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Highlights
The surge of high-throughput technol-
ogies over the last decade has pro-
moted the use of computational
biology as a method to integrate and
interpret the multi-omics information of
ageing, diseases, and drugs.

Ageing-related pathways in animal
models are also involved in human dis-
eases. Thus, drugs employed to treat
human diseases potentially could be
repurposed to ameliorate aspects of
the ageing process and hence prevent
more than one age-related condition in
humans.

Recently, several approaches using
different data sources have been
developed to prioritise prolongevity
compounds for humans and for testing
in animal models.

The development of biorepositories,
longitudinal cohort studies, and elec-
tronic health records is strengthening
the bridge between the clinical and
molecular data, thus enabling future
research on human ageing.
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Increasing human life expectancy has posed increasing challenges for health-
care systems. As people age, they become more susceptible to chronic dis-
eases, with an increasing burden of multimorbidity, and the associated
polypharmacy. Accumulating evidence from work with laboratory animals
has shown that ageing is a malleable process that can be ameliorated by
genetic and environmental interventions. Drugs that modulate the ageing pro-
cessmay delay or even prevent the incidence ofmultiple diseases of ageing. To
identify novel, anti-ageing drugs, several studies have developed computa-
tional drug-repurposing strategies. We review published studies showing the
potential of current drugs to modulate ageing. Future studies should integrate
current knowledge with multi-omics, health records, and drug safety data to
predict drugs that can improve health in late life.

Ageing, Diseases, and Healthspan
Human life expectancy (see Glossary) has steadily increased since the middle of the 19th
century in many parts of the world [1] and is projected to continue to do so [2]. Longer lives are a
result of improved living conditions and medical care, which have made people healthier at
most ages [3,4]. However, the years of healthy life (healthspan) have not kept up with the overall
increase in life expectancy, and there is a large and growing period of poor function and ill health
at the end of life [5]. Ageing is the major risk factor for illness, including the major chronic and
killer diseases: cancer, metabolic and cardiovascular disease, and dementia [6,7]. The increas-
ing proportion of unhealthy old people, often with two or more diseases (multimorbidity) [8–10],
and associated problems from the use of multiple drugs for their treatment (polypharmacy)
[11–14], is posing an increasing burden on elderly people, their carers and social networks, and
healthcare systems. Reducing the impact of ill health at the end of life is, therefore, a high priority
for national governments and international health organisations [15].

The Malleability of Ageing
Since ageing is the major risk factor for poor functioning and disease, intervening to ameliorate
its effects could also prevent multiple age-related conditions simultaneously. There is growing
evidence for the feasibility of this approach. People who die when they are very old (100, 105,
110) show progressively less multimorbidity at the end of their lives [16,17]. Thus, a healthy
ageing phenotype in humans can be achieved, and if we could understand the mechanisms
leading to it, we might be able to extend it to the general population. Additionally, work over the
past �20 years has shown that environmental, genetic, and pharmacological interventions in
animals can extend both their lifespan and their healthspan [18,19]. Dietary restriction (DR), a
reduction in food intake that avoids malnutrition, can extend lifespan and induce a marked
improvement in health during ageing in diverse organisms [20,21] including rodents. Two
studies of rhesus monkeys subjected to DR found that the animals had lowered plasma
triglycerides, diabetes, cardiovascular disease, sarcopenia, incidence of neoplasms, and brain
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Glossary
Age-related diseases: conditions
and illnesses that have an increased
incidence with age.
Antilongevity gene: genes whose
overexpression reduces lifespan; or
their reduced expression due to
knockout, mutation, or RNA
interference, increases lifespan.
Bioavailability: the proportion of the
intact drug that enters the systemic
circulation in the body.
Biomarker of ageing: molecular or
phenotypic measures that can
reliably predict biological age, which
might be different from chronological
age.
Drug repurposing: the use of drugs
or compounds that are already in
use or known to target other
conditions.
Epigenetic ageing clock: one of
the molecular biomarkers of ageing,
which predicts biological age based
on DNA methylation levels of a
selected CpG site.
Gene expression profile: a
measure of the RNA products of
multiple genes simultaneously.
Gene expression signature: robust
gene expression patterns that define
a condition.
Geroprotective drug: (anti-ageing
drug) a drug ameliorating the effects
of ageing.
Genome-wide association
studies: a method to associate
genome-wide genetic variations with
trait-of-interest, through comparison
of different individuals.
Hallmarks of ageing: the nine
characteristics of ageing, suggested
by López-Otín et al. [29], namely
genomic instability, telomere attrition,
epigenetic alterations, loss of
proteostasis, deregulated nutrient
sensing, mitochondrial dysfunction,
cellular senescence, stem cell
exhaustion, and altered intercellular
communication.
Life expectancy: the average age
an organism is expected to live,
based on birth year, age, and other
demographics such as country and
gender.
Lifespan: the length of life of an
organism.
Longitudinal cohort study: studies
where the same type of data is
collected for the same subjects over
a period of time.
atrophy, all features of ageing in humans [22–24]. However, compliance with DR regimes in
humans is low, and for this reason, it is not a practical public health intervention.

Changes in diet are monitored by many nutrient-sensing systems, including the insulin/insulin-
like growth factor and target of rapamycin (mTOR) signalling network. This highly conserved
network senses nutrients, growth factors, and stress status, andmodulates the costly activities
of the organism, such as metabolism, growth, and reproduction, accordingly. Genetic inter-
ventions that reduce the activity of the network have proved to extend lifespan in nematode
worms, fruit flies, and mice [18,19,25]. These long-lived mutants are protected against many
natural pathologies of old age and also those associated with genetic models of age-related
diseases. Genetic variants in orthologous genes in humans are associated with survival to
advanced ages [26–28]. Mechanisms of ageing are highly conserved during evolution, and the
process shows a set of characteristic hallmarks of ageing [29], which are also present in the
aetiology of age-related diseases [7,29]. Interventions that improve health during ageing and
increase lifespan in laboratory animals do so by reducing the impact of one or more of these
hallmarks.

Increasingly, attention is turning to the possibility of pharmacological intervention into the
ageing process, with a view to preventing age-related diseases. Although, ageing is becoming
popular amongst the conditions under study in clinical trials, which aim, for example, to find
drugs that restore gene expression levels to that of young healthy subjects (ClinicalTrials.gov
identifier: NCT02432287) or reduce ageing-related biochemical parameters (NCT03451006),
de novo drug development for ageing poses major challenges. We lack good biomarkers of
ageing that could give a rapid prediction of the outcome of drug treatment, and a clinical trial
with a potentially long-term treatment of an initially healthy population would be both prohibi-
tively costly and would require drugs that are almost completely safe and free of side-effects.
However, unsurprisingly, many of the gene products identified as potential targets to reduce the
impact of ageing are already the targets of drugs licensed to treat specific age-related
conditions. For instance, the licensed drug sirolimus (rapamycin), an inhibitor of the mTOR
Complex 1 (TORC1), is used to prevent rejection of tissues after transplant, restenosis after
cardiac surgery, and to treat cancer. This drug also extends lifespan in yeast, nematodeworms,
flies, and mice, and prevents many age-related conditions in ageing mice [30–32]. Inhibitors of
mTOR can also potentiate the weak response to immunisation against influenza in ageing mice
and humans [33,34]. Metformin, a drug used to treat type 2 diabetes, also targets the nutrient-
sensing network. This drug has been shown to reduce all-cause mortality in diabetic patients
when compared with those receiving nonmetformin therapies, and even non-diabetics in
multiple studies [35], and is under trial for protection against the effects of ageing [36,37].

Repurposing of drugs, to protect against the effects of ageing and hence delay or prevent age-
related diseases, is thus an increasingly realistic prospect. Indeed, some existing drugs could
already be viewed as being used in this way. Both statins and drugs that lower blood pressure
are widely used to prevent cardiovascular disease [38,39], for which age is the major risk factor.
Non-compliance with preventive drug regimens will always limit their efficacy, but there is at
least the prospect that many age-related conditions could be warded off pharmacologically by
those who wish to do so. There is, therefore, growing interest in identifying and prioritising such
potentially geroprotective drugs. In this short review, we discuss the available data and some
of the bioinformatics methods that are being used to this end. It is important to stress that these
are methods to prioritise drugs for experimental testing. They provide the first step of many
required for successful drug repurposing.
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Orthologous genes: genes that
share a common ancestor and that
are present in different species.
Prolongevity drug: a drug that
extends lifespan.
Prolongevity gene: genes whose
overexpression extends lifespan;
reduced expression reduces lifespan.
Using Computational Biology to Discover Anti-ageing Drugs
Here we review 12 recent publications, summarised in Table 1 and Figure 1, aiming to identify
and prioritise prolongevity drugs for animal models and humans. All such studies have been
enabled by the development of powerful databases for the annotation and curation of genes/
proteins (Ensembl [40], UniProt [41]), their associated functions and pathways (Gene Ontology
[42], KEGG [43], Reactome [44]) and chemical ligands and drugs interacting with them
(ChEMBL [45], DrugBank [46], STITCH [47], drug gene interaction database; DGIdb [48],
protein data bank; PDB [49]) or affecting their expression (Connectivity Map [50], CREEDS [51]),
as well as drugs (DrugAge [52], Geroprotectors.org [53]) and targets (GenAge [54], Aging
Clusters [55]) implicated in ageing and age-related disease mechanisms (Figure 1).

Although the published studies of drug repurposing to target ageing use different strategies and
sources of data, they can be classified into two main categories: methods employing the
structural information to predict drugs potentially interacting with proteins already identified as
being involved in ageing, andmethods based on the similarity between ageing-related drugs or
genes based on molecular structure, interactions, pathways, or networks (Table 1).

Virtual Screening against Known Ageing Genes
The concept here is to find drugs which are known to target those genes that have been
implicated in ageing. Two studies adopted methods based on the hypothesis that proteins or
ligands with similar structures are likely to bind similar ligands or proteins, respectively, to
predict drug-target interactions. The first of these (Study #1) [56] aimed to identify novel drugs
targeting three specific temperature-sensing proteins implicated in ageing in the rotifer Bra-
chionus manjavacas (TRP7, S6P, FhBC). The authors used a virtual screening (Box 1) software
called FINDSITEcomb

[389_TD$DIFF] that combines protein modelling with sophisticated threading approaches
to model the target. The pockets in the model are then compared with the pockets in
experimentally determined structures of proteins with ligands or modelled structures with
known binders. The ligands of the top 100 ranked pockets are then compared with a library
of screened ligands and ranked by ligand similarity. The authors screened 1347 FDA approved
drugs in silico and tested four drugs for each target experimentally in the rotifers for their effects
on lifespan and healthspan. Out of the 12 compounds tested, 5 significantly increased the
rotifers’ lifespan. Changes in healthspan, approximated by swimming speed, reproduction, and
mitochondrial activity, were also observed. In a subsequent study by the same authors (Study
#2) [57], the number of proteins analysed was expanded to include a set of ageing-related
genes found in other animal models that are orthologous to genes in rotifers. This time a total of
94 targets were screened in silico using the FINDSITEcomb software. The top 1% binding
compounds for each target were further ranked by their cumulative lifespan extension achieved
by genetic interventions into their targets as taken from experimental model organism data, and
filtered according to availability and previously predicted side effects [58]. From the 31 drugs
experimentally tested in rotifers by two 10-day survival screens, seven drugs were further
tested in two whole-life survival analyses, two of which resulted in a median lifespan extension
of [390_TD$DIFF]13–42%. The prolongevity effect of these drugs was observed even when drug treatment
was initiated in middle age.

Another in silico screening study (Study #3) [59] was restricted to a single gene, AMP-activated
protein kinase (AMPK), activation of which partially mediates the effects of DR on ageing. To find
new molecules to activate AMPK and theoretically mimic DR, Mofidifar et al. [59] performed
virtual screening (Box 1) using molecular docking of 1908 FDA approved drugs. The interaction
between the top-ranked compounds and their targets was then further checked by more
120 Trends in Endocrinology & Metabolism, February 2019, Vol. 30, No. 2



Table 1. Published Studies of Drug-Repurposing to Target Ageing

Study Source
organisma

Source of datab Methodc Target organismd Additional datae Refs

Virtual screening against known ageing genes

1. Snell (2016) Rotifer Specific genesf Virtual screening Rotifer * Drugs (FDA approved in
DrugBank & ZINC8 [76])
* Protein structure (PDB)

[56]

2. Snell (2018) Rotifer
orthologues of
yeast, worms,
flies, mice

GenAge Virtual screening Rotifer * Drugs (DrugBank,
ZINC8 [76])
* Protein structure (PDB)

[57]

3. Mofidifar
(2018)

– Specific genesg Virtual screening
and molecular
dynamics

Human * Drugs (FDA approved in
DrugBank)
* Protein structure (PDB)

[59]

Similarity-based approaches

Finding drugs that target known ageing-related genes

4. Fernandes
(2016)

Human
orthologues of
model organism
genes

GenAge Gene-set
overlap analysis

Human * Protein–drug interaction
network (DGIdb)
* Orthologues (Ensembl
Compara)

[60]

5. Fuentealba
(2018)

Human Ageing Clusters Gene-set
overlap analysis

Human * Protein–drug interaction
network (STITCH)
* Protein–protein
interactions (STRING
[77])
* Functional annotations
(GO)
* Pathways (KEGG &
Reactome)

[61]

Finding drugs similar to known prolongevity drugs

6. Liu (2016) Worm High-throughput drug
screening in C. elegans
[63] and GenAge

Machine learning Worm * Protein–drug interaction
network (STITCH)

[62]

7. Barardo
(2017)

Worm DrugAge and High-
throughput drug
screening in C. elegans
[63]

Machine learning Worm * Drugs (DGIdb)
* Functional annotations
(GO)
* Chemical descriptors
(MOE)

[64]

Comparing transcriptome signatures of ageing and drugs

8. Calvert (2016) Human
orthologues for
rat and macaque
genes

Caloric restriction
expression signature [78]

Gene-set
enrichment
analysis

Human * Drug-induced
expression profile
(CMap)

[65]

9. Dönertaş
(2018)

Human Age series expression Gene-set
enrichment
analysis

Human * Drug-induced
expression profile
(CMap)

[66]

10. Yang (2018) Human Young and old
expression

Gene-set
enrichment
analysis

Human * Drug-induced
expression profile
(CREEDS)

[67]

Approaches to prioritise drugs for testing

11. Aliper (2016) Human Young and old
expression

Pathway
similarity

Human * Anti-ageing drugs and
their targets (http://www.
geroprotectors.org)

[68]
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Table 1. (continued)

Study Source
organisma

Source of datab Methodc Target organismd Additional datae Refs

* Ageing-related
pathways

12. Ziehm (2017) Human GenAge and GO ageing
term (GO:0007568) [42]

Empirical scoring
function

Worm and fly * Protein structure (PDB)
* Sequence (Uniprot)
* Binding affinity (RF-
Score [79])
* Bioavailability assay [80]
* Purchasability (ZINC
[76], eMolecules; https://
www.emolecules.com)
* Drug approval
(ChEMBL, DrugBank)
* Orthologues (Ensembl
Compara)

[69]

GO, Gene ontology; MOE, Molecular Operating Environment [http://www.chemcomp.com/MOE-Molecular_Operating_Environment.htm].
aOrganism from which the ageing information was acquired.
bSource of ageing knowledge (e.g., ageing databases or age-related expression data).
cSee Box 1 for the detailed information.
dOrganism in which the drugs identified in the study should have an effect.
eAdditional information used in the method.
fTRP7, S6K, FhBC.
gAMPK.

Organism Method

Type of
data

Database

Experiments

Structure-based

Similarity-based

Animal models Humans

Drugs Genes

Transcriptomics

Virtual screening

Genes-set overlap
analysis

Machine learning

Gene-set enrichment
analysis

Figure 1. Overview of the Information andMethods Used in the Studies. Databases storing different types of data
from experiments in various organisms (source organism) are used to apply drug-repurposing methods to identify ageing-
modulators for different organisms (target organism). In some studies, the information from previous experiments is used
together with the databases or directly as input for the methods.
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Box 1. Structure- and Similarity-Based Methods

Virtual screening: computational approaches used to identify which molecules among a large collection are most likely
to bind to a desired protein of interest (target). There are three categories of screening techniques: (i) ligand-based
methods, ranking candidates by their similarity to known ligands of the target; (ii) structure-based methods, docking
candidate molecules into the binding site of the target to calculate their binding affinity; and (iii) hybrid methods, using
both structure and ligand similarity (e.g., FINDSITEcomb). These methods use the similarity between the binding pockets
of the target and other proteins to identify potential binding molecules. The similarity with these molecules can be then
used to rank a desired library of candidate molecules. (Studies #1–3 [56,57,59]).

Molecular dynamics: computational method that uses the equations of motion to simulate the interactions between
atomswithin a system over time. These techniques are dependent on a ‘force field’, which is amathematical description
of how the atoms/molecules will interact. In biology, dynamic simulations of complexes can be used to assess the
changes in binding energy over time and the contribution of specific amino acids to binding. (Study #3 [59]).

Gene-set overlap analysis: using a set of genes associated with a trait of interest (e.g., ageing), the analysis determines
which molecules target more of these genes than expected by chance. Similar analyses can be performed using
functional annotations and pathways instead of genes. (Studies #4,5 [60,61]).

Machine learning to identify candidate drugs: method to predict new drugs based on a set of features in the training set.
Training set comprises drugs or targets, fully (supervised) or partially (semisupervised) labelled for their ageing relevance.
Starting from a positive set of those drugs that increase lifespan and a negative set of those that do not affect lifespan, a
machine learning algorithm learns the features (i.e., those characteristics that most effectively produce a correct
classification, such as protein interactions, chemical descriptors, or functional annotations). Based on these features,
the algorithm can predict the effect of any new drug on lifespan. (Studies #6,7 [62,64]).

Gene-set enrichment analysis: using an expression signature describing the gene expression changes associated with
a trait (e.g., ageing), and gene expression profiles induced by different molecules, the analysis calculates a Kolmogorov-
Smirnov based test statistic to rank drugs that reverse or mimic the trait signature. Statistical significance is calculated
by random permutations of the gene lists. (Studies #8–10 [65–67]).
detailed molecular dynamics (Box 1). The study reported four compounds with predicted high
affinity for AMPK, but these were not tested experimentally.

Similarity-Based Approaches
Using a priori information on known ageing-related genes, prolongevity drugs, or gene
expression profiles, several studies have implemented a series of similarity-based
approaches to identify novel anti-ageing drugs.

Finding Drugs That Target Known Ageing-Related Genes
Given that drugs targeting ageing-related gene products are expected to affect the ageing
process, Fernandes et al. (Study #4) [60] focused on finding drugs that target human genes
which have orthologues associated with longevity in animal models. The drugs were ranked by
the likelihood of targeting ageing-related genes among all targets. For this calculation, only
inhibitory drugs interacting with antilongevity genes and activators targeting prolongevity
geneswere considered. In total, 376 drugs were obtained, of which, 20 were considered to be
statistically significant. Thirteen targeted histone deacetylases, and three were previously
associated with lifespan extensions in animal models. Recently, Fuentealba et al. (Study #5)
[61] used a composite set of ageing-related genes with direct evidence for influencing human
ageing, together with physical and functional drug–protein interactions, to implement a similar
gene-set overlap analysis (Box 1). Study #5 also considered other levels of biological actions,
including pathways, functions, and protein–protein interactions. Three of the top 10 com-
pounds that ranked highest on an aggregate score were previously shown to increase lifespan
in animal models, and seven had been proposed to affect longevity by other drug-repurposing
Trends in Endocrinology & Metabolism, February 2019, Vol. 30, No. 2 123



methods. The prolongevity effects of the top-ranked compound (tanespimycin) was experi-
mentally validated in Caenorhabditis elegans.

Finding Drugs Similar to Known Prolongevity Drugs
An alternative approach is to find drugs similar to known prolongevity drugs using machine
learning (Box 1), which is a strategy well-suited for prediction tasks. Liu et al. (Study #6) [62]
attempted to predict new prolongevity drugs for C. elegans. They adopted a semisupervised
algorithm trained with high-confidence prolongevity drugs derived from an experimental screen
for C. elegans [63], together with their associated ageing-related genes curated from the
literature and the GenAge database [54]. They produced a rank-ordered list of 785 drugs with a
potential to increase lifespan in worms, with experimental validation for one drug in their list,
using a lifespan assay. A separate machine learning approach (Study #7) [64] was trained with
chemical descriptors of known prolongevity drugs and functional annotation of their targets.
Using a supervised algorithm (i.e., random forest), they generated a ranked list of drugs
predicted as lifespan-extending compounds, although no validation was performed.

Comparing Transcriptome Signatures from Ageing and Drugs
The Connectivity Map Resource provides drug-induced expression profiles for 1309 com-
pounds. Comparing these profiles with ageing-related gene expression signatures using a
gene-set enrichment analysis (Box 1) can reveal drugs that generate changes in expression
correlated (positively or negatively) to those seen in ageing (or any other biological process or
disease). This approach requires no a priori list of ‘ageing genes’ and can therefore potentially
identify new targets, based solely on expression profile similarities. The first study (Study #8)
[65] used DR expression profiles in rats and rhesus monkeys to find DR mimetics. They
identified 11 drugs that could potentially increase lifespan by mimicking DR. They experimen-
tally tested several of the drugs in C. elegans and found that most extended lifespan. Another
study (Study #9) [66] used a meta-analysis of gene expression changes in the ageing human
brain to identify robust gene expression changes in ageing and find drugs targeting those
genes. Using the Connectivity Map data, the authors identified 24 drugs and provided in silico
validation by showing significant enrichment of known prolongevity drugs in their list. Impor-
tantly this data-based approach can identify novel drugs and genes, not previously associated
with ageing. Yang et al. (Study #10) [67] used a network-based methodology, called ANDRU
(ageing network-based drug discovery). Instead of relying on model organisms, this approach
was also driven by human transcriptome data (GTEx) from young and old adipose and artery
tissues and signatures from the CREEDS database [51] to identify differentially expressed
genes within the ageing-related networks and drugs reversing these changes. They report
three distinct drugs ranking in the top five. Although none is previously reported as a lifespan
modulator, these drugs target pathways that change in expression with age, such as metabolic
enzymes and lipid metabolism.

Approaches to Prioritise Drugs for Testing
One of the major challenges to developing anti-ageing drugs is experimental validation. Since
clinical trials involve many ethical considerations and are very expensive, such drugs are
pretested in model organisms.

In this spirit, Aliper et al. (Study #11) [68], aimed to predict which prolongevity drugs previously
tested in C. elegans could work in humans. Using young and old human stem cell expression
profiles and an algorithm called Geroscope that maps the gene expression changes with age to
ageing-related signalling pathways, they ranked a set of candidate drugs by their likelihood of
targeting these pathways. To do this they calculated the pathway activation strength for each
124 Trends in Endocrinology & Metabolism, February 2019, Vol. 30, No. 2



drug. They shortlisted ten compounds with prolongevity effects in C. elegans, and tested six of
them for geroprotective effects in senescent human fibroblast cultures. While the majority of
tested drugs improved senescence-associated phenotypes, one drug (PD-98059), a highly
selective MEK1 inhibitor, also showed life-prolonging and rejuvenating effects.

Comparably, to assess which ‘human’ drugs and chemicals are likely to modulate the C.
elegans and Drosophila melanogaster orthologue of the target, Ziehm et al. (Study #12) [69]
developed a method to rank chemicals binding to genes implicated in human ageing. They
generated an empirical scoring function that considers the conservation of the domain and
binding site at the sequence level between the animal and the human protein, and predicted
binding energy for the compounds for the human targets and experimental bioavailability, in
addition to scores for drug-likeness, promiscuity, purchasability, and development status.
Although the authors provided no experimental validation, they conducted a comprehensive
literature-mining and molecular-docking procedure to validate their results.

Comparing the Results of These 12 In Silico Studies
The studies described above had different aims, methods, and data sources. To facilitate their
comparison, we have summarised each study in terms of: (i) the drugs identified, (ii) the genes
targeted by these drugs, and (iii) all biological pathways (KEGG) known to be targeted by drugs
(Figure 2, Key Figure). Additionally, we compared the results with the manually curated data-
bases of ageing-related genes (GenAge) and drugs (DrugAge).

Drugs
Overall only 12% of all DrugAge drugs are prioritised by at least one study (41 of 346 drugs in
DrugAge), with one in every four drugs discovered already present in DrugAge, reflecting the
prioritisation process and the low number of drugs reported as significant by each study (15
drugs on average). In addition, the 163 drugs identified usually differ between studies, with 91%
(149 drugs) of them identified just by one study. From the remaining 14 drugs present in more
than one study, trichostatin, geldanamycin, tanespimycin, and vorinostat were identified by
three studies (Figure 3A) and, while only the first two are present in the DrugAge database, the
remaining two have been experimentally validated for prolongevity effects in animal models
[61,70]. Most studies resulted in a list of drugs containingmainly novel candidates not present in
DrugAge (122 drugs were classified as novel discovery), the only exception being Aliper et al.
[68], which focused only on a set of known prolongevity drugs. We also note that 66% of the
122 drugs (i.e., 81 drugs) known to target ageing-related proteins were prioritised by the
computational studies reviewed above, as expected considering that these drugs are included
in some of the databases used by some of the methods during the prioritisation process.

Genes
Overall, 34% of the GenAge human genes (103 genes) and 10% of the GenAge model
organism genes (94 genes) were identified in at least one study, reflecting at least in part
the different sizes of the datasets, with more than three times the number of model organism
genes in GenAge. For clarification, the computational methods identified candidate drugs
(which are predicted to modulate ageing) amongst the known drugs, most of which are
currently used as therapy for a specific disease.

Basedon theDGIdbdatabase [64], 27%of thedruggable genome (i.e., 796genes) is targetedbyat
least one of the drugs identified in the computational studies (Figure 3B) and, while few genes were
identified inmultiple studies, someof themwerepresent in theGenAgedatabase [54]. Twoof these
genes,DDIT3 (DNADamage Inducible Transcript 3) and ERBB2 (Erb-B2Receptor Tyrosine Kinase
Trends in Endocrinology & Metabolism, February 2019, Vol. 30, No. 2 125



Key Figure

Drugs, Human Genes, and KEGG Pathways Discovered in the 12 Studies
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Figure 2.

(Figure legend continued on the bottom of the next page.)

Circular heatmap of the drugs discovered by each of the 12 studies (drugs sector), genes targeted by these drugs (human genes sector), and the pathways
including these genes (KEGG pathways sector). Drugs, genes, and pathways are clustered independently to reflect discovery patterns from the studies. Studies are
separated in agreement with the structure in Table 1. For the drugs and human genes sectors, the inner circle showswhether drugs or geneswere previously associated
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2),were targetedby thedrugsprioritised in eight studies.However, nine studiesalso identifieddrugs
targeting BIRC5 (Baculoviral IAP Repeat Containing 5) and KRAS (KRAS Proto-Oncogene,
GTPase), and ten studies predicted drugs modulating ABCB1 (ATP Binding Cassette Subfamily
B Member 1), which have not previously been related to human ageing. Despite this, genes
discovered by multiple studies do not necessarily suggest higher relevance to ageing, and may
instead reflect research bias (e.g., genes targeted by many drugs because of a role in prevalent
disease such as cancer). We also observed that 80% of known prolongevity drugs (i.e., 122 of 152
drugswith known targets) target at least one gene that is targeted by the candidate geroprotective
drugs identified by these 12 computational studies.

Pathways
Intriguingly, among the 319 druggable KEGG pathways, 92% include at least one gene that is
targeted by the drugs identified in the studies in Table 1. The same tendency was observed for
genes in GenAge (83% Model GenAge and 74% Human GenAge), or genes targeted by the
DrugAge drugs (88%). While this may suggest ageing is ubiquitous and affects all pathways,
another possibility is that genes present in many pathways could be discovered repeatedly
because they play a central role in diseases and regulatory mechanisms. Although this may not
conclusively prove that ageing is ubiquitous, the prioritised candidate drugs clearly have a
genome-wide effect.

Concluding Remarks and Future Perspectives
Although many caveats need to be considered (Box 2), these 12 computational studies have
revealed many currently used drugs with a high potential to modulate lifespan in humans.
However, the challenge today is not to extend lifespan (which is happening anyway), but rather
to improve late life health by reducing themultimorbidity associated with old age. This challenge
has not yet been adequately addressed, either in model organism research or in clinical studies.
Many questions remain unanswered (see Outstanding Questions).

Although some of the potential candidate drugs have been tested for effects on longevity in
model organisms, the effects on late life health in humans are difficult to assess experimentally.
To do this, access to human health data in old age, combining studies, and allowing in-depth
statistical analyses, including consideration of side effects, will be critical. This area is opening
up, but a challenge still remaining is gaining access to the clinical data, whilst of course retaining
patient confidentiality. The new UK Biobank [71] holds great promise, with data from about half
a million individuals, including clinical phenotype data and genotyping, with exome sequencing
in progress. These data will be even more powerful when combined with molecular information
and data from longitudinal cohort studies. An important initiative for testing drugs in model
organisms is the National Institute on Aging Interventions Testing Program [72], a multi-
institutional program where researchers test the effect of chemical or environmental perturba-
tions on the lifespan of a genetically heterogeneous mouse model. The workflow is designed to
increase the reproducibility and find reliable candidates to modulate ageing. However, although
we have begun to document the effect of specific pathways on the ageing process and lifespan,
with ageing, based on the DrugAge or GenAge database, respectively. If a drug was not present in DrugAge, it was classified as ‘candidate’, and the cell was coloured
blue, whereas if the drug was already in DrugAge, it was classified as ‘previously discovered’, and the cell coloured in orange. An equivalent strategy using the GenAge
databases instead of DrugAge was used for the human gene sector. In the inner wheel we present the overlap with drugs targeting ageing-related genes (drug sector,
GenAge human/model tracks) and for the human gene sector the overlap with genes targeted by the drugs in DrugAge (human genes sector, DrugAge track). The
KEGG pathways sector shows the proportion of genes on each pathway targeted by the drugs discovered by each study. The cells representing KEGG pathways were
coloured using a continuous gradient fromwhite to green, wherewhite means that none of the genes in that pathway were targeted by the drugs identified. In the section
closer to the centre of the heatmap, we also showed the proportion of ageing-related genes in these pathways, as well as the coverage of genes targeted by drugs in the
DrugAge database. Data for this plot are provided in Github (https://github.com/mdonertas/ageing_drug_review).
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Figure 3. Candidate Drugs and Genes from the Druggable Genome Proposed by Multiple Studies. (A)
Network representation of candidate drugs discovered by multiple studies and the studies in which they were found.
Orange nodes show drugs previously discovered to affect lifespan in animal models (DrugAge), blue nodes show the novel
candidates. The identified drugs are linked to the relevant study. (B) Distribution of the number of genes targeted by the
identified drugs with respect to the number of studies. The x- and y-axes show the number of studies and genes,
respectively. Some genes in the GenAge are not targeted by any novel candidates (0 studies). The pie charts show the
percentage of genes in GenAge (human database) for each category. The boxed numbers show the total number of genes
in each category.
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Box 2. Caveats and Caution for In Silico Predictions of Candidate Geroprotective Drugs

The in silicomethods are the first step in the process of repurposing drugs for ageing. They prioritise drugs already in the
clinic, usually developed against a specific disease, for experimental testing of their effects on ageing. To date there has
been only limited experimental validation of the effects of these prioritised candidates, usually limited to one or two
chosen examples. The lack of high-throughput validation means that these lists need to be made open access, so that
tests can be conducted in many laboratories worldwide. The lack of a complete understanding of the underlying
molecular processes involved in ageing, often combined with a lack of knowledge of specific molecular targets for the
drugs, complicates the ranking of drugs. The candidate drug predictions are only as good as the data used to derive
them. Many of the methods have limited coverage of genes, or include known ageing genes as part of their input, so
have some circularity in deriving ageing targets. The expression data analysis is an exception to this, using expression
data as a surrogate to compare the effects of ageing and drugs, without other prior knowledge. In future we can expect
the equivalent for proteomics or metabolomics data, providing good coverage at several molecular levels. Unfortu-
nately, there is a lack of robust validated data of all types, with only a limited number of longitudinal cohorts with a wide
age range and robustmolecular measurements. In addition, to date there has been a limited integration of molecular and
clinical data, but this is changing. In general, the technological issues (e.g., which machine learning algorithm to use) are
not the road block, rather the complexity of the ageing process and associated networks and the confidence in the
available data. It is well known that transferring drugs between organisms often gives different outcomes and such
effects are rarely predictable at this time. The hallmarks of ageing are often cellular or physiological processes, so
integrating with molecular data is challenging. Lastly, designing appropriate clinical trials to test the effects of drugs on
ageing and multimorbidity in humans is still in its infancy, considering side effects and appropriate dosage regimes to be
explored. The use of previous clinical trials data (designed for different diseases and outcomes) in meta-analyses may
provide a valuable in silico check before embarking on a large expensive experimental clinical trial.

Outstanding Questions
Will drugs that extend lifespan in model
organisms translate effectively to
improve late life health in humans?

Can we predict the effects of a drug
considering its mechanism of action
and evolutionary relationships?

What are the best approaches to test
such drugs experimentally in humans
and avoid serious side effects? There
is a need to develop both in silico and
in vitro schemes to facilitate this trans-
lation process.

Can we predict the side effects of
drugs that will be used in primary pre-
vention by healthy individuals for a long
term? Will they be suitable for elderly
frail patients?

Will a combination of molecular and
clinical data reveal the causes and
effects of ageing and allow us to dif-
ferentiate cause and effect?

Will the most appropriate drugs repli-
cate our responses to ageing or target
its causes?

What are the robust biomarkers of
ageing and what are the biological
mechanisms making them good
biomarkers?

Can we utilise epidemiological studies
and clinical data to study the effects of
drugs on healthspan?

How will we improve access and inte-
gration of clinical data across studies
and countries?

Molecular data have traditionally been
stored in open access data resources
available to all. By contrast, personal
data is under controlled access
depending on patient consent and is
often difficult or impossible to access.
Can we evolve a robust system to
allow optimal use of available data
globally, whilst retaining patient confi-
dentiality, to address the medical chal-
lenges of an ageing population?
we still lack an overall understanding of ageing processes, limiting our ability to use well-
established drug discovery methods, such as [387_TD$DIFF]genome-wide association studies, which to
date have only provided limited insights [7].

Although conservation of the ageing-related processes and genes amongst organisms is
widely accepted, the ability to translate the effects in model organisms to reliable predictions
for humans remains a challenge. The need for biomarkers of ageing is becoming ever more
important to allow a rapid assessment of the effects of a drug on an organism other than by
conducting lengthy, expensive lifespan experiments. The emergence of several ‘epigenetic
ageing clocks’ [73–75] provides opportunities to actively monitor ageing in both cells and
organisms. In parallel, high-throughput cellular imaging will allow improved screening and
testing.

Clearly, this area of research is expanding rapidly, and the studies described above are just the
beginning. Obviously, all this computational work just prioritises candidates before experimen-
tal testing, but the methods provide an overview of the current genomic, health, and drug
landscape, which can better inform the choice of the best candidates. We can expect a flood of
both experimental ageing data on model organisms and clinical datasets for human ageing in
the near future. A common workflow will be the integration of many types of data from many
studies using computational approaches, which will becomemore sophisticated and complex.
Machine learning approaches, which are increasingly prevalent, will also have an impact here, if
sufficiently robust, reliable data can be garnered. Indeed, such analyses will allow us to process
relatively noisy, unstructured data more effectively. The hope is that these in silico approaches
will not only increase our understanding of the processes of ageing but also provide a route
towards tackling multimorbidity and improving health in late life.
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