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Observed oscillations of the Antarctic stratospheric polar vortex often resemble

those in Kida’s model of an elliptical vortex in a linear background flow.

Here, Kida’s model is used to investigate the dynamics of ‘vortex splitting’

stratospheric sudden warmings (SSWs), such as the Antarctic event of 2002.

SSWs are identified with a bifurcation in the periodic orbits of the model.

The influence of ‘tropospheric macroturbulence’ on the vortex is modelled

by allowing the linear background forcing flow to be driven by a random

process, with a finite decorrelation time (an Ornstein-Uhlenbeck process). It is

shown that this stochasticity generates a random walk across the state-space of

periodic orbits, which will eventually lead to the bifurcation point after which an

SSW will occur. In certain asymptotic limits, the expected time before an SSW

occurs can be found by solving a ‘first passage time’ problem for a stochastic

differential equation, allowing the dependence of the expected time to an SSW

on the model parameters to be elucidated. Results are verified using both Kida’s

model and single-layer quasi-geostrophic simulations. The results point towards

a ‘noise-memory’ paradigm of the winter stratosphere, according to which the

forcing history determines whether the vortex is quiescent, undergoes large

amplitude nonlinear oscillations or, in extreme cases, whether it will split.
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1. Introduction1

It is well-documented that stratospheric sudden warm-2

ings (SSWs hereafter) exert a significant influence on3

surface climate in the Northern hemisphere, following4

Baldwin and Dunkerton (2001) who showed that strato-5

spheric circulation anomalies following an SSW often6

descend into the troposphere, where they may persist for7

several weeks. A similar influence can be expected in the8

Southern hemisphere where there has been just a single9

recorded SSW (2002) in the observational record (c. 1948-10

present). SSWs are naturally categorised into two types (e.g.11

Charlton and Polvani 2007): vortex displacement events, in12

which the vortex is displaced off the pole and eroded at13

upper levels, and vortex splitting events, in which the vortex14

divides almost simultaneously at all levels. The question15

of which type of SSW has a stronger influence on surface16

climate has been addressed by Nakagawa and Yamazaki17

(2006) and Mitchell et al. (2013), and it turns out that18

observations suggest that splitting events are responsible19

for almost all of the tropospheric response (see e.g. Fig. 420

of Mitchell et al. 2013). (Interestingly, however, the model21

results of Maycock and Hitchcock (2015) do not support22

this conclusion.) It is consequently of great interest to23

understand the fluid dynamics that determines the frequency24

of vortex splitting SSWs in particular, and especially how25

this frequency might change in a changing climate.26

There have been a number of studies aimed at27

assessing SSW frequency under plausible scenarios for28

both greenhouse gas emissions and ozone recovery,29

using atmosphere-only mechanistic models (Butchart et al.30

2000), chemistry-climate models (Ayarzagüena et al. 2013;31

Mitchell et al. 2012a) and coupled ocean-atmosphere32

models (Mitchell et al. 2012b). Overall, the results of these33

studies are indeterminate, with some suggestion of changes34

in the timing of SSWs, but no statistically significant35

changes in their frequency. Evidently, both computational36

constraints on integration length / ensemble size, and the37

overall complexity of global models, make it challenging38

to obtain a clear dynamical understanding of the processes 1

controlling SSW frequency. A complementary approach, 2

to be pursued below, is to study the factors controlling 3

SSWs in a simple dynamical system, where the parameter 4

dependencies can be fully elucidated. In particular the aim 5

here is to investigate the effect of unsteadiness (i.e. the 6

’noise’ of the title), caused for example by time-dependent 7

tropospheric dynamics, in the forcing of the stratospheric 8

vortex. 9

The idea that ‘noise’ has an important role in 10

SSW variability has previously been investigated by 11

Birner and Williams (2008). Using a simple model based 12

on a dynamical reduction of the Holton-Mass model 13

(Holton and Mass 1976; Ruzmaikan et al. 2003), with the 14

noise being a stochastic forcing that models the effect of 15

dissipating gravity waves on the stratospheric circulation, 16

they showed how both the probability of an SSW occurring, 17

as well as its timing, can depend on the details of the noise. 18

Here we aim to go further than the Birner-Williams study in 19

the following respects: 20

• By using a dynamical system with prognostic 21

variables (vortex aspect ratio and orientation) that 22

can be easily and unambiguously compared with the 23

observed polar vortices. 24

• By the same dynamical system having a quantitative 25

link to a single-layer quasi-geostrophic model which 26

can simulate realistic-looking vortex splits. 27

• By demonstrating that the presence of realistic noise 28

is, without invoking any other mechanism, sufficient 29

to lead to winter periods with either a quiescent 30

vortex, a vortex undergoing nonlinear oscillations in 31

aspect ratio, or in extreme cases a split. 32

Of course a simple dynamical model has its limitations 33

and, because of the chaotic nature and vertical variability 34

of the flow in the Northern winter stratosphere, we do not 35

claim for our model more than paradigmatic relevance to 36

the Arctic. In the Antarctic, by contrast, our model will be 37
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Noise-induced vortex-splitting SSWs 3

argued below to have relevance to observations despite its1

simplicity.2

The simple dynamical system in question is Kida’s3

model (Kida 1981) of an elliptical vortex patch in a linear4

background flow. The restriction to a two-dimensional5

model is justified by the near barotropic structure of6

observed vortex-splitting SSWs (e.g. Matthewman et al.7

2009). In Kida’s model the vortex evolves under the8

influence of a linear strain flow and a solid body rotation,9

under which conditions it remains elliptical at subsequent10

times, with the evolution of its aspect ratio and orientation11

governed by a pair of coupled differential equations (see12

below). The linear background flow in the model can be13

interpreted as a representation of the cumulative dynamical14

influence of the Earth’s surface and the troposphere on15

the vortex. The idea is that, invoking ‘piecewise potential16

vorticity inversion’ (Nielsen-Gammon and Lefevre 1996),17

the influence of tropospheric planetary-scale stationary18

waves, surface topography and land-sea contrast on the19

vortex can (to a good approximation) be replaced by a local20

advecting velocity field, the ‘forcing velocity’. Further, the21

largest-scale component of this forcing velocity, which is of22

the greatest dynamical significance for the vortex, can be23

approximated in the vicinity of the vortex by a linear flow.24

Using the insights above, Matthewman and Esler (2011,25

ME11 hereafter) showed that Kida’s equations can closely26

track the dynamics of a 2D quasi-geostrophic model of the27

stratospheric polar vortex forced by surface topography, up28

to the time when a vortex split is initiated in the latter model.29

Across much of parameter space, the elliptical vortex in30

Kida’s model undergoes periodic nonlinear oscillations in31

aspect ratio and orientation. ME11 showed that vortex splits32

in the quasi-geostrophic model can be associated with a33

discrete jump in the amplitude of these oscillations, which34

for a given initial condition occurs across a fixed curve in35

parameter space. Amplitude bifurcations of exactly this type36

also occur in generic weakly nonlinear models of forced37

waves near resonance (Plumb 1981; Esler and Matthewman38

2011), and in the present context the mechanism associated39

with the increase in Rossby wave amplitude leading to 1

SSWs has been termed ‘nonlinear self-tuning resonance’. 2

In the ME11 description the tropospheric forcing (linear 3

background flow) is constant in time. In reality, the forcing 4

experienced by the polar vortex has a significant unsteady 5

component, due to for example propagating tropospheric 6

planetary waves (e.g. Scinocca and Haynes 1998), and to 7

random variability in the tropospheric circulation as a 8

result of ‘tropospheric macro-turbulence’ (Held 1999). The 9

present work will show how unsteady forcing can lead to 10

vortex splits, both in Kida’s model, and in a single layer 11

quasi-geostrophic numerical model. 12

In section 2 ERA-Interim reanalysis data (Dee et al. 13

2011) is analysed to demonstrate that the stratospheric 14

vortex in the Southern hemisphere undergoes nonlinear 15

oscillations which share many characteristics with the 16

oscillations of Kida’s vortex. In section 3 Kida’s model and 17

its deterministic behaviour are reviewed, and mathematical 18

results describing its behaviour under stochastic forcing 19

are elucidated. The first passage time problem for SSWs 20

is defined and then solved in two different asymptotic 21

limits, and for two different types of stochastic forcing. 22

In section 4, numerical integrations are presented which 23

illustrate the behaviour of Kida’s equations over a wide 24

range of parameters, and the validity and relevance of 25

the results of section 3 are explored using large-ensemble 26

integrations. The results are compared with integrations of 27

a 2D quasi-geostrophic model. Finally in 5 conclusions are 28

drawn. 29

2. Kida-like oscillations of the Antarctic stratospheric 30

polar vortex 31

Elliptical diagnostics (Waugh 1997; Waugh and Randel 32

1999) provide a quantitative method to describe the time- 33

evolution of the polar vortices in terms of a few time 34

series (see also Mitchell et al. 2011). Here, ERA-Interim 35

Ertel’s potential vorticity data, on the 600 K isentropic 36

level, has been used to calculate the aspect ratio λ(t) and 37

the orientation θ(t) of the Antarctic vortex during the late 38
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Figure 1. Antarctic polar vortex aspect ratio λ(t) and orientation θ(t) during the late austral winters (0000UT 1 Aug- 1800UT 30 Sep) of 2012-2016
and 2002. The dashed vertical line on the 2002 panel marks the time of the Antarctic SSW measured by the WMO criterion.

austral winter (August-September) for five recent seasons1

(2012-2016) and for 2002 (the year of the Antarctic SSW).2

The procedure for calculating λ and θ from the data follows3

that described in section 2 of Matthewman et al. (2009)4

exactly. One technical point, however, is that θ here is5

measured in the same sense as longitude, which in the6

Southern hemisphere is in the opposite sense to the usual7

polar coordinates. Following this convention means that8

the observed results, for the negative PV Antarctic vortex,9

can be compared directly to the (positive vorticity) Kida10

vortex without further transformation. Very similar pictures11

emerge if other vertical levels are chosen, although it is12

notable that, unlike in the case of typical Arctic vortex splits13

the Antarctic SSW of 2002 has significant vertical structure14

(e.g. Esler et al. 2006), because at very low levels (∼450 K)15

the vortex recovers instead of splitting. The aspect ratio in16

the 2002 panel in late September is therefore somewhat17

sensitive to the level chosen.18
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Figure 2. Sample paths from integrations of Kida’s equations, with Γ =
0.04 and the rotation rate Ω(t) driven by the Ornstein-Uhlenbeck process

(16), with Ω0 = −0.12, δ = 2π∆−1 and ε = 0.025δ−1/2 .

Figure 1 shows λ(t) and θ(t) for Aug-Sep 2012-2016, 1

as well as Aug-Sep 2002. The most striking features of the 2

time-series are: 3
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Noise-induced vortex-splitting SSWs 5

1. In certain years, notably 2012, 2013, 2016 and 2002,1

there is coherent cyclonic phase propagation (i.e. θ̇ >2

0) throughout almost all of the periods shown. The3

mean angular frequencies for these four seasons are4

0.232 (2012), 0.170 (2013), 0.271 (2016) and 0.2795

(2002) radians day−1.6

2. Near-synchronous oscillations in aspect ratio occur,7

with a wide range in amplitude both within and8

between seasons. Scatterplots (not shown) reveal that9

the orientation of the vortex at maximum aspect ratio10

varies, but that there is a significant bias towards11

the direction parallel with the 40◦E-140◦W longitude12

circle. Aspect ratio fluctuations with larger amplitude13

appear to correlate with longer oscillation periods.14

3. Occasional instances of stalling in the phase15

propagation (e.g. 5-8 Sep 2012, 2-11 Aug 2013, 15-16

22 Aug 2016), occur when the vortex has low aspect17

ratio.18

4. In other years, such as 2014 and especially 2015,19

there are no coherent oscillations in aspect ratio20

and the coherence of the phase propagation is much21

reduced (note that the orientation becomes ill-defined22

as the aspect ratio approaches unity, which explains23

the rapid variations in θ).24

During the 2002 oscillations, the vortex aspect ratio is25

correlated with oscillations in the stratospheric zonal wind26

at 60◦S (see Figs. 2 and 6 of Scaife et al. 2005). Oscillations27

in vortex aspect ratio are therefore a plausible (partial)28

dynamical explanation of Scaife et al.’s ‘stratospheric29

vacillations’, because, provided the vortex remains near30

the pole, there will be a strong anti-correlation between31

the vortex aspect ratio and zonal mean wind at a fixed32

radius (see e.g. Esler and Scott 2005). Scaife et al. (2005)33

also reported smaller amplitude stratospheric vacillations in34

previous winters, notably 1995 and 1996, suggesting that35

the oscillations shown in Fig. 1 are a recurring feature of36

Southern winters over a longer period.37

Figure 2 shows the evolution of λ(t) and θ(t) during three 1

separate integrations of Kida’s model, in the presence of 2

a linear flow which includes a relatively small stochastic 3

component. The aim of these integrations, which are 4

described in detail below, is to demonstrate that Kida’s 5

model with ‘noise’ is able to reproduce qualitatively the 6

main behaviours seen in Fig. 1. The qualitative behaviour 7

is recovered despite little attempt being made to ‘fit’ the 8

parameters of Kida’s model to match the observations, 9

except to make sure that the system is initialised in 10

the cyclonically rotating (ACW) regime described by 11

Matthewman and Esler (2011). (The extent to which a 12

quantitative parameter fit is possible is the subject of 13

ongoing study.) 14

The remarkable feature of Fig. 2 is how different the 15

three time-series are, given that they are realisations of the 16

same random dynamical system. The dashed curves shows 17

a 2002-like evolution with coherent phase propagation, and 18

increasing amplitude leading to an SSW-like event where 19

the aspect ratio grows to a large value. The dot-dash curves 20

show a much lower amplitude oscillation in aspect ratio, 21

reminiscent of the 2012, 2013 and 2016 winters, with 22

two instances of ‘phase stalling’ (around t = 45∆−1 and 23

125∆−1, where ∆ is the vorticity difference between the 24

vortex and the background). It is also notable that the 25

oscillation period is slightly shorter compared with the 26

large amplitude case. The solid curve shows no coherent 27

oscillations until towards the end of the period, and no 28

coherent phase-propagation. This behaviour is more typical 29

of the 2014 and 2015 winters. 30

Next, the Kida system and its behaviour in the case of 31

both deterministic and stochastic linear background flows 32

will be studied in detail. 33

3. The Kida vortex system and its behaviour 34

3.1. Deterministic behaviour 35

The starting point for our analysis is Kida’s equations (Kida 36

1981; Dritschel 1990) for the evolution of an elliptical 37
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Figure 3. The ‘stratospheric’ zonal wind profile associated with the
undisturbed (i.e. circular) Kida model vortex, as a function of distance
from the pole, showing its sensitivity to the parameter Ω. The system is
dimensionalised by choosing ∆ = 0.5f = 2π day−1 and vortex radius
3000 km.

vortex patch with aspect ratio λ and orientation angle θ.1

The vortex evolves in a time-varying linear strain flow with2

amplitude Γ(t) which is applied at angle Φ(t), and a solid3

body background rotation flow with rate Ω(t), according to4

θ̇ = Ω+
λ

(λ+ 1)2
−
λ2 + 1

λ2 − 1
Γ sin 2(θ − Φ)

λ̇ = 2λΓ cos 2(θ − Φ). (1)

Here θ(t) is the vortex orientation and λ(t) its aspect ratio,5

dots denote time derivatives, and time t, Ω and Γ are6

all made nondimensional using the vorticity difference ∆7

between the patch and the background (or its inverse), so8

that (1) is a nondimensional system.9

Physically, following ME11, Γ can be considered to be a10

measure of the strength of the topographic and dynamical11

forcing of the vortex. The variable Ω can be associated with12

the current ‘climate’ in so far as it controls the zonal wind13

profile and its magnitude at the vortex edge. An important14

conceptual simplification in the model is that the forcing15

(i.e. Γ(t) and Ω(t)) is taken to be independent of the state16

of the vortex. Fig. 3 shows the stratospheric zonal wind17

profile induced by the undisturbed (i.e. circular) vortex, as a18

function of distance from the pole, illustrating the influence19

of Ω. Note that the cusp in the velocity at the vortex edge20

becomes smoothed when the vortex is elliptical or displaced21

slightly from the pole. Relatively small changes in Ω, which22

change the velocity at the vortex edge by just a few ms−1
1

will be shown below to significantly impact the expected 2

time for an SSW. In the real atmosphere, an effective 3

change in Ω could be caused, for example, by a change 4

in the tropospheric Southern annular mode index. Another 5

possibility is a change in the location of the tropical edge of 6

the stratospheric surf zone, for example associated with the 7

evolving quasi-biennial oscillation. In both cases, a change 8

in the atmospheric structure away from the stratospheric 9

vortex itself will lead, via potential vorticity inversion, to a 10

change in the background zonal velocity at the vortex edge. 11

Such changes can be represented in the Kida model by a 12

change to Ω. 13

A key quantity for our analysis is the Hamiltonian 14

h =
λ2 − 1

λ

(

Γ sin 2(θ − Φ)− Ω
λ− 1

λ+ 1

)

− log
(λ+ 1)2

4λ
.

(2)

The physical interpretation of h, as will be explained in 15

detail below, is that it is a quantitative measure of the 16

character of the oscillation the vortex is undergoing. In 17

the event that Γ = (Γ0,Φ0,Ω0)
T is constant, as will be 18

assumed throughout the present section, the system (1) 19

can be integrated after first taking the ratio of the two 20

equations (following Kida 1981). The result is that h is 21

conserved by the dynamics. (As an aside, the equations (1) 22

can be further transformed into Hamilton’s equations by 23

transforming variables to (p, q) = (θ, λ+ λ−1), however it 24

does not appear to simplify the analysis below to do so). In 25

ME11 only the case with h = 0 was considered. However 26

in the situation with ‘noise’, discussed below, all values of 27

h are accessible and so the influence of h on the nature of 28

the oscillation must first be understood. 29

To understand the influence of h, square the second 30

equation in (1), and use the definition of h to give the 31

potential form 32

λ̇2 + V (λ) = 0, (3)
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The values are h = {1.1hc, hc, 0.5hc, 0, 0.3hm, hm}, where hc ≈ −0.02691 and hm ≈ 0.01297 are the critical and maximum values defined by
(6). Right: Time evolution of the aspect ratio λ(t), obtained from numerical integrations of (1), showing the oscillations associated with the potential
functions V (λ) in the left panel.
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Figure 5. The critical value of h for an SSW, h = hc, as a function of
(Ω,Γ). The contour interval is 0.04. The zero contour, which marks the
transition between ME11’s ACW and OSC regimes, is marked in bold.
The solid points show the parameter values used in Fig. 4, and in the
simulations described in section 4.

where the potential function is defined by

V (λ) =

4λ2

(

(

λ

λ2 − 1
log

eh(λ+ 1)2

4λ
+Ω

λ− 1

λ+ 1

)2

− Γ2

)

.

(4)

When the potential function satisfies V (λ) < 0 within1

a bounded region λ− < λ < λ+, i.e. a ‘potential well’,2

equation (3) is a generic equation of a nonlinear oscillator.3

The vortex oscillates between minimum aspect ratio λ−4

and maximum λ+, where V (λ±) = 0. Further details of the5

nature of the oscillations depend on the structure of V (λ) in 1

the potential well region which can change qualitatively as 2

h is varied. One of the key results of ME11 was to identify 3

vortex splitting SSWs with a bifurcation associated with a 4

qualitative change in the shape of the potential well. 5

Fig. 4 (left panel) shows how the shape of the

potential V (λ) changes as h is varied, with (Ω0,Γ0)

fixed, as illustrated in Fig. 4 (left panel). Here (Ω0,Γ0) =

(−0.12, 0.04) have been chosen to fall in a region of

parameter space identified by ME11 as being representative

of ‘typical’ mid-winter stratospheric conditions (constant

Φ0 = 0 is assumed without loss of generality). In ME11 a

negative value of Ω0 was found to be necessary to allow

a reasonable fit to be made to the observed latitudinal

profile of the stratospheric jet. It is evident that a class

of relatively low amplitude (λ+ . 3.75) oscillations of the

vortex occur when h falls in the interval hc < h < hm.

The upper bound h = hm corresponds to a fixed point of

(1) with λ = λm and θ − Φ = π/4 (the region h > hm is

inaccessible). The lower bound h = hc corresponds to a

critical trajectory, which reaches a maximum amplitude λc,

and marks the SSW bifurcation identified by ME11. For

h < hc, a transition occurs to a regime with much larger

amplitude oscillations, which is labelled OSC by ME11

and in Figs. 4-5. In the example plotted in Fig. 4 the OSC
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8 J. G. Esler and M. Mester

oscillation has maximum amplitude λ+ ≈ 20. Using the

fact that V (λc,m) = V ′(λc,m) = 0 it is straightforward to

show that λc,m are the two largest distinct real roots of the

cubic (λm < λc)

(Γ0 − Ω0)λ
3 + (Γ0 − Ω0 − 1)λ2

+ (Γ0 +Ω0 + 1)λ+ (Γ0 +Ω0) = 0. (5)

It follows that the critical and maximum values of h are1

given by2

hc,m = (1 + 2Ω0)
(λc,m − 1)2

λ2c,m + 1
− log

(λc,m + 1)2

4λc,m
. (6)

The critical value hc is contoured as a function of (Ω0,Γ0)3

in Fig. 5. For the purposes of comparison with ME11, it4

is the hc = 0 contour, marked in bold, which was there5

identified with the SSW bifurcation, because ME11 was6

restricted to considering the case with the initial condition7

taken to be a circular vortex.8

At the parameter values for Fig. 4, marked with a9

solid point in Fig. 5, the system has hc < 0 < hm. There10

is therefore a further transition in the character of the11

oscillation at h = 0, between an ‘anti-clockwise rotating’12

regime (ACW, hc < h < 0) in which the major axis of the13

vortex rotates continuously and a ‘nutating’ regime (0 <14

h < hm) in which the major axis of the vortex oscillates15

around the orientation θ − Φ0 = π/4. The transition point16

between these regimes at h = 0 corresponds to the only17

trajectory to include the circular vortex (λ = 1). The time18

evolution of λ(t), obtained by direct numerical integration19

of (1), during each type of cycle is shown in Fig. 420

(right). Note that the OSC calculation is stopped when21

λ = 4.5, because in both the stratosphere and in more22

realistic models (see below), the vortex will be unstable to23

perturbations at large aspect ratios, i.e. an SSW will follow24

once this aspect ratio is attained.25

It is useful for the analysis below to introduce at this point

the concept of a cycle average. Let f(λ) be any function of

aspect ratio. Its cycle average is defined to be

〈f〉 =
1

Tp

∮

C

f(λ)

(−V (λ))1/2
dλ, (7)

where Tp =

∮

C

dλ

(−V (λ))1/2

is the oscillation period, obtained by direct integration of 1

(3). The integral
∮

C
corresponds to integrating over a single 2

oscillation. The integration contour C picks up the positive 3

branch of the square root outwards along the real interval 4

(λ−, λ+) and the negative branch backwards along the same 5

interval, i.e. C should be interpreted as a clockwise closed 6

contour in the complex-plane encircling (infinitesimally 7

closely) the branch cut of (−V (λ))1/2 which lies along the 8

real axis between λ− and λ+. For analytic functions f it 9

follows that
∮

C ≡ 2
∫ λ+

λ−
. Finally, it will also be helpful to 10

introduce the cycle variance 〈〈f〉〉, which is defined to be 11

〈〈f〉〉 = 〈(f − 〈f〉)2〉. (8)

3.2. Stochastic behaviour 12

A simple way of introducing the effects of ‘tropospheric 13

macroturbulence’ into Kida’s model is to allow the 14

parameters Γ = (Γ,Φ,Ω)T in (1) to evolve in time, and to 15

be driven by stochastic processes. Below, the main cases 16

that will be considered are when Γ and Ω are driven 17

by Ornstein-Uhlenbeck processes. However, it is helpful 18

for the analysis to first consider a rather more general 19

possibility 20

dΓ = ε∗F (Γ)dt + ε
1/2
∗ Σ(Γ) · dW , (9)

where W = (W1,W2,W3)
T is a three-dimensional Brow- 21

nian (Wiener) process and ε∗ is a nondimensional parameter 22

introduced as a measure of the strength of the noise and 23

drift. Here F = (FΓ, FΦ, FΩ)T is a general vector-valued 24

‘drift’ and Σ a ‘noise’ matrix, which for simplicity we take 25

below to be diagonal, i.e. Σ = diag(ΣΓ,ΣΦ,ΣΩ). 26
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Noise-induced vortex-splitting SSWs 9

To facilitate our analysis, it is helpful to consider (λ, h)1

as the dependent variables in place of (λ, θ). Henceforth we2

will use capitals (Λ, H) in recognition of the fact that they3

are now stochastic variables. The equation for Λ is (3) in4

stochastic notation is5

dΛ = (−V (Λ, H,Γ))
1/2

dt. (10)

The equation for H is obtained by applying Itô’s lemma to

(2), resulting in

dH = ε∗

((

FΓ

Γ
− 2(ΣΦ)2

)

GΓ − FΦGΦ − FΩGΩ

)

dt

+ ε
1/2
∗

(

ΣΓ

Γ
GΓdW1 − ΣΦGΦdW2 − ΣΩGΩdW3

)

,

(11)

where

GΓ = Ω
(λ− 1)2

λ
+ log

eH(λ+ 1)2

4λ

GΦ =
(Λ2 − 1) (−V (Λ, H,Γ))

1/2

Λ2
(12)

GΩ =
(λ− 1)2

λ
.

Note that some care is needed in the interpretation of (10-6

11), because the branch of the square root to be taken in both7

equations alternates with the phase of the cycle. However,8

as will be described below, the great advantage of using H9

as a prognostic variable is that, in certain limits the long-10

time evolution of the vortex is completely described by an11

averaged H-equation, with the criterion for an SSW being12

simply H < hc.13

3.3. The cycle-averaged equation14

In the limit ε∗ ≪ 1, it is evident from (9-11) that changes15

in Γ and H over an order unity time period, such as the16

period Tp of an oscillation of the vortex, will be O(ε1/2).17

This observation motivates the use of the method of multiple18

time-scales as a method for simplifying (9-11). The aim of19

the analysis is to obtain an equation for the evolution of H 1

that is valid on a time-scale τ ≫ Tp. 2

Examination of (9) suggests that the new time-scale τ = 3

ε∗t, and it follows that a Wiener process B = ε
1/2
∗ W can 4

be defined with respect to τ , so that (9) becomes 5

dΓ = F (Γ)dτ +Σ(Γ) · dB, (13)

where B = (B1, B2, B3)
T . The method of multiple time- 6

scales can now be applied to obtain an equation for the 7

evolution of H that can be coupled with (13). The number 8

of dependent variables in the system is thereby reduced by 9

one. 10

Care is needed in implementing the method of multiple- 11

scales in a stochastic setting, because Wiener processes 12

naturally include variability on all time-scales. The most 13

straightforward method is to use standard techniques (e.g. 14

§3.4.1 of Gardiner 2009) to transform into the deterministic 15

setting of the Fokker-Planck equation (FPE hereafter) and 16

then apply the method of multiple-scales method to the 17

deterministic FPE, before transforming back again. This is 18

the approach adopted in Appendix A. 19

The result is the cycle-averaged equation

dH =
(

(FΓ/Γ− 2(ΣΦ)2)〈GΓ〉 − FΩ〈GΩ
)

〉dτ

+

(

(ΣΓ/Γ)〈GΓ〉dB1 − ΣΩ〈GΩ〉dB3

)

(

(ΣΓ/Γ)2〈〈GΓ〉〉+ (ΣΦ)2〈〈GΦ〉〉

+ (ΣΩ)2〈〈GΩ〉〉

)1/2

dB. (14)

where B is a new Brownian process which is independent 20

of B = (B1, B2, B3)
T . The new Brownian process B 21

accounts for the intra-cycle variability of the original 22

Brownian processes, which would otherwise be absent from 23

the cycle-averaged equations, and is dependent on the cycle 24

variance 〈〈·〉〉 of the functions GΓ, GΦ etc. Notice that all 25

cycle average and cycle variance quantities are functions 26

Copyright c© 2019 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–26 (2019)

Prepared using qjrms4.cls



10 J. G. Esler and M. Mester

of (H,Γ,Ω), and that 〈GΦ〉 = 0 due to the presence of the1

branch cut in GΦ.2

It is interesting to note that even the deterministic3

version of (14) can be useful for understanding numerical4

simulations of vortex splitting SSWs. For example,5

Liu and Scott (2015) used a global shallow water model6

to simulate vortex splits, in a similar set-up to ME11.7

One key difference was that, due to numerical stability8

considerations, the topographic forcing in their experiments9

was introduced smoothly using a linear ramp in time (i.e. in10

the present notation Γ = ε∗F
Γt, for FΓ constant). Equation11

(14) is then12

dh

dτ
= (FΓ/Γ)〈GΓ〉. (15)

It turns out that in the relevant parameter regime 〈GΓ〉 >13

0 (also 〈GΓ〉 ∼ Γ for Γ ≪ 1), which means that the14

growing topography causes h to slowly increase, pushing15

the vortex into the h > 0 nutating regime as observed in16

the simulations (in Figs. 6 and 7 of Liu and Scott 2015,17

notice that the orientation oscillates about a fixed value). It18

is notable that the onset of vortex splitting is less abrupt in19

the nutating regime compared to the ACW regime (h < 0).20

In any case, the important point is that the vortex behaviour21

is strongly influenced by the history of the forcing, as it will22

be in the experiments to be described below.23

The cycle-averaged equation (14) will be next be used24

to help to obtain simplified equations for the long-time25

dynamics of the vortex when the linear background flow is26

driven by Ornstein-Uhlenbeck processes.27

3.4. Forcing by Ornstein-Uhlenbeck processes28

A relevant stochastic forcing for the linear background flow29

in (10-11) is the Ornstein-Uhlenbeck (O-U) process. The O-30

U process is of interest because it is perhaps the simplest31

continuous random process that, unlike the Brownian or32

Wiener process, can be used to model a process with a finite33

decorrelation time (Gardiner 2009). To focus attention on a34

tractable problem, we will consider O-U processes driving35

either the rotation Ω, 1

dΩ = −

(

Ω− Ω0

δ

)

dt+

(

2ε2

δ

)1/2

dW3, (16)

or the strain Γ, 2

dΓ = −

(

Γ− Γ0

δ

)

dt+

(

2ε2

δ

)1/2

dW1. (17)

Here Γ0 and Ω0 are the prescribed long-time mean values 3

of Γ and Ω, and the Wi are Brownian processes as in (9). 4

The parameters ε and δ are the standard deviations and 5

decorrelation times of the O-U processes respectively. 6

It turns out that there are two distinct asymptotic limits in 7

which the stochastic Kida equations, driven by either (16) 8

or (17), can be simplified to allow analytical progress. Both 9

limits involves using the method of multiple time-scales to 10

obtain a cycle averaged equation, and using the method of 11

homogenisation (e.g. Pavliotis and Stuart 2007), to average 12

over the time-scale of the O-U process (or ‘homogenise’ 13

the system on this time-scale). However, the order in which 14

these two methods are used is different in each case. 15

The first limit is the ‘rapid fluctuation’ limit δ ≪ 16

1, ε2δ ≪ 1. In this limit the timescale δ for the O-U process 17

is much shorter than the oscillation period Tp, so we can 18

treat the O-U processes as ‘fast’ processes which can be 19

averaged over, using the method of homogenisation before 20

applying cycle-averaging. The second limit is the ‘slow 21

evolution’ limit, for which ε ∼ 1 ≪ δ, and in this case the 22

cycle-averaging can be used as the first step, followed by 23

homogenisation. Interestingly, in both limits, the behaviour 24

of the system is entirely governed by a random walk with 25

drift in H . 26

Next, each limit is considered in turn, treating the rotation 27

and strain O-U processes separately. 28

3.4.1. Rotation O-U process: Rapid fluctuation limit 29

To treat the rapid fluctuation limit, in which the

decorrelation time-scale of the O-U process satisfies δ ≪ 1,

the homogenisation method detailed in Appendix B is first
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Noise-induced vortex-splitting SSWs 11

applied to the system consisting of Kida’s equations (1),

coupled to the rotation (Ω) O-U process (16), with Γ = Γ0

constant. The resulting homogenised system is

dΘ =

(

Ω0 +
Λ

(Λ + 1)2
−

Λ2 + 1

Λ2 − 1
Γ0 sin 2Θ

)

dt

+ 21/2κ1/2dW

dΛ = 2ΛΓ0 cos 2Θ dt, (18)

where κ = ε2δ ≪ 1. To now apply cycle-averaging, notice

that equation (18) can be recast into a form consistent with

that in section 3.3, by writing ε∗ = κ and substituting Θ̄ =

Θ + Φ, where Φ = 21/2ε
1/2
∗ W to obtain

dΘ̄ =

(

Ω0 +
Λ

(Λ + 1)2
−

Λ2 + 1

Λ2 − 1
Γ0 sin 2(Θ̄− Φ)

)

dt

dΛ = 2ΛΓ0 cos 2(Θ̄− Φ) dt, (19)

dΦ = 21/2ε
1/2
∗ dW.

It follows from section 3.3 that, after substituting back for1

the original timescales, the cycle-averaged equation is2

dH = −4ε2δ〈GΓ〉0dt+ 21/2εδ1/2〈〈GΦ〉〉
1/2
0 dW, (20)

where the zero subscripts denote that the cycle-averages and3

variances are taken at the constant values (Γ0,Ω0), so that4

〈GΓ〉0 and 〈〈GΦ〉〉0 are functions only of H .5

The important point about (20) is that it is a stochastic6

differential equation in the single variable H . The drift and7

diffusion functions which appear are just the cycle-averages8

and variances of the functions in (12), which, although they9

can’t be explicitly obtained analytically, are easily evaluated10

numerically when required. The criterion for the bifurcation11

in the closed orbits of the system (i.e. an SSW) is simply12

H = hc. The key question of how long it will take before13

an SSW occurs has been reduced to the question of how14

long (on average) it takes for H to first reach hc in (20).15

The solution to this problem will be addressed in section 3.516

below.17

3.4.2. Rotation O-U process: Slow evolution limit 1

Next, the slow evolution limit (δ ≫ 1, ε≪ 1) is considered.

In this case, the O-U forcing is already in the form (9),

provided we identify ε∗ with δ−1. As a consequence, the

the cycle-averaged equation for H , derived in section 3.3,

together with the equation for Ω, written in the slow time-

variables τ = δ−1t and B3 = δ−1/2W3, can be written

down as

dΩ = −(Ω− Ω0)dτ + 21/2εdB3,

dH = (Ω− Ω0)〈G
Ω〉dτ − 21/2ε〈GΩ〉dB3

+ 21/2ε〈〈GΩ〉〉1/2dB, (21)

whereGΩ is defined in (12) andB is an independent Wiener 2

process in τ . Notice that at this stage the cycle-averaged 3

quantities 〈GΩ〉 etc. are functions of (H,Γ0,Ω). 4

Exploiting the fact that ε≪ 1, the system (21) can be

now be homogenised to give the behaviour on time-scales

much greater than τ . Following the procedure set out in

Appendix B, taking care to Taylor expand functions of ω

where necessary, results in

dH = ε2δ−1
(

∂ω〈G
Ω〉
∣

∣

0
− 〈GΩ〉0∂h〈G

Ω〉0
)

dt

+ 21/2εδ−1/2〈〈GΩ
0 〉〉

1/2
0 dW, (22)

where ∂ω 〈GΩ〉
∣

∣

0
≡ (∂〈GΩ〉/∂Ω)(H,Γ0,Ω0), and 5

∂h〈G
Ω〉0 ≡ (∂〈GΩ〉0/∂H)(H). Note that, as for (20), we 6

have substituted back the original time-scale. 7

Interestingly, it turns out that (22), like the rapid 8

fluctuation equation (20), is also a stochastic differential 9

equation in H , albeit with rather different drift and 10

diffusion functions. The dependence of the governing time- 11

scale on the O-U parameters is different, here the time-scale 12

∼ ε−2δ, as opposed to ∼ ε−2δ−1 in the rapid-fluctuation 13

limit. 14
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12 J. G. Esler and M. Mester

3.4.3. Strain O-U process: Rapid fluctuation limit1

In order to compare the relative importance of noise in2

the strain component versus the rotation component of the3

linear background flow, we next consider Kida’s equations4

(1), coupled to the strain (Γ) O-U process (17), this time5

taking Ω = Ω0 constant.6

In the rapid fluctuation limit, the short time-scale of the

O-U process (δ ≪ 1) means that homogenisation can be

used, following Appendix B, to obtain,

dΘ =

(

Ω0 +
Λ

(Λ + 1)2
−

Λ2 + 1

Λ2 − 1
Γ0 sin 2Θ

+ κ sin 4Θ

(

(Λ2 + 1)2 + 4Λ2

(Λ2 − 1)2

))

dt

− 21/2κ1/2 sin 2Θ

(

Λ2 + 1

Λ2 − 1

)

dW

dΛ =

(

2ΛΓ0 cos 2Θ + 4κΛ

(

1 +
2

Λ2 − 1
sin2 2Θ

))

dt

+ 23/2κ1/2Λ cos 2Θ dW, (23)

where κ = ǫ2δ and W is a single Brownian process.7

Applying Itô’s lemma (the ‘chain rule’ of stochastic8

calculus Gardiner 2009) to H then gives9

dH = −4κG0dt− 21/2κ1/2R
1/2
0 dW (24)

where G0 and R0 are functions of λ and H given by

G0 =
2λ

(λ + 1)2
+Ω0

λ2 + 1

λ
(25)

+
1

Γ2
0

λ2

(λ+ 1)4

(

Ω0
(λ− 1)2

λ
+ log

eH(λ+ 1)2

4λ

)2

R0 = −
V (λ,H,Γ0,Ω0)

Γ2
0λ

2

(

λ− 1

λ+ 1
+ Ω0

λ2 − 1

λ

)2

. (26)

Applying the cycle-averaging procedure described in10

Appendix A results, straightforwardly, in11

dH = −4ε2δ〈G0〉dt+ 21/2εδ1/2〈R0〉
1/2 dW∗, (27)

where W∗ is a new Wiener process. Equation (27) is the12

analogue of (20) when the O-U noise is applied to the strain13

rather than the rotation component of the linear background 1

flow. 2

3.4.4. Strain O-U process: Slow evolution limit 3

The treatment for the slow evolution limit (δ ≫ 1, ε≪

1) for the strain O-U process is almost identical to the

rotation case above. First, identifying δ−1 with ε∗, the

cycle-averaging procedure of section 3.3 is used, to re-

scale the O-U process and write down equation (14) for the

evolution of H on the slow time-scale τ = δ−1t as

dΓ = −(Γ− Γ0)dτ + 21/2εdB1,

dH = −
Γ− Γ0

Γ
〈GΓ〉dτ + 21/2

ε

Γ
〈GΓ〉dB1

+ 21/2
ε

Γ
〈〈GΓ〉〉1/2dB, (28)

where GΓ is defined in (12), B3 = δ−1/2W3, and B is an 4

independent Wiener process in τ . 5

Equation (28) can be homogenised in an almost identical

fashion to (21) (see Appendix B) giving

dH = −ε2δ−1

(

∂γ〈G
Γ〉|0

Γ0
−

〈GΓ〉0
Γ2
0

+
∂h〈G

Γ〉0〈G
Γ〉0

Γ2
0

)

dt

+ 21/2
ε1/2δ−1

Γ0
〈〈GΓ〉〉

1/2
0 dW. (29)

Equation (29) is the analogue of (22) for the strain O-U 6

process. 7

3.5. The first passage time problem 8

Next, we address the issue of how the results above can 9

be used to gain insight into the statistics of SSWs in the 10

model. The idea is to formulate the first passage time 11

problem for the criterion for the onset of an SSW, which 12

is then solved to obtain the expected time until an SSW 13

occurs. Discovering how the expected SSW time depends 14

on the model parameters then throws light on how climatic 15

changes may affect SSW frequency in a more realistic 16

setting. 17

The analysis of sections 3.4.1-3.4.4 leads, in each 18

example, to a one-dimensional ‘random walk with drift’ 19
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Noise-induced vortex-splitting SSWs 13

equation for H , of the form1

dH = a(H) dt+ b(H)1/2 dW. (30)

The smooth functions a(h) and b(h) ≥ 0 in each case2

have an implicit dependence on the parameters {Γ0,Ω0},3

through the cycle-averaging operation. By contrast, the4

dependence of a(h) and b(h) on the parameters ε and δ of5

the O-U process is relatively simple in both limits, as seen6

above. In the first passage time problem for systems such as7

(30), the aim is to calculate the expected time T (h) for the8

system to evolve from an initial conditionH(0) = h to meet9

for the first time a specific criterion. In the present case, the10

relevant criterion is H = hc which, based on the discussion11

above, will lead to the bifurcation in the vortex oscillation12

associated with an SSW. The first passage time time T (h)13

is then the expected time for an SSW event to occur.14

In Appendix C it shown (following e.g. section 5.2.7 of15

Gardiner 2009) that T (h) satisfies the ordinary differential16

equation17

a(h)T ′(h) + 1
2 b(h)T

′′(h) = −1, (31)

with boundary conditions18

T (hc) = 0, T ′(hm) = 0. (32)

The boundary value problem (31-32) has explicit solution19

T (h) =

∫ h

hc

1

µ(s)

(

∫ hm

s

2µ(q)

b(q)
dq

)

ds, (33)

where20

µ(h) =

∫ h

hc

exp

(

2a(q)

b(q)

)

dq. (34)

Equation (33) allows the expected time to an SSW21

(specifically, T (0) for a circular vortex initial condition)22

to be calculated, provided the functions a(h) and b(h)23

can be calculated. It is not necessary to calculate a and b24

explicitly to obtain the dependence on the O-U parameters25

ε and δ. Direct insertion of the formulae above into (33) 1

reveals that T (0) ∼ ε−2δ−1 in the rapid fluctuation limit 2

and T (0) ∼ ε−2δ in the slow evolution limit. To determine 3

the dependency on the other parameters, standard numerical 4

quadrature is used to obtain a(h) and b(h) on a suitable h- 5

grid for each of the four examples above. The result is that 6

the dependence of the SSW time on the model parameters 7

can be systematically calculated and explored, and the 8

sensitivity of the system to changes in the parameters can 9

be evaluated, as will be seen next. 10

4. Results 11

In this section numerical integrations of Kida’s equations 12

will be used to illustrate how the expected time to an 13

SSW depends upon the model parameters. First, the regime 14

with δ ∼ Tp (i.e. the decorrelation time of the forcing is 15

comparable to the oscillation period), in which neither 16

asymptotic theory described above is valid, will be explored 17

numerically. Then, the validity and practical relevance of 18

the asymptotic results will be verified by comparing the 19

results of numerical simulations with those calculated from 20

the asymptotic formulae using (33). Finally, the relevance 21

of the stochastic Kida model will be illustrated by making a 22

careful comparison between the Kida equation simulations 23

and a quasi-geostrophic model that simulates realistic- 24

looking vortex splits. 25

4.1. Numerical integrations of Kida’s equations and 26

general model behaviour 27

The first main questions to be addressed concern the 28

sensitivity of the SSW frequency to changes in the 29

amplitude ε and decorrelation time δ of the stochastic 30

processes forcing the system. The results are shown in 31

Figs 6 and 7. In each of these figures, results from ensembles 32

of 103 − 104 simulations of (1) forced by either rotation 33

(16) or strain (17) processes are presented. Each simulation 34

in each ensemble is continued until the SSW time Tλ, 35

defined to be the first time that an aspect ratio criterion 36

λ > λc (see below) is reached. The mean SSW time is 37
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Figure 6. Expected SSW time Tλ (first time for which λ > 4.5) as a function of noise amplitude ε. Error bars show 95% confidence limits calculated
from an ensemble size of 103. Results are plotted for both the rotation and strain O-U processes with parameters in both cases (Ω0,Γ0) = (−0.12, 0.04)
and O-U decorrelation time δ = 6 ‘days’.

then calculated from the ensemble and, where possible,1

compared with theoretical results calculated from (33).2

Fig. 6 shows the mean SSW time Tλ as a function3

of noise amplitude ε. Results are plotted for both the4

rotation and strain O-U processes with parameters in5

both cases (Ω0,Γ0) = (−0.12, 0.04) and a ‘realistic’ O-U6

decorrelation time δ = 6‘days’. Both the rapid fluctuation7

and slow evolution theories (valid for small and large δ8

respectively) predict that the SSW time should scale as9

ε−2, and the dotted lines show ‘fits’ to the numerical10

results ∝ ε−2. The ε−2 scaling is a good fit in the case11

of the strain O-U process, but less good for the rotation12

O-U process, which (from a log-log fit) has a scaling13

closer to ε−2.2. The numerical results therefore support14

the conclusions from the mathematical analysis that Tλ15

is sensitive to noise amplitude, which indicates that SSW16

frequency could be significantly affected by an increase17

in e.g. storm track activity associated with planetary wave18

generation (Scinocca and Haynes 1998).19

Fig. 7 shows the mean SSW time Tλ as a function 1

of δ, for the rotation O-U process with ε = 0.005 and 2

the strain O-U process with ε = 0.0025. In both cases 3

(Ω0,Γ0) = (−0.12, 0.04). Both the rapid fluctuation theory 4

(solid curves ∼ δ−1) and slow evolution theory (dashed 5

lines ∼ δ) are plotted against the simulation results for Tλ. 6

The coefficients for these curves have been calculated using 7

(33). Comparing the rotation and strain O-U processes at 8

(Ω0,Γ0) = (−0.12, 0.04) in Fig. 7, the mean SSW times 9

are roughly comparable. The noise amplitude ε in the strain 10

case is half that in the rotation case, indicating that noise on 11

the strain component of the forcing is more than twice as 12

effective in causing an SSW. In both cases the O-U process 13

is most efficient in causing an SSW when δ ≈ 1‘day’, which 14

is considerably less than a typical value of Tp of around 6 15

‘days’. 16
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Figure 7. Mean first SSW time Tλ (points, error bars show 95% confidence limits) from simulations of Kida’s equations, as a function of the O-U
process timescale δ. Also plotted are the mean first passage time Th from the rapid fluctuation theory (solid curves), and the slow evolution theory
(dashed lines), each calculated using (33). Top panel: For the rotation O-U process, with amplitude ε = 0.005. Bottom panel: for the strain O-U process
with amplitude ε = 0.0025. In both cases (Ω0,Γ0) = (−0.12, 0.04).

4.2. Calculation and validation of the first-passage time1

formulae2

Next, the dependence of the mean SSW time on the3

‘climate’ parameters (Ω0,Γ0) will be elucidated. To4

understand the sensitivity to these parameters, it is helpful5

to recall Fig. 5, which shows hc, the critical value for6

the Hamiltonian H , as a function of (Ω0,Γ0). Loosely7

speaking, the further away from zero is the value of hc,8

the longer the system will need to reach H = hc and cause9

an SSW. By contrast, rapid onset of SSWs will occur for10

parameter settings close to the hc = 0 curve on Fig. 4.11

The accuracy and relevance of the asymptotic results,12

described in sections 3.4.1-3.5, which are formally valid13

only in the relevant asymptotic limits, are also tested here14

be at finite ε and δ. It is useful in this context to define the15

time Th to be the first time that H < hc, is also recorded for16

each ensemble member. Note that Th < Tλ because once 1

the Hamiltonian criterion H < hc is satisfied (fixing Th), 2

the vortex must complete its current oscillation before the 3

aspect ratios increases above those allowed in the ACW 4

regime, before eventually reaching λ = λc at Tλ. 5

Fig. 8 shows a test of the ‘rapid fluctuation’ results for 6

both the rotation O-U process (top) and the strain O-U 7

process (bottom). For the rotation O-U process, ensembles 8

of 104 simulations of the homogenised equations (18), valid 9

in the limit δ → 0 and with κ = ε2δ = 6.25× 10−4, are 10

compared with the predictions from (33) (solid curves). 11

The solid points show the ensemble mean of Th in 12

the simulations, with error bars showing 95% confidence 13

intervals. The unfilled points show the mean SSW time 14

Tλ, (in the simulations with Γ0 = 0.04 and Γ0 = 0.06, 15

λc = 4.5 and 5 respectively). Fig. 8 shows that the theory 16

accurately predicts the mean value of Th across a wide 17
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Figure 8. Mean first passage time Th from the rapid fluctuation theory predictions (solid curves), calculated using (33), and ensemble means of
simulations (solid points, error bars show 95% confidence limits), and mean first SSW time Tλ (unfilled points). Top panel. For the rotation O-U
process, plotted as a function of the rotation parameter Ω0 with (left) Γ0 = 0.04 and (right) Γ0 = 0.06. The results are for the homogenised equations
(18), valid for δ → 0, and with κ = ε2δ = 6.25× 10−4. Bottom panel: For the strain O-U process, as a function the strain parameter Γ0 with (left)
Ω0 = −0.12 and (right) Ω0 = −0.08. Here the simulations use Kida’s equations coupled to (17), with δ = 0.5π = 1

4
’days’ and ε = 0.0125δ−1 .

range of parameter values. In these simulations Γ0 = 0.041

or 0.06 is fixed, and Ω0 is varied. The lag between Th and2

Tλ of around 20 ‘days’ is approximately constant across3

the experiments, and is quite a bit longer than the typical4

oscillation periods in Fig. 4, which reflects the fact that,5

in the constant parameter situation, the period Tp → ∞ as6

H → hc.7

The lower panel of Fig. 8 shows mean Th and Tλ for8

the strain O-U process near the rapid fluctuation limit. In9

this case Kida’s equations are integrated, along with (17),10

for parameters δ = 0.5π = 1
4 ‘days’ and ε = 0.0125δ−1, so11

that κ = 1.5625× 10−4. A smaller ensemble size of 103 is12

used, and in this case Ω0 is held constant, at either −0.1213

or −0.08, while Γ0 is varied. The smaller ensemble size is 1

necessary as much longer integrations are required when Γ0 2

is small. The agreement with the theory for Th is slightly 3

less good than for the rotation O-U case, due to the finite 4

value of δ, which is nevertheless significantly less than an 5

oscillation period Tp. Comparing the rotation and strain 6

O-U processes at the same parameter setting (Ω0,Γ0) = 7

(−0.12, 0.04), the expected time Tλ for an SSW is about 8

the same in each case, despite κ = ε2δ being smaller by a 9

factor of 4 in the strain O-U case. In other words, to push 10

the system towards an SSW at the same rate, the noise acting 11

on the strain needs to have only half the amplitude of that 12

acting on the rotation. 13

Copyright c© 2019 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–26 (2019)

Prepared using qjrms4.cls



Noise-induced vortex-splitting SSWs 17

0.034 0.036 0.038 0.04 0.042 0.044 0.046
0

1000

2000

3000

4000

Strain O-U process

-0.135 -0.13 -0.125 -0.12 -0.115 -0.11
0

1000

2000

3000

4000

5000

6000

Rotation O-U process

Figure 9. Mean first passage time Th from the slow evolution theory predictions (solid curves), calculated using (33), and ensemble means of mean
first SSW time Tλ (points, error bars show 95% confidence limits) from simulations of Kida’s equations. Top panel: For the rotation O-U process, as
a function of the rotation parameter Ω0, with Γ0 = 0.04. Bottom panel: For the strain O-U process, as a function of the the strain parameter Γ0, with
Ω0 = −0.12. In both cases δ = 32π (= 16‘days’). In in the rotation O-U case ε = 0.005 and in the strain O-U case ε = 0.0025.
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Figure 10. Histogram of SSW onset times Tλ in 100 quasi-geostrophic simulations. The time Tλ is the first time that the vortex aspect ratio λ > 4.5.
The black curve shows the pdf of the SSW time in the corresponding Kida model, calculated using an ensemble of size 104.
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Figure 11. Snapshots of the vortex in 6 quasi-geostrophic simulations, showing vortex splits. The rows show snapshots relative to the SSW time Tλ,
defined as the first time that the vortex aspect ratio λ > 4.5.(First row: t = Tλ − 10∆−1, second: t = Tλ third: t = Tλ + 10∆−1 t = Tλ + 20∆−1,
or relative model days -1.6,0,+1.6,+3.2 respectively). The times Tλ = {192, 168, 230, 202, 154, 414} model days respectively.

In Fig. 9, the ‘slow evolution’ results for the mean first1

passage time Tλ are tested for both the rotation O-U process2

(top), plotted as a function of Ω0 with fixed Γ0 = 0.04 and3

the strain O-U process (bottom), plotted as a function of Γ04

with fixed Ω0 = −0.12. In both cases the O-U timescale5

δ = 32π (16 ‘days’) and ε = 0.005 for the rotation O-U6

process and ε = 0.0025 for the strain O-U process. At these7

parameter settings the mean time-scale Tλ for an SSW is8

rather long, indicating that over a 90 day winter period,9

SSWs would occur only as a rare event. Consequently only10

Tλ is plotted, as the relative difference with Th is small. The11

basic parameter dependency is well-captured by the theory,12

which nevertheless seems to overestimate Tλ systematically13

by 10% or so, which seems to be a finite ε effect.14

In summary, the simulations above show that, because15

the ‘climate’ parameters (Ω0,Γ0) control the critical value16

hc that must be attained by the Hamiltonian H in order to17

trigger an SSW, they can exert significant control over the18

mean time for an SSW. For example changes in (Ω0,Γ0)19

that act to bring hc closer to zero (see Fig. 5) have20

been shown above to reduce the mean time for an SSW 1

significantly (as shown by e.g. Fig. 8). 2

4.3. Application to quasi-geostrophic simulations 3

To demonstrate the relevance of the results above, the 4

behaviour of a somewhat more realistic quasi-geostrophic 5

model is examined next. The model is the single-layer 6

quasi-geostrophic model of ME11, which solves the quasi- 7

geostrophic potential vorticity equation in an unbounded 8

two-dimensional domain 9

qt + J (ψ, q) = 0, q = ∇2ψ + hT , (35)

where q is potential vorticity, ψ streamfunction, and hT a 10

prescribed topography, and the Jacobian operatorJ (f, g) = 11

fxgy − fygx. Exploiting the idea of a ‘topographic velocity’ 12

discussed in the introduction, an equivalent system that is 13

conceptually closer to the Kida model is 14

qt + J (ψD + ψT , q) = 0, q = ∇2ψD, (36)
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where ψT is the topographic streamfunction, satisfying1

∇2ψT = −hT , and ψD is the dynamic streamfunction2

determined by q. The conservation properties of (36) are3

exploited by restricting q to two regions of constant PV, i.e.4

q(x, t) =







1 + 2Ω(t), x ∈ D

2Ω(t), x /∈ D.
(37)

where D(t) is a time-varying region with constant area (up5

to numerical error and possible ‘contour surgery’), and Ω6

is the background rotation as in the Kida model. D(0) is a7

unit circle centred on the origin. These choices allow (36)8

to be solved numerically using the contour dynamics with9

surgery algorithm (Dritschel 1988).10

The topography is, in polar coordinates (r, φ), given by11

hT = h0(t)J2(γr) cos 2(φ− Φ(t)) (38)

with the Bessel function form chosen so that the12

topographic streamfunction is easily obtained as ψT =13

hT /γ
2. In the limit of small radial wavenumber γ → 0,14

ψT becomes the streamfunction of a strain flow with rate15

Γ = h0/4, and the Kida model is recovered. In order16

that the model simulates realistic-looking splits, however,17

we choose finite radial wavenumber γ = 1.162 (following18

ME11, with the wavenumber made non-dimensional using19

the initial unit vortex radius). In this case, the mean20

strain experienced by the vortex depends weakly on its21

radius and aspect ratio, with Γ ≈ 0.21h0 in our model22

experiments. As the vortex becomes elongated the vortex23

‘feels’ a topographic velocity that deviates significantly24

from a linear strain flow, and when the bifurcation occurs25

and the vortex aspect becomes large (i.e. once λ & 4.5), the26

more complex topographic velocity induces a split. A key27

difference with ME11, where Φ = 0, is that Φ = 21/2κW28

whereW (t) is a Wiener process. The physical interpretation29

for adding the noise to Φ is not that the physical topography30

actually rotates, but as a convenient method to access the31

rapid fluctuation limit (δ → 0) for the rotation O-U process32

(16). The rapid fluctuation limit is chosen for investigation 1

because analytical predictions for the mean SSW time can 2

be tested at a relatively cheap computational cost. 3

An ensemble of 100 simulations, with parameters h0 = 4

0.16, Ω = −0.12 and κ = 3.125× 10−4 is investigated. 5

Each integration is continued until Tλ + 20∆−1, where 6

Tλ is the first time that λ > 4.5. These quasi-geostrophic 7

simulations are compared with 104 integrations of the 8

stochastic Kida model (19) with Γ = 0.0336 = 0.21h0. A 9

histogram of the distribution of SSW times Tλ in the quasi- 10

geostrophic model is shown in Fig. 10, with the solid curve 11

showing the corresponding histogram for the Kida model as 12

a pdf. Good agreement between the models, given the finite 13

quasi-geostrophic ensemble size, is evident. If a winter 14

season is taken to be 100 days (1 day = 2π∆−1), it is 15

notable that each model is in a reasonably realistic regime 16

in the sense that the probability of an SSW occurring within 17

the season is around 18%. 18

Fig. 11 shows snapshots of the vortex at times close to Tλ 19

for the first six simulations. Following the interpretation of 20

section 3.4.1 the vortex is plotted relative to the topography. 21

The snapshots show that: 22

1. Despite Tλ being realised at widely varying times 23

(between 154 and 414 model days) a similar-looking 24

vortex split invariably follows. 25

2. The time taken for the split to develop following Tλ 26

is short (the final row shows Tλ + 3.2 days), although 27

stochasticity introduces noticeable variation between 28

the simulations in the time taken for a split to occur. 29

3. The orientation of the vortex elongation and 30

subsequent split, measured relative to the underlying 31

topography, remains remarkably similar between 32

simulations. 33

Observed vortex split SSWs in the Northern hemi- 34

sphere share each of the features 1-3 described above 35

(Matthewman et al. 2009). 36
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5. Conclusions1

The main contribution of this work has been to introduce2

a simple model which demonstrates that vortex splitting3

SSWs can result from the cumulative effects of weak4

‘noise’. In the simple model, the SSWs occur because5

the noise induces a random walk (with drift) in the6

vortex Hamiltonian H , and this random walk can cause7

H to reach a critical value hc, which corresponds to a8

bifurcation in the periodic orbits of the model. The noise in9

question can be identified with unsteadiness in tropospheric10

planetary wave forcing, i.e. tropospheric macroturbulence.11

Extrapolating this picture, Antarctic winters featuring large12

oscillations in vortex aspect ratio (e.g. 2012, 2013, 2016)13

correspond to realisations in which H becomes negative,14

and winters without significant oscillations (e.g. 201415

and 2015) have H positive. Further, the SSW of 200216

is a rare event in which H < hc, the (negative) critical17

value associated with an SSW in Kida’s model. The18

oscillations in aspect ratio appear to be essentially the19

stratospheric vacillations discovered by Scaife et al. (2005)20

which, interestingly, appear to have a strongly nonlinear21

vortex-splitting counterpart (Scott 2016).22

Mathematical analysis of the simple model reveals the23

following:24

1. When the noise takes the form of an O-U process25

driving the linear flow in Kida’s model, the random26

walk with drift in H can be derived analytically in27

two distinct limits. The first passage time problem for28

H < hc can then be solved, with the expected time29

Tλ for an SSW found from the result.30

2. The expected time Tλ for an SSW can be found as a31

function of the parameters describing the background32

flow and O-U process. The timescale Tλ depends33

strongly on the critical value hc for the bifurcation.34

Broadly speaking, the further hc is away from zero,35

the longer it will take the random walk to reach it.36

3. In terms of causing an SSW, an O-U process forcing37

the strain component of the background flow is over38

twice as efficient compared to one forcing the rotation 1

component, in the sense that Tλ is smaller in the 2

former case at even at half the forcing amplitude of 3

the latter. 4

4. Numerical simulations show an O-U process, at fixed 5

amplitude ε, is most efficient at causing an SSW when 6

the decorrelation timescale δ ∼ 0.1− 0.2Tp where 7

Tp is the oscillation period. 8

Overall, the results point towards a ‘noise-memory’ 9

paradigm for the winter stratosphere, in which the current 10

state of the stratosphere, represented in the simple model 11

by the Hamiltonian H , depends on the history of the 12

forcing over a significant period. Even in the simple model, 13

the precise dependence on the forcing history is opaque, 14

and in particular it is to be emphasised that large forcing 15

amplitudes are not necessary to bring about an SSW. 16

Attempts to search for the dynamical ‘cause’ of an SSW, 17

for example by analysing Rossby wave activity in the 18

troposphere in the lead-up, may therefore be unproductive. 19

Many previous authors have discussed ‘pre-conditioning’ 20

of the vortex before an SSW. The noise-memory paradigm 21

supports the idea of pre-conditioning, but suggests that what 22

is important is changes to the dynamical state of the vortex 23

(as measured in our model by H), as opposed to its changes 24

in its physical structure. 25

Extrapolating the results of our simple model to 26

the stratospheric vortices, SSW frequency is particularly 27

sensitive to climatic changes which act to reduce the 28

background zonal wind at the vortex edge (i.e. lower Ω, 29

see Fig. 8) as the vortex will be brought closer to nonlinear 30

resonance. Climatic changes that act to increase fluctuations 31

in forcing, e.g. due to more active tropospheric storm 32

tracks, are also particularly effective at increasing SSW 33

frequency (e.g. Fig. 6). A major caveat is that physics 34

missing from the simple model must naturally also be 35

considered. For example there is no representation of the 36

season cycle, radiative damping, or momentum fluxes from 37

gravity waves, for which there is increasing evidence of an 38
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Noise-induced vortex-splitting SSWs 21

important role (e.g. Albers and Birner 2014) in individual1

SSW events. Further modelling studies are required to2

investigate the importance each of these effects, although3

speculatively it seems likely that the various forcings will4

act mainly to determine the (time-dependent) parameter5

regime for the polar vortices, and no doubt to limit the6

time-scale over which the noise-memory persists. To gain a7

more quantitative description it will be also necessary to re-8

introduce vertical structure and more realistic topographic9

forcing into the model. In the Arctic in particular, it is10

unlikely that the simple model offers more than qualitative11

insight, as the changing vertical structure of the Arctic12

vortex, as well as large horizontal migrations of the vortex13

centroid have too strong an influence on the dynamics.14

In the Antarctic, however, there is tentative evidence that15

Kida’s model may have useful predictive power. The16

question of how best to ‘fit’ the parameters of Kida’s model,17

and other models in the model hierarchy of SSWs, to the18

observations will be the subject of future work.19
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A. Derivation of the cycle-averaged equation 1

For simplicity, we present the derivation of the cycle- 2

averaged equation (14) for a slightly simplified example in 3

which the only non-zero component of stochastic forcing 4

(9) is on the rotation variable Ω, i.e. 5

dΩ = εFΩ(Ω)dt+ ε1/2ΣΩ(Ω)dW3. (39)

The results for the more general forcing case (9) follow by 6

exact analogy. 7

The FPE for the system (39) coupled with (10-

11) describes the time-evolution of the probability

density p(λ, h, ω, t) associated with the random variables

{Λ, H,Ω}. Following standard techniques (e.g. §3.4.1 of

Gardiner 2009), the FPE is

pt +
(

(−V (λ, h, ω))1/2p
)

λ
− ε

(

FΩ(ω)
(λ− 1)2

λ
p

)

h

+ ε
(

FΩ(ω)p
)

ω
=
ε

2

(

(

ΣΩ(ω)2p
)

ωω

− 2

(

ΣΩ(ω)2
(λ− 1)2

λ
p

)

ωh

+

(

ΣΩ(ω)2
(λ− 1)4

λ2
p

)

hh

)

,

(40)

where subscripts denote partial derivates. The correct 8

interpretation of the square root in (40) is that the λ- 9

domain for p, λ ∈ [λ−(h, ω), λ+(h, ω)] is in fact doubled, 10

with one part-solution p+ taking the positive branch of 11

the square root and the other p− the negative branch. The 12

two parts of the solution, which are associated with the 13

increasing and decreasing phases of the vortex oscillation 14

respectively, communicate through the probability flux 15

conditions (−V (λ±))
1/2p+(λ±) = (−V (λ±))

1/2p−(λ±) 16

at λ = λ±. 17

The method of multiple-scales can be applied to (40) by 18

seeking a solution based on an ansatz of the form 19

p = p0(λ, h, ω, t, τ) + εp1(λ, h, ω, t, τ) + ... (41)
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where τ = εt is a ‘slow’ time-scale associated with many1

periods of the vortex oscillation. Introduction of the slow2

time-scale requires3

∂

∂t
→

∂

∂t
+ ε

∂

∂τ
. (42)

Inserting the ansatz (41) into (40) gives at leading order4

p0t +
(

(−V (λ, h, ω))1/2p0

)

λ
= 0. (43)

This equation can be solved for p0 by transforming variables5

(λ, t) to characteristic variables (λ̃, η), where6

λ̃ = λ, η = t− T±

k (λ, h, ω), (44)

where T±

k is the multi-valued oscillation time7

T±

k (λ) =

∫

C±

k
(λ)

dq

(−V (q))1/2
, (45)

In this definition the possible integration paths C±

k (λ)8

follow C, starting at λ− and finish at λ, with the positive9

sign corresponding to arriving at λ on the upper branch,10

the negative sign the lower branch, and k ≥ 0 denoting the11

number of completed oscillations. Evidently, because of the12

periodicity of the oscillation, T±

k (λ) = T±

0 (λ) + kTp. The13

fact that the function T±

k is multi-valued means that the two14

branches of the solution of (43) are unfolded by this change15

of variables, and also shows that the resulting solution is Tp-16

periodic in η. The general solution for p0 is then (dropping17

the tilde on λ)18

p0 =
P̃ (η, h, ω, τ)

(−V (λ, h, ω))1/2
, (46)

for an arbitrary function P̃ .19

The next order in the expansion of (40) gives

p1t +
(

(−V (λ, h, ω))1/2p1

)

λ
=

− p0τ +

(

FΩ(ω)
(λ − 1)2

λ
p0

)

h

−
(

FΩ(ω)p0
)

ω

+
1

2

(

(

ΣΩ(ω)2p0
)

ωω
− 2

(

ΣΩ(ω)2
(λ− 1)2

λ
p0

)

ωh

+

(

ΣΩ(ω)2
(λ − 1)4

λ2
p0

)

hh

)

. (47)

To obtain an equation for the long-time evolution of the 1

system it is not necessary to solve for p1. Instead, it is 2

sufficient to apply both a time (t)-average, and cycle integral 3

∮

C · dλ to (47), which remove the terms involving p1. 4

Denoting the time-average of P̃ by 5

P (h, ω, τ) = lim
tm→∞

1

tm

∫ tm

0

P̃ dt =
1

Tp

∫ Tp

0

P̃ (η) dη,

(48)

the averaging results in the following ‘slow-evolution’

equation for P ,

Pτ −
(

FΩ〈GΩ〉P
)

h
+
(

FΩP
)

ω

= 1
2

(

ΣΩ2
P
)

ωω
−
(

ΣΩ2
〈GΩ〉P

)

ωh
+ 1

2

(

ΣΩ2
〈GΩ2

〉P
)

hh
.

(49)

whereGΩ = (λ− 1)2/λ, and 〈·〉 denotes the cycle average. 6

Equation (49) is the FPE of the following coupled

stochastic process in (H,Ω)

dΩ = FΩ(Ω)dτ +ΣΩ(Ω)dB3, (50)

dH = −FΩ(Ω)〈GΩ〉(H,Ω)dτ − ΣΩ(Ω)〈GΩ〉(H,Ω)dB3

+ΣΩ(Ω)〈〈GΩ〉〉(H,Ω)1/2dB. (51)

where B3 and B are independent Wiener processes in the 7

slow time variable τ . Applying the methodology above 8

using the more general forcing (9), leads directly to the 9

cycle-averaged equation (14). 10
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B. Homogenisation applied to O-U forcing in Kida’s1

equations2

In this section the mathematical method for homogenisation3

of O-U processes is presented, following e.g. the treatment4

in Pavliotis and Stuart (2007). Two examples are covered in5

detail.6

B.1. Homogenisation of Kida’s equations7

Consider first Kida’s equations (1) coupled to the O-

U process (16) for Ω. Introducing Ω̄ = (Ω− Ω0)/ε, and

substituting ε2δ = κ gives (taking Φ = 0 without loss of

generality)

dΩ̄ = −δ−1Ω̄dt+ 21/2δ−1/2dW3

dΘ =

(

Ω0 + δ−1/2κ1/2Ω̄ (52)

+
Λ

(Λ + 1)2
−

Λ2 + 1

Λ2 − 1
Γ sin 2Θ

)

dt (53)

dΛ = 2ΛΓ cos 2Θ dt.

The FPE describing the time-evolution of the probability

density p(λ, θ, ω, t) of the random variables {Λ,Θ, Ω̄} is

therefore

pt − δ−1 (ωp)ω + δ−1/2κ
1/2
3 (ωp)θ + (f(λ, θ)p)θ

+ (g(λ, θ)p)λ = δ−1pω ω, (54)

where

f(λ, θ) = Ω0 +
λ

(λ+ 1)2
−
λ2 + 1

λ2 − 1
Γ sin 2θ, (55)

g(λ, θ) = 2λΓ cos 2θ. (56)

Homogenisation theory describes the asymptotic

behaviour of (54) when δ → 0. To proceed, a solution of

(54) is sought as a power series in δ1/2,

p = p0(λ, θ, ω, t) + δ1/2p1(λ, θ, ω, t)

+ δp2(λ, θ, ω, t) + ..., (57)

At leading order Lp0 = 0, where the linear operator L acts 1

on functions h(ω) according to Lh = hω ω + (ωh)ω. The 2

general solution, using the condition that p is integrable in 3

ω, is 4

p0 = P (λ, θ, t)e−ω2/2. (58)

At the next order, the equation is 5

Lp1 = κ1/2 (ωp0)θ , (59)

which has solution 6

p1 = −κ1/2Pθ(λ, θ, t)ωe
−ω2/2. (60)

To complete the theory, the next order equation must also

be considered,

Lp2 = p0t − (ωp0)ω

+ κ1/2 (ωp1)θ + (f(λ, θ)p0)θ + (g(λ, θ)p0)λ . (61)

It is not necessary to solve explicitly for p2. Instead, the 7

solvability condition of (61) can be used to obtain an 8

equation for P . The solvability condition is applied by 9

substituting for p0 and p1 and integrating (61) in ω. The 10

result is 11

Pt + (f(λ, θ)P )θ + (g(λ, θ)P )λ = κPθ θ. (62)

Equation (62) is the FPE of the homogenised system (18). 12

B.2. Homogenisation of the cycle-averaged equations 13

Next, homogenisation is used to obtain the long-time

behaviour of the cycle-averaged equation (21). To proceed

we need to exploit the fact that ε≪ 1 and define Ω̄ =

(Ω− Ω0)/ε. The FPE for the pdf p(ω, h, τ) of {Ω̄, H} is,
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to O(ε2) in accuracy

pτ − (ωp)ω + ε
(

ω〈GΩ〉0p
)

h
+ ε2

(

ω2∂ω〈G
Ω〉|0p

)

h

= pωω − 2ε
(

〈GΩ〉0p
)

ωh
+ ε2

(

〈GΩ2
〉0p
)

hh
(63)

Seeking a solution1

p = p0(ω, h, τ̄) + ε̄p1(ω, h, τ̄) + ... (64)

where τ̄ = ε̄2τ is a long time-scale, gives Lp0 = 0 at2

leading order and p0 = P (h, τ̄ )e−ω2/2. At first order3

Lp1 = 2
(

GΩ
0 (h)p0

)

ωh
+
(

ωGΩ
0 (h)p0

)

h
, (65)

which has solution4

p1 =
(

GΩ
0 (h)P

)

h
ωe−ω2/2. (66)

At second order,

Lp2 = 2
(

〈GΩ〉0p1
)

ωh
+
(

ω〈GΩ〉0p1
)

h

+ p0τ̄ +
(

ω2∂ω〈G
Ω〉|0p0

)

h
−
(

〈GΩ2
〉0p0

)

hh
. (67)

Inserting for p0 and p1, and applying the solvability

condition by integrating in ω, gives

Pτ̄ +
(

〈GΩ〉0∂h
(

〈GΩ〉0P
)

h

)

h

+
(

∂ω〈G
Ω〉|0P

)

h
−
(

〈GΩ2
〉0P

)

hh
= 0, (68)

which can be seen, after substituting for τ̄ and some5

rearrangement, to be the FPE of (22).6

C. Details of the first passage time problem7

Here the details of the first passage time problem for8

equation (30) are presented (following e.g. section 5.2.7 of9

Gardiner 2009). First, it is useful to define p(h, t, h′, t′) to10

be the probability density of H(t) ∈ (hc, hm), given the11

deterministic initial condition H(t′) = h′. An ‘absorbing’12

boundary for (30) is applied at H = hc, and a reflecting 1

boundary at H = hm, because we are interested in finding 2

the expected time at which H is absorbed at the boundary 3

H = hc. 4

In addition to the ‘forwards’ FPE, p satisfies the 5

backwards Kolmogorov equation (BKE) 6

pt′ = −a(h′)ph′ − 1
2 b(h

′)ph′h′ . (69)

To determine the first passage time, it is helpful to consider 7

G(h′, t′) = p(hc, t
′, h′, 0) = p(hc, 0, h

′,−t′), which is the 8

probability density of first reaching hc at time t′, starting 9

at H(0) = h′. The second expression for G(h′, t′) follows 10

from the fact that the process (30) is stationary, and that 11

consequently p can only depend on its time arguments in 12

the combination t− t′. The expression forG can be inserted 13

into the BKE to give 14

Gt′ = a(h′)Gh′ + 1
2b(h

′)Gh′h′ , (70)

with the associated boundary conditions 15

G(hc, t
′) = 0, Gh′(hm, t

′) = 0. (71)

The boundary conditions correspond to absorption at h′ = 16

hc and reflection at h′ = hm, since H is confined to the 17

domain hc < H < hm, but can only ‘escape’ at hc. 18

The first passage time of interest can now be defined as 19

the expectation 20

T (h′) =

∫ ∞

0

t′G(h′, t′) dt′. (72)

Multiplying (70) by t′, integrating, and using the fact that 21

∫ ∞

0

G(h′, t′) dt′ = 1, (73)

leads directly to equation (31) (in which primes have been 22

dropped). 23
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