectral distribution of the incident ra-
diation energy. This wavelength can be calculated from the displace-
ment law for black-body radiation [50], given by Eq. (19).

=λ T 4107 μm K,m m (19)

here Tm is the mean bulk temperature of the gas media in the enclosure,
and assumes that suspended particles have the same temperature as the
gas phase since previous Computational Fluid Dynamics (CFD)

simulation showed that their temperature difference is always less than
50 K [51]. Radiation properties of the gas media in this study are
summarized in Table 5.

3.6. Thermal boundary conditions at walls in the zone model

In most instances, heat losses from furnace walls and/or heat
transfer to a water-cooled loads exist, which are generally not known
prior to measurements. In this study, the freeboard region is insulated
with refractory bricks 6 cm in thickness and cooling tubes are arranged
at the bed and exit areas and the mean bed temperature was measured
as 1148 K in the experiment in Ref. [33]. Based on these facts, an
adiabatic boundary condition was assumed for the side walls. The two
imaginary surfaces were assumed as having the same temperature as
their respective adjacent upstream gas zones where cooling tubes are
arranged. Due to the plug flow assumption, it can be seen that only the
cooling system in the bed region has a significant effect on convection
terms in the zone model, as indicated by the red-dash7 line in Fig. 7; the
gas flowing through the cooling system arranged at the top region has
limited effect on its upstream processes. Therefore, the overall con-
vective heat transfer coefficient (U in Eq. (20)) of the cooling system at
the bed region was tuned to match the bottom gas zone temperature
(Tg,1) to the measured bed temperature. The convective heat transfer is
given by,

= −Q UA T Ṫ ( )cooling s,bottom bed (20)

4. Results and discussion

To demonstrate the proposed modelling approach, firstly the voi-
dage profile was evaluated and compared with available experimental
data; then the direct exchange areas (DEAs) required by the zone model
was prepared according to the geometry of the studied fluidized bed
combustor using the MCRT algorithm. The computational efficiency of
the MCRT was also compared to a direct numerical integration algo-
rithm. Next, based on the developed model, the thermal performance of
the fluidized bed combustor and reaction kinetics characteristics was
predicted and compared with experimental data. Finally, the possibility
of applying this model to large-scale fluidized bed boilers is discussed. It
should be noted that the accuracy of the zone model is only sig-
nificantly affected by the number of divisions along the height if a large
temperature gradient exists, which was not the case in this study as
indicated by the experimental measurements. Therefore 10 divisions
were chosen which gave adequate resolution and yet meaningful
comparison with actual measurement points.

4.1. Voidage profile

In fluidized bed design, the decay constant is an important para-
meter, but their reported values are scattered and sketchy. Based on
available experimental data, Kunii et al. [41] drew an important con-
clusion that the mechanism of decay for solid fraction in the upper
region of fast fluid beds is basically similar to the decay above bubbling
and turbulent beds. This conclusion makes Eq. (3) applicable to all
three types of beds. In a specific case, only the voidage of the lower
region or solid fraction needs to be determined carefully. The authors
also reviewed the literature and concluded the values for voidage at the
lower region (εb)8 as follows, bubbling bed: εb = 0.45–0.60; turbulent
bed: εb = 0.60–0.78; fast fluidization: εb = 0.78–0.84. The calculated
voidage profile of the bubbling bed in the process simulation was

Table 4
Grey gas parameters used in the WSGG model [47].

i j b1 b2 × 103 (K−1) kg,i (m−1 atm−1) ks,j m−1 (kg m−3)−1

1 1 0.717 −0.2964 0.0 350
1 2 −0.231 0.3861 0.0 1780
2 1 0.459 −0.1787 2.5 350
2 2 −0.078 0.1391 2.5 1780
3 1 0.120 −0.0499 109.0 350
3 2 0.013 −0.0002 109.0 1780

7 For interpretation of color in Figs. 7 and 16, the reader is referred to the web version
of this article.

8 Converted from the volume fraction of solids in lower dense region (εsd),
εb = 1− εsd.
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plotted in normalized height and compared with that of an ultra-tall
CFB riser [53] in Fig. 8. From the comparison, it can be observed that
appreciable differences exist at the lower region. These may be due to
the inherent differences in features of various beds. More precise data
that reflect how the voidage may vary with the imposed operating
conditions would need to be further investigated.

4.2. Direction exchange areas (DEAs)

Although the radiation exchange areas used in the zone model in-
clude DEAs, TEAs, and DFAs, the main computing time is due to the
calculation of the DEAs, which are functions of the geometry and gas
attenuation coefficient. Since all the radiation emitted by a surface must
go somewhere, the sum of all the DEAs for a surface is its area and from
the symmetry of the integral, it follows that:

∑ =s s A ,
j

i j i
(21)

=s s s si j j i (22)

The accuracy of the MCRT algorithm highly depends on the ray
density. A large ray density (> 10,000 ray m−2) is required to ensure
low errors [44]. Three ray densities (10,000 ray m−2, 20,000 ray m−2,

and 50,000 ray m−2) were applied in the DEAs calculations. An algo-
rithm for smoothing the approximate exchange areas [54] was used in
the updated MCRT algorithm to ensure that both the summation and
symmetry rules of Eqs. (21) and (22) are satisfied within a convergent
criteria of 1e−10. Even with such a strict convergent criteria the

Table 5
Summary of the radiation properties of gas media in this study.

Mean bulk temperature of freeboard region, Tm 1120 K [33]
Mean wavelength, λm 3.667 μm
Particle size parameter, x= Dpπ/λ 1 [52]
Particle diameter, Dp 1.167 μm
Real part of complex index of refraction, n 1.7 [52]
Imaginary part of complex index of refraction, k 0.066 [52]
Efficiency factors for extinction, Qext 0.585
Efficiency factors for scattering, Qsca 0.398
Efficiency factors for absorption, Qabs 0.187
Absorption coefficient, kp 4.476 m−1

Scattering coefficient, σsp 9.526 m−1

Fig. 7. Thermal boundary conditions at walls in the zone model.
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Table 6
Computing efficiency of DEAs by different algorithms.

Updated MCRT algorithm (this
study)

Direct Numerical Integration [32]

Ray
density,
rays/m2

Max. abs. err.
in symmetry/
summation
rules

CPU
time,
s

Number of
volume
elements

Max. abs. err.
in
summation
rule, %

CPU time, s

10,000 1e−10 3.97 10 × 13×13 5.78 214
20,000 1e−10 7.16 20 × 26×26 2.93 9218
50,000 1e−10 16.59 30 × 40×40 1.91 107189

Hardware: HP ZBook/17 Model G2 Hardware: IBM RS/6000 Model 590
CPU: Intel i7-4910MQ 2.9 GHz CPU: Power2 66.7 MHz
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Fig. 9. Measured- and predicted gas temperature profiles along the height of combustor.
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calculation was obtained within a few seconds of CPU time, as shown in
the left hand side of Table 6. On the right hand side, the accuracy of the
direct numerical integration algorithm depends on the number of vo-
lume elements and increases exponentially with it. Without using the
smoothing algorithm, relatively larger errors in energy balances may be
expected, especially in the case with a small number of volume zones.
Despite significant improvement in accuracy (by almost eight orders of
magnitude) using the updated MCRT algorithm, the required CPU time
is still much less than the direct numerical integration algorithm.

4.3. Thermal performance

The simulation of a steady state operation of the studied fluidized
bed showed that the calculation took 0.40 s to reach a converged so-
lution after 3 iterations, and the maximum temperature difference be-
tween the values calculated by RCSTR blocks and zone model was less
than 10−4 K. The measured and predicted thermal performance, in-
cluding gas temperature profile and mean incident radiative heat flux,

is shown in Figs. 9 and 10, respectively. The gas temperature profiles
are found to be in good agreement, but appreciable discrepancies are
found in the incident radiative heat flux at the locations close to the bed
and the cooler. These discrepancies might be due to the equivalent
surfaces which do not really exist and this would interdict ‘cold’ beams
from the cooling tubes, and the radiometer probes located at those
heights are also affected by the cooling tubes. Further sensitivity study
on the emissivity of the wall surfaces showed that the emissivity has
almost has no effect on the gas temperature profiles but a significant
affect the incident radiative heat flux. In general, the incident radiative
heat flux increases with increasing surface emissivity. This is because
the temperature profile of the system will be constant when thermal
equilibrium is attained under steady-state operation. The net incident
radiative heat flux on a surface depends on the fourth-power tem-
perature difference between gas and the surface and their emissivities.
Hence, increasing the water wall emissivity will help to improve the
boiler thermal performance. For the studied fluidized bed, since the
inner walls of the freeboard are refractory lined and insulated, heat
losses are negligible. The wall temperatures of the freeboard are
therefore close to the adjacent gas temperatures during the steady state
operation.

Fig. 11 further presents the contour plot of average temperature and
incident heat flux on each walls’ surface zones along the freeboard re-
gion which are not available from traditional process simulations using
Aspen Plus. Due to the plug flow and adiabatic wall assumptions, the
temperature profile among the surrounding wall surfaces of each gas
zone are uniform; and the single surface zone arrangement on the XZ
plane also makes the radial temperature profile not available. However,
these details can be made easily available, if necessary, by extending
the zone model to multi-dimensions [35].

Furthermore, Fig. 12 shows the heat duty of each reactor due to
enthalpy transport in the process simulation. Since the first reactor
(module) is adjacent to the cooling tubes located in the bed region,
most of the heat released (about 120 kW) is taken away by the cooling
water. The heat duty of the reactors dramatically decreased with the
development of the reaction process. The last reactor (module) has the
minimum heat duty as the combustion is close to completion there.

In order to inspect the system energy audit, the energy input
(370 kW= 13.2 MJ kg−1 × 101 kg s−1) in the simulation was broken
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Fig. 10. Measured- and predicted mean incident radiative heat flux at different height of
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Fig. 11. Expanded view of the temperature- and incident
radiation flux contour of the freeboard region
(Emis. = 0.95).
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down into the heat duty of bed cooling, heat duty of top cooling plus
loss in exhaust9, and loss in unburned coal, as plotted in Fig. 13. The
combustion efficiency can be evaluated based on the unburned coal,

which was about 95% in this study. This result is within a reasonable
range of the normal combustion efficiency (over 90%) of bubbling
fluidized beds in the technical report [55].

4.4. Reaction kinetics

Not only the thermal performance, but also the reaction kinetics
characteristics of each gas/volume zone are available in the process
simulation. Fig. 14 shows the reaction rate of key components in the
exothermic reactions. A positive value means production and a negative
value means consumption. From this figure it can be seen that O2 is
always being consumed and CO2 is always being produced, while the
reaction rates drop asymptotically to zero, as expected. The reaction
rate of CO highly depends on the combustion atmosphere. Due to the
assumption that Volatile C (CISOLID) is only oxidized to CO in the O2-
lean environment at bed level, as mentioned in Section 3.2, a relatively
large amount of CO is therefore present at the lower region of the
freeboard region. In practical operation, appropriate air staging can be
applied to ensure low pollutant emissions and completed combustion
[56].

Fig. 15 shows the comparison of the measured and predicted O2,
CO2 and CO concentrations in the process simulation. Despite sig-
nificant deviations, the predicted trends of concentration are in
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Fig. 14. Predicted reaction rate of O2, CO2, and CO.
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9 Due to the exhaust temperature not being available, only the sum of the heat duty of
the top cooling system and the heat loss in the exhausted flue gas is available.

Y. Hu et al. Applied Energy 227 (2018) 168–179

177



agreement with the measurements. These results prove the effective-
ness of the proposed modelling approach to some extent. The deviation
in the absolute values is most likely due to the over simplification of the
combustion mechanisms applied in this study, and the fact that com-
bustion reactions are influenced by many factors such as the type of
fuel, and the physical state of reactants and their dispersion, which are
not fully considered. In addition, the assumption of virtual elemental
substances during devolatilization may also cause the deviations since
this is not the case in the real process. In order to improve the pre-
diction, more complicated combustion mechanisms [2] have to be in-
volved to accurately calculate the O2 consumption rate in its related
reactions. Further, a devolatilization mechanism which is more similar
to the real process is also helpful to improve the prediction.

4.5. Discussion on the real application of the proposed modelling approach

The results shown above have demonstrated the application of the
proposed modelling approach on a bubbling fluidized bed combustor.
For real-time simulations of a whole power plant, the prerequisite is
that the model execution is faster than real-time. The modest com-
puting demand implies that the developed model can be potentially
incorporated into process simulations of a whole power plant. When
applying the proposed modelling approach to a large-scale fluidized
bed boiler, the main difference would lie in boundary conditions of heat
transfer through water walls. In subcritical operations, heat is trans-
ferred to a boiling fluid (vapour-liquid phase) at an operating tem-
perature, as indicated by the solid red line in Fig. 16. Therefore, the
Dirichlet (or first-type) boundary conditions [57] are applicable to the
water walls. Even though excessive heat flux on the furnace side may
occur, it can be automatically compensated for with a larger water flow
rate in the tubes. Latent heat of phase changes takes the role of a buffer
and maintains the temperature of the water membrane within a safe
limit. In supercritical or ultra-supercritical cases, the conditions are
much more sophisticated if excessive heat flux on the furnace side oc-
curs. This is because, under supercritical conditions, only one state of
phase exists. The temperature of the water membrane is very sensitive
to the change of heat flux on the furnace side. If excess heat flux on the
furnace side occurs and cannot be compensated in time, it can easily
lead to heat transfer deterioration of the whole system. That is the
reason why involving heat transfer to water walls is of particular im-
portance to the evaluation of operating conditions and flexibility of a
fluidized bed boiler in supercritical conditions. In that case, the water
wall should be considered as heating load (or internal obstacle) in-
dividually in the zone model and the heat conduction through the
water-cooled wall to the supercritical fluid needs to be considered as
well. By doing so, the local heat absorption by water walls is in-
corporated and available in the process simulation.

In addition, the implication of the current work highlighted the
existing limitation of the sequential modular strategy in Aspen Plus, in
that there is no thermal reciprocity within its modelling framework. By
incorporating the zone model with Aspen Plus interface in this work,
the energy balance takes account of radiation interchange between all
volume and surface zones, the enthalpy transport, and the source term
associated with combustion and heat release. Although the developed
model is one-dimensional in this case, the proposed modelling approach
is equally applicable to two- and three-dimensional cases. For a multi-
dimensional model with more complex geometry, the plug flow as-
sumption is no longer applicable. The enthalpy transport term needs to
be expanded to include the flows in all relevant directions. The flow
data may be derived from other means such as physical models and
isothermal CFD simulations [36].

5. Conclusions

This paper successfully demonstrated a novel modelling approach
for fluidized beds which incorporated the classical zone method with

Aspen Plus interface. A main advantage of the proposed modelling
approach stems from the thermal reciprocity within a combustor de-
rived from the zone model which resolves the limitation of the se-
quential modular strategy in Aspen Plus. A steady state operation on a
0.3 MW atmospheric bubbling fluidized-bed combustor test rig was si-
mulated and completed in a few seconds of CPU time. The predicted
thermal performance and the reaction kinetics of the studied fluidized
bed combustor (such as the temperature profile, incident radiative heat
flux) are in agreement with the experimental data; and the predicted
overall combustion efficiency is also within a reasonable range of the
normal combustion efficiency of bubbling fluidized beds. Relatively
modest computing demand and acceptable accuracy make it possible
for the developed model to be incorporated into process simulations of
a whole power plant and to be used to study the operational flexibility
of the whole power plant.
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