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ABSTRACT 

There is an epistemological divide in the field of road network analysis, concerning the way 

network distance should be conceptualized. On one hand, the generality of studies in the field 

adopt metric distance as a self-evident choice. On the other, space syntax studies adopt a 

different distance concept, namely that of angular distance, which ignores actual physical 

lengths. Theoretically, these two distance concepts imply quite different assumptions. 

Analytically, they produce also different results. 

In this paper we assess the differences between these two network distance concepts, using a 

model of the UK’s complete road network (2,031,971 nodes) and a very large dataset of 

vehicular movement counts (20,752 locations). We describe the statistical associations between 

observed vehicular flows and the betweenness centrality of the road-network nodes where such 

flows were measured, the latter calculated with metric and angular distance functions, across a 

number of increasing radii. Relations to road capacity are also discussed in principal roads where 

this is known. 

The geographical comprehensiveness of our model and the size of our movement sample allow 

us to state, with unprecedented statistical validity, the clear outperformance of angular distance 

over metric distance, in what concerns the strength of the studied correlations. This is true for 

all types of roads (urban and non-urban) and for all motorized vehicles, representing 99.05% of 

the total traffic; the remaining 0.95% correspond to pedal cycles, which yielded inconclusive 

results. We also demonstrate the existence of two distinct regimes of association between 

movement and centrality, conspicuous in cities but altogether absent in non-urban areas, which 

represent new evidence supporting space syntax’s dual model of urban form.        

1. INTRODUCTION 

Node centrality assessment is a common procedure in the analysis of street and road networks. 

It allows the ranking of nodes according to how central they are, thereby revealing the network’s 

underlying structural hierarchy. It has been shown by many studies, as for example (Hillier et al. 

1993, Hillier and Iida 2005, Jiang 2009, Jayasinghe et al. 2015), that such centrality hierarchies 

are strongly associated with observed movement flows, both pedestrian and vehicular. This 

association is of great importance, because it demonstrates that centrality analysis indeed 

captures essential functional properties of street and road networks.       

Centrality is quantified through graph theoretical measures, which are based on the preliminary 

calculation of the shortest paths between all pairs of nodes in the network. This calculation 



implies a choice regarding the quantity to be minimized (called here simply ‘distance’) when 

defining the shortest paths. A seemingly self-evident option, is to use metric distance for this 

purpose; that is, to quantify the distance between two non-adjacent nodes as the minimal 

metric length separating them in Euclidean space, measured through the network and not as 

the crow flies. 

Metric distance is directly related to the physical effort (be it biological or mechanical) required 

to move along each path and may thus be seen as a proxy of its energetic cost, which is a quantity 

of obvious relevance for the movement of people and vehicles. Indeed, many studies on the 

structural properties of road networks, as for example (Crucitti et al. 2006, Masucci et al. 2009, 

Porta et al. 2012, Strano et al. 2013), adopt this definition of distance without further 

questioning. It is important to point out, however, that underlying such option there is also a 

theoretical assumption, namely: that in street and road networks, the hierarchical structure with 

functional meaning is to be determined by length minimization principles (i.e. that network 

paths with least metric length will have a higher probability of being used and are therefore 

more important). 

In contrast, following the results reported in (Hillier and Iida 2005) and in (Turner 2007, 2009), 

space syntax studies adopted a different concept of distance, which defines the shortest path 

between two nodes as that with the minimum amount of angular change (calculated as the sum 

of the deflection angles between street segments along each path). What is minimized is the 

degree of geometric complexity of the paths, not their metric length. Such a quantity is related 

to each path’s information content, in the sense that a path whose geometry is highly variable 

and irregular, contains more information than a straight (or tendentially straight) one.     

For a formal definition of information content, here we refer specifically to the concept of 

Kolmogorov complexity (also known as descriptive complexity). Such concept defines the 

information content of a given object as the length of its shortest description1. For example, the 

text string “ababababababababababababababab” has a shorter description: “15 repetions of 

ab”. Whereas the string “agferotjhdmxjtilynzwpysglmwyr”, with the same number of characters, 

presumably has no shorter description other than itself. Thus, the latter string has higher 

descriptive complexity than the former (i.e. it is harder to compress) and therefore contains 

more information. Defined in this way, information content is also a measure of an object’s 

randomness – of the presence (or lack thereof) of regularities that may be used to produce a 

shorter description of that object (Grunwald and Vitany 2003). 

Exact Kolmogorov complexity is uncomputable (it may only be approximated). But the concept 

remains a central tenet of information theory and has applications in other fields (as linguistics 

and genetics), because it provides a formal definition of the concepts of simplicity and 

complexity, and of the intrinsic randomness of individual sequences (Grunwald and Vitany 2003). 

Now, a street network path is nothing more than a sequence, in this case of interconnected 

street segments, providing a route between two different locations in the network. If we define 

the shortest paths as those with least angular variation between segments, what we will be 

doing is selecting the paths with least information content. This may be illustrated by a simple 

example. 

In Figure 1 we show three hypothetical street network paths, each made up of six street 

segments of equal metric length. Their total metric lengths are obviously equal; however, their 

                                                           
1 More precisely, the Kolmogorov complexity of a string X is defined as the length (in bits) of the shortest program 
that outputs X and then halts, when run on a universal Turing machine. 



total angular variations are not. Path a) is as simple as possible – a straight line between two 

points. Because it has minimal descriptive complexity, it also contains minimal information; 

angular distance measures its length as zero (details on the calculation of angular distance will 

be given later). Path b) is more complex, but still far from random. It has one evident regularity, 

namelly the fact that all segments are joined at wide obtuse angles. It is closer to the sequence 

with lowest complexity than to any random sequence (i.e. it approximates linearity). Angular 

distance measures it as having length 0.95. Path c) is composed by angles of all amplitudes, 

without any apparent regularity. It is therefore the most complex, thus with the highest 

information content. Angular distance measures it as having length 6.64.  

 

Figure 1. Three notional street network paths, with the same metric length but with increasingly higher angular 

length and descriptive complexity. 

The difference between the three segment sequences in Figure 1 is obviously their descriptive 

complexity; i.e. the extent to which the presence (or the absense) of regularities in their 

geometrical variation, allows (or not) for the compression of the sequence into a simpler 

description. Therefore, to define the shortest paths as those with less amount of angular change 

(or, alternatively, with less information content), amounts to the following theoretical 

assumption: that the functionally meaningful hierarchy of street networks is to be determined 

by information minimization principles (i.e. that geometrically simpler paths will have a higher 

probability of being used and are therefore more important).      

Space syntax’s concept of angular distance arose from the close attention that the field has 

always granted to the specific geometry of street networks, in addition to their topology. Indeed, 

what separates space syntax’s axial representation from other types of dual street network 

representations, is that the node-defining entities (i.e. axial lines) are determined exclusively by 

the actual geometric constraints that the built environment imposes on linear continuity. This 

way of defining the atoms of urban space is purely geometric, even if their relationships are 

modelled topologically. 

The transition from the axial to the segment map (in which axial lines are broken into segments 

at intersections) and to its associated angular distance function, was a step towards increasing 

the discriminant power of space syntax’s analytical model. As mentioned previously, the angular 

distance between perfectly aligned axial segments is zero – they are treated as a single spatial 

unit (i.e. as an axial line, see Figure 1 a). But if we look at sequences b) and c) in Figure 1 as also 

made of axial lines (i.e. ignoring their angular variations), we conclude that the axial model 

would be unable to distinguish them, because their unweighted graphs would be isomorphic. 

By taking into account the angles at which segments intersect, the segment model equipped 

with an angular distance function, is able to do so.  



In their 2005 paper, Hillier and Iida provided strong evidence for the precedence of angular 

distance over metric distance, as revealed by its higher capability to postdict pedestrian and 

vehicular movement flows, observed in four London local areas. This result was later confirmed 

by Turner (2009), through different analytical means and using a larger and more detailed 

movement sample of vehicular GPS traces. Turner (2007) also showed that angular distance 

could have an additional advantage – that of allowing the integration of the standard GIS street 

network representation, namely road-centre line (RCL) maps, into space syntax analysis. 

Axial lines acquire their structural relevance from the fact of being minimal geometric 

descriptions. When they are converted into segments, these retain the original geometric 

parsimony. In contrast, RCL maps often reproduce irrelevant geometric details of the geographic 

features from which they derive. Thus, the dual graphs of the two representations are often of 

quite different orders. However, their structural differences may become insignificant if the 

edges of both graphs are weighted with angular distance, because the total amount of angular 

change is bound to be approximately the same in both representations (Turner 2007). 

Beyond these methodological advantages, the concept of angular distance contributed also to 

the development of the dual network model of urban form, enunciated in (Hillier 1999) and 

detailed in (Hillier et al. 2010, Hillier 2012). This model describes the generic form of the city as 

a dual structure, composed of: i)  a foreground network of main paths, made-up of a small 

number of long lines joined at wide obtuse angles, forming a web of highly central, multi-

directional alignments; embedded in a ii) background network of local streets, made-up of a 

much larger number of shorter lines, forming grid-like patterns with lower centrality. Because 

of their different centrality levels, these two fundamental network tiers have also different 

movement potentials, with the foreground network carrying the bulk of urban movement and 

the background network being relatively secluded. This difference in movement potentials 

causes the foreground network to attract all types of public functions, while the background 

network remains mostly residential. 

Such model assumes that urban space is hierarchized through subtle geometric regularities 

(Hillier 1999), making the descriptive complexity of higher order paths smaller than that of lower 

order ones. Indeed, angular centrality without radius restriction systematically identifies the 

foreground network (i.e. the most important roads), whereas global metric centrality often fails 

to do so (Hillier et al. 2010). This strongly suggests that the foreground network is indeed a web 

of simplest paths (i.e. paths with small angular change, thus with low descriptive complexity), 

rather than one of shortest paths (in the sense of those with least metric length).  

There is therefore an epistemological divide in the field of street network analysis, concerning 

the question of how network distance should be conceptualized. On one hand, space syntax 

claims that this should be done through angular distance, because that is the way urban space 

is actually hierarchized. One the other, the majority of the studies from outside the space syntax 

field assume that, insofar as urban space has a structural hierarchy, such a hierarchy must be 

the outcome of metric distance relationships.  

In this paper we readdress this epistemological divide through a correlational study similar to 

the one developed in (Hillier and Iida 2005). We will compare the strength of the statistical 

associations between observed vehicular movement and angular and metric distance concepts 

(applied to the calculation of betweenness centrality), in order to assess their empirical and 

theoretical value. However, due to the sizes of both our street network model (the UK’s entire 

road network) and vehicular movement sample (20,752 count points), the results reported here 

have a far superior validity than those reported in (Hillier and Iida 2005). 



Also in contrast with (Hillier and Iida 2005), we will not interpret our results from the point of 

view of the individual’s cognitive reading of the network’s properties. Such inferential step has 

been questioned (Omer and Jiang 2015) and indeed it remains open to debate (Omer and Kaplan 

2018). Instead, we focus our attention on the relevance of the physical properties of ‘metric 

length’ and ‘information content’, for the description of the hierarchical structure of street 

networks. We assess such relevance by comparing the network hierarchies induced by the two 

properties, with movement data describing the actual functioning of the network. But our object 

of interest is the structural nature of the network itself, and not how that structure is cognitively 

appropriated at the individual’s level. Specifically, in this paper we ask: 

- Which physical description of the UK’s road network better reflects its actual use: one based 

on the metric length of network paths, or one based on their geometric descriptive complexity? 

- Assuming there are significant differences between the correlations of the two physical 

descriptions with observed movement: how does that varies across geographic contexts, spatial 

scales and vehicle types? 

In what follows, we first describe in detail our research methodology, the source datasets and 

the adopted analytical procedures. Next, we report the results of the main correlation exercise 

and we discuss their implications to our research questions. We conclude by summarizing our 

findings and by considering their relevance to the understanding of the generic structure of 

street and road networks.  

 

2. DATASETS AND METHODS 

2.1 The road network model 

Our road network model is based on the Meridian 2 dataset (OS 2015), which represents the full 

hierarchy of Great Britain’s road network, but not its absolute geometric constitution. Road 

representation is skeletal, collapsed into single RCLs, independently of the type of road or of its 

specific cross section (i.e. number of lanes or carriageways). All complex road junctions (e.g. 

roundabouts and motorway interchanges) are generalized as simple RCL intersections. The 

vector geometry of the RCLs themselves has been partially generalized through simplification, 

eliminating unnecessary detail while retaining their essential shape. For details on the 

generalization process, please see (OS 2015). 

These characteristics make this dataset fit to serve as a basis for syntactic models, because its 

level of representation very much approximates that of a typical axially-derived segment map. 

Given its geographic extent, the model used here should be seen as exhaustive, for it comprises 

the full national road hierarchy. However, at the level of the finer-grained network, the Meridian 

2 dataset has a certain degree of incompleteness. Therefore, centrality measures calculated at 

short radii should be expected to contain some noise, induced by local inaccuracies of the model. 

In its final state (Figure 2), the road network model has 2,031,971 segments, corresponding to a 

total length of 341,588 Km. 



 
Figure 2. The road network model. Each of the images on the right depict sequential 400% zoom-ins of the red 

rectangle on the full map. 

As in any syntactic segment model, individual line segments are encoded as the nodes 𝑉 =

{1, … , 𝑁} of an undirected weighted graph 𝑮(𝑉, 𝐸), in which any pair of nodes 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑉 

are held to be adjacent, 𝑖~𝑗, when they correspond to segments that intersect on the segment 

map. The adjacency relations between nodes are encoded by edges (𝑖, 𝑗) ∈ 𝐸, if and only if  𝑖~𝑗.  

Edges are weighted according to two types of distance – angular and metric – denoted here 

respectively as 𝑤𝑎 and 𝑤𝑚. The angular distance between two adjacent nodes,  𝑤𝑎(𝑖, 𝑗), is 

proportional to the angle of incidence 𝜃 between the two segments encoded by 𝑖 and 𝑗, such 

that  𝑤𝑎(𝑖, 𝑗) = 0 when the two segments are aligned and 𝑤𝑎(𝑖, 𝑗) = 1 when the two segments 

make a right angle. Formally, 𝑤𝑎(𝑖, 𝑗) is defined as,  

𝑤𝑎(𝑖, 𝑗) =
2𝜃

𝜋
 , 𝜃 ∈ [0, 𝜋[ 

The metric distance between two adjacent nodes, 𝑤𝑚(𝑖, 𝑗), is the sum of the metric lengths of 

the segments encoded by 𝑖 and 𝑗, denoted 𝑙𝑖 and 𝑙𝑗, divided by 2; i.e. the actual length between 

the segments’ mid-points, measured along the segments in metric units. Formally, 𝑤𝑚(𝑖, 𝑗) is 

defined as,  

𝑤𝑚(𝑖, 𝑗) =
𝑙𝑖 + 𝑙𝑗

2
 , {𝑙𝑖, 𝑙𝑗} ∈ ℝ+ 

These two distance functions serve to define the shortest paths (or graph geodesics) between 

each pair of nodes, in two different ways. Angular distance defines geodesics as those paths with 

minimal sum of angular change, Euclidian distance defines geodesics as those paths with 

minimal sum of metric length. Due to the high computational cost of determining minimal paths 

in large graphs and to the nationwide size of our network model, angular and metric geodesics 

are calculated here for a number of restricted network radii. A network radius, defined here in 

metric units, induces a sub-graph around each node containing the nodes that are reachable 

from the origin node within the radius distance. It may be seen as the maximum trip distance 

from the node under calculation. We will use the following set of radii, 

𝑅 = {1000, 2000, 5000, 10000, 25000, 50000, 100000, 150000} 

Ranging from the local scale (i.e. 1 Km), through the city scale (e.g. 10 Km) and up to the supra-

regional scale (i.e. 150 Km). The two distance concepts are applied to the calculation of the 



betweenness centrality (also called choice in space syntax) of each node  𝑖 ∈ 𝑉, at each radii 𝑟 ∈

𝑅. The betweenness centrality of a given node 𝑖 is defined as, 

𝐶𝑖
𝐵 = ∑ ∑

𝑛𝑗𝑘(𝑖)

𝑛𝑗𝑘
𝑘𝑗

   (𝑗 < 𝑘) 

Where 𝑛𝑗𝑘(𝑖) is the number of geodesics between nodes 𝑗 and 𝑘 that contain node 𝑖 and 𝑛𝑗𝑘 is 

the number of all geodesics between 𝑗 and 𝑘. Betweenness centrality quantifies how often a 

given node lies on the shortest paths between other nodes. From the point of view of vehicular 

movement, it may be seen as a direct indicator of the flow potential of a given node. The road-

network model was processed in the network analysis software UCL DepthmapX, for each of the 

two distance concepts, at each of the network radii mentioned above. 

2.2 The vehicular movement sample  

Our vehicular movement sample is based on a publically available dataset describing annual 

average daily flows (AADF) of different vehicles types, at 22,758 count locations on the UK’s road 

network, distributed over the entire mainland territory  (DfT 2018). An AADF is the average over 

a full year of the number of vehicles passing a point in the road network each day (in both 

directions); for details on the generation of AADF values, please see (DfT 2018). After several 

pre-processing operations2, we have validated a study sample of 20,752 count points (91% of 

the original dataset). 

 
Fig.3 – Geographical distributions of count points. From left to right: ‘all’, ‘motorways’, ‘urban roads’ and ‘rural 

roads’ (‘principal’ in red, ‘minor’ in green).  

The count points are geographically evenly distributed (Figure 3), but their frequences per road 

class are very different. There are 12 road classes in the original dataset (Table 1), but the large 

majority of points (66.8%) are located on principal urban roads (PU, 39.6%) and on principal rural 

roads (PR, 27.2%), with all other 10 road classes representing only 33.2% of the occurrences. 

Thus, as it stands, the sample has a strong bias towards principal roads. 

                                                           
2 Each count point is located precisely by its easting and northing coordinates and by a ‘road name’ attribute. However, because 

the geometry of Meridian 2 is simplified, some points do not fall exactly on the model’s lines, or are indeed located on lines that 
are not represented in the model (e.g. on motorways access ramps). We first discarded all points located more than 10 meters 
from the nearest line. We then assigned the remaining points to the nearest line with the same road name. We further discarded 
the points without road name match.      



 
Tab.1 – Original and aggregated road classification schemes. 

The original 12 road classes were first aggregated into a simpler scheme of just five classes (see 

table 1), namelly: motorways, principal urban and rural roads, minor urban and rural roads; this 

is also the classification scheme adopted by DfT on their annual transport statistics reports (DfT 

2018). Then, in order to mitigate the bias towards principal roads, the sample was studied under 

progressive levels of disaggregation, starting with the full sample and ending on individual road 

classes (see Figure 5). 

The source dataset also provides AADF values for specific types of vehicles. These are “pedal 

cycles”, “bus” (i.e. buses and coaches), “two-wheeled motor vehicles” (i.e. bikes), “cars” (i.e. 

cars and taxis), “light goods vehicles” (i.e. vans), “heavy goods vehicles” (i.e. lorries) and “all 

motor vehicles” (i.e. all aggregated, except bicyles). In order to decide which types of vehicles 

to study, we first want to see if their frequencies at the count locations are correlated or not. 

Logically, vehicle types whose frequencies are highly correlated must have similar behaviours in 

terms of road network use and are therefore interchangeable. 

Such correlations are in general high, albeit with some variability. We use principal component 

analysis (PCA) to identify the dominant collinearity trends, extracting two principal components 

with eigenvalues higher than 1. These describe two groups of vehicles whose frequencies are 

strongly associated. We determine the members of each group by inspecting the loadings of the 

two principal components (i.e. their correlations with the frequencies of each vehicle type; see 

Figure 4). 

 
Fig.4 – Loadings of the two PCs describing the associations between the frequencies of vehicles types. 



The first component (PC1), which is responsible for almost all variance explained (74%), is highly 

correlated [r > 0.9] with the frequencies of “cars”, “vans”, “lorries” and “all motor vehicles”; 

“bikes” are also strongly correlated [r=0.79] with PC1. The second component (PC2), explaining 

only residual variance (15%), is highly correlated with the frequencies of “cycles” [r=0.96] and, 

to a lesser extent, with those of “bus” [r=0.65].    

We thus observe two distinct frequency trends, among the severall types of vehicles: one that 

may be represented by “all motor vehicles” and another that may be represented by “cycles”, 

with a weak relationship [r = 0.33] between their respective frequencies at each count point. 

We will therefore study the correlations between the AADF values of these two vehicle classes 

against betweenness centrality values. It is important to bear in mind, however, that the “all 

motor vehicles” class corresponds to 99.05% of the counted vehicles, while the “cycles” class to 

just 0.95%. Therefore, the “all motor” class represents the overwhelming majority of the traffic 

flowing in the network, whereas ”cycles” represent a very small (but highly differentiated) 

minority. 

2.3 Analytical and statistical procedures 

The sample was studied under progressive levels of desegregation accordingly to an analysis 

matrix (Figure 5), devised in such a way that each row corresponds to a specific hierarchical tier 

of the road-network (all, principal and minor roads) and each column to a specific geographical 

context (all, urban and rural). Each matrix entry corresponds to a different sized sub-sample, 

corresponding to specific hierarchical and geographical contexts. When reading the matrix 

vertically, one can also get a picture of the results by socio-demographic context (i.e. for the 

whole country, only on cities or on rural areas). And horizontally, one may see how the results 

relate to the previously described foreground/background network model (i.e. on the whole 

network, on the foreground or background networks). The sizes of ‘all motor vehicles’ and 

‘cycles’ sub-samples differ slightly, because in the ‘cycles’ case we only consider the counts 

higher than zero. Motorways [n=752], because they are not classified either as urban or rural 

road-infrastructures, are left out of the analysis matrix and their results will be presented apart. 

Both movement and centrality variables strongly deviate from bivariate normality, with many 

outliers. We use therefore a non-parametric correlation method, namely Spearman’s rank 

correlation coefficient, denoted as ρ (rho), which does not assume normality and is not affected 

by the presence of outliers. Spearman’s ρ measures the association between the ranks of two 

variables, instead of their actual values. But this is particularly fit for our research subject, 

because we are not interested in the specific values of either movement or centrality; rather, 

we want to know which type of centrality hierarchy (angular or metric) is more associated with 

the relative magnitudes of observed traffic flows. 

Given the large size of our sample and the large effects encountered in this study, the 

significance level of the reported correlation coefficients will always be p < 0.001 (except on very 

few, identified cases). For all correlations, we also produce 95% confidence intervals (CI). They 

indicate the interval around the sample’s correlation coefficient, where there is a 95% 

probability of finding the correlation coefficient of the entire population of the correlated 

variables (i.e. of all streets and roads in the UK and all vehicles circulating therein).  



 
Fig.5 – Analysis matrix. 

For each entry of the analysis matrix (i.e for each sub-sample), we will test the null hypothesis 

that the maximum correlation coefficients of angular and metric centrality with  movement, are 

equal (i.e. that the difference between the two maximum correlations will be zero). Our 

alternative hypothesis will state the opposite: that the maximum correlation coefficients of the 

two definitions of centrality will always be different (i.e. that their difference will not be zero). 

Let ρ(A) be the Spearman’s correlation coefficient between observed vehicular movement and 

angular-defined centrality, and ρ(M) the coefficient between movement and metric-defined 

centrality. We can formally state our null (H0) and alternative (H1) hypotheses as,     

𝐻0:   𝑚𝑎𝑥|𝜌(𝐴)| − 𝑚𝑎𝑥|𝜌(𝑀)| = 0 

𝐻1:   𝑚𝑎𝑥|𝜌(𝐴)| − 𝑚𝑎𝑥|𝜌(𝑀)| ≠ 0 

The significance level for rejecting H0 will be α=0.05. In order to ascertain the significance of the 

difference 𝑚𝑎𝑥|𝜌(𝐴)| − 𝑚𝑎𝑥|𝜌(𝑀)|, we will perform a specific Z-test (Steiger 1980) for the 

difference between two different correlations obtained from the same sample, with one 

variable in common; i.e. ρ(A) and ρ(M), with the common variable AADF. The result of the test 

is a z-score and H0 is two-tailed, so the critical value will be Z = ±1.96 with p < 0.05. 

 



3. RESULTS  

We start by studying the correlations between the values of angular and metric-defined 

betweenness, of the nodes where movement was observed (Figure 6). The objective is to assess 

the degree of association between the network hierarchies induced by the two types of 

centrality, along the scale of radii defined above, before asking which one better emulates 

observed movement. This was done for 5 different sub-samples, namely ‘urban roads’ (principal 

[n=8,474] and minor [n=2,742]), ‘rural roads’ (principal [n=7,203] and minor [n=1,537]) and 

‘motorways’ [n=796]. All correlations are significant at the p < 0.001 level. 

We note that the values of angular and metric betweenness centrality are strongly positively 

correlated – very much so at local radii (ρ = 0.96, R = 2 Km, on urban principal roads) and 

progressive less at larger radii. Thus, the network hierarchies induced by the two types of 

centrality are actually very similar when short distances are concerned, but they diverge as 

larger parts of the network are encompassed. We should therefore expect the correlations with 

movement to be similar at local scales, but different at global scales.  

An important qualitative difference is noticeable between urban and rural roads. In cities, the  

angular/metric correlations of principal roads (i.e. of the foreground network) decay faster than 

those of minor roads (i.e. of the background network), implying a sharp structural differentiation 

between those two road-classes. In contrast, in rural contexts, principal and minor roads follow 

rather close correlation curves, implying a lesser structural differentiation. Finally, the 

motorway’s sub-sample shows a correlation curve that is similar to that of rural roads, but with 

an even stronger decay at large radii. 

 
Fig.6 – Spearman’s correlation coefficients of angular and metric-defined betweenness centrality (y axis), across the 

several radii of analysis (x axis). 

Figures 7 and 10 display on bar charts the results of the main correlation exercise, organized 

according to the analysis matrix described before. The maximal correlations in each sub-sample 

are highlighted in red. All correlations are significant at the p<0.001 level, except for very few 

cases, identified by non-coloured bars. Error bars represent 95% confidence intervals. 

We start by looking at the results of ‘all motor vehicles’ (Figure 6). The first thing we should note 

is that, for all sub-samples, the maximal angular correlations are always higher than the maximal 

metric correlations (both highlighted in red) and well beyond the limits of confidence intervals. 

We can thus immediately state that, for the ‘all motor vehicles’ class (which, we recall, 

represents 99.05% of all observed traffic), H0 is rejected for all sub-samples. Furthermore, the 

differences between the maximal correlations are in general quite large (i.e. they have also 

practical significance). The mean of the differences 𝑚𝑎𝑥|𝜌(𝐴)| − 𝑚𝑎𝑥|𝜌(𝑀)| for all samples is 



0.126, with a maximal difference of 0.233 attained in ‘all rural roads’. Also, the observed effect 

sizes are considerable, with max 𝜌(𝐴) > 0.7 in 7 of the 9 matrix entries. 

 

 
Fig.7 – Correlation results for ‘all motor vehicles’. 

Figure 8 shows the actual z-scores and p-values of the Z test mentioned before (Steiger 1980); 

note the extreme positive values of Z (much higher than the critical value of Z=1.96) and the p-

values always less than 0.0001, indicating respectively the large differences observed and their 

high statistical significance. 

The ‘motorways’ sub-sample produces similar results (Figure 9). The gap between the maximum 

correlations obtained with the two types of centrality is now even more clear, with angular-

defined centrality attaining a coefficient (ρ=0.6) that is more than twice that of metric-defined 

centrality (ρ=0.237). Therefore H0 is again rejected without ambiguity. The radii at which these 

maximal correlations are attained (150 Km and 100 Km, respectively), as well as the clear 

negative correlations at local radii (1 Km and 2 Km), are consistent with the long-distance 

vehicular movement that motorways convey.  



 

Fig.8 – Hypothesis testing of the results for ‘all motor vehicles’. 

 
Fig.9 – Correlation results and hypothesis testing for ‘motorways’. 



 
Fig.10 – Correlation results for ‘cycles’. 

Finally, we look at the correlation results for the ‘cycles’ class of vehicles (Figure 10), which show 

a very different pattern. The first obvious observation, is that the previous large gap between 

angular and metric correlations has vanished. In several sub-samples the maximal metric 

correlations are now slightly higher than the angular ones. Maxima are now attained at 5Km and 

10Km (25Km in just one case), with correlations decaying fast afterwards (especially angular 

ones), reflecting the more localized range of cyclists trips. From the most local scale (1Km) until 

the scales at which maxima are attained (5-10Km), the differences between correlations are very 

small and with a general overlap of confidence intervals, so we rely on the Z test for the 

assessment of the difference between maximal correlations (Figure 11). 

We fail to reject H0 in three cases, because there is no significant difference between the 

maximal correlations. We can reject H0 in six cases; of these, two have significant positive 

differences (i.e. the correlation with angular centrality is higher), but in the remaining cases the 

differences are actually negative (i.e. the correlation with metric centrality is higher). 

Nevertheless, all the differences are small; they are significant only because the samples are 

large. However, statistical significance is not the same as practical significance. A difference of 

just -0.032 between correlation coefficients (the largest difference for ‘cycles’, in ‘all rural roads’) 

has very little meaning for the assessment of their relative postdictive validity. 



 

Fig.11 – Hypothesis testing of the results for ‘cycles’. 

Figure 12 summarizes the results of the overall correlation exercise. The chart on the top shows 

the values of the difference 𝑚𝑎𝑥|𝜌(𝐴)| − 𝑚𝑎𝑥|𝜌(𝑀)| for each of the studied sub-samples, 

bounded by 95% confidence intervals, computed according to (Zou 2007). The ‘all motor 

vehicles’ class (99.05% of the observed traffic) produced unambiguous positive differences 

(mean of +0.15). The differences obtained for the ‘cycles’ class (0.95% of the observed traffic) 

were less stable and much weaker, oscillating around zero (mean of -0.007). 

In order to make these effects comparable and easier to grasp, we also provide on Figure 12 

shows the relative percentage difference in the correlation coefficients (i.e. their absolute 

difference, divided by the mean and multiplied by 100). Thus, for ‘all motor’ vehicles and in all 

road-classes excluding motorways, angular distance entails an average relative increase of 21%  

(s.d. 11%) in the correlation coefficients, reaching a staggering relative increase of 87% in 

motorways. In contrast, for the ‘pedal cycles’ vehicle class the relative changes in correlation 

coefficients are much lower (mean -1%, s.d. 5%, discarding non-significant differences).         

  



 
Fig.12 – Values of 𝑚𝑎𝑥|𝜌(𝐴)| − 𝑚𝑎𝑥|𝜌(𝑀)| (in black typeface) and relative percentage change of correlation 

coefficients (in grey typeface) on all sub-samples, for  ‘all motor’ and ‘cycles’ vehicle classes. 

4. DISCUSSION 

4.1 All motor vehicles 

The ‘all motor vehicles’ class corresponds to 99.05% of all occurrences and represents the 

overwhelming majority of the traffic flowing in UK’s road network. For such a majority, the 

correlations with angular-defined centrality proved to be always higher than those obtained 

with metric-defined centrality. This was found to be true on all geographical and road-

hierarchical contexts represented by our analysis matrix (i.e. from the whole UK road-network 

to individual road-classes of urban and rural areas), at the radii where the maximal correlations 

were attained. Angular distance represents also a significant accuracy improvement over metric 

distance, namely an average relative increase of 21% in the predictive power of betweenness 

centrality. 

But this does not imply that metric properties are simply irrelevant. Firstly, as we have seen in 

Figure 6, at low radii the hierarchies of angular and metric centralities are virtually equal. 

Secondly,  if we look again at Figure 7, we will see that at the most local radius (1 Km) metric 

centrality is in general stronger, even though both correlations are low. The divergence between 

the two correlations becomes unquestionable only after 10 Km, when angular becomes clearly 

superior. Returning to Figure 6, one finds that 10 Km is also the radius at which the values of 

angular and metric centrality start to clearly diverge, after their strong initial correlation. Thus, 

even if the higher relevance of angular centrality at the city-scale and beyond (i.e. R>10 Km) 

seems undisputable, our results also show that metric properties are important at the local 

scale, a fact already acknowledged in (Hillier et al. 2010).   

We also note that the differences between the values of the two correlations are clearly larger 

in ‘principal roads’ (which correspond to the foreground network) and narrower in ‘minor roads’ 

(corresponding to the background network). This is in strong accordance with the specific 

geometric properties of each of those generic networks, as described by the dual network model 

of urban form. Given the angular-minimizing morphology of the foreground network, we should 

expect the prevalence of angular distance to be particularly expressive there. 

And indeed this is what happens. However, this effect is actually more pronounced in rural than 

in urban roads (see Figure 7).  This in turn demands an explanation, because one would also 



expect the differences between the geometries of the foreground and the background networks 

to be clearer in cities, where they were identified in the first place. In Figure 13 we show two 

scatterplots, of the ‘all urban’ and ‘all rural’ sub-samples, with angular betweenness (R=75Km) 

on the x-axis, and ‘all motor’ AADF values on the y-axis (values are logged on both axes); minor 

roads are represented by red points and principal roads by blue points. Because of the noise in 

data, we fit a local kernel smoother (black curves) to each plot, in order to highlight the main 

trends in the clouds of points. 

 
Fig.13 – Scatterplots of angular-defined betweenness centrality against vehicular movement, in urban and rural 

roads (minor roads in red and principal roads in blue). 

What we see when looking at Figure 13 is that there is a striking qualitative difference between 

urban and rural roads. In rural roads, the bivariate relationship between centrality and 

movement is linear. In other words, in all rural roads (minor and principal), more centrality 

means on average always more movement. But in urban roads, the slope of the fitted curve is 

not the same for minor and principal roads, being clearly lower on the latter case. This means 

that, in cities, from a certain threshold on, further gains in centrality will result only in marginal 

gains in movement. This is a clear sign of a saturation effect – a sudden and sustained decrease 

in the rate of response of one variable regarding the other. And the saturation threshold 

coincides with the minimum centrality level of principal roads; or, in other words, of the 

foreground network. 

The saturation pattern for urban roads shown on Figure 13 implies that, in cities, there is a 

sudden change from a system where low movement intensities increase gradually with 

centrality – that is, the background network; to another system where centrality is high, but 

where there is always lots of movement, with a more uniform intensity and least dependent on 

(thus, least correlated with) centrality variance – that is, the foreground network. The pattern 

itself (formed by observations made in all Britain’s cities) may indeed be seen as a signature, 

both structural and functional, of the dual network model of urban form proposed by space 

syntax. Moreover, this effect is entirely absent in rural areas. Thus, Figure 13 also provides new 

and suggestive evidence of the existence of intrinsic differences (both structural and functional), 

between urban and rural road networks. 

The lower dependence between the variances of movement and centrality in the foreground 

network of cities explains the lower correlations detected in the ‘principal urban’ roads sub-

sample (see Figure 7). Indeed, notwithstanding the high movement intensities observed on 

those roads, the direct relationship between movement and centrality partially breaks down 



there, as if another variable was constraining it. We suggest this to be an effect of the spatial 

constraints that exist on cities, namely regarding existing road capacities and their potential 

increase. 

We further explore this hypothesis with another dataset3 (DfT 2017), containing the width of 

the space available for vehicular circulation of principal roads (both urban and rural), at each 

count location. We use multiple regression to study the inter-dependencies and relative 

importance of three factors, for predicting observed movement in urban and rural principal 

roads (Figure 14). These three factors are: metric betweenness centrality at radius 75 Km (noted 

as BCm75k, in Figure 13), angular betweenness centrality at radius 75 Km (noted as BCa75k) and 

local road capacity (noted as Width).  

Figure 14 reports the results of eight OLS regression models, describing the impact of each 

movement predictor, in urban and rural principal roads. Each variable is inserted sequentially 

into the models (see column ‘Step’ on Figure 13), in order to observe the change in two 

parameters: the standardized β coefficient (measuring the effect of each predictor on the 

dependent variable); and the change in R2 (ΔR2) when a variable is inserted last in the model 

(corresponding to its individual contribution in terms of explained movement variance, while 

controlling for the variable inserted first). 

Metric centrality is always a worse movement predictor than road capacity in principal roads, 

both urban and rural (models 1.4 and 2.4, respectively). The same is not true for angular 

centrality. Although in principal rural roads angular is capable of explaining more variance than 

width (model 2.1), the situation is inverted in principal urban roads, with width explaining a 

larger portion of movement variance (model 1.2). This seems to support the hypothesis that, in 

the foreground network of cities (i.e. on urban principal roads), the relationship between spatial 

centrality and movement is constrained by extant road capacities.  

 
Fig.14 – Multiple-regression models, exploring the variances explained (ΔR2) by each of the movement predictor 

variables (BCa75k, BCm75k and Width), while controlling for the others. 

Movement potential, as expressed by network centrality, is a more primitive and more 

fundamental characteristic than road capacity. Intuitively, one would expect the latter factor to 

be determined by the former and this must indeed be so, if no other spatial constraints are 

present (as it is the case with rural settings). However, urban space is by definition scarce and 

urban streets, when completely delimited by buildings, create very strong limits to further 

                                                           
3 This dataset was obtained by personal communication (Richard German, October 28, 2016), through the email 

address ROADTRAFF.STATS@dft.gsi.gov.uk. 
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increases in road capacity. We thus provisionally propose that the saturation pattern shown on 

Figure 13, is the product of the spatial constraints characteristic of cities, which impose 

restrictions on the direct centrality / movement relationship.  

This new insight, which is only touched upon here, will be theme for further research. But the 

finding of the foreground network’s saturation regime sheds new empirical light on the dual 

model of urban form proposed by space syntax. It shows that the foreground network, more 

than just a main web of movement, may be seen as a whole phenomenon on its own right, highly 

differentiated from the rest of the city, both functionally and structurally. 

4.2 Bicycles 

Despite the much smaller representativeness of the ‘cycles’ vehicular class (0.95% of the 

counted vehicles), we have found that it yielded a very different correlation pattern with the 

two types of centrality. In contrast with the remaining observed traffic, cycles produced very 

small differences between the correlations with metric and angular centrality, which in some 

cases were actually non-significant. Such an undifferentiated behaviour demands of course 

some reflexion.  

Previous space syntax studies addressing cyclist flows have found significant correlations with 

angular centrality indicators, but always in conjunction with other variables in multiple 

regression models. Studying cycles flows in two central London local areas, (Raford et al. 2007) 

report significant correlations of R2=0.67 and R2=0.76, with angular closeness centrality 

combined with segment length and a dummy variable representing the presence of cycling 

lanes. Also in a London local area, (Law et al. 2014) report a coefficient of R2=0.66 for angular 

betweenness also combined with the presence of cycling lanes. However, these two studies did 

not contemplate the option of introducing metric-defined centrality measures in their models. 

Cooper (2017) uses a complex version of network distance, including metric and angular 

distance factors mixed with road slope and traffic volumes, for calculating betweenness 

centrality on Cardiff’s entire street network. The author reports a maximum association of 

r=0.78 (R2=0.61), between the composite betweenness centrality measure and observed cyclists 

flows.  

Although the results of these studies are hardly comparable in numerical terms, we note that 

the range of the detected effect sizes is similar. In this paper, the maximum effect sizes observed 

for the ‘cycles’ class of vehicles were ρ(A) = 0.72 and ρ(M) = 0.73, at radius 5Km, in the ‘all 

principal’ roads sub-sample. This coefficients are lower than the ones cited before (as they are 

were not squared), but our sample is also much larger. Also, we use simple bi-variate 

correlations and not multiple regression models. But the main difference is that the above 

mentioned studies do not compare the performances of angular and metric centrality and thus 

do not provide information on that regard. Our main finding regarding ‘cycles’ does not concern 

the size of the maximal effects obtained with angular and metric centralities (which were large, 

at any rate), but rather the fact that the differences between such effects were negligible.     

Discrete choice modelling of cyclists’ route preferences (Broach et al. 2012) shows that cyclist 

route choice is idiosyncratic and influenced by many factors. Metric distance seems to be by far 

the most important negative factor, followed by a clear aversion for high traffic volumes and 

strong slopes. However, cyclists are also sensitive to turn frequency, preferring simple routes. 

Our results seem to be in line with these findings, with metric distance postdicting marginally 

better the observed cycles flows, but being followed very closely by angular distance. We 



suggest that the minimal differences observed between the two distance types, should reflect 

the overlap of the negative and positive factors mentioned above. 

Moreover, the studies reviewed above covered only local urban areas (except Cooper 2017), 

where dense sampling (i.e. count locations on almost every street) is practicable. These 

enhanced sampling densities can produce results different from ours, for cyclists are not 

restricted to the spaces of motorized circulation and may thus follow less predictable routes. As 

it is the case of pedestrian movement, the study of cyclists’ movement may depend on samples 

with high spatial resolution, which is not the case with ours. In this sense, the inconclusiveness 

of the ‘cycles’ results clearly points to the need to investigate the theme of cyclist movement 

more intensely, in order to understand the roles of angular and metric factors in it. 

5. CONCLUSIONS 

We started by identifying an epistemological divide within the field of street and road network 

analysis, concerning the way network distance should be conceptualized – through metric or 

angular means. We associated each type of network distance to two different physical 

properties of network paths, namely their energetic cost (for metric distance) and their 

information content (for angular distance), and we identified the theoretical assumptions they 

imply regarding street and road networks. We then formulated our research questions, asking: 

i) are there correlational differences between the network hierarchies induced by the two 

distance concepts and the actual functioning of street and road networks?  ii) assuming such 

differences exist, how do they change across geographical and road hierarchical contexts, and 

among different types of vehicles? 

In order to answer these questions, we carried out a comprehensive correlational study, using 

the full UK’s road network and a very large movement dataset, with more than twenty thousand 

observations distributed throughout UK’s mainland, covering both urban and rural areas. 

Answering our first research question, we can now state with great confidence that the network 

hierarchy induced by angular distance emulates clearly better the actual usage of the UK’s road 

network. In other words, that when it comes to describe the network hierarchy with real 

functional meaning, the geometric descriptive complexity of network paths (i.e. their 

information content) is more relevant than their metric length. This was observed at the scale 

of an entire country, leaving no reasonable doubt of the validity and generability of the result. 

The distribution of vehicular movement within road and street networks is indeed deeply related 

with the geometric properties of the network itself. 

Besides providing strong empirical support to space syntax’s theoretical and methodological 

proposals described in the introduction, this result has also implications for the modelling and 

analysis of street networks at large. We found that angular distance produced an average 

relative increase of 21% in the correlation coefficients, which is a significant accuracy 

improvement. Current or future analytical models who ignore this, are prone to include an 

unjustified amount of error.  

The answer to the second research question is that there are indeed variations in the correlation 

coefficients observed in different geographies, types of roads and types of vehicles. Firstly, the 

results mentioned above are indisputable for “all motor vehicles” (representing 99.05% of the 

observed traffic), but not for the “bicycles” vehicle class. Even though bycicles represent only 

0.95% of the observed traffic, they yielded either non-significant or very small differences (both 

positive and negative) between correlation coefficients. This indicates that bicycles behave 



differently from all other vehicles, which is something that demands further scrutiny. Secondly, 

the prevalence of angular over metric distance is stronger in principal roads than in minor ones 

(both in urban and rural contexts). This in turn provides strong support to space syntax’s 

prediction that road networks are hierarchized according to the principle that higher order paths 

will be geometrically simpler than lower order ones. 

However, we also found that this last effect was less clear in urban than in rural roads. When 

trying to ellucidate this fact, we found that the bivariate relationship between movement and 

centrality is intrisically different in rural and urban contexts, being simply linear in the former 

case, but monotonic and with two different regimes of association in the latter case. These two 

regimes occur in the background and foreground networks of cities, with the transition from 

one network tier to the other corresponding to a sudden decrease in the rate of response of 

movement to increased centrality. This breakdown was interpreted as a saturation effect of the 

urban foreground network, most probably caused by spatial constrains to potential increases in 

road capacity. At any rate, the conspicuity of such pattern in cities and its total absence in rural 

areas, provides a new functional and structural distinction between urban and rural road 

networks, as well as further evidence supporting space syntax’s dual network model of urban 

form. 

Finally, we would like to mention what we believe is the main takeaway of this paper. Namely, 

that when it comes to understand the nature and the functioning of street and road networks, 

geometry matters. The reason it matters, seems to be its capability of modulating the hierachy 

of the network according to the information content of network paths (by making the descriptive 

complexity of higher-order paths smaller). And because of this regularity, information about that 

global hierarchy becomes available also locally, through the generic geometric properties of 

each location on the grid. That these properties must have their value for the navigation of street 

networks, seems highly probable. But here we have shown that, prior to anything else, they are 

inscribed in the geometry of network itself. 
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