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Abstract: Thanks to the use of geolocated big data in computational social science research, the spatial
and temporal heterogeneity of human activities is increasingly being revealed. Paired with smaller
and more traditional data, this opens new ways of understanding how people act and move, and how
these movements crystallise into the structural patterns observed by censuses. In this article we
explore the convergence between mobile phone data and more traditional socioeconomic data from
the national census in French cities. We extract mobile phone indicators from six months worth of
Call Detail Records (CDR) data, while census and administrative data are used to characterize the
socioeconomic organisation of French cities. We address various definitions of cities and investigate
how they impact the statistical relationships between mobile phone indicators, such as the number of
calls or the entropy of visited cell towers, and measures of economic organisation based on census
data, such as the level of deprivation, inequality and segregation. Our findings show that some mobile
phone indicators relate significantly with different socioeconomic organisation of cities. However,
we show that relations are sensitive to the way cities are defined and delineated. In several cases,
changing the city delineation rule can change the significance and even the sign of the correlation.
In general, cities delineated in a restricted way (central cores only) exhibit traces of human activity
which are less related to their socioeconomic organisation than cities delineated as metropolitan areas
and dispersed urban regions.
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1. Introduction

1.1. The Single-City Focus of Urban Sensing

The quantitative analysis of mobile phone records [1], smart card traces [2], or credit card
transactions [3,4], is increasingly revealing the regularities behind human daily practices, such as
mobility or social interactions (e.g., [5,6]), very often in an urban context. The main advantages of
passive big data are well known and consist of, among others, the reduction of collection and treatment
cost, the increase of sample sizes, and the possibilities for more timely and recurring observations.
In the case of mobility studies, for example, Batran et al. [7] note that: “While traditional survey methods
provide a snapshot of the traffic situation in a typical weekday, mobile phone data can capture weekday and
weekend travel patterns, as well as seasonal variation of a large sample of the population at a low cost and
wide geographical scale”. The disadvantages of such datasets lie in the fact that they suffer from spatial
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and temporal sparseness [8,9], from a lack of—or an unknown degree of—representativeness [10,11],
and from issues regarding anonymity [4].

Within the urban sensing literature, mobile phone data play a prominent role as they form a
source of passively collected information (users do not need to make an explicit action to share their
locations as would be the case in, for example, location-based services or social networks), for large
shares of populations (a large proportion of the world population now owns a mobile device of any
sort), captured at a rather high spatial resolution (in general, the density of cell towers is high in urban
areas). Mobile phone data research in an urban context has been applied to a diversity of individual
cities, or to international comparison of cities: Paris [12]; Maputo [7], Dhaka [8], Santiago [13], Boston
and Singapore [14], London, Singapore and Beijing [2]. Research with a focus on a single city, or a
set of single cities, bears the advantage that it can easily tap into local knowledge when questioning
the quantitative results obtained. This leads to better insights that can be used in urban planning
and policy.

1.2. Mobile Phone Indicators

One problem with the single-city focus is that it cannot ensure that observations made in one
city (usually a capital city of large population) remain valid for other cities. As a consequence, it is
unclear whether findings can be generalized over different types of cities. The creation of mobile
phone indicators avoids this problem. Since mobile phone indicators are typically computed for large
user samples covering multiple cities, the aggregation of individual-level indicators in space allows
to compare findings between cities. In addition, mobile phone indicators can be paired with other
datasets to allow multi-variate methods to support interpretation. In the case of mobile phone data,
creating individual indicators is possible at a nation-wide scale (as datasets are mostly provided by
national operators) but it is not a straightforward task. For example, differences in the spatial resolution
of observations make it hard to create comparable indicators for individual mobility [15], and it is
known that home detection methods, which enable the spatial allocation and aggregation of individual
users, still face severe challenges when it comes to validation and error estimation [9,16].

Regardless of the methodological challenges, creating mobile phone indicators and pairing them
with census data is deemed promiscuous by multiple statistics offices and has been performed in the
academic literature on several occasions. Pappalardo et al. [17], for example, show how a mobile
phone indicator on the diversity of movement (the mobility entropy) in France relates directly to the
European Deprivation Index (EDI). Eagle et al. [18] describe the relation between regional calling
patterns and economic development in the UK. Decuyper et al. [19] discuss the relation between calling
and purchase behaviours and food security in a Central African country. Frias-martinez et al. [20]
investigate the relations between several mobile phone indicators (call, movement and purchase
behaviour) and multiple census variables on education, demographics and purchase power in a Latin
American country. With the exception of Vanhoof et al. [15], who study relations between mobile
phone and census indicators for different urban areas in France, one clear shortcoming of these studies
is that their analyses are fixed on the nation-level only, leaving a missed opportunity to explore the
empirical relations between human mobility, social interactions, and the socioeconomic organisation
of cities.

1.3. Sensitivity of Urban Scaling Laws to City Definitions

When intending to compare values of mobile phone indicators between cities, it is important
to have a clear definition of what is considered a city. This is especially true since recent works on
urban scaling and Zipf’s law on census data [21–23] have shown that the delineation of cities can
substantially influence results and interpretations, mainly because areas either included or not in
different delineations have heterogeneous properties. Despite the fact that this issue is traditionally
overlooked (sometimes for good reason, because data is only available for a single delineation), it is
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to suspect that average human activity sensed in general, and mobile phone indicators in particular,
are similarly sensitive to city delineation.

Proceeding one step further to the relations between mobile phone indicators and census data,
one can ask to which degree such relations will be influenced by city definitions. Indeed, what is unclear
from previous work on mobile phone indicators is how statistical relations with census indicators,
whether obtained from a multi-variate analysis at the nation level or in the form of urban scaling laws,
are determined by the way cities are defined. Before this question gets answered, empirically produced
relations will be insufficiently trustworthy to properly engage with theoretical hypotheses such as the
ones about the link between mobility, human interactions and the socioeconomic organisation of cities.

1.4. Research Question and Relevance

Consequently, in this paper, we explore the degree to which relations between mobile phone
indicators and census indicators are sensitive to particular ways of delineating cities. In doing
so, we question the value of mobile phone indicators on mobility and human interactions for
understanding the socioeconomic organisation of cities. To test the sensitivity to city definitions,
we run a parametric simulation of different city delineations in France. Assuming that mobile phone
indicators depict different types of spatial variation compared to socioeconomic urban indicators (e.g.,
calling patterns might be less influenced by infrastructural elements and built-up environment and
therefore more homogeneously spread across the country than, for instance, wages) and building
upon recent empirical work that highlights the influence of city definition when assessing scaling
laws [21,23], our hypothesis is that city definitions will influence empirical relations between the
two types of indicators in a non-trivial way. As discussed before, multiple works have uncovered
relations between mobile phone indicators and census data but, to the best of our knowledge, all of
them do so based on one city definition only. If relations are sensitive to city definitions, this would
have considerable implications for their validity, interpretation, and potential use in (predictive)
applications.

Other attempts at describing inequality in cities with big data resorted to mapping and rewiring
credit card spendings [3,24], or geolocated tweets [25]. However we believe that the crossing between
big and small data and the delineation of cities is novel. This paper thus contributes to the literature
by assessing the variability of mobile phone data with the socioeconomic structure of cities: we show
for example that high numbers and diversity of contacts are “explained” for a large part by low levels
of deprivation and segregation, and a higher inequality (economic diversity) in cities, especially when
they are considered in their functional delineation of metropolitan areas (i.e., including commuters).
On the contrary, social activities such as the duration of calls and their nocturnal aspect are left
unexplained by the socioeconomic organisation of cities, whichever way cities are delineated.

2. Data

This section introduces the census and mobile phone indicators we will use in our investigation.
We limit the analysis of census data to three socioeconomic urban indicators chosen for their social
relevance and easy interpretation. They relate to three dimensions of the economic organisation of
cities: their level of poverty (or deprivation), their level of inequality (distribution of wages) and their
level of segregation (spatial distribution of wages) and are introduced in Section 2.1. Regarding mobile
phone indicators we deploy 15 mobile phone indicators derived from a dataset in France covering
aspects of human mobility and social interaction. Their definitions and properties are described in
Section 2.2.

2.1. Census Data on Segregation, Inequality, and Deprivation

The deprivation indicator is measured by the European Deprivation Index (EDI) created for
France by Pornet et al. [26]. The EDI is an individual deprivation indicator constructed from an
European survey specifically designed to study deprivation. It is created as a composite measure
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incorporating information on both subjective and objective poverty and the attribution of the weights
for different contributing factors is done specifically for France.

Wage inequality at the level of the city was computed similarly to Cottineau et al. [27]. The inequality
index is computed using the Gini index method [28] on groups of similar wage earners as described in
the CLAP database holding information on French firms and establishments. The inequality index
measures the overall dispersion in the distribution of wages at the city level, and varies between 0
(extreme equality) and 1 (extreme concentration of wages).

Wage segregation for cities was also computed similar to Cottineau et al. [27], using the Reardon [29]’s
RO index of ordinal segregation for classes of wages retrieved, again, from the CLAP database. This
segregation indicator measures the spatial dispersion of the distribution of wages between communes
of the city, and varies between 0 (homogeneous city) and 1 (extreme segregation by wages in the city).

The distribution of deprivation, inequality and segregation in French metropolitan areas (Aires
Urbaines) is depicted on Figure 1. It shows different spatial logics (size effects for inequality, which is
higher in large cities) and a regional differentiation for deprivation levels and segregation (which are
higher in Northern cities for example).

Figure 1. Maps of deprivation, inequality and segregation levels for metropolitan areas with more than
10,000 residents in 2011.

2.2. Constructing Indicators from the French Mobile Phone Data

To create mobile phone indicators, we use a French mobile phone dataset collected during
the period between 13th May and 15th October 2007. The dataset is owned by Orange and holds
information from the Orange cellular network, which in 2007 consisted of about 18,275 cell towers
nation-wide. The dataset itself consists of Call Detailed Records (CDR), that collect information on the
time, deployed cell tower, initializing user, receiving user and duration/length of each call or text
made by about 18 millions Orange subscribers. The French CDR dataset has been extensively studied
before [9,15–17,30–32] and is one of the largest datasets that guarantee access to individual user data
over such a long time period.

To construct mobile phone indicators from CDR data, a version of the open-source python library
Bandicoot [33] was implemented on the big data infrastructure of the Orange Labs France. For each
user and for each month in the observation period, a set of indicators (Table 1) is computed. Because
indicators at the individual level entail a small but potential privacy risk, user indicators are aggregated
at cell tower level. The aggregation is done for each user and for each month based on the presumed
home location according to a home detection algorithm. We tested two home detection algorithms: the
maximum amount of activities algorithm (home is the cell tower where the user made most mobile
phone actions during a month) and the distinct days algorithm (home is the cell tower where the user
was present the maximum number of distinct days during a month) as defined by Vanhoof et al. [9,16].
The result, for each home detection method, is a distribution of values for all indicators for each cell
tower in the Orange cell network. When comparing results of using the distinct days algorithm to
results when using the maximum activities algorithm, no substantial differences were found. This is
not entirely surprising as results in [9,16] already suggested performance of both algorithms to be only
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slightly different when comparing population counts at the national level, with the performance of
both algorithms being optimal in September [9]. Therefore, we choose to present the remaining results
using the distinct days algorithms, limiting our analysis to September 2007 only. The use of home
detection algorithms entails a separate pre-processing step and is prone to a degree of uncertainty at
nation-wide level and an unknown degree of error at the individual level (as any individual validation
is impossible because of privacy regulations). For the French 2007 dataset, the nation-wide degree
of uncertainty has been extensively described by Vanhoof et al. [9,16], while an estimation of the
individual level error has been estimated in Vanhoof et al. [34] to be around 3 km for median users in
the French 2007 dataset.

Table 1. Description of mobile phone indicators.

Mobile Phone Indicator Description
Number of calls Number of calls made or received
Active days Number of active distinct days
Percentage nocturnal calls Percentage of calls made between 7 p.m. and 9 a.m.
Duration of calls Mean duration of all calls
Inter-event time Mean duration between consecutive calls
Number of contacts Number of contacts interacted with
Interaction per contact Mean amount of interactions per contact
Entropy of contacts * (Equation (3)) Entropy measure of calls to contacts
Number of visited cell towers Number of cell towers used to make calls
Radius of gyration * (Equation (1)) Radius of gyration of movement patterns based on visited cell

towers
Entropy of visited cell towers * (Equation (2)) Entropy measure of visited cell towers
Distance between l1 and l2 Distance between most plausible and second most plausible

’home’ cell tower given a home detection algorithm
Spatial uncertainty Uncertainty measure of the detection of the most plausible

home location
Calls at home Number of calls made at the presumed home cell tower
Percentage calls at home Percentage of calls made at the presumed home cell tower

The definition of most of the mobile phone indicators is straightforward, but some merit a proper
mathematical definition (* in Table 1). The radius of gyration for example, is a measure of a user’s
mobility surface defined as the spatial spread of the cell towers visited by a user relative to his or her
centre of mass, which is defined as the mean point of all his/her visited cell towers [17]:

Radius o f gyration =

√
1
N ∑

i∈L
ni(ri − rcm)2 (1)

where L is the set of cell towers visited by the user, ni is each cell tower’s visitation frequency,
N = ∑i∈L ni is the sum of all the single frequencies, ri and rcm are the vector coordinates of cell tower i
and centre of mass respectively.

The entropy of visited cell towers is a reflection of the diversity of users’ movement pattern. It is
defined as the Shannon entropy of the pattern of visited cell towers [15,17]:

Entropy o f cell towers = −∑l∈L p(l) log p
log N

(2)

where L is the set of cell towers visited by the user, l represents a single cell tower, p(l) is the probability
of a user being active at a cell tower l, and N is the total number of activities of one user.

The calculation of the entropy of called contacts is identical to the entropy of visited cell towers,
only here, the pattern of called contacts replaces the visited cell towers [17]:

Entropy o f contacts = −∑e∈E p(e) log p
log N

(3)
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where C is the set of all contacts of a user, c represents a single contact, p(c) is the probability that the
user is contacting a contact c when active, and N is the total number of activities of one user.

Spatial patterns of the mobile phone indicators computed for September 2007 (averaged over
individuals by cell tower) are presented in Figure 2. Most spatial patterns show a clear urban-rural
dichotomy with, for example, number of active days, called contacts, visited cell tower and number
of calls being higher in city centres where, most likely, mobile phone use was more adopted by the
general population compared to rural areas. An other explanation for the number of antennas visited
might be that their distribution is more dense in cities, thus artificially raising the value for a similar
surface travelled by users. However, this bias was taken into account for the entropy of visited cell
towers. The spatial pattern of the radius of gyration and distance between L1 and L2 stands out but is not
unsurprising. Here, cell tower averages are influenced by users performing domestic tourism (see also
[31]) that have a detected home at the seaside (L1) and a second plausible home location (L2) further
away, resulting in a high radius of gyration value and a high L1–L2 distance. Another intriguing pattern
is visible in the absolute number of calls at home. This pattern remains unexplained but could point to
differences in the adoption of mobile phone technology and the Orange provider between regions. It is
interesting, however, to note that this regional pattern dissolves when looking at the percentage of calls
at home. The relative number of calls at home is rather uniformly distributed in France except for the
extremely remote and rural areas where almost 100% of calls are performed at home.

Figure 2. Maps of several mobile phone indicators at cell tower level. Indicators are computed for
September 2007, for all users in the French CDR dataset. Users are aggregated at cell tower level by the
the Distinct Days Algorithm. Each dot on the map is a cell tower and displays the average indicator
value of all users allocated to this cell tower. Cell towers with an average value that is higher, or lower,
than 3 standard deviations from the nationwide average are omitted, hence the differing number of
displayed cell towers (n) between maps.

3. Methods

In this section we’ll explain the methods used to investigate the sensitivity to city definitions of
the relations between mobile phone indicators and census data. Section 3.1 explains how we align
both types of indicators as they are gathered at a different spatial resolutions. The following sections
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explain how we simulate 4914 different city definitions (Section 3.2), how we compute correlations
between indicators for each of these city definitions (Section 3.3) and how we represent the obtained
results (Section 3.4). In a final section we propose a way to capture the 4914 different city delineations
into a more interpretable set of 6 classes of city definitions. And we show how, for each of these classes,
there exists a limited relation between the three census indicators we use to describe the socioeconomic
situation of cities, pointing out their independence against one another.

3.1. Aggregation: From Cell Towers to Commune to City

In order to compare mobile phone indicators with census data, we need to find a common
perimeter to aggregate the data. Since the majority of census data is available within boundaries
defined by administrative units (communes in France), we choose to extrapolate the mobile phone
indicators (available at the cell tower level) to match the communes boundaries. There is no information
about the exact perimeter each cell tower covers but it is reasonable to assume that phones will log in
to the closest antenna available at all time, thus drawing coverage areas close to Voronoi polygons
around the cell towers.

After building a layer of Voronoi polygons, we intersect it with the layer of commune polygons
using the programming language R. In each of the resulting intersection polygons, we computed the
share of area that the intersection polygon represents with respect to its original cell tower Voronoi
polygon. We allocated the number of users from the original cell tower Voronoi polygons to the
intersections based on the share of area they represented. Finally, the data for communes were
aggregated based on the number of users in each intersection polygon and a weighted average
of all the indicators of mobile phone activity based on the share of users, with respect to the commune
total users.

3.2. Simulating City Definitions

Now that we have mobile phone indicators and census data available at the commune level, we can
simulate different city definitions by grouping communes together, and aggregating their indicators.
We use a generative, parametric method to simulate a range of city definitions. This method is inspired
by the official city definitions in France (which define a city centre based on a minimum density,
a periphery based on a minimum share of commune dwellers commuting to the city centre, and then
apply a population minimum) and has been produced by Arcaute et al. [21] and Cottineau et al. [23].
The method simulates different city delineations by aggregating the French communes into a set of cities
by iterating over three parameters: a density minimum d to define city centres (from 1 to 20 persons
per ha, by steps of 0.5), a minimum percentage f of workers in a commune commuting to this city
centre (from 0 to 100%, by steps of 5) and a minimum population p within the resulting city (from
0 to 50,000, by steps of 10,000). In total, the simulation renders 4914 different city definitions, i.e.,
spatial delineations of aggregated communes (4914 = 39 density thresholds × 21 flow thresholds ×
6 population thresholds). For each city definition we compute for all cities, the total population
considered, the overall inequality (Gini coefficient of wage groups present in the city), the spatial
segregation (of wages groups in the communes, the average deprivation index (EDI) and the weighted
average of the mobile phone indicators based on the communes values with respect to their number
of users.

3.3. Correlations between Mobile Phone Indicators and Census Data

Having prepared mobile phone and census indicators, as well as a method to simulate different
city definitions, we investigate the correlations between mobile phone and census indicators, and their
sensitivity to city definition. Specifically, we investigate the relation between the three census variables
(Gini index, Segregation index and EDI) and all mobile phone indicators in Table 1 for each of the 4914
city definitions. For each combination of census indicator, mobile phone indicator, and city definition,
the Spearman correlation coefficient is calculated based on the point cloud of all cities adhering to the
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deployed city definition. The Spearman correlation on ranks is preferred over the Pearson correlation
as the latter is mainly for linear relationships which is not verified for in the automated computation we
performed. In Section 4.4, we combine the effect of all three aspects of the socioeconomic organisation
of cities into a multiple linear regression of each mobile phone indicator.

3.4. Representing Results for All 4914 City Definitions

Representing the resulting correlations for 4914 city definitions will be done by plotting the
distributions over all 4914 city definitions (Section 4.1) or by constructing heatmaps when discussing
the impact of the simulation parameters d, f , and p (Section 4.3). The coordinates of the heatmaps
are made up of the different thresholds for population (p), density (d) and flow ( f ), i.e., the different
parameters of the city definition, and are coloured according to the obtained Spearman correlation
coefficient. In this way they offer a more expressive view of the correlation and their sensitivity to
different city definitions.

When discussing in further depth the relation between the different socioeconomic variables
and mobile phone indicators (Section 4.4), we will reduce the number of studied city definitions to
a manageable 6 case studies. These 6 case studies correspond to the centres of classes formed by
thousands of city definitions. The clustering of city definitions was performed on a fixed population
minimum (p) of 10,000 residents (the threshold most frequently used in urban system studies [35]),
because we want its focus to be on the density (d) and flow ( f ) thresholds that produce a variation in the
spatial extent of cities amongst city definitions). Fixing the population minimum (p) on 10,000 residents,
the clustering is thus performed on 819 definitions only.

3.5. Clustering City Definitions into 6 Classes

Clustering is based on the similarity of commune membership in cities over different city definitions.
Starting from the membership table of communes to cities in the different definitions, we compute a
dissimilarity matrix of city definitions based on their vector of about 36,000 asymmetric binary values
(indicating if each commune is included or not in a city) and a Gower distance [36]. We then apply a
k-medoid clustering [37] algorithm to the dissimilarity matrix and, judging from the silhouette width
and the groupings obtained, we identify 6 classes (Figure 3) and their centroid.

The most numerous definition (“Urban cores” in green on Figure 3) represents ways of defining
cities which result in very small aggregates. These “urban cores” are obtained either by highly dense
communes with little periphery (right of Figure 3, i.e., high density threshold and middle flow threshold)
or a wider centre with no periphery (top left, i.e., middle density threshold and high flow threshold),
similarly to Unités Urbaines as defined by the French statistical office INSEE. This is the most restrictive
way of thinking about cities and the centroid for this class is obtained with a density minimum of
11 persons per ha and a minimum of 75% of commuters from peripheral communes working in the
centre. The next three classes (going clockwise on Figure 3) stretch through similar values of density
minima but have increasing peripheries (by lowering the percentage needed to attached communes
to the metropolitan centres). We call them “MetroCores”, “MetroMedium” and “MetroWide”. Their
centroids have a similar density minimum (12–12.5) and a decreasing flow minimum (40%, 25% and
10%). With an even lower flow minimum on average, the “Dispersed” class is the furthest away from a
strict view on cities. Indeed, almost all French communes are included in a “city” of some sort according
to this definition, as only a few commuters are sufficient to aggregate peripheral communes to high
population centres. This class is a limit case, represented by a centroid of density minimum of 10 and a
flow minimum of 0. Finally, the “Metropolitan Area” class includes definitions closest to that of the
Aires Urbaines as defined by the French statistical office INSEE. They are characterized by relatively
low density thresholds (from 1 to 8.5 residents per ha) and a limited range of flow thresholds (from
10 to 45%). The city definitions in this class, as exemplified by the centroid case, are generally more
numerous than in the “Metro-*” cases, have always some periphery but exclude the most rural parts
of the country.
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Figure 3. Results of clustering: 6 classes of city definitions (Population > 10,000).

Before continuing on the correlation between mobile phone indicators and indicators of the
socioeconomic organisation of cities, we want to check that the three indicators we picked to represent
this organisation are independent from one another. We look at the Spearman correlation between
deprivation, inequality, and segregation for the centroid city definition of each class, as indicated also
in Figure 3. We find only one correlation with a R2 over 5% (in bold in Table 2): the negative correlation
between inequality and segregation in the ’Dispersed’ class (i.e., the class which is the furthest away
from plausible definitions of cities). This result enables us to consider deprivation, inequality and
segregation as three rather orthogonal dimensions to characterise cities.
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Table 2. Spearman correlations between three census indicators for the centroid definition of all the
six classes.

Deprivation–Inequality Inequality–Segregation Segregation–Deprivation
UrbanAreas 0.060 −0.082 −0.028
Dispersed 0.062 −0.252 −0.144
UrbanCores −0.044 0.192 0.186
MetroMedium −0.059 −0.047 −0.156
MetroCore −0.072 0.119 −0.131
MetroWide −0.041 −0.156 −0.069

4. Results

4.1. Distributions of Correlation Coefficients for All 4914 City Definitions

Visualising the distributions of obtained Spearman correlation coefficients for all 4914 city
definitions allows us to (partly) assess the sensitivity of relations to city definitions. For the relation
between EDI and several mobile phone indicators, for example, Figure 4 shows the distribution of
Spearman correlation coefficients over all city definitions. The figure suggests that for the relation
between EDI and some mobile phone indicators (interactions per contact, percentage of calls at home,
mean call duration), altering the city definition does not affect the direction of the correlation computed,
although differences in significance occur for different city definitions. Remarkable is that for some
mobile phone indicators, the relation with EDI can change direction depending on the city definition.
One example is the relation between EDI and the number of calls in Figure 4. For this relation, a part of
the city definitions results in positive correlation coefficients (meaning that the residents of the poorest
cities, according to these definitions, have called more) but a another part of the city definitions results
in negative correlation coefficients (meaning that the residents of the poorest cities have called less).
The relation between EDI and mobile phone indicators is thus influenced by city definition, leading to
differences in significance or even to changes in correlation directions between city definitions.
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Figure 4. Distributions of the Spearman correlation coefficient for the relation between EDI and a
selection of mobile phone indicators calculated for all 4914 city definitions. The histogram is colored
green when correlation coefficients are positive and orange when negative.

Regarding the correlation of mobile phone indicators with the Gini index of wages inequality
(Figure 5), we find more robust relationships across city definitions, with the human activity sensed by
mobile phone generally positively correlated with inequality. For example, the number of calls, their
diversity (entropy of contacts) and the mobility range and diversity tend to increase in cities with a
larger level of inequality (generally larger cities, cf. Figure 1). Only call-specific indicators are rather
uncorrelated with inequality.
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Figure 5. Distributions of the Spearman correlation coefficient for the relation between the Gini index
and a selection of mobile phone indicators calculated for all 4914 city definitions. The histogram is
coloured green when correlation coefficients are positive and orange when negative.

Regarding the correlation of mobile phone indicators with the segregation index of wages
(Figure 6), we find that most human activity sensed by mobile phone tend to vary negatively with
segregation. For example, the number of calls, their diversity (entropy of contacts) and the mobility
range and diversity tend to decrease in cities with a larger level of segregation. However, these trends
are more mixed and the choice of urban definition affects the sign of the coefficient obtained.
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Figure 6. Distributions of the Spearman correlation coefficient for the relation between the Segregation
index and a selection of mobile phone indicators calculated for all 4914 city definitions. The histogram
is colored green when correlation coefficients are positive and orange when negative.

4.2. Distributions of Correlation Coefficients by Definition Cluster

Another outstanding question is whether the correlations between indicators are sensitive to
the six classes of city definitions defined earlier in Figure 3. To investigate this, Figure 7 shows the
correlation coefficient, in this case for the relation between Entropy of Contacts and the socioeconomic
indicators of cities, for all city definitions belonging to each of the six classes.

In the case of the relation between the entropy of contacts and the Gini index, we find that
correlations are similar for all six classes of city definitions. The correlations are always positive:
the more unequal the urban cluster (whatever its delineation), the more diverse the average pool of
contacts of residents). Similarly, the correlation between the entropy of contacts and the deprivation
level is also negative regardless of the delineation of city clusters.

The case of the correlation between the entropy of contacts and the wage segregation shows
variation between the MetroCore and UrbanCore classes compared to the other classes as their
histogram shows both positive and negative relations, whereas these correlation are always negative
for other classes, and all very strongly in the case of the Dispersed and Metrowide classes. This can



ISPRS Int. J. Geo-Inf. 2019, 8, 19 12 of 19

probably be explained by the strong impact of urban delineation on the measurement of segregation.
The results for compact definitions (MetroCore and UrbanCores) tend to diverge from extensive
definitions (Dispersed and Metrowide).
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Figure 7. Distributions of the Spearman correlation coefficient for the relation between the Entropy of
contacts and the different socioeconomic indicators. Correlation coefficients are calculated for all 4914
city definitions but the histograms group results by the different classes of city definitions as defined in
Figure 3. The bars in the histograms are coloured green when correlation coefficients are positive and
orange when negative. The colours outlining the histograms accord to the different classes as defined
in Figure 3.

4.3. Heatmaps of Correlations

The outstanding question therefore becomes which city definitions leads towards which correlations?
An answer to this question can be formulated by mapping the obtained correlations coefficients

between two indicators to the parameter-space used for the city definition. The heatmap in Figure 8,
for example, does so for the relation between the entropy of contacts and the segregation index of
wages. Overall, results show that the entropy of mobile phone contacts and wage segregation are
mostly negatively related. However, this is especially so for flow thresholds below 40% (where the
explanatory power of the model is the highest). This threshold controls the intensity of commuting
relation between the urban core and its periphery. For low thresholds, large areas of periphery are
included in the delineation (because the minimum share of active residents that the municipalities send
to the urban core is below 40%). In these cities, the higher the segregation, the lower the diversity of
contacts. It all happens as if segregated urban regions as a whole were restraining the social networks
of their residents, or if the restricted networks of residents were hampering economically-mixed living.

The positive correlations are found for definitions with density thresholds overs 15 residents per
ha, flow thresholds over 60% and low population thresholds. This corresponds to very compact spatial
definitions of cities, where only central and integrated areas of cities are included. In these cases, there
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is spatial correspondence between highly segregated cities and residents with diverse social networks.
This inversion of the correlation calls the impact of density on socioeconomic structures. Indeed,
it seems to suggest that because the areas considered here are very dense and integrated, it is possible
for diverse residents to overcome segregation (or even to thrive on it), perhaps by being more mobile.
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Figure 8. Heatmap of the Pearsons’s R for the relation between the entropy of contacts and the
segregation index of wages for all city definitions represented in their according parameter-space. Each
square on the heatmaps represents one of the 4914 city definitions projected in the space of definition
criteria (x = density threshold, y = flow threshold, z = population threshold). It is coloured according to
the value of the correlation index between the variable for the given definition. Density thresholds (d)
are for the city centers and in thousands inhabitants/hectare, flow thresholds (f) are in percentage of
population commuting to the city center, and population thresholds (p) are in thousands inhabitants in
the wider city. As can be deduced, the top row plots have a population threshold (p) of 0.

4.4. Multiple Regression of Mobile Phone Indices with Socioeconomic Indicators

In order to combine the explaining power of all three aspects of the socioeconomic organisation
of urban clusters, we have regressed the value of each aggregated mobile indicators with the value
of deprivation, inequality and segregation for each definition of cities. In this section, we report the
results for the 6 centres of classes defined previously (with a population cutoff of 10,000 residents) only
for significance levels above 0.05.

Most social behaviours as sensed by mobile phone activity and aggregated at the city level seem to
be influenced by (or at least correlate to) the three socioeconomic dimensions cities (Figure 9). For the
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number and diversity of contacts called for example, we see that, regardless of the city definition
used, socioeconomic indicators work in the same direction: more deprivation and more segregation
lessen significantly and on average the number of contacts called and their diversity, whereas higher
inequality in the city has an opposite result. There is sociological evidence relating to the reduction
of social networks with individual and neighbourhood deprivation [38] which could explain the
statistical relations observed in this case. Combined with the observation that in some cases (clusters
corresponding to very large urban perimeters rather than dense urban cores), deprivation correlates
positively with the intensity of contacts (interaction per contact called: middle left graphs of Figure 9),
this could match the usual observation that poorer actors have networks composed of more strong
ties (more intense relations) and less weak ties (less diverse relations) than richer actors [39]. Higher
deprivation and a stronger spatial concentration of wages could thus reduce the size and diversity
of the social network with which an average individual interact virtually through mobile contacts.
The important thing here is that, despite the mobile phone data dating from 2007, it might not just be
the effect of the repelling cost of calls, because it is probably the cause behind the negative coefficient
of the deprivation index on the mean duration of calls but in this latter case, segregation plays no role
for most city definitions.

Finally, we find it intriguing that urban level of wage inequality would foster the number and
diversity of contacts. This might be an effect of higher professional interdependency between the
richest and the poorest in more unequal cities [40]... or simply an indirect effect of city size (which
correlates positively with wage inequality, cf. Figure 1). In this case, the larger pool of potential
contacts would increase the average actual diversity of contacts of individuals.

It is interesting to note that the intensity of the coefficients of the multiple regression vary
slightly between the different clusters of city definitions but the overall picture is the same, except
in the urban core clusters (the one composed of very dense city cores with little or no commuting
periphery). Using these types of definition, the only significant variables at play is the level of
inequality, which covariates positively with the entropy and number of contacts called. The absence of
effect of deprivation and segregation in French dense city cores could indicate that the centrality and
density of the residence has a positive effect on the size and diversity of the social network which is
reflected in the phone behaviour observed. More generally, the predictive power of regressions (R2) is
always the weakest for urban cores, whereas it peaks for definitions of clusters as metropolitan areas
and dispersed areas. This suggests that activity behaviours of the inner parts of metropolises (urban
cores), as sensed by mobile phones throughout the day, cannot be well described by any of their static
socioeconomic properties.

As for the physical mobility behaviours sensed by mobile phone activity and aggregated at the city
level, we see the exact same pattern as for the number and diversity of contacts. Therefore, the network
of physical encounters seems to be influenced by the same variables as the social network of contacts,
which is an interesting result.

Finally, we chose the mean duration of calls and the percentage of nocturnal calls to show that
not all mobile phone behaviours covariate with the socioeconomic structure of cities (cf. the values
of R2 < 10% in bottom graphs of Figure 9, whereas most other multiple regressions reach between
10 and 40%). The percentage of nocturnal calls for example is orthogonal to all three indicators for
most city definitions, whereas the mean duration of calls seems to be only significantly impacted by
the mean deprivation level of cities.
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Figure 9. Significant coefficients in a multiple regression of mobile indicators by cluster medoid. NB:
In this figure, the number of observation N refers to the number of clusters within the representative
medoid definition. It is a number of cities which are included in the regression for a given definition.
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5. Discussion & Conclusions

In this paper, we have tried to take advantage of small and big data to bridge a gap between what
is known about ’night-time’ residential socioeconomic characteristics of urban areas in France, their
’day-time’ production of inequality and segregation through wages, and the average social and spatial
networks of citizens sensed with passive mobile phone data. We did so using French municipalities as
a common unit of aggregation. We then studied the effect of city definition on the distribution and
correlations of indicators obtained, building on previous work on the impact of city delineation on
urban scaling results. Indeed, even though there is evidence of geographic concentration of inequalities
with city size [41], it was showed that this statistical relation varied with the city delineation chosen [27]
and did not hold for other aspects of inequality such as spatial segregation. In the present paper,
we add to this evidence by showing that the fixed socioeconomic characteristics of urban clusters also
do not relate monotonically with sociospatial activities sensed by mobile phone data. For example,
segregation can be positively or negatively correlated with the average diversity of places visited
and the number of interactions per contact, depending on the urban delineation chosen among about
5000 possible ones based on variations of density, commuting and total population criteria. Moreover,
we have found that the combination of our three socioeconomic indicators was more or less predictive
of social and spatial activity levels. For example, high numbers and diversity of contacts are “explained”
for a third of their variation by low levels of deprivation and segregation, and a higher inequality
(economic diversity) in cities, especially when they are considered in their functional delineation of
metropolitan areas (i.e., including commuters). However, social activities such as the duration of calls
and their nocturnal aspect are left unexplained by the socioeconomic organisation of cities.

This study has enabled us to further assess the quality of mobile phone data for social science,
to examine its relationship with traditional small data such as census and administrative data, as well
as to look at their geographical variability. However, it is prone to some biases, such as the aggregation
of data at the cell tower and resulting Modifiable Area Unit Problem (MAUP) effects (plus the fact
that dense areas are better described, with more antennas, than rural areas). Furthermore, the use
of CDR dataset in general, and this 2007 CDR dataset in particular, is debatable: the data we have
used are rather old (2007) and hard to update at this scale (six months worth of sensing) given
the new laws regarding individual data privacy. Mobile phone behaviours have changed with the
widespread smartphones and mobile data usage, which makes this study hard to replicate nowadays.
One outstanding question is to which degree changes in mobile phone usage over time can influence
findings. As stated before, CDR data collect traces from calling and texting. Due to the absence of a
continuous data record between 2007 and now, it is unknown how mobile phone usage amongst French
Orange users has evolved over time and how this would influence research findings. For example,
since calling and texting can nowadays also be performed by web applications (something that is not
captured in CDR data), the intuition could be that CDR data are becoming less relevant. Another
intuition could be that, because users use their phones more, the advent of web applications on
the mobile phone has actually increased the amount of calling and texting hereby improving the
information available in CDR data. Both intuitions could be true, but no scientific work has been
published on this yet. The recent collection of Data Detailed Records (DDR) data, a data record
similar to CDR data that captures data roaming connections at cell tower level, can potentially help
in answering questions regarding web related mobile phone usage, but then again it falls short in
some other ways. Since DDR data collects cell tower information every time a user connects to mobile
internet, the intuition is that it offers locational data on individual users more frequently, improving
for example the quality of mobile phone indicators related to mobility. On the other hand, most DDR
data records do not show which web applications is deployed by users, nor do they provide any
information on the intended receivers of communication. In contrast to CDR data, this property of
DDR data makes it impossible to construct any indicators related to social activities. In addition to
the unknown changes in mobile phone usage over time, there is the obvious but crucial element of
heterogeneity in mobile phone usage between (sub)populations. Different subgroups of populations
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will use their mobile phones in different ways, leading towards a difference in the quality of indicators
created from their CDR records. For all the efforts that have gone into mobile phone research yet, this
heterogeneity and its influence on research findings remains poorly understood and continues to cast
an ambiguity when it comes to reproducing findings based on datasets from other operators, countries,
or time periods. The consequence is that all research based on mobile phone data, or other large-scale
datasets for that matter, is irrevocably determined by the time period and mode of data collection,
and is (currently) characterized by a merely superficial understanding of the heterogeneity between
subpopulations. Caution is therefore highly advised when extrapolating insights and follow-up studies
on other datasets are absolutely recommended.

However, our point is to emphasize that observed correlations of geographical data need to
account for delineation sensitivity or to justify why a specific spatial delineation is preferred over others.
In the absence of such justification, the exploration of delineations helps highlighting robust correlations
(which work in all configurations), systematic variations (which respond to some characteristics of the
urban space taken into account) and random variations (which prove the spuriousness of correlations
reported on a single spatial delineations).
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