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Abstract

Focused interaction occurs when co-present individuals,
having mutual focus of attention, interact by establishing
face-to-face engagement and direct conversation. Face-to-
face engagement is often not maintained throughout the en-
tirety of a focused interaction. In this paper, we present an
online method for automatic classification of unconstrained
egocentric (first-person perspective) videos into segments
having no focused interaction, focused interaction when the
camera wearer is stationary and focused interaction when
the camera wearer is moving. We extract features from both
audio and video data streams and perform temporal seg-
mentation by using support vector machines with linear and
non-linear kernels. We provide empirical evidence that fu-
sion of visual face track scores, camera motion profile and
audio voice activity scores is an effective combination for
focused interaction classification.

1. Introduction

Recording of daily life experiences from a first-person
perspective has become more prevalent with the increas-
ing availability of wearable cameras used in applications
such as life-logging, security, sports, ambient assisted liv-
ing and driving assistance. In recent years, analysis of ego-
centric video has therefore gained the attention of the com-
puter vision community. Whereas social interaction de-
tection from a third-person perspective has been a well-
researched area for some time [4, 10, 25], ego-centric
vision-based methods are increasingly addressing the de-
tection and analysis of social interaction from a first-person
perspective; methods have been proposed to detect groups
of individuals interacting with each other or with the camera
wearer [2, 5, 13]. These methods perform off-line process-
ing of short video clips or photo streams mostly captured
from constrained perspectives and always containing inter-
acting or non-interacting individuals. However, in reality

egocentric videos are unconstrained when used for captur-
ing daily living in long, continuous sequences.

Audio-visual feature fusion has been used for applica-
tions such as speaker localisation and event detection in so-
cial gatherings using videos captured in highly controlled
indoor settings [3, 14], social interaction detection in nurs-
ing homes using surveillance-type camera videos [9], and
scene change detection in life-logging videos [23]. Al-
though audio signals provide information about social inter-
actions, the fusion of visual and audio cues for detection of
social interactions in egocentric video was rarely explored.
Furthermore, the effect of integrating global camera motion
analysis methods, nowadays used for human activity recog-
nition in egocentric videos [30], with other visual and audio
features for social interaction analysis still needs to be re-
searched.

Social interaction occurs when two or more individu-
als, having mutual focus of attention but not necessarily
physically co-present, communicate and interact with one
another [27]. Examples include face-to-face verbal con-
versations, email conversations, and non-verbal (sign lan-
guage) conversations. Goffman [15] distinguishes between
focused and unfocused interactions. Focused interaction
occurs when two or more co-present individuals, having
mutual focus of attention, interact by establishing face-to-
face engagement and direct conversation. Note that face-
to-face engagement is often not maintained throughout the
entirety of a focused interaction. Unfocused interaction, on
the other hand, occurs when individuals, though co-present,
do not establish a direct engagement and conversation [15].
We use the term conversational partner for a person who is
involved in a focused interaction with the camera wearer. In
light of Goffman’s theory [15], it is important to highlight
that papers describing current egocentric video-based meth-
ods [2, 5, 13] that use the term social interaction are actually
addressing focused interaction; social interaction is a much
broader term.

Figure 1 shows sample frames from three videos in our
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(a)

(b)

(c)

Figure 1: Examples of focused interactions from our Fo-
cused Interaction Dataset. The frames displayed were sam-
pled at 1 fps from the videos. (a) An interaction in which
conversational partners are in the field of view of the cam-
era. (b), (c) Interactions in which the conversational partner
is not in the field of view as the interactions occurred while
walking. (c) An outdoor night-time scenario where the vi-
sual cues are weak due to low illumination.

Focused Interaction Dataset1. These examples highlight
both the variability in egocentric video data in terms of
viewpoint, location, and illumination, and the fact that con-
versational partners are not always in the field of view (e.g.,
focused interaction while walking). Voice activity and cam-
era motion cues will be especially important in such cases.
Voice Activity Detection (VAD) is widely researched in
audio signal processing and used for audio conferencing,
speech encoding, speech recognition, and speaker recog-
nition [17, 26]. VAD methods detect voice activity (pri-
marily speech) from a noisy audio signal [16, 24, 29].
Video content-based camera motion analysis methods make
use of template matching [1] and optical flow [6]. Meth-
ods derived from optical flow are widely used nowadays
for human activity and action recognition from third per-
son perspective [8, 20] (where a fixed and static camera
captures third person activities such that the optical flow
is strongly associated with their activity) and first person
perspective [30] (where camera wearer activities affect the
global camera motion).

Existing methods for social interaction detection in ego-
centric videos typically assume that people are already
present in the field-of-view of the camera and focus on
detecting sub-categories of social interaction [13], social
groups [5], and presence or absence of social interaction [2]
by utilizing visual data only. Fathi et al. [13] proposed one
of the first methods for detecting different types of social in-
teraction in egocentric video and evaluated it on clips from
videos captured at a theme park. They used a multi-label

1We plan to release the focused interaction dataset after publication

hidden conditional random field model to detect discussion,
monologue and dialogue based on estimates of faces’ lo-
cations and orientations. Alleto et al. [5] applied the con-
cept of F-formation [10] for detecting social groups in ego-
centric video. They designed a pairwise feature vector that
describes spatial relationships between two people present
based on distances and orientations. A correlation cluster-
ing algorithm was applied to merge people into socially re-
lated groups. A structural SVM-based method was then
used to learn the weight of each component of the corre-
lation clustering vector depending on the social situation.
More closely related to our work, Aghaei et al. [2] proposed
a method for detecting social interaction in low frame rate
photo streams. They trained an LSTM-RNN classifier to
detect social interaction based on estimates of the distance
of an individual from the camera wearer as well as their rel-
ative orientation. These social interaction detection meth-
ods [2, 5, 13] processed data offline and considered clips of
photo streams that always contained people. However, peo-
ple interacting with the camera wearer may not always be
in the field-of-view (e.g. when walking while having a con-
versation). Moreover, it should be noted that the existing fo-
cused interaction methods only consider constrained video
segments (clips), where each clip belongs to one specific
class, in which the camera wearer is stationary, hence video
cues such as face tracking and orientation alone are suffi-
cient [2]. However, a continuously recorded life-logging
video has multiple transitions from one class to another.

In this paper, we address the task of identifying tempo-
ral segments in continuous egocentric video that correspond
to periods of no-focused interaction (no-FI), focused inter-
action while the camera wearer is stationary (FI-NW) and
focused interaction while the camera wearer is walking (FI-
W). All such instances of focused interaction should be au-
tomatically detected. Often, FI-W is enclosed within FI-
NW (e.g., the camera wearer meets a conversational part-
ner, they go for a walk together, and conclude their interac-
tion with a farewell while facing each other). We propose
and evaluate a method based on audio and video features to
perform the tasks of detection and classification of focused
interaction. The main contributions of this paper are as fol-
lows.

• We formulate the task of automatic, online classifica-
tion of focused interactions in continuous, egocentric
audio-video data.

• We use spatio-temporal local and global video features
and voice-based audio features for classifying focused
interaction.

• We propose a temporal segmentation approach based
on frame classification and present several variants of
it that use Support Vector Machines (SVM) with either



linear or non-linear kernels for classification using var-
ious audio-visual feature sets.

• We evaluate the proposed methods on our Focused In-
teraction dataset, providing empirical evidence that fu-
sion of visual face track scores, camera motion features
and voice activity detector scores, and learning using
SVMs with non-linear kernels, provides an effective
means for classifying focused interactions.

Note that existing face detection and tracking, voice activity
detection and global camera motion analysis techniques are
adopted in our proposed method as the aim of this work is
not to improve these individual techniques but to look into
the effect of integrating these techniques to form a robust
and online focused interaction system for unconstrained,
life-logging, egocentric videos.

The remainder of the paper is organised as follows. The
proposed method for focused interaction classification is
detailed in Section 2. Section 3 describes our focused in-
teraction dataset and the evaluation protocol. Results of ex-
periments comparing variants of the methods are presented
and analysed in Section 4. Finally, Section 5 draws some
conclusions.

2. The proposed method
We process audio and video streams independently to ex-

tract three distinct features, namely, face track score, cam-
era motion feature vector and voice activity detection score.
From the video stream, the face track score is obtained by
detecting and tracking faces, and the camera motion feature
vector is obtained by computing the histogram of oriented
optical flow. From the audio stream, the voice activity de-
tection score is computed by analysing discriminative au-
dio features. These features are fused to form the feature
set and SVMs are then trained for the online classification
of continuous data streams that contain instances of No-FI,
FI-NW and FI-W.

2.1. Face track score

A Histogram of Oriented Gradient (HOG)-based face de-
tector [11, 19] is applied to detect faces in each video frame.
Some false and missed face detections are inevitable due
to the relatively unconstrained nature of egocentric video.
Therefore, we apply a Kanade-Lucas-Tomasi (KLT) point
tracker [22, 28] to refine face detection results. Tracking is
initialized as soon as a face is detected and continues track-
ing points of the face in subsequent frames. Track points are
updated by taking input from the face detector every tenth
frame. The face track is terminated if no face is detected at
the same position as that of the tracker or if all points that
were tracked are eventually lost.

The KLT tracker returns confidence scores for the point
tracks. The neighborhood of the lth point at frame t consists

of those pixels in an image patch I lt centred on that point.
We compute a face tracker score st by summing scores of
all points tracked on a face, i.e.,

st =

L∑
l=1

(1− 1

W
||I lt − I l(t−1)||

2) (1)

where W is the number of pixels in a neighbourhood patch.
The lower bound for st is zero when no faces are tracked
while the upper bound depends on the number of points
tracked per face (and is certainly no larger than the num-
ber of pixels in the face detection box). The track score is
high if lots of face points are tracked with confidence. We
compute the duration (life) of each track and, in frames in
which multiple faces are tracked, we select the one with the
longest duration for inclusion in the current feature set. The
rationale for this is that short duration tracks often corre-
spond to false detections or to short unfocused interactions
(e.g., walking past another person). Moreover, selecting the
track with longest duration allows online pruning of track-
lets generated through false face detection as these tracklets
have comparatively shorter life. Figure 2(a) shows tracker
scores obtained from an example video. Representative
frames from that video are shown and labelled (i) - (viii).
Correct face tracks occur at (ii) and (viii) whereas false face
tracks occur at (v) and (vi). As tends to be the case more
generally, the true face tracks have greater duration than the
false ones.

2.2. Camera motion feature extraction

In the case of first person perspective, the distribu-
tion of optical flow produces distinct profiles when the
camera is static (e.g., camera wearer standing/sitting) and
moving (e.g., camera wearer walking, turning around, go-
ing up/downstairs). Histogram of Oriented Optical Flow
(HOOF) [8] gives a representation of camera motion at each
frame.

Given an input video, we compute dense optical flow us-
ing Farneback’s method [12]. This results in the flow vec-
tors v = [x, y]T and their orientations θ = arctan

(
y
x

)
.

HOOF features [8] are computed by binning each flow vec-
tor based on its angle with the horizontal axis and weighting
it based on its magnitude. The range for the bth bin is de-
fined as

2π
b− 1

B
≤ θ < 2π

b

B
, (2)

where 1 ≤ b < B and B is the total number of
bins. As a result, we get the normalised histogram
ht = [ht,1, ht,,2, ..., ht,B ]

T of HOOF features at each time
instant t. ht is then fused with other features in order to
form the feature set.

Figure 2(b) shows HOOF features for a sample video
along with the activity description. A focused interaction
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Figure 2: Visualisation of (a) tracker score, (b) Histogram of Oriented Flow (HOOF) features along with activity description,
and (c) Voice Activity Detection (VAD) score. Frames (i) to (viii) correspond to the red dashed lines. A focused interaction
starts and ends at (i) and (iii), respectively. Another focused interaction starts at (vii). Best viewed in colour.

occurred between (i) and (iii), and another started at (vii).
These are both examples of interactions in the FI-NW
class. Note that although FI-NW occurs when the cam-
era wearer is stationary, in an active conversation body mo-
tion is present; hence variability in HOOF can be observed.
Before (i), the camera wearer was engaged in checking
emails on a computer; hence the pattern of HOOF features
remained consistent. Between (iii) and (vii), the camera
wearer searched for some documents and started walking.

2.3. Audio-based feature extraction

We utilize the method and implementation of Seg-
broeck et al. [29] for voice activity detection (VAD). This
method combines four types of discriminative audio fea-
tures in order to detect voice activity in noisy real-world
environments, specifically, spectral shape, spectro-temporal
modulations, harmonicity (presence of pitch harmonics)
and long-term spectral variability. The resulting VAD



scores range from 0 to 1; a score close to 0 indicates no
voice activity while a score close to 1 indicates with high
confidence the occurrence of voice activity.

Figure 2(c) shows the estimated VAD scores for a sam-
ple video. At (i) a focused interaction begins; although there
is no face present in the field-of-view of the camera at this
point, voice activity is detected as can be observed in (c).
Another focused interaction begins at (vii) but due to mo-
tion blur and distance of the participant from the camera,
no face is detected until (viii). However, voice activity is
detected from the start of this focused interaction. At other
times ((iv), (v), (vi)), voice activity is falsely detected albeit
with relatively low scores.

2.4. Audio-visual feature fusion

Video and audio features are obtained at different sam-
pling rates; visual features are updated once every video
frame, i.e. at 25Hz, whereas VAD scores are computed
every 10 ms, i.e. at 100Hz, given an input audio stream
with sampling rate of 8000Hz (the default setting proposed
by [29]). In order to fuse these features we resample the au-
dio features, specifically we average four consecutive VAD
scores, with a step size of four, to get the score at the same
rate as that of the video features.

The tracker score st, HOOF ht and VAD score vt are
normalised to have zero-mean and unit variance based on
estimates of their mean and variance obtained from training
data, resulting in ŝt, ĥt and v̂t. In each frame, the three ex-
tracted features are concatenated to form the feature vector
ft = [ŝt, ĥt, v̂t]

T .

2.5. Focused interaction classification

The task to be performed is to sequentially process the
input audio-visual data stream in order to identify temporal
segments corresponding to periods of No-FI, FI-NW and
FI-W. One way to formulate a solution is to classify each
frame as belonging to one of the three classes. We train
Support Vector Machines (SVM) for classification by using
the features extracted from a fixed-length temporal window
and the ground-truth label for each window.

We trained SVMs on feature vectors which were the con-
catenation of the audio and video features extracted from
each of M consecutive frames. The goal was to assign to
each temporal window of M frames, the classification label
for the frame at the middle of the window. Windows were
extracted with a shift of H frames so that a classification
was obtained every Hth frame. LIBSVM [7] was used for
training the SVM using either linear or RBF kernel.

3. Experimental Setup

3.1. Dataset

The number of annotated datasets publicly available for
research that capture social interactions using ego-centric
cameras is limited, in part due to privacy concerns. Some
datasets [21] are only partially available, without audio and
with anonymized (blurred) faces of people in the field-
of-view of the camera. Others captured photostreams at
2 frames per minute of social interaction (without audio) [2]
(not yet publicly available) or of multiple people interact-
ing as social groups at 4 different locations [5]. Another
dataset captured in a theme park is labelled for three dif-
ferent types of social interaction (dialogue, discussion and
monologue) as well as for activities (e.g., walking, waiting,
gathering, sitting). However, our everyday scenarios are
significantly different from activities performed in a theme
park. Therefore, we recorded a Focused Interaction dataset
that captured various focused and unfocused interactions in-
terspersed naturally with periods of no interaction, in real-
world unconstrained scenarios and in varying environmen-
tal conditions (e.g. indoor/outdoor, daylight/night).

Our Focused Interaction Dataset contains 19 egocentric
continuous videos captured, at high resolution (1080p) and
at a frame rate of 25fps, using a shoulder-mounted GoPro
Hero4 camera and a smartphone (for inertial and GPS data),
at 18 different locations and with 16 different conversational
partners. This makes our dataset useful for other egocentric
applications such as scene categorization and person associ-
ation. A shoulder-mounted camera is preferred over a head-
mounted one as it is less obstructive and provides relatively
stable video because the camera does not move with the
user’s head. Our dataset contains 378 minutes of recordings
(approximately 560k video frames) annotated into periods
of No-FI, FI-NW and FI-W. The dataset is unconstrained
in nature as neither the camera wearer nor the conversa-
tional partners were given any specific instructions that may
restrict their movement and it was captured at several in-
door and outdoor locations at different times of the day and
night, and in different environmental conditions (e.g. sunny
or cloudy, with background noise from nearby people and
cars). In total, 240 mins (64%) of data contain focused in-
teraction in which conversational partners are in the field-
of-view of the camera most of the time and are not walk-
ing; their positions and face orientations vary significantly.
50 mins (13%) of data contain focused interactions in which
the conversational partners are not in the field-of-view of
the camera and 88 mins (23%) of data do not contain any
focused interaction.

3.2. Evaluation protocol

We used seven different feature sets for evaluation,
namely, TVM, TV, TM, VM, T, V and M, where T de-



Table 1: Evaluation of various feature sets and SVM kernels when using one-versus-all SVM classification. Values given are
pooled over the 6 validation folds. Key: P - precision;R - recall; F - F1-score; AUC - area under curve; T - track score; V:
VAD score; M - motion vector; FI - focused interaction; NW - non-walk; W - walk.

Linear kernel Non-linear (RBF) kernel
Feature set Class C P R F AUC C γ P R F AUC

No-FI 93.54 93.84 93.69 92.99 94.05 94.89 94.46 94.65
TVM FI-NW 2−9 85.16 91.59 88.25 94.31 22 2−9 90.20 87.86 89.01 96.46

FI-W 91.30 97.04 94.08 89.78 93.70 97.62 95.62 94.53
No-FI 93.65 93.62 93.63 93.46 93.33 95.06 94.19 92.19

TV FI-NW 2−6 83.79 93.39 88.33 95.00 22 2−7 87.61 92.20 89.85 94.63
FI-W 89.59 98.02 93.62 87.42 92.76 96.17 94.44 88.63
No-FI 83.23 88.47 85.77 82.65 90.23 89.74 89.98 90.32

TM FI-NW 2−9 83.28 92.90 87.82 93.10 22 2−9 86.96 89.06 87.99 95.58
FI-W 86.94 98.30 92.28 79.31 91.81 97.20 94.43 91.08
No-FI 90.82 92.00 91.41 88.17 91.96 94.38 93.16 91.75

VM FI-NW 2−9 69.79 59.51 64.24 77.96 22 2−9 86.39 76.742 81.28 91.96
FI-W 86.81 99.99 92.93 47.56 92.29 97.81 94.97 90.22
No-FI 79.19 81.93 80.54 78.05 87.53 80.27 83.74 81.02

T FI-NW 20 82.33 93.11 87.39 93.68 21 2−9 87.97 90.35 89.15 92.28
FI-W 86.81 99.90 92.90 35.27 86.81 99.36 92.66 55.43
No-FI 91.08 91.31 91.19 89.22 89.07 94.36 91.64 83.19

V FI-NW 2−10 67.53 59.65 63.35 76.37 2−6 2−5 76.96 50.99 61.34 71.82
FI-W 86.81 100.0 92.94 26.48 86.81 100.0 92.94 28.25
No-FI 76.82 99.98 86.88 48.69 84.58 91.96 88.12 80.46

M FI-NW 2−9 62.20 28.99 39.54 65.58 22 2−9 82.49 66.86 73.86 86.64
FI-W 86.81 100.0 92.94 44.98 90.93 97.43 94.07 86.55

notes the face track score, V denotes the VAD score and
M denotes the camera motion feature vector. SVM with ei-
ther linear or RBF kernel in one-versus-all setting was used
for the classification using different feature sets. For each
feature set, the best performing SVM parameters, C and
γ, for linear and RBF kernels were computed using grid
search [18] (reported in Table 1) and were then used for the
validation. A temporal window size of 50 frames (selected
empirically) with a shift of 25 frames was used for obtain-
ing the training samples, while testing was performed with
a shift of 1 frame.

Evaluation was performed using six-fold division of our
focused interaction dataset. Since the duration of each
recording varied, it was not possible to have exactly equal
numbers of frames in each fold without arbitrarily breaking
videos into smaller parts. Instead the folds were generated
to roughly contain 60 mins of data.

We use framewise evaluation measures to assess the per-
formance by comparing the predicted labels against the
ground-truth labels. For each class, we plot the Receiver
Operating Characteristic (ROC) curve using the one-versus-
all strategy and compute the Area Under the Curve (AUC).
The Precision, P , Recall, R, and F1-score, F , are then re-

ported. For the three-class confusion matrix, the predicted
class labels are obtained by assigning a positive label to the
class with maximum score among the three classes.

4. Results and Discussion

Table 1 summarises the one-versus-all evaluation results
for the different feature sets using either linear or RBF ker-
nel for SVM. The corresponding ROC curves are shown in
Fig. 3.

TVM-RBF outperformed other feature sets and linear
kernel giving an AUC of 94.65% for No-FI, 96.46% for FI-
NW and 94.53% for FI-W, respectively. TVM-RBF gave
F1-score of 94.46% for No-FI, 89.01% (slightly lower than
F1-score for TV-RBF) for FI-NW and 95.62% for FI-W,
respectively. In the case of No-FI, voice activity and face
tracks are not present most of the time but different types of
camera motion occur, e.g., camera wearer walking, sitting
or standing alone. Hence motion feature (M) alone cannot
reliably identify this class. Observe the low performance
of M in Fig. 3(a), (d). From these figures and Table 1, it
can be observed that the performance is comparable when
using TVM-Linear and TV-Linear for No-FI, while the use



Figure 3: ROC for the various feature sets and SVM with linear (1st row) and RBF (2nd row) kernels. (a) and (d) report the
performance of No-FI, (b) and (e) show the results for FW-NW, and (c) and (f) show the results for FI-W, when using linear
and RBF kernels. Best viewed in colour.

of RBF kernel helped to improve the performance (AUC
increased by 2% for TVM). The instances of FI-NW con-
tain face-to-face interaction, where face tracks are present
most of the time. Hence TVM, TV and T with both linear
and RBF kernels performed equally well (Fig. 3(b), (e)).
M provides a strong cue for discriminating between FI-NW
and FI-W. Face tracks are not present in FI-W as the con-
versational partner is not in the field-of-view of the cam-
era. Moreover, FI-W occurred mostly in outdoor scenarios
where the audio signal might get corrupted by background
noise (from roadside and passing-by people). Hence, the
performance of FI-W is extremely low when using T or V
alone. It can be observed from Fig. 3 (comparing the 1st row
with the 2nd row) that M has a non-linear relation with the
focused interaction classes. This is evident from lower per-
formance of M when using a linear kernel but significantly
improved performance when using a non-linear kernel.

The confusion matrices for top performing feature sets
are shown in Fig. 4. A confusion matrix is computed by
selecting the class with maximum score at each frame in
the one-versus-all strategy. TVM-Linear gave accuracy of

62.3% for No-FI, 95.1% for FI-NW and 70.6% for FI-W
(Fig, 4(a)). TVM-RBF outperformed by giving accuracy of
73.3% for No-FI, 93.3% for FI-NW and 80.7% for FI-W
(Fig, 4(f)). RBF kernel with M, in particular, is useful for
classifying FI-W as this interaction occurred while walk-
ing. As observed from the ROC curves (Fig. 3), TVM and
TV gave comparable results for FI-NW as motion features
do not contribute much. It can be observed from the con-
fusion matrices that the overall accuracy when using TV
as feature set with linear kernel was 80.9% (Fig. 4(b)) and
with RBF kernel was 85.5% (Fig. 4(g)). Similar trend is
observed when using TVM as feature set giving an overall
accuracy of 82.6% (Fig. 4(a)) with linear kernel and 86.8%
(Fig. 4(f)) with RBF kernel, suggesting that the use of non-
linear SVM kernel helped in improving the performance.

5. Conclusion

We have presented a method for the automatic online
classification of focused interaction in continuous, egocen-
tric videos captured in unconstrained everyday scenarios.



Figure 4: Confusion matrices obtained using different feature sets and SVMs with linear (upper row) and non-linear (lower
row) kernels.

We processed both audio and video data streams to obtain
audio-visual feature sets. In particular, fusion of face track
scores and camera motion profile extracted from visual data
with voice activity detection scores from audio data proved
to be effective. We performed temporal segmentation of
focused interactions via classification using SVMs with dif-
ferent kernels. We evaluated variants of the methods, in-
cluding single and multimodal feature sets. The use of cam-
era motion profile along with face track and voice activity
detection scores and SVM with non-linear kernel were in
particular useful for discriminating no focused interaction
and focused interaction while walking. Face track and voice
activity detection scores were significant for discriminating
face-to-face focused interaction for which SVM with non-
linear kernel and camera motion profile did not give any
further improvement.

In future, we plan to extend this work to identify conver-
sational partners even when they are not in the field-of-view
of the camera (e.g., focused interaction while walking) to
enhance assistive technology for non-speaking people wear-
ing an egocentric camera.
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