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Abstract: Improved thermal efficiency in energy-intensive metal-reheating furnaces has attracted
much attention recently in efforts to reduce both fuel consumption, and CO2 emissions. Thermal
efficiency of these furnaces has improved in recent years (through the installation of regenerative
or recuperative burners), and improved refractory insulation. However, further improvements can
still be achieved through setting up reference values for the optimal set-point temperatures of the
furnaces. Having a reasonable expression of objective function is of particular importance in such
optimisation. This paper presents a function value-based multi-objective optimisation where the
objective functions, which address such concerns as discharge temperature, temperature uniformity,
and specific fuel consumption, are dependent on each other. Hooke-Jeeves direct search algorithm
(HJDSA) was used to minimise the objective functions under a series of production rates. The
optimised set-point temperatures were further used to construct an artificial neural network (ANN)
of set-point temperature in each control zone. The constructed artificial neural networks have
the potential to be incorporated into a more advanced control solution to update the set-point
temperatures when the reheating furnace encounters a production rate change. The results suggest
that the optimised set-point temperatures can highly improve heating accuracy, which is less than
1 ◦C from the desired discharge temperature.

Keywords: reheating furnace; zone model; multi-objective optimisation; Hooke-Jeeves algorithm;
artificial neural network

1. Introduction

The iron and steel industry, combined, is energy-intensive. According to statistical data, reported
by the International Energy Agency, this industry accounted for 18% of total industry final energy
consumption of the entire word in 2013 [1], and their analysis of 2012 highlights that applying the
best available technology has potential to reduce about 20% of current total energy consumption [2].
Metal reheating is one of the most energy intensive processes within the iron and steel industry [3],
accounting for 15–20% of the total energy consumption of the industry. In this process, intermediate
steel products such as blooms (known as stock) which are also called billets or slabs are heated to
a specific temperature and through-thickness temperature uniformity before hot-rolling [4]. Due to
the variabilities in furnace operation (which may include changes in the stock dimension and/or
metallurgical grade, and the production rate) inconsistency in the quality of the final heated product
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can sometimes occur, resulting in unnecessary rejects. It has been estimated that a reduction of rejects
from 1.5% to 0.2% could lead to energy savings of up to 9% of energy consumption or approximately
0.3 GJ/tonne-product [5]. To operate the reheating furnace efficiently while supplying products of a
consistent quality, it is necessary to implement an effective furnace-temperature control strategy.

With the continued development of computer technology, computing power is increasingly
affordable. The numerical simulation of steel reheating furnaces, which depends on the actual
physics of the working process and then builds approximate mathematical models [6–10], has become
widely used as a cost-effective and powerful engineering tool. These numerical simulations can
be classified into two categories. The first category uses computational fluid dynamics (CFD) to
solve the Navier–Stokes and energy conservation equations for the thermal radiative transport
phenomena associated with hot gas flow and combustion processes in a furnace [11–14]. Although
these CFD mathematical models make it possible to depict the whole furnace including the temperature
distribution of the stock in each position, the quality of simulation results depends strongly on the size
and density of computational grid the employed, leading to long processing times. Once the models
are constructed, the CFD simulation cannot be used for a dynamic control system, due to the length of
time required for iterative computation.

Simulation methods in the other category, based on the zone method of radiation analysis [15],
analyse the radiative heat transfer within the furnace and transient heat conduction in the slabs [6,9,16,17].
This approach does not require the degree of computing power associated with CFD, and even a
consumer-level computer can run the zone model code quite quickly [6]. Although reactive flows are
ignored in this approach, the simulation results are sufficiently accurate for studying the temperature
control of the furnace [18]. The authors note that the main purpose of this paper is to reliably obtain
the optimisation reference set-point temperatures for a temperature controller. Therefore, this second
category of simulation methods is suitable here for the accurate modelling of the thermal behaviour of
the slabs.

Set-point temperatures are important for any furnace, as these are used by the control system
to adjust the fire rates of burners to achieve the desired temperature profile of the stock. However,
the temperature profile desired varies according to many factors, including the dimension and material
properties of the slab, as well as the throughput rate of the furnace. Unfortunately, the methods used
for determining necessary set-point temperatures to achieve desired temperature profiles, in specific
furnace operations, are rarely published. To the authors’ knowledge, there are two papers based on
the zone method of radiation analysis which detail the optimisation of set-point temperatures. The
first one solves the partial differential equation (PDE) optimal control problem to obtain set-point
temperatures by introducing the adjoint problem to the optimization model [18]. Although this paper
reports some remarkable results, in comparison to the use of the finite difference method, the method
is tailored to an atypical control system which may be invalid for other furnaces. The second paper
uses a genetic algorithm (GA) based on a multi-objective optimisation strategy to optimise temperature
trajectory of the bloom by minimising a cost function. The cost function has been built by a set of fuzzy
rules and it adapts easily to different furnace operations [19]. It also reports impressive results, and
has the benefit that this optimisation strategy is a common method and is therefore suitable for any
other furnaces. Hence why this second approach has much more potential for broad application. That
noted, however, GA approaches are prone to premature convergence to local optima of the objective
function [20], making it difficult to ascertain whether a solution obtained is actually the desired global
optimum. And also note that it is technically impossible to identify a global minimum unless the
feasible region is shown to be convex. Therefore, one of the purposes of this paper is to explore
another common optimisation method, strongly underpinned by a mathematical framework, to make
comparison with the GA approach to determine which one has a better performance (It is noted here
that since the optimisation work using GA was performed by co-authors of this paper, the results are
readily available for comparison; see Section 4 for more details.).
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In this paper, a function values-based multi-objective optimisation is presented to obtain
desired set-point temperatures of a reheating furnace. The Hooke-Jeeves direct search algorithm
(HJDSA) is chosen as the core technology for the multi-objective optimisation method presented [21].
This minimization algorithm uses function values only, and therefore it can be used to solve objective
functions in most multi-objective problems. This paper presents an objective function which contains
three dynamic parameters relating to energy consumption and product quality: Discharge temperature
of blooms; maximum temperature difference in bloom cross section; and specific fuel consumption.
In addition, two weighted factors are introduced into the function to match six different optimisation
scenarios. The objective functions are solved by HJDSA to obtain the desired set-point temperatures.

For this HJDSA approach, the main computer program would require five hours to complete
the necessary detailed calculation for a change in production rate. Evidently this does not meet the
requirement of real time prediction of the furnace, and so for the timely and accurate prediction of
set-point temperatures, one of the most well-known artificial neural networks (ANNs) [22,23] was
introduced. As black-box models [24], ANNs are able to capture the non-linear processes underlying
many problems, and hence they are widely used for optimisation problems [25]. Four back propagation
neural networks [26] were constructed, trained, and tested using 37 datasets calculated by HJDSA
under 37 different conditions within the range of lowest to highest production rates. After obtaining
optimal training results, the four neutral networks were in turn input back into the program to replace
the HJDSA module for other conditions with unseen production rates. The advantage of this approach
is that the neural networks, when constructed on sufficient precise training data, can mimic the
optimisation process of HJDSA while achieving results in in much shorter time. It is noted, however,
that this may also be a weakness, because one of the input parameters of the neural networks should
be adjusted manually to make sure the ∆Tdis within ±5 ◦C. This manual processing contains a series of
attempts that may take time.

The results suggest that the optimised set-point temperatures calculated by HJDSA can highly
improve heating accuracy, which is less than 1 ◦C from the desired discharge temperature. Although
the set-point temperatures predicted by neural networks have a poorer heating accuracy about 5 ◦C,
it takes a few milliseconds to get the temperatures, which implies that real time simulation of zone
model is successfully maintained when production rate changes.

The rest of the paper is organised as follows: Initially, Section 2.1 describes the structure of a
furnace, the operation of it and its control system. Section 2.2 presents the optimisation algorithm
of furnace operations. Based on the optimisation scenarios which are shown on Section 2.2.1,
the Section 2.2.2. uses Hooke-Jeeves direct search algorithm to calculate optimised set-point
temperatures under a series of production rates. Last, but not least, the optimised set-point
temperatures were further used to construct an artificial neural network of set-point temperature
in each control zone, as shown in Section 2.3. Sections 3 and 4 present the results and discussion,
respectively. Finally, Section 5 concludes the paper.

2. Materials and Methods

The structure of a certain furnace and its control system are firstly introduced in this part. Based
on the furnace operation, different optimisation scenarios are then designed which consider the
economic operation of the furnace and supply products of a consistent quality by three parameters.
An objective function is thus built which contains the three parameters, and then solved by HJDSA in
different optimisation scenarios to get desired set-point temperatures. Since the gradient information
of the objective function is not available, the HJDSA is chosen as the core technology to solve the
function. However, it takes almost 5 h for each scenario to obtain the desired set-point temperatures
by HJDSA. This is a limitation of the zone model approach, making it incapable of real time prediction.
To overcome this limitation, four back propagation neural networks are used for the determination
of the four desired set-point temperatures eventually. In order to make the aforementioned process
clearly and easy to understand, Figure 1 shows the steps of research of this study.
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are discharged from the furnace for downstream processing.  

Figure 1. The steps of proposed method in this paper.

2.1. Furnace Operation and Control

The furnace studied is a large-scale walking-beam reheating furnace, which can be illustrated in
Figure 2. There are total 71 burners installed in 6 control zones, and 2 slave zones are among them,
i.e. zones 2 and 4 are slaves to zones 1 and 3, respectively. The energy inputs of the slave control
zones are proportional to the energy inputs of the master control zones. That means this paper only
need to optimise set-point temperature of control zone 1, 3, 5, and 6. Under monitoring and control,
a sequence of blooms walks through all heating zones with a specified dynamic pace rate before they
are discharged from the furnace for downstream processing.
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such that they are emphasized at the same objective level. The production rate also influences on the 

Figure 2. Outline of the reheating furnace.

The process control solution for the reheating furnace is shown in Figure 3. The zonal temperatures
inside the furnace are controlled by set-points determined dynamically by a model-based level-2
module, thereby achieving the required quality of heating profile quality heating in various production
scenarios. In operation, online monitors predict bloom temperatures using furnace wall temperatures
measured by a limited number of thermocouples which are compared with a pre-specified bloom
temperature profile, then feeding back set points to the temperature controller (e.g. PID control).
This process control solution has been shown to be an effective way of achieving a consistent
reheating process [6].
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Figure 3. Level-2 module-based process control solution.

2.2. Optimisation Algorithm

Recent studies [6] have made a validity of zone model, which can simulate the heating conditions
of blooms when they are moved through the furnace. That model employs the well-known zone
method with a rigorous treatment of radiation, taking into consideration the full energy balance of the
furnace. The computational efficiency of the zone model is remarkable, even with a consumer-level PC
hardware, implying that the model has the ability of real time simulation and has great potential for
using in parametric studies of furnace operations, which also could be using directly into dedicated
furnace optimisation and control algorithms. Therefore, this model is used as a predictor in the
multi-objective optimisation in this study.

2.2.1. Optimisation Scenarios

Considering the economic operation of the furnace and providing products of a consistent
quality, there are three dynamic parameters accessed to them which are desired discharge temperature,
maximum temperature difference in bloom cross section and specific fuel consumption. Based on this,
several optimisation scenarios are taken into consideration which can be seen in Table 1. In all cases,
the heating accuracy (∆Tdis) is given priority, because it is the primary target in any reheating process
(the priority objective). Two other optimisation objectives are included: The maximum temperature
difference in bloom cross section (∆Tmax), which is an improvement quality index for discharge blooms,
and specific fuel consumption (SFC), which is closely connection with the distribution of thermal input
along the length of the furnace, which in turn also influences on the profile of heating rates of a certain
bloom as it moves through the furnace. These additional objectives are added singly (scenarios I and
II), and together (scenario III), setting weighted factors M and N such that they are emphasized at
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the same objective level. The production rate also influences on the residence time of bloom, energy
consumption and heating uniformity. Therefore, three similar scenarios are considered at a different
production rate (scenarios IV to VI).

Table 1. Specification of different optimisation scenarios and weighted factors.

Scenario Production Rate, ton/h Optimisation Objectives 1 M N

I 130 ∆Tdis ∆Tmax / 1 0
II 130 ∆Tdis / SFC 0 10
III 130 ∆Tdis ∆Tmax SFC 1 10
IV 65 ∆Tdis ∆Tmax / 1 0
V 65 ∆Tdis / SFC 0 10
VI 65 ∆Tdis ∆Tmax SFC 1 10

1∆Tdis, the difference between the desired and the realistic discharge temperature (◦C), which represents heating
accuracy; ∆Tmax, the maximum temperature difference in the slab cross section (◦C), which represents heating
uniformity; the specific fuel consumption (SFC; GJ/t).

2.2.2. Hooke-Jeeves Direct Search Algorithm (HJDSA)

To solve the multi-objective optimisation problem in different furnace operations as shown in
Table 1 by HJDSA, this part stage constructs an objective function step by step. The objective function
then works like a bridge to build a connection between the zone model unit and the HJDSA unit.
Throughout the optimisation process, parameters are passed continually between the units, ensuring
the success of HJDSA in obtaining the desired set-point temperatures.

• The objective functions

In order to reveal the relationship of the three parameters affecting the economic operation of the
furnace and the supply of products at a consistent quality, and to explore how set-point temperatures
impact on them, an objective function is first built, and then solved by HJDSA [21] in different
optimisation scenarios.

For several continuous drop-out blooms during a steady-state operation with the difference
between the desired and the realistic discharge temperature ∆Tdis and maximum temperature
difference ∆Tmax in bloom cross section, there is an objective function:

J =
n

∑
i=1

∆Tidis
2 + M

n

∑
i=1

∆Ti
2
max + N

n

∑
i=1

SFC2
i , (1)

where n is the total number of blooms, ∆Tidis is the difference between the desired and the real discharge
temperature of bloom i, ∆Timax is maximum temperature difference in bloom i and SFCi is the specific
fuel consumption at the moment of bloom i discharged, M and N are weighted factors.In this study,
four adjacent drop-out blooms are taken into consideration after the furnace model running 5000 s,
and the target discharge temperature is 1230 ◦C. Weighted factors M and N are taken from Table 1 in
accordance with the different optimisation scenarios.

• Finding optimal set-point temperatures by HJDSA

In this study, the core algorithm used in the multi-objective optimisation is HJDSA, which
searches for the minimizing point of a function f (x) of several variables by exploring desired values
near initial set-point values. A gradient-based method may be more efficient, however many real-world
optimisation problems require using computationally expensive simulation packages to get the result of
the objective function, thus it is difficult to calculate the derivative of the objective function [27]. For the
multi-objective optimisation problem in this paper, the objective function takes into consideration the
discharge temperature and maximum temperature difference in bloom cross section. Since these two
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parameters relate to different discharge blooms, the objective function is not continuous and therefore
not differentiable, which means the gradient information of the function is not available. Hence, direct
search techniques must be used instead. The HJDSA algorithm does not require the function f (x) to
be differentiable nor even to be continuous, as it only examines function values and remembers the
location of the best value encountered, seeking to improve this value by a pattern search. This pattern
search consists of a sequence of exploratory moves about a base point, with and pattern moves being
followed if the exploratory moves fail to improve the objective function.

An exploratory move is made to get information about the function f (x) near the current base
point ak (ak = (x1, x2, . . . , xi)). Each variable xi is firstly set an increment εi in the positive direction of xi
and then in the negative direction, and after each move there is a check for the new function value. If a
move results in a smaller function value, then the new value of that variable will be remained. After
all the variables have been taken into consideration, a new base point ak+1 will be reached. If ak+1 = ak,
the function f (x) has no reduction, and the increment εi is reduced, repeating the above process. If ak+1

6= ak, a pattern move from ak is made.
A pattern move, using information already obtained about f (x), is made to determine the best

search direction in an attempt to hasten the search. A move from ak+1 is made in this direction ak+1

− ak, as a move in the direction has led to reduce the function value. Hence the next pattern point is
given by following equation [27]:

bk = ak+1 + (ak+1 − ak). (2)

The search then continues with a new series of exploratory moves about bk, and if the minimum
function value achieved is less than f (ak), then a new base point ak+2 has been achieved. If not,
the pattern from ak+1 is abandoned and the search continues with a new set of exploratory moves about
ak+1. The minimum is assumed to be achieved if the step length s has been decreased to a specified
small value εs.

Overall, a direct search for the minimizing point of a function by Hooke-Jeeves algorithm employs
variables not directly referred to in Equation (1). Therefore, Equation (1) is rewritten as follows:

J(Tsp ) = Tsp1 × 1
Tsp1
× Tsp3 × 1

Tsp3
× Tsp5 × 1

Tsp5
× Tsp6 × 1

Tsp6
×

n
∑

i=1
∆Ti

2
dis + M

n
∑

i=1
∆Ti

2
max + N

n
∑

i=1
SFC2

i

(Tsp1 6= 0, Tsp3 6= 0, Tsp5 6= 0, Tsp6 6= 0)
(3)

where Tsp1, Tsp3, Tsp5 and Tsp6 are the set-point temperatures of control zone 1, 3, 5 and 6 respectively.
While being equivalent to Equation (1), Equation (3) has the advantage that it can be minimized

by HJDSA by setting set-point temperature values near their initial values; hence why Equation (3) can
be regarded as a set-point temperatures generator. This generator and the zone model are two separate
units, written in FORTRAN for this paper, which pass parameters to each other. Figure 4 illustrates the
overall program flow chart of HJDSA for determining the desired set-point temperatures.

Parameters should be set first. Initial set-point temperatures Tsp1, Tsp3, Tsp5 and Tsp6 were chosen
to be 1150 ◦C, 1250 ◦C, 1200 ◦C and 1200 ◦C respectively, and an initial increment of 25 was used for
all variables. In order to terminate the algorithm, the termination value εs and step length s were
introduced which set to 1.0 × 10−6 and 25, respectively. The final parameter is ρ (ρ = 0.5) which
was used to reduce increments εi (i = 1, ..., 4, for the 4 different variables) and step length at each
iteration. After reading initial set-point temperatures as base point, an exploratory move begins. If the
exploratory move and a pattern move following this both succeed, the increments and step length will
reduce, and the next iteration commences. The iteration continues until the step length is less than the
termination value.
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2.3. Neural Network

It takes almost 5 h, using a desktop computer with two Inter Xeon E5–2670 processors and 16 GB
RAM, for each scenario to obtain the desired set-point temperatures by HJDSA. It is inevitable that
the production rate will change during an actual industrial process, and the delay of a further to
determine the next group of desired set-point temperatures is impractical. This is a limitation of the
zone model approach, making it incapable of real time prediction [6]. To overcome this limitation, four
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back propagation neural networks will be used for the determination of the four desired set-point
temperatures. The neural networks are trained based on the precise data calculated by HJDSA with
different production rates. Since there is a small increment between the production rates, the neural
networks not only have sufficient precise training data, but can also mimic the optimisation process
performed by HJDSA, thus making it run faster.

2.3.1. Data Processing

To obtain a sufficient quantity of accurate input data for the neural networks, the HJDSA,
for which heating accuracy (∆Tdis) was given priority and which also emphasized the importance of
heating uniformity (∆Tmax) (i.e., scenarios I and IV in Table 1), was used to obtain desired set-point
temperatures. The temperatures were determined every 1.75 ton/h increment from the minimum
production rate (65 ton/h) to the maximum production rate (130 ton/h). Since the production rate
grows in inverse proportion to walking interval, the main program increased walking interval with
an increment value of 5s from 180s to 360s to obtain different production rates. Therefore, there were
37 different set-point temperatures with different walking interval, ∆Tdis and ∆Tmax. Of these, 10 sets
of the data are illustrated in Table 2 as example.

Table 2. Heating performance and optimal furnace set-point temperatures of different
optimisation scenarios.

Production Rate,
ton/h

Walking
Interval, s ∆Tdis, ◦C ∆Tmax, ◦C Tsp1, ◦C Tsp3, ◦C Tsp5, ◦C Tsp6, ◦C

65 360 0.198 4.000 1103.6 1261.8 1236.8 1231.3
72 340 0.232 6.000 1127.3 1224.4 1240.6 1234.4
79 320 0.142 4.097 1152.2 1229.2 1240.6 1234.6
86 300 0.339 4.009 1178.1 1245.3 1240.6 1234.4
93 280 0.506 4.000 1209.0 1246.7 1240.0 1235.0

100 260 0.339 4.210 1148.1 1268.8 1234.4 1228.1
107 240 0.719 4.000 1143.2 1265.6 1237.5 1231.2
114 220 0.337 8.000 1093.0 1260.5 1189.4 1150.0
121 200 0.014 4.000 1167.0 1280.3 1231.6 1219.4
130 180 0.294 5.268 1133.6 1277.7 1181.3 1175.0

To eliminate the deviation derived from different input values, using arithmetic mean method is
necessary to normalise the data. The mean value can be calculated using Equation (4) [28]:

x = 2× x0 − xmin
xmax − xmin

− 1, (4)

where x0 is defined as an initial data value among the input data groups, and xmin and xmax express the
minimum and maximum values among the input data groups, respectively.

2.3.2. Parameters for Back Propagation (BP) Neural Network

A three-layer BP neural network [26] is used to construct the model for the optimisation of
set-point temperatures (Figure 5). The activation function of hidden layer and output layer are both
chosen to be the tan-sigmoid transfer function, tansig, the expected mean squared error is taken as
0.0001, and the learning rate is 0.1. After comparing the performance different training algorithms
including Levenberg-Marquardt, Bayesian Regularization, Scaled Conjugate Gradient and Resilient,
this paper chose Levenberg-Marquardt as training algorithm for best forecasting results. The input
layer has three neurons: WI is walking interval, ∆Tdis is heating accuracy, and ∆Tmax is heating
uniformity. There is one hidden layer, which contains 8 neurons. Since there are a small group of
training data (32 sets), it is hard to build a complex neural network to reflect the relationship between
inputs and outputs. Suppose that construct a 3X4 neural network with 3 above inputs, and 4 outputs
for 4 set-point temperatures, it needs more than 15 neurons in hidden layer to reach the expected mean
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squared error. However, when tested the trained network, the overfitting occurred. Therefore, this
study set one neuron in the output layer, and four BP neural networks are then constructed for four
set-point temperatures (Tsp1, Tsp3, Tsp5 and Tsp6) respectively. In order to obtain the desired results, 5
sets of input data were selected for testing and the rest for training.
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After training the BP neural network learning algorithm on the samples, the neural network can
reflect the relationship between the three important input parameters and the set-point temperatures.
Through proper adjustment of the walking interval, heating accuracy and heating uniformity,
the appropriate set-point temperatures are determined. Using the well-trained BP neural network,
the main program can calculate desired set-point temperatures immediately, meaning effectively that
the zone model is made capable of real time prediction.

3. Results

The described optimisation method was able to achieve accurate control of temperature for
discharge blooms with the heating accuracy within 1 ◦C in all scenarios. Furthermore, the neural
networks, trained with precise data calculated by HJDSA, could mimic the optimisation process of
HJDSA, thus making it run faster.

3.1. The Proposed Optimisation Method

It took almost 5 h for each case to reach the desired set-point temperatures by HJDSA. Although
weighted factors in Equation (4) were used to ensure that the changes of ∆Tdis, ∆Tmax, and SFC are
at same level, the set-point temperatures of scenarios I and III are the same (Table 3). This is because
∆Tmax fluctuates more than SFC, since SFC is an average quantity which not only depends on set-point
temperatures but also on furnace running time, and because the rate of change of ∆Tmax was about
five times larger than that of SFC. Thus, ∆Tmax dominates.
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Table 3. Optimal furnace set-point temperatures of different optimisation scenarios.

Scenario Tsp1, ◦C Tsp3, ◦C Tsp5, ◦C Tsp6, ◦C

Trial 1200 1300 1250 1250
I 1134 1278 1181 1175
II 1088 1273 1201 1227
III 1134 1278 1181 1175
IV 1104 1262 1237 1231
V 1061 1269 1234 1222
VI 1104 1262 1237 1231

In this study, all optimisation strategies (∆Tdis, together with ∆Tmax and/or SFC) greatly improve
the heating accuracy within 1 ◦C (∆Tdis in Table 4). When the objective of specific fuel consumption
is emphasized without including ∆Tmax in the optimisation, as in scenarios II and V, poorer heating
uniformity resulted (∆Tmax shown in Table 4), especially for scenario II, which was worst among all
scenarios. Furthermore, the set-point temperature of control zone 1 (preheating zone) of this scenario
was lowest under production rate of 130 tonnes per hour which means that less fuel is input for less
fuel consumption. In order to maintain the heating accuracy, the burner in soaking zone (control zone
5 and control zone 6) would have a higher fire rate, which results in higher set-point temperatures
(Tsp5 and Tsp6 in Table 3). Therefore, a very large set-point temperature difference between preheating
zone and soaking zone (about 120 ◦C) resulted, and heating uniformity was poorest.

Table 4. Heating performance of different optimisation scenarios.

Scenario ∆Tdis, ◦C ∆Tmax, ◦C SFC, GJ/tonne

Trial 35 9 1.50
I <1 5 1.369
II <1 12 1.299
III <1 5 1.369
IV <1 4 1.730
V <1 8 1.575
VI <1 4 1.730

3.2. Neural Network

The four BP neural networks were trained in MATLAB (Version 2016b, MathWorks, Natick,
MA, USA) using neural network toolbox, and after meeting the expected mean squared error the
training process terminated, and biases and weights were output to be used in main program written
in FORTRAN. When training the neural networks, in most of the tests, it takes few seconds to meet
the expected mean squared error. After 468 training epochs, the network used for predicting Tsp1,
achieved the expected mean squared error and got best forecasting performance; 193 training epochs
were needed for Tsp3, 363 training epochs for Tsp5 and 305 training epochs for Tsp6. The well-trained
neural networks should not need to be retrained, since the training data collected by the changes of
walking interval from 180 s to 360 s to obtain different production rates with a small increment value
of 5 s, when inputting a new walking interval not including in the training data to the networks, it is
hard to disobey the rules of input-output relationship in the networks. Which makes the predicted
set-point temperatures appropriate enough. In addition, the real valve of ∆Tdis calculated by can be
within ±5 ◦C, through manual adjustment of input parameters of the networks to fine tuning the
output set-point temperatures, and the input values of ∆Tmax for different range groups of walking
interval can be seen in Table 5.
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Table 5. Values of ∆Tmax for walking interval between 180 and 360.

Range of Walking Interval, s 180–220 220–235 235–240 240–250 250–360

Value of ∆Tmax, ◦C 5 12.5 2 5 4

Once the expected mean squared error is obtained through network training, the forecast values
of set-point temperatures for the four control zones are determined and compared with actual values
(the 37 sets of temperature data calculated by HJDSA) to evaluate the forecast results. Figure 6 shows
the well-trained networks which compare the forecast values with the actual values. As for the
prediction performance, the results of the training samples and testing ones are shown in Figures 7–10,
with different neural networks, illustrating that the predicted values trace well the practical data.
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The four well-trained networks can be written as Equation (5), and the main program calls
them to calculate set-point temperatures when the walking interval changes. In this equation, WI
is walking interval, which is between 180 and 360, and the value of ∆Tdis is zero for best heating
accuracy. The value of ∆Tmax, depends on the real value of ∆Tdis calculated by the program. By manual
adjustment, the real valve of ∆Tdis can be within ±5 ◦C, and the values of ∆Tmax for different range
groups of walking interval can be seen in Table 5. Notice that the value of ∆Tmax from 220 s to 235 s is
higher than 10, because the actual value of ∆Tmax on 235 s calculated by HJDSA is 13 and the value of
∆Tmax is selected nearby the boundary to ensure desired heating accuracy.

f (WI, ∆Tdis , ∆Tmax)net1
= Tsp1

f (WI, ∆Tdis, ∆Tmax)net2
= Tsp3

f (WI, ∆Tdis, ∆Tmax)net3
= Tsp5

f (WI, ∆Tdis, ∆Tmax)net4
= Tsp6

(5)
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Figure 11 shows drop-out temperature of slabs with different walking intervals. The furnace started
with the trial condition in Table 3, and altered to the set-point temperatures calculated by HJDSA with
walking interval of 180 s at time 0. After drop-out temperature stabilised, the program altered the
walking interval to another value at 6120 time point and the set-point temperatures changed at same
time. The new set-point temperatures were calculated by BP neural networks. The furnace model
which used set-point temperatures calculated by HJDSA had better heating accuracy with a value of
∆Tdis within ±1 ◦C, comparing to ±5 ◦C by BP neural networks. It can also be seen that the drop-out
temperature has a sharp increase or decrease when the waking interval is increased, when the walking
interval and the set-point temperatures changed at same time, some slabs in the soaking zone with the
new walking interval were either overheated or could not soak enough heat.
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Considering now the computing time of the two methods, the computational efficiency of the
BP neural network is fairly promising, taking a few milliseconds, comparing to 5 h with HJDSA.
This implies that real time simulation of zone model is successfully maintained when production
rate changes.

4. Discussion

Comparing to the method which solve PDE optimal control problem to get set-point
temperatures [18], both of results can highly improve heating accuracy, with an average deviation
of less than 1 ◦C from the target discharge temperature, and the method solved PDE problem
have a promising computational efficiency which spent a few seconds to get optimisation set-point
temperatures. However, the method is tailored to an atypical control system which may be invalid for
other furnaces. The method of this paper has the benefit that this optimisation strategy is a common
method and is therefore suitable for any other furnaces. Hence the proposed method of this paper has
much more potential for broad application.

When making a comparison between HJDSA and GA, it is obvious that HJDSA performs better
in multi-objective optimisation problems. Not only does using HJDSA obtain a better heating accuracy,
but it also avoids local optimisation. Considering the optimal results of [19] about scenarios I and IV
in Table 3, it can be seen that the two Tsp1 are same in these scenarios and the two Tsp5 are also the
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same. Moreover, there is little difference between the other two optimal temperatures respectively
—no more than 10 ◦C. These abnormally similar results of the two scenarios with different production
rates implies that the GA may have a local optimum of the objective function. Further support for this
conclusion is that the ∆Tdis and ∆Tmax in Table 4 are nearly the same for the two scenarios.

Furthermore, comparing the optimised heating curves for the different scenarios in Figure 12,
it can be seen clearly in that both of the results can achieve improved heating accuracy, and regardless
of whether temperature uniformity or specific fuel consumption is emphasised, the temperature of
a certain bloom in a specific position in this paper is lower, which turns out the results of this paper
demonstrate less energy consumption. To be more specific, from the detailed data in Table 6, it can be
seen that it saves more than 2.5 MW—regardless of whether it is scenario I or II.
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Table 6. Comparison of energy input under different optimisation scenarios and methods.

Scenario Trial
Data from [19] This Paper

I II I II

Energy input, MW 54.4 52.7 50.8 49.9 47.8

Overall, the proposed method of this paper is a common method which is thus suitable for any
other furnaces, it has much more potential for broad application. These results show that the proposed
method can highly improve heating accuracy, less than 1 ◦C from the target discharge temperature.
However, the computing time of each scenario is too long for real time simulation when production
rate changes. Therefore, a further optimisation based on BP neural network was used to calculate the
set-point temperatures immediately when production rate changes, and the results show the furnace
model which used set-point temperatures calculated by BP neural network had a sharp increase
or decrease of the drop-out temperature when the waking interval is increased, which might be a
direction of future work, i.e., focus on erase the fluctuation of the drop-out temperature as the waking
interval changes.
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5. Conclusions

This paper presents a function-value based multi-objective optimisation of reheating furnace
operations, and highlights a novel method with HJDSA based on zone model. A set of optimisation
scenarios was defined, taking into account the difference between the desired and the real discharge
temperature, the maximum temperature difference in bloom cross section and also specific fuel
consumption. The results show that the proposed method can highly improve heating accuracy, while
a balance is kept between the optimisation objectives of temperature uniformity and specific fuel
consumption. Comparing with the optimisation method based on GA, the proposed method could not
only avoid local optimisation, but also exhibited lower energy consumption. However, the computing
time of each scenario of approximately five hours is too long for real time simulation when production
rate changes. Therefore, a further optimisation was introduced which was based on the data calculated
by HJDSA, and used BP neural network to calculate the set-point temperatures. The results show
the average deviation less than 5 ◦C, from the desired discharge temperature which is excellent, and
the BP neural network was able to calculate the set-point temperatures immediately, meeting the
requirements for real time simulation.
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Nomenclature

Symbols Definition Unit
u(t) firing rate at the current time-step -

y(t)
the required temperature compensation relative to the set-point temperature at the
current time-step

◦C

∆Tdis
the difference between the desired and the realized discharge temperature, which
represents heating accuracy

◦C

∆Tmax
the maximum temperature difference in bloom cross section, which represents
heating uniformity

◦C

SFC specific fuel consumption
GJ
tonne−1

M weighted factor of ∆Tmax -
N weighted factor of SFC -
Tsp set-point temperature ◦C
Tsp1 set-point temperature of control zone 1 ◦C
Tsp3 set-point temperature of control zone 3 ◦C
Tsp5 set-point temperature of control zone 5 ◦C
Tsp6 set-point temperature of control zone 6 ◦C
WI walking interval s
a base point -
b pattern point -
x variable -
ε increment -
s step length -
εs terminate value -
ρ reduction value -
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