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We investigate the quantum melting of one-dimensional crystals that are realized in an atomic lattice in which
ground state atoms are laser excited to two Rydberg states. We focus on a regime where both, intra- and interstate
density-density interactions as well as coherent exchange interactions contribute. We determine stable crystalline
phases in the classical limit and explore their melting under quantum fluctuations introduced by the excitation laser
as well as two-body exchange. We find that within a specific parameter range quantum fluctuations introduced
by the laser can give rise to a devil’s staircase structure which one might associate with transitions in the classical
limit. The melting through exchange interactions is shown to also proceed in a steplike fashion, in the case of
small crystals, due to the proliferation of Rydberg spin waves.
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Introduction. A long-standing topic in the study of
condensed matter physics is the melting of low-dimensional
crystals that consist of interacting particles. In two dimensions
(2D), it is widely accepted that thermally driven melting from
a crystal to a liquid is a two-step procedure mediated by a
hexatic phase according to the Kosterlitz, Thouless, Halperin,
Nelson, and Young (KTHNY) scenario [1]. Interestingly,
melting of quasi-one-dimensional (quasi-1D) crystals can
proceed through either first- or second-order transitions,
depending on the system parameters [2]. Both situations are
different from three-dimensional crystals which melt via a
first-order transition as predicted by Landau’s mean-field
theory [3]. Despite this broad understanding in the classical
limit only little is known about the melting of crystals through
quantum fluctuations.

In recent years there has been a growing effort to address the
dimension-dependent crystallization and its melting by using
ultracold atomic and molecular gases. In 2D systems of cold
polar molecules first-order superfluid-to-crystal transitions
[4,5] and the effect of quantum fluctuations on the formation
of a hexatic phase [6,7] have been theoretically investigated.
In systems of Rydberg atoms, crystalline phases [8–17] and
their melting [18–20] have attracted intensive attention and
the experimental preparation of crystalline ground states
(GSs) was reported [21] recently. The mechanism behind the
quantum melting of a single-component Rydberg crystal in 1D
is a two-stage process [18] (similar to the KTHNY scenario),
where a commensurate solid with true long-range order melts
to a floating solid with quasi-long-range order, and finally to a
liquid phase.

The goal of this work is to shed light on melting mechanisms
of 1D crystals in a physical setting in which two species of Ry-
dberg atoms are excited. Such multicomponent Rydberg gases
currently receive much attention [22–30]. More importantly,
the choice of this setting is that it permits the investigation
of local and nonlocal quantum melting, driven by single- and
two-body processes, respectively. Atoms in Rydberg states
experience strong van der Waals (vdW) type spin flip-flop
(exchange) interactions, which can be comparable to their
inter- and intrastate density-density vdW interactions [31–33].
Crystalline phases that are stabilized by the density-density

interaction are melted by the laser coupling (local melting)
and spin exchange (nonlocal melting), respectively. In the case
of the local melting, the order parameter undergoes either
a smooth or an abrupt (first-order) transition. In the latter
situation, the steplike structure resembles a devil’s staircase
that is typically observed in classical crystals [34] but not in the
quantum regime. To shed light on the nonlocal melting process,
we consider a parameter regime where only Rydberg states
contribute to the many-body GS. Here the 1D Rydberg gas
is described by the Heisenberg XXZ model. We demonstrate
that a small Rydberg crystal is melted by the proliferation
of delocalized Rydberg spin waves, which also gives rise
to discontinuous changes of the order parameter. Eventually,
we identify specific configurations with which the quantum
melting explored in this work can be realized experimentally
with rubidium atoms.

The system. We consider atoms held in a 1D deep optical
lattice (lattice spacing d and number of lattice sites L) with
one atom per site. Each atom consists of three electronic
states |0〉, |1〉, and |2〉. As shown in Fig. 1(a), the atomic GS
|0〉 is laser coupled to the Rydberg state |1〉 (|2〉) with Rabi
frequency �1 (�2) and detuning �1 (�2). The detuning �1

(�2) effectively acts as a chemical potential for the state
|1〉 (|2〉). For two Rydberg atoms located on sites j and k,
we parametrize their intrastate and interstate density-density
interaction by V

(α)
j,k = Vα/(j − k)6 and Uj,k = U/(j − k)6,

and the exchange interaction by Wj,k = W/(j − k)6, where
Vα = Cα/d6 (α = 1,2), U = Cd/d

6 and W = Ce/d
6 denote

the corresponding nearest-neighbor (NN) interactions. Here
Cα , Cd, and Ce are the respective dispersion coefficients. This
yields the following Hamiltonian for the system, which we
write as the sum of a classical (Hc) and a quantum (Hq) term:

H = Hc + Hq,
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∑
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FIG. 1. (a) The system. Atoms are held in a 1D optical lattice. The
atomic ground state |0〉 is laser excited to the Rydberg state |1〉 (|2〉)
with Rabi frequency �1 (�2) and detuning �1 (�2). For two Rydberg
atoms sitting at site j and k, their intrastate, interstate, and exchange
interactions are V

(α)
j,k (α = 1,2), Uj,k , and Wj,k , respectively. See text

for details of the interaction potential. (b) Dispersion coefficients of
the intrastate (C1,C2) and interstate (Cd) vdW interaction as well as
exchange interaction (Ce) for two Rydberg S states of rubidium as a
function of the principal quantum number n2. We fix n1 = 50, which
yields C1 = 13.7 GHz μm6. Note the interstate density-density vdW
interaction Uj,k and exchange interaction Wj,k appear in the classical
and quantum parts of the Hamiltonian, respectively [see Eq. (1)].

The local operators on site j are given by n
(α)
j =

|α〉j 〈α|, σ
(α)
j = |α〉j 〈0| + |0〉j 〈α|, σ

(+)
j = |2〉j 〈1|, σ

(−)
j =

|1〉j 〈2|, where α = 1,2 denotes the two Rydberg states. We
denote Hc as classical as it contains only diagonal operators
n

(α)
j acting on the local single particle Hilbert spaces. The

quantum part Hq, on the other hand, contains the off-diagonal
operators σ

(α)
j , σ

(+)
j , and σ

(−)
j . There is a large flexibility

in tuning laser parameters (�1, �2, �1, �2). The strength
of the vdW interaction is fixed by the specific choice of
Rydberg states (see discussion towards the end of the Rapid
Communication). For convenience, energies will be scaled
with respect to the NN interaction V1 in the following.

Classical two-component Rydberg crystals. In the follow-
ing we will investigate the nature of the GS in the classical
limit, Hq = 0. Note that certain aspects of this have been
addressed by some of us in previous works [35,36], which
were, however, limited to very specific parameter values,
i.e., V2 � V1 and U = W = 0. There it was shown that the
presence of the strongly interacting species (V2) can lead to
frustration effects preventing the weakly interacting species
(V1) from assuming its lowest energy configuration.

To understand the coarse structure of the classical crys-
talline GS configurations, we will for the moment approx-
imate the vdW interactions as NN interactions. Using the
technique of irreducible blocks (see [37] for an introduction to
the technique and [38] for the original reference), seven pos-
sible irreducible blocks {0,1,2,01,02,12,012}) are identified,
which provide the unit-cell structure of GS crystals. Their
energy densities can be found analytically and are summarized
in Table I. Note that the phase VII cannot be the GS of the
system for any set of parameters, due to EII + EIV + EVI =
3EVII, i.e., its energy is always larger than at least one of the
other phases.

TABLE I. The seven possible crystalline phases of Hc and their
corresponding energy densities.

Label Configuration Energy density

I 000 · · · EI = 0
II 101010 · · · EII = −�1/2
III 111 · · · EIII = −�1 + V1

IV 202020 · · · EIV = −�2/2
V 222 · · · EV = −�2 + V2

VI 121212 · · · EVI = (−�1 − �2 + 2U )/2
VII 012012012 · · · EVII = (−�1 − �2 + U )/3

In Figs. 2(a)–2(e), we present phase diagrams in the �1-�2

plane for different values of the interstate interaction U . In
each situation, the crystal configuration can be changed from
one containing no Rydberg excitation, to a single-component
or a two-component Rydberg crystal, by modifying the laser
detuning �1 or �2. When comparing these panels, the relative
areas occupied by different phases are modified by U . For
examples, the region occupied by the composite crystalline
phase VI first shrinks and finally disappears when U increases
from −5V1 to 3V1 (the phase diagram no longer changes when
U � 3V1).

Let us now investigate the effect of the tail of the vdW
interaction on the classical GS phase diagrams of Figs. 2(a)–
2(e). In 1D (single-component) Ising models, it has been
shown that such algebraically decaying potentials lead to
the formation of a devil’s staircase [34]. This is a fractal
structure whose steps (or plateaus) are defined as the stability
regions of configurations with specific rational filling fractions
(density of excitations). Such structure is also formed in the
two-component system in the vicinity of the phase boundaries

FIG. 2. Ground state phase diagrams of the classical Hamiltonian
Hc for U = −5V1 (a), 0 (b), 0.5V1 (c), 2V1 (d), and 3V1 (e), obtained
by explicitly checking which configuration of the crystalline phases—
as listed in Table I—has the lowest energy density for given �1,2.
We consider here only the NN interaction and set V2 = 5V1. Panel
(f) shows a magnification of the staircase structure in the vicinity
of (�1,�2) = (10,−2)V1 along �2 as marked in (a) that emerges
when including the vdW tail. Here we display the populations, fα =∑L

j=1 n
(α)
j /L, of the atomic state |α〉.
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displayed in Figs. 2(a)–2(e). As an example, we calculate
stable classical crystalline phases in the transition region
between the phases III and VI, around the point marked in
Fig. 2(a). The calculation is done by explicitly checking which
rational filling fraction, of the form f = p/q (with p � q

and maximal q = 13) of an infinite system with period q,
has the lowest energy per site [17]. Performing calculations
with large q > 13 makes the numerics more tedious and also
adds little information to the coarse structure of the staircase
as stable configurations with large q normally correspond
to high commensurate phases with very narrow steps. In
Fig. 2(f) we display the populations of the atomic states, fα =∑L

j=1 n
(α)
j /L, (α = 0,1,2)—which in the following serve as an

order parameter—as a function of �2. We observe a number
of steps—reminiscent of a devil’s staircase structure—on each
of which the components of order parameter assume rational
values different from those corresponding to the phases of
Table I. Hence each plateau represents a new crystalline
phase with narrower stability region. For example, the second
largest plateau corresponds to f1 = 2/3 (or f2 = 1/3). Its
length along the �2 axis is 0.63V1, which is only about
2% of the phase VI. An open question is whether our
two-component system can indeed form a complete devil’s
staircase [34].

Laser induced local melting. It was found that the laser
induced melting of a single-component Rydberg crystal is a
continuous and two-stage process [18,19]. In contrast, we will
illustrate here that such local melting of a two-component
Rydberg crystal can proceed via a series of discontinuous
transitions. To this end, we consider the case in which the
exchange interaction between Rydberg states can be neglected.
We begin by numerically diagonalizing a finite size system
with L = 10. The parameters of the laser driving the |0〉-|1〉
transition [see Fig. 1(a)] are fixed to �1 = 0 and �1 = 10V1

such that the accessible classical phases are given by the
configurations III, V, and VI [see Figs. 2(a)–2(d)]. The
crystal melting is then solely effectuated by the second laser
whose Rabi frequency �2 we vary. With this particular set of
parameters (i.e., �1 = 0 and varying �2), atoms in state |1〉
remain essentially “classical” while the states |2〉 and |0〉 form
a superposition that ultimately leads to the quantum melting of
classical crystalline states. We will discuss the effect of finite
�1 on the melting process further below.

The components fα of the order parameter are shown
in Figs. 3(a)–3(c). Additional cuts along �2 = −10V1 are
provided in Fig. 3(d). The data indicate a number of sharp
jumps reminiscent of first-order transitions that start from
the classical limit (�2 = 0) and extend into the quantum
regime. For example, in Fig. 3(d), when �2 is smaller than
a critical value �L ≈ 11.9V1, the GS is formed by atoms in
state |1〉—the phase III—and the laser �2 in fact has no effect.
However, once �2 > �L, all three atomic states are populated
suddenly, such that f1 = 0.5 remains constant, while the other
two vary smoothly with respect to �2. By further increasing
�2 one reaches a second critical value �H ≈ 15V1, from which
onwards the population of |1〉 is completely suppressed and
f0 and f2 change smoothly. Contrary to the above situation,
melting of the V phase [Fig. 3(e)] proceeds smoothly since
this corresponds to the melting of a single-component Rydberg
crystal [18] that only involves the states |2〉 and |0〉.

FIG. 3. Laser induced local melting with �1 = 0 while varying
�2. (a)–(c) Populations f0, f1, and f2. The sharp change of
populations clearly demonstrates the first-order nature of the laser
induced melting (in the classical limit the phases III, V, and VI
are marked by arrows). The considered Rydberg states are n1 = 50
and n2 = 57 (such that W � 0; see Fig. 1) and �1 = 10V1. The
data is obtained by the exact diagonalization of a finite lattice with
L = 10 under periodic boundary conditions, where the tail of the vdW
interaction is included in the numerics. In panel (d), the first-order
transition is clearly visible. In panel (e), a smooth melting transition is
shown. The mean-field results (solid lines) with only NN interactions
agree well with the numerical diagonalization results (circles). (f)
Magnification of the devil’s staircase in the vicinity of �2 = 11.9V1

as shown in panel (d). To resolve next largest plateaus at f1 = 2/3
and 3/4, a larger lattice with L = 12 was chosen for the calculation.
Note that the staircase structure vanishes for finite values of �1 as
can be seen in the inset of panel (d). Here �1 = V1 with all other
parameters being the same as in (d).

The observed phase diagram is largely captured by a
mean-field (MF) theory where we write the site-decoupled GS
wave function as |�〉 = ∏

i ⊗(ai |0〉i + bi |1〉i + ci |2〉i) [39].
To illustrate the main mechanism we will again consider for
the moment only NN interactions and as the unit cell occupies
at most two sites with only NN interactions (see Table I), the
period of the wave function is two sites. The order parameter
obtained from the MF calculation is in very good agreement
with the diagonalization results [see Figs. 3(d) and 3(e)].
MF further corroborates the first-order nature of the observed
transitions: when 0 < �2 < �L, the wave function of a unit
cell is given by a simple Fock state |ψA〉 = |11〉. However,
the wave function becomes |ψB〉 = α|10〉 + β|12〉 (α and β

are normalization constants) when �L < �2 < �H. The order
parameter jumps at �L as the two wave functions cannot be
smoothly connected by merely varying α and β. This also
highlights the nature of the first-order transitions driven by �2:
the �2 term of the Hamiltonian is minimized by a superposition
of states |0〉 and |2〉. Increasing �2 (across �L) makes phase
III energetically unfavorable and leads to a partially crystalline
phase. Here one of every two sites is occupied by atoms in
state |1〉 and the other one is in a superposition of states |0〉
and |2〉. This is clearly different from the first-order transi-
tions observed in the classical limit where no superposition
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happens. Consequently, this partially crystalline phase features
both crystalline antiferromagnetic correlations for state |1〉
and exponentially decaying density-density correlations for
state |2〉.

Though driving by a quantum term �2, the tail of the
vdW interaction leads to the emergence of a devil’s staircase
in the vicinity of the transition points for state |1〉, which
behaves classically as �1 = 0. The corresponding numerical
data around �2 = �L is shown in Fig. 3(f). Here multiple
plateaus emerge between the two main plateaus corresponding
to f1 = 1 and f1 = 0.5. Transitions between plateaus proceed
similarly to the discussion above: on each plateau atoms in
the state |1〉 form a crystalline structure, whose staircase has
the same pattern as its classical counterpart [see Fig. 2(f)].
However, the sites that were originally occupied by an atom in
state |2〉 now enter a superposition state and “melt.” We would
like to point out that the staircase of f1 displayed in Fig. 3(f),
exhibits the same plateaus as its classical counterpart given in
Fig. 2(f). The steps in the population are thus physical and a
consequence of the “classical species” (in state |1〉) adapting
its density in order to achieve the overall lowest energy state
of the system. Quantum fluctuations introduced by a finite
coupling �1 smear out the staircase. This is shown in the inset
of Fig. 3(d).

Exchange interaction induced nonlocal melting. To discuss
the nonlocal melting we consider a regime where only the
two Rydberg states play roles in the physics. This is achieved
when �α = 0 and �α (α = 1,2) is sufficiently large, such that
classically the GS can only be one of the phases III, V, and VI.
With this choice of parameters, the state |0〉 is never populated
even when the many-body GS is away from the classical limit.

First we focus on a simplified situation in which the three
relevant interactions are of equal strength, i.e., V2 = U = V1.
By numerically diagonalizing the Hamiltonian (1), we obtain
the GS phase diagram of a small crystal of L = 10. According
to the population f1 plotted in Fig. 4(a), the system is in
the crystalline phase III (V) when �2 is negative (positive)
and |�2| � W . From the crystalline phase, f1 jumps abruptly
when we scan either W or �2. For example, when increasing
�2 along the vertical arrow shown in Fig. 4(a), the phase III
melts at the first jump and the new many-body GS contains
one more excitation in state |2〉. This process repeats at every
jump until f2 = 1 (f1 = 0), i.e., the phase V.

To understand this melting pattern, we project Hamiltonian
(1) to the subspace of the two Rydberg states and consider
only NN interactions for simplicity. This reduces the system
to a spin-1/2 Heisenberg XX model with a field along the σz

direction,

HXX =
∑

i

W

2

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) + hσ z
i + C, (2)

where h = (−V1 + V2 + �1 − �2)/2, C = (V1 + V2 +
2U − 2�1 − 2�2)L/4, and σ

ξ

i (ξ = x,y,z) are the Pauli
matrices for the two Rydberg states on site i.

This Hamiltonian can be analytically solved which permits
one to show that the melting of phase III (V) is due to a prolif-
eration of Rydberg spin wave states. To be concrete, we will
focus in the following on the melting of phase III, whose wave
function is given by |�G〉 = 
L

k ⊗ |1〉k . The eigenstates |�N 〉

FIG. 4. Population f1 for U = V1 (a), −2V1 (b), and 2V1 (c).
The red (solid and dashed) lines in (a) are the analytic results with
only NN interactions from Eq. (3). Other parameters are V2 = V1,
�1 = �2 = 0, and �1 = 5V1. (d)–(f) Populations f0, f1, and f2 for
the experimental relevant case: two Rydberg S states of rubidium
with principal quantum numbers n1 = 50 and n2 = 51 [see data in
Fig. 1(b)]. The melting of phase III (V) can be probed by changing
�2 (�1) along the vertical (horizontal) arrow in (e). The tail of the
vdW interaction is included in the numerical diagonalizations.

of Eq. (2) that contain a fixed number N of spin excitations in
state |2〉 can be explicitly calculated. For example, for N = 1,
|�1〉 = 1/

√
L

∑
j σ

(+)
j |�G〉 is a spin wave where the single ex-

citation in state |2〉 is shared by all the atoms in the lattice. From
the eigenenergies Emin

N = V1 − �1(L − N )/L − �2N/L −
2W sin(Nπ/L)/[L sin(π/L)] [40], we obtain the transition
from N to N + 1 excitations by varying the detuning �2,

�2 = �1 − 2W

sin(π/L)

[
sin

(N + 1)π

L
− sin

Nπ

L

]
. (3)

These steps [see red solid and dashed lines in Fig. 4(a)] agree
well with the position steps that were found in the numerics.
The analytical results indicate that the crystal phase |�G〉
(i.e., phase III) switches to the delocalized spin wave state
|�1〉 when we increase �2 (fixing W ). The transition points,
determined by �2 = �1 − 2W , are highlighted by the two
dashed lines in Fig. 4(a). Note, that the steplike structure
appears only for small sizes which are in fact relevant for
current experiments [21]. For macroscopic sizes the energy
gaps between spin wave states vanish and the excitation
density will vary continuously as a function of W .

Away from the special point V2 = U = V1, the system
is described by a Heisenberg XXZ model, HXXZ = HXX +
Vz

∑
i σ

z
i σ z

i+1 with Vz = (V1 + V2 − 2U )/4, whose engineer-
ing in controllable quantum systems has attracted increased
attention recently [41–46]. Here the presence of the σ z

i σ z
i+1

interaction terms changes the phase diagram structure. Two
examples with U = ±2V1 and V2 = V1 are shown in Figs. 4(b)
and 4(c). Although the phase boundary changes, the melting
of the crystalline phase III (V) also proceeds through the
proliferation of spin wave excitations, which has been verified
by analyzing both the Hamiltonian (1) and the effective
Hamiltonian HXXZ .

Experimental implementation of the quantum melting.
Local melting is induced by controlling the excitation strength
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of Rydberg states. This has been realized in optical lattices or
microtraps by several experimental groups [21,30,47–56]. In
the following, we will focus on how to realize the nonlocal
melting, which solely depends on the presence of two-body
exchange interactions. One possible way to establish strong
exchange interactions is to choose two Rydberg S states
whose principal quantum numbers nα differ by 1 [33]. For
example, dispersion coefficients for rubidium and n1 = 50
and n2 = 51 are C1 = 13.7 GHz μm6, C2 = 17.4 GHz μm6,
Cd = 26.4 GHz μm6, and Ce = 21.9 GHz μm6. Alternatively,
one could utilize the so-called Förster resonance to generate
strong exchange interaction. In this case one can even tune the
two-body interaction from a van der Waals to dipolar type with
external electric fields [57].

In the following, we will illustrate how to observe the
nonlocal melting by using an example with the Rydberg 50S

and 51S states. For lattice spacing d = 3 μm [51], we obtain
a NN interaction of V1 ≈ 18.8 MHz. Since the two-body
interactions are fixed, the nonlocal melting can be studied by
changing the laser detunings �1 and �2. In Figs. 4(d)–4(f), we
present populations fα of the states |0〉, |1〉, and |2〉 calculated
with these parameters. Note that compared to the ideal situation
shown in Figs. 4(a)–4(c), the state |0〉 is in fact populated in
certain parameter region [see lower-left corner in Fig. 4(d)].
To probe the melting through spin wave proliferation of the

Rydberg state, we have to avoid this parameter region. For
example, one finds that f1 = 1 when �1 = 2.5V1 and �2 = 0.
From here, we can then observe the melting of phase III by
increasing �2 as indicated by the vertical arrow in Fig. 4(e)
[see also Fig. 4(a)].

Outlook. The goal of our study was to shed light on the
nature of multicomponent Rydberg crystals and in particular
their melting under different kinds of quantum fluctuations.
We found that, surprisingly, the quantum melting can proceed
via first-order phase transitions through a sequence of steps
on a devil’s staircase. The second melting mechanism, which
proceeds through the proliferation of spin waves, could
potentially be employed for the deterministic creation of
single- and multiphoton states [58–60].
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[36] E. Levi, J. Minář, and I. Lesanovsky, J. Stat. Mech. Theor. Exp.

(2016) 033111.
[37] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.94.051603 for an introduction to the method
of irreducible blocks.

[38] T. Morita, J. Phys. A 7, 289 (1974).
[39] B. Vermersch, M. Punk, A. W. Glaetzle, C. Gross, and P. Zoller,

New J. Phys. 17, 013008 (2015).
[40] A. De Pasquale and P. Facchi, Phys. Rev. A 80, 032102 (2009).
[41] A. Kay and D. G. Angelakis, Europhys. Lett. 84, 20001 (2008).
[42] P. Hauke, F. M. Cucchietti, A. Müller-Hermes, M.-C. Bañuls,
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