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Abstract

We prove well-posedness for a class of second-order SPDEs with multi-
plicative Wiener noise and doubly nonlinear drift of the form − div γ(∇·) +
β(·), where γ is the subdifferential of a convex function on Rd and β is a
maximal monotone graph everywhere defined on R, on which neither growth
nor continuity assumptions are imposed.

1 Introduction

Let D be a bounded domain of Rd with smooth boundary and T > 0 a fixed
number. We shall establish well-posedness in the strong sense for stochastic partial
differential equations of the type

du(t)− div γ(∇u(t)) dt+ β(u(t)) dt 3 B(t, u(t)) dW (t) in (0, T )×D,
u = 0 in (0, T )× ∂D,
u(0) = u0 in D,

(1.1)
where γ ⊂ Rd × Rd and β ⊂ R × R are everywhere-defined maximal monotone
graphs, the first one of which is assumed to be the subdifferential of a convex
function k : Rd → R. Furthermore, W is a cylindrical Wiener process on a
separable Hilbert space U , and B takes values in the space of Hilbert-Schmidt
operators from U to L2(D). Precise assumptions on the data of the problem are
given in §2 below.

Equations with drift in divergence type, both in deterministic and stochastic
settings, have a long history and are thoroughly studied, especially because of their
physical significance. From a mathematical point of view, they are particularly
interesting because they are fully nonlinear, in the sense that they do not contain

1



any “leading” linear term. For stochastic equations, the first well-posedness result
is most likely due to Pardoux, as an application of his general results in [12] on
monotone stochastic evolution equations in the variational setting (see also [4] for
improved results under more general assumptions on B). In this case one needs
to assume β = 0 and

γ(x) · x & |x|p − 1, |γ(x)| . |x|p−1 − 1 ∀x ∈ Rd,

with p > 1 (the centered dot stands for the usual Euclidean scalar product in
Rd). These are precisely the classical Leray-Lions conditions, well known in the
deterministic theory (cf. [5]). In some special cases a simple polynomial-type β can

be added: for instance, if γ corresponds to the p-Laplacian, i.e. γ(x) = |x|p−2
x,

p ≥ 2, one may consider β(r) = |r|p−2
r (cf. [6, p. 83]). However, it is well known

that if two nonlinear operators satisfy the conditions needed in the variational
setting, their sum in general does not. This phenomenon already gives rise to severe
restrictions on the class of semilinear equations with polynomial nonlinearities that
can be solved by such methods.

In some recent works we have obtained well-posedness results for (1.1) under
much more general hypotheses than those mentioned above. In particular, in [13]
it is assumed that γ still satisfies the classical Leray-Lions assumptions, but no
growth restriction on β is imposed: a very mild symmetry-like condition on its
behavior at infinity is shown to suffice. On the other hand, in [9] we consider
the case β = 0, with no hypotheses on the growth of γ, but with the additional
requirement that γ is single-valued (a symmetry-like assumption on γ is needed
in this case as well). Equations with more general, possibly multivalued γ, are
treated in [10], where, however, less regular solutions are obtained.

Our goal is to unify and extend the above-mentioned well-posedness results
for equation (1.1), thus treating the case where both γ and β can be multivalued,
without any restriction on their rate of growth. We shall also show that we can
do so without loosing any regularity of solutions with respect to the results of
[9]. The approach we take, initiated in [11] and further refined and extended
in [7]–[10], consists in a combination of (deterministic and stochastic) variational
techniques and weak compactness in L1 spaces. A key feature is the construction
of a candidate solution as pathwise limit, in suitable topologies, of solutions to
regularized equations. In particular, due to this type of construction, in order
to obtain measurability properties of solutions, uniqueness of limits is crucial.
Roughly speaking, we can prove that −div γ(∇u) + β(u) is unique, hence that it
is measurable, but showing that each one of them is unique (hence measurable)
seems difficult, if not impossible. This is the reason why γ was assumed to be
single-valued in [9, 13]. In the general setting of this work we thus need different
ideas: let uλ, γλ, and βλ be suitable regularizations of u, γ, and β, respectively,
and set ηλ := γλ(∇uλ) and ξλ := βλ(uλ). Comparing weak limits, obtained in
different ways, of the image of the pair (ηλ, ξλ) under a continuous linear map,
we are going to prove that there exist two limiting processes η and ξ, “sections”

2



of γ(∇u) and β(u), respectively, that are indeed predictable and satisfy suitable
uniqueness properties. One may say that we restore uniqueness working in a
suitable quotient space, although quotient spaces do not appear explicitly.

The well-posedness result obtained here may be interesting also in the deter-
ministic setting, as our results extend to the doubly nonlinear case the sharpest
results available for equations with β = 0 and B = 0, whose hypotheses on γ are
identical to ours (cf. [2, p. 207-ff]).

Our interest for stochastic PDEs with singular monotone drift has been influ-
enced by reading the article [1], which, however, deals with semilinear equations
only.

The paper is organized as follows: in Section 2 we state the assumptions and
the main result, which is then proved in Section 3.

Acknowledgments. Part of the work for this paper was done while the authors
were supported by a grant of the Royal Society. The first-named author gratefully
acknowledges the hospitality of the IZKS at the University of Bonn.

2 Main result

Before stating the main result, we fix notation and introduce the necessary as-
sumptions.

As already mentioned, D stands for a bounded domain in Rd with smooth
boundary. We shall denote the Hilbert space L2(D) by H, its norm and scalar
product by ‖·‖ and 〈·, ·〉, respectively. We shall denote the Dirichlet Laplacian on
L1(D) (as well as on L2(D), without notationally distinguish them) by ∆. The
space of Hilbert-Schmidt operators from the separable Hilbert space U to H is
denoted by L 2(U,H). We shall write a . b to mean that there exists a constant
N > 0 such that a ≤ Nb.

Let (Ω,F ,P) be a probability space, endowed with a filtration (Ft)t∈[0,T ] satis-
fying the so-called usual conditions, on which all random elements will be defined.
Equality of stochastic processes is meant to be in the sense of indistinguishability,
unless otherwise stated. We assume that the diffusion coefficient

B : Ω× [0, T ]×H → L 2(U,H)

is such that B(·, ·, h) is progressively measurable for all h ∈ H, and there exists a
positive constant NB such that∥∥B(ω, t, x)

∥∥
L 2(U,H)

≤ NB
(
1 + ‖x‖

)
,∥∥B(ω, t, x)−B(ω, t, y)

∥∥
L 2(U,H)

≤ NB‖x− y‖

for all (ω, t) ∈ Ω × [0, T ] and x, y ∈ H. Moreover, let the initial datum u0 be
F0-measurable with finite second moment, i.e. u0 ∈ L2(Ω,F0;H).
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Let k : Rd → R+ be a convex function with k(0) = 0 such that

lim sup
|x|→+∞

k(x)

k(−x)
< +∞, lim

|x|→+∞

k(x)

|x|
= +∞

(we shall call the second condition superlinearity at infinity). Then its subdiffer-
ential γ := ∂k is a maximal monotone graph in Rd × Rd. We assume that the
domain of γ coincides with Rd, which implies that k∗, the convex conjugate of k,
is superlinear at infinity as well. Moreover, let j : R → R+ be a further convex
function with j(0) = 0 such that

lim sup
|x|→+∞

j(x)

j(−x)
< +∞,

whose subdifferential β := ∂j is an everywhere defined maximal monotone graph
in R × R, so that j∗ is superlinear at infinity. The condition on j involving the
upper limit at infinity can be interpreted as a natural generalization of symmetry,
in the sense that its rates of growth at +∞ and −∞ are assumed to be comparable.
The corresponding condition on k has the same interpretation, after restricting k
to any ray in Rd. All notions of convex analysis and from the theory of maximal
monotone operators used thus far and in the sequel are standard and are treated
in detail, for instance, in [2].

We can now give the notion of solution to (1.1) that we are going to work with.
Throughout the work, V0 is a separable Hilbert space continuously embedded in
both W 1,∞(D) and H1

0 (D): for instance one can take, thanks to Sobolev embed-
ding theorems, V0 := Hk

0 (D) for k ∈ N sufficiently large. Moreover, the divergence
operator is defined as

div : L1(D)d −→ V ′0

f 7−→
[
g 7→ −〈f,∇g〉

]
,

which is thus linear and bounded. In fact, for any f ∈ L1(D)d and g ∈ V0,∣∣〈f,∇g〉∣∣ ≤ ∥∥f∥∥
L1(D)

∥∥g∥∥
W 1,∞(D)

.
∥∥f∥∥

L1(D)

∥∥g∥∥
V0

because V0 is continuously embedded in W 1,∞(D).

Definition 2.1. A strong solution to (1.1) is a triplet (u, η, ξ), where u, η, and ξ
are adapted processes taking values in W 1,1

0 (D) ∩H, L1(D)d, and L1(D), respec-
tively, such that η ∈ γ(∇u) and ξ ∈ β(u) a.e. in Ω× (0, T )×D,

u ∈ L0(Ω;C([0, T ];H)) ∩ L0(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L0(Ω;L1((0, T )×D)d),

ξ ∈ L0(Ω;L1((0, T )×D)),

∇u · η + uξ ∈ L0(Ω;L1((0, T )×D)),
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and〈
u, φ

〉
+

∫ ·
0

〈
η(s),∇φ

〉
ds+

∫ ·
0

〈
ξ(s), φ

〉
ds = 〈u0, φ〉+

〈∫ ·
0

B(s, u(s)) dW (s), φ

〉
for all φ ∈ V0.

The last identity in the above definition is equivalent to the validity in the dual of
V0 of the equality

u−
∫ ·

0

div η(s) ds+

∫ ·
0

ξ(s) ds = u0 +

∫ ·
0

B(s, u(s)) dW (s).

Note that u, u0 and the stochastic integrals take values in H and the third term
on the left-hand side takes values in L1(D), hence also the second term on the
right-hand side belongs to L1(D), so that the equality holds also in L1(D). The
same reasoning implies that the sum of the second and third terms on the left-hand
side take values in H, so that the above equality can also be seen as valid in H.

The main result of the paper is the following. The proof is given in §3 below.

Theorem 2.2. There exists a strong solution (u, η, ξ) to equation (1.1). It is
predictable and satisfies the following properties:

u ∈ L2(Ω;C([0, T ];H)) ∩ L1(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L1(Ω× (0, T )×D)d,

ξ ∈ L1(Ω× (0, T )×D),

∇u · η ∈ L1(Ω× (0, T )×D),

uξ ∈ L1(Ω× (0, T )×D).

Moreover, the solution map

L2(Ω,F0;H) −→ L2(Ω;C([0, T ];H))

u0 7−→ u

is Lipschitz-continuous. In particular, if (u1, η1, ξ1) and (u2, η2, ξ2) are any two
strong solutions satisfying the properties above, then u1 = u2 and −div η1 + ξ1 =
−div η2 + ξ2 in L2(Ω;C([0, T ];H)) and L1(Ω;L1(0, T ;V ′0)), respectively.

3 Proof of Theorem 2.2

3.1 Itô’s formula for the square of the H-norm

We establish a version of Itô’s formula for the square of theH-norm in a generalized
variational setting, which will play an important role in the sequel. The result is
interesting in its own right, as it does not follow from the classical ones in [4, 12],
and is apparently new for Itô processes containing a drift term in divergence form
with minimal integrability properties.
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Proposition 3.1. Let Y , f , and g be measurable adapted processes with values in
H ∩W 1,1

0 (D), L1(D)d, and L1(D), respectively, such that

Y ∈ L0(Ω;L∞(0, T ;H)) ∩ L0(Ω;L1(0, T ;W 1,1
0 (D))),

f ∈ L0(Ω;L1((0, T )×D)d),

g ∈ L0(Ω;L1((0, T )×D)),

and there exists constants a, b > 0 such that

k(a∇u) + k∗(af) + j(bu) + j∗(bg) ∈ L0(Ω;L1((0, T )×D)).

Moreover, let Y0 ∈ L0(Ω,F0;H) and G be an L 2(U,H)-valued progressively mea-
surable process such that G ∈ L0(Ω;L2(0, T ; L 2(U,H))). If

Y −
∫ ·

0

div f(s) ds+

∫ ·
0

g(s) ds = Y0 +

∫ ·
0

G(s) dW (s)

as an identity in V ′0 , then

1

2
‖Y ‖2 +

∫ ·
0

∫
D

f(s) · ∇Y (s) ds+

∫ ·
0

∫
D

g(s)Y (s) ds

=
1

2
‖Y0‖2 +

1

2

∫ ·
0

‖G(s)‖2L 2(U,H) ds+

∫ ·
0

Y (s)G(s) dW (s).

Proof. The proof is essentially a combination of arguments described in great detail
in [8, 9], hence we shall limit ourselves to a sketch only. Using a superscript δ to
denote the action of (I − δ∆)−m, for a sufficiently large m ∈ N, we have, thanks
to Sobolev embedding theorems and classical elliptic regularity results,

Y δ −
∫ ·

0

div fδ(s) ds+

∫ ·
0

gδ(s) ds = Y δ0 +

∫ ·
0

Gδ(s) dW (s)

as an identity of H-valued processes. Itô’s formula for Hilbert-space valued con-
tinuous semimartingales thus yields

1

2
‖Y δ‖2 +

∫ ·
0

∫
D

fδ(s) · ∇Y δ(s) ds+

∫ ·
0

∫
D

gδ(s)Y δ(s) ds

=
1

2
‖Y δ0 ‖

2
+

1

2

∫ ·
0

‖Gδ(s)‖2L 2(U,H) ds+

∫ ·
0

Y δ(s)Gδ(s) dW (s).

(3.1)

Thanks to the assumptions on Y , f , g ad G, it easily follows that, P-a.s.,

Y δ0 −→ Y0 in H,

Y δ(t) −→ Y (t) in H ∀ t ∈ [0, T ],

fδ −→ f in L1((0, T )×D)d,

gδ −→ g in L1((0, T )×D),

Gδ −→ G in L2(0, T ; L 2(U,H)).
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Similarly, using simple properties of Hilbert-Schmidt operators and the dominated
convergence theorem, it is not difficult to verify that the quadratic variation of
(Y δGδ − Y G) ·W converges to zero in probability, so that∫ ·

0

Y δGδ dW −→
∫ ·

0

Y GdW

uniformly (with respect to time) in probability. Furthermore, thanks to the hy-
potheses on k and j, the families (∇uδ · Y δ) and (gδY δ) are uniformly integrable
in (0, T )×D P-a.s., hence by Vitali’s theorem we also have that, P-a.s.,

fδ · ∇Y δ −→ f · ∇Y in L1((0, T )×D),

gδY δ −→ gY in L1((0, T )×D).

The proof is completed passing to the limit as δ → 0 in (3.1), in complete analogy
to [7, § 4] and [9, § 3].

Corollary 3.2. Under the assumptions of the previous proposition, one has

Y ∈ L0(Ω;C([0, T ];H)).

Proof. Since Y ∈ L∞(0, T ;H) ∩ C([0, T ];V ′0), the trajectories of Y are weakly
continuous in H (see, e.g.,[14]). Moreover, by Itô’s formula one has

1

2
‖Y (t)‖2 − 1

2
‖Y (r)‖2 +

∫ t

r

∫
D

f(s) · ∇Y (s) ds+

∫ t

r

∫
D

g(s)Y (s) ds

=
1

2

∫ t

r

‖G(s)‖2L 2(U,H) ds+

∫ t

r

Y (s)G(s) dW (s)

for every r, t ∈ [0, T ]. This implies, by an argument analogous to the one used
in [8, § 3], that the function t 7→ ‖Y (t)‖ is continuous on [0, T ]. By a well-known
criterion we thus conclude that Y has strongly continuous trajectories in H.

3.2 Well-posedness in a special case

As a first step we prove existence of solutions to (1.1) assuming that the noise is
of additive type and that

B ∈ L2(Ω;L2(0, T ; L 2(U, V0))).

For any λ > 0, let γλ and βλ denote the Yosida approximations of γ and β,
respectively, and consider the regularized equation

duλ(t)−λ∆uλ(t) dt−div γλ(∇uλ(t)) dt+βλ(uλ(t)) dt = B(t) dW (t), uλ(0) = u0.

Since γλ and βλ are monotone and Lipschitz-continuous, it is not difficult to check
that the operator

φ 7−→ −λ∆φ− div γλ(∇φ) + βλ(φ)
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is hemicontinuous, monotone, coercive and bounded on the triple (H1
0 (D), H,H−1(D)),

so that the classical results by Pardoux [12] provide existence and uniqueness of a
variational solution

uλ ∈ L2(Ω;C([0, T ];H)) ∩ L2(Ω;L2(0, T ;H1
0 (D))).

The a priori estimates on the solution uλ contained in the next lemma can be
obtained essentially as in [9, 10, 11, 13].

Lemma 3.3. There exists a constant N independent of λ such that

‖uλ‖2L2(Ω;C([0,T ];H)) + λ‖∇uλ‖2L2(Ω;L2(0,T ;H))

+ ‖γλ(∇uλ) · ∇uλ‖L1(Ω×(0,T )×D) + ‖βλ(uλ)uλ‖L1(Ω×(0,T )×D) < N

for all λ ∈ (0, 1). Furthermore, there exists Ω′ ∈ F with P(Ω′) = 1 such that, for
every ω ∈ Ω′, there exists a constant M(ω) independent of λ such that

‖uλ(ω)‖2C([0,T ];H) + λ‖∇uλ(ω)‖2L2(0,T ;H)

+ ‖γλ(∇uλ(ω)) · ∇uλ(ω)‖L1((0,T )×D) + ‖βλ(uλ(ω))uλ(ω)‖L1((0,T )×D) < M(ω)

for all λ ∈ (0, 1).

Proof. It is an immediate consequence of the (proofs of the) [9, Lemmata 4.3–4.7],
for the part involving γ, and [11, Lemmata 5.3–5.6], for the part involving β.

Since

k∗(γλ(∇uλ)) ≤ k∗(γλ(∇uλ)) + k((I + λγ)−1∇uλ) = γλ(∇uλ) · (I + λγ)−1∇uλ
≤ γλ(∇uλ) · ∇uλ

and

j∗(βλ(uλ)) ≤ j∗(βλ(uλ)) + j((I + λβ)−1uλ) = βλ(uλ)(I + λβ)−1uλ ≤ βλ(uλ)uλ,

we infer that the families (k∗(γλ(∇uλ))) and (j∗(βλ(uλ))) are uniformly bounded
in L1(Ω×(0, T )×D). Therefore, recalling that k∗ and j∗ are superlinear, thanks to
the de la Vallée-Poussin criterion and the Dunford-Pettis theorem we deduce that
the families (γλ(uλ)) and (βλ(uλ)) are relatively weakly compact in L1(Ω×(0, T )×
D)d and L1(Ω×(0, T )×D), respectively. Analogously, the families (γλ(uλ(ω))) and
(βλ(uλ(ω))) are relatively weakly compact in L1((0, T )×D)d and L1((0, T )×D),
respectively, for P-a.e. ω ∈ Ω.

Let Ω′ be as in the previous lemma and take ω ∈ Ω′. Then we have, along a
subsequence λ′ of λ depending on ω,

uλ′(ω) −→ u(ω) weakly* in L∞(0, T ;H),

∇uλ′(ω) −→ ∇u(ω) weakly in L1((0, T )×D)d,

λ′uλ′(ω) −→ 0 in L2(0, T ;H1
0 (D)),

γλ′(uλ′(ω)) −→ η(ω) weakly in L1((0, T )×D)d,

βλ′(uλ′(ω)) −→ ξ(ω) weakly in L1((0, T )×D),
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hence, by passage to the weak limit in the regularized equation taking test func-
tions in V0, we have

u−
∫ ·

0

div η(s) ds+

∫ ·
0

ξ(s) ds = u0 +

∫ ·
0

B(s) dW (s). (3.2)

Moreover, by the lower semicontinuity of convex integrals, it also follows that

k(∇u(ω)) + k∗(η(ω)) + j(u(ω)) + j∗(ξ(ω)) ∈ L1((0, T )×D).

Arguing as in [11, pp. 27–28] and [9, pp. 18–19], one can show that the process u
constructed in this way is unique in the space L2(Ω;C([0, T ];H)). This ensures in
turn that the convergences of (uλ) to u hold along the entire sequence λ, which is
independent of ω. In particular, we have that

uλ(ω) −→ u(ω) weakly in L2(0, T ;H) ∀ω ∈ Ω′.

Since (uλ) is bounded in L2(Ω× (0, T )×D), we deduce that uλ converges weakly
to u also in L2(Ω × (0, T );H). Hence, by a direct application of Mazur’s lemma,
we infer that u is a predictable process with values in H. Unfortunately a similar
argument does not apply to η and ξ. In fact, by uniqueness of u, we can only
infer from (3.2) that −div η + ξ is unique: namely, assume that (ηi(ω), ξi(ω)),
i = 1, 2, are weak limits in L1(0, T ;L1(D))d+1 of

(
γλ(∇uλ(ω)), βλ(uλ)

)
along two

subsequences of λ (depending on ω). Then∫ t

0

(
−div(η1 − η2) + (ξ1 − ξ2)

)
ds = 0 ∀t ∈ [0, T ],

hence −div(η1− η2) + (ξ1− ξ2) = 0, or, equivalently, −div η1 + ξ1 = −div η2 + ξ2
in V ′0 for a.a. t ∈ [0, T ]. However, this allows us to claim, setting ηλ := γλ(∇uλ)
and ξλ := βλ(uλ), that

−div ηλ + ξλ −→ − div η + ξ weakly in L1(0, T ;V ′0) ∀ω ∈ Ω′

along the whole sequence λ, thanks to the same uniqueness argument already used
for u. In fact, let us set, for notational convenience,

Φ : L1(D)d+1 −→ V ′0

(v, f) 7−→ − div v + f

and ζλ := (ηλ, ξλ), ζ := (η, ξ). Note that Φ, being a linear bounded opera-
tor, can be extended to a linear bounded operator from L1((0, T ) × D)d+1 '
L1(0, T ;L1(D)d+1) to L1(0, T ;V ′0), also when both spaces are endowed with the
weak topology. Then ζλ → ζ weakly in L1((0, T )×D)d+1 implies that Φζλ → Φζ
weakly in L1(0, T ;V ′0) for all ω ∈ Ω′. Such a convergence, however, does not allow
to infer that −div η + ξ is predictable as a V ′0 -valued process. The reason is that
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we may certainly find, by Mazur’s lemma, a convex combination of −div ηλ + ξλ
converging strongly to −div η+ ξ in L1(0, T ;V ′0) for all ω ∈ Ω′, but such a convex
combination would depend on ω, bringing us back to the same problem we are
trying to solve. We could just say that −div η + ξ is weakly measurable with re-
spect to F and the Borel σ-algebra of L1(0, T ;V ′0). Since this space is separable,
by Pettis’ theorem we also have strong measurability. This observation, however,
does not seem to imply the desired result.

In order to show that − div η + ξ is indeed predictable, we are first going to
prove that

− div ηλ + ξλ −→ − div η + ξ weakly in L1(Ω× (0, T );V ′0).

We have just shown that∫ T

0

〈
Φζλ(ω, t), φ(t)

〉
dt −→

∫ T

0

〈
Φζλ(ω, t), φ(t)

〉
dt

for all φ ∈ L∞(0, T ;V0), for all ω ∈ Ω′, where 〈·, ·〉 stands for the duality between
V ′0 and V ′′0 = V0. Let ψ ∈ L∞(Ω × (0, T );V0). Then ψ(ω, ·) ∈ L∞(0, T ;V0) for
P-a.e. ω ∈ Ω. Indeed, the set

A :=
{

(ω, t) ∈ Ω× [0, T ] : ‖ψ(ω, t)‖V0
> ‖ψ‖L∞(Ω×(0,T );V0)

}
belongs to F ⊗B([0, T ]), and, by Tonelli’s theorem,

|A| =
∫

Ω

∫ T

0

1A dt dP =

∫
Ω

Leb(Aω)P(dω),

where |A| denotes the measure of A and Aω stands for the section of A at ω, i.e.

Aω :=
{
t ∈ [0, T ] : (ω, t) ∈ A

}
,

which belongs to B([0, T ]) for P-a.e. ω ∈ Ω. Since |A| = 0, it follows that |Aω| = 0
for P-a.e. ω ∈ Ω. This implies, by definition of A, that ψ(ω, ·) ∈ L∞(0, T ) for
P-a.e. ω ∈ Ω. Consequently, we have∫ T

0

〈
Φζλ(ω, t), ψ(ω, t)

〉
dt −→

∫ T

0

〈
Φζ(ω, t), ψ(ω, t)

〉
dt

for P-a.e. ω ∈ Ω. To complete the argument it is then enough to show that the
left-hand side, as a subset of L0(Ω) indexed by λ, is uniformly integrable. To
this end, we collect some simple facts about uniform integrability in the following
lemma.

Lemma 3.4. Let (X,A ,m) be a finite measure space and I an arbitrary index
set.
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(a) Let (fi)i∈I , (gi)i∈I ⊂ L0(X;Rn) be such that |fi| ≤ |gi| for all i ∈ I and
assume that (gi) is uniformly integrable. Then (fi) is uniformly integrable.

(b) Let (fi) ⊂ L0(X;Rn) be uniformly integrable and φ ∈ L∞(X;Rn). Then
(φ · fi) ⊂ L0(X) is uniformly integrable.

(c) Let F : Rn → R with F (0) = 0 be convex and superlinear at infinity, and
(fi) ⊂ L0(X;Rn) be such that (F ◦ fi) is bounded in L1(X). Then (fi) is
uniformly integrable.

(d) Let (Y,B, n) be a further finite measure space. If (fi) ⊂ L0(X × Y,A ⊗
B,m⊗ n;Rn) is uniformly integrable, then (gi) ⊂ L0(X;Rn) defined by

gi :=

∫
Y

fi(·, y)n(dy)

is uniformly integrable.

Proof. (a) is an immediate consequence of the definition of uniform integrability.
(b) Let ε > 0. By assumption, there exists δ = δ(ε) > 0 such that∫

A

∣∣fi∣∣Rn dm <
ε

‖φ‖L∞
∀A ∈ A , m(A) < δ.

Then ∫
A

∣∣φ · fi∣∣ dm ≤ ‖φ‖L∞

∫
A

∣∣fi∣∣Rn dm < ε.

(c) is a variation of the classical criterion by de la Vallée-Poussin. A detailed proof
(which is nonetheless very close to the one in the standard one-dimensional case)
can be found in [9].
(d) Let ε > 0. By assumption, there exists δ′ = δ′(ε) > 0 such that∫

C

∣∣fi∣∣Rn dm⊗ n < ε ∀C ∈ A ⊗B, m⊗ n(C) < δ′.

Let δ := δ′/n(Y ) and A ∈ A with m(A) < δ. Then∫
A

∣∣∣∣∫
Y

fi(x, y)n(dy)

∣∣∣∣
Rn

m(dx) ≤
∫
A×Y

∣∣fi(x, y)
∣∣
Rn m(dx)n(dy) < ε

because m⊗ n(A× Y ) = m(A)n(Y ) < δn(Y ) = δ′.

Let us now resume with the main reasoning. Since∫ T

0

〈
Φζλ, ψ

〉
. ‖ψ‖L∞(Ω×(0,T );V0)

(∫ T

0

∫
D

|ηλ|+
∫ T

0

∫
D

|ξλ|
)
,

by parts (a), (b) and (d) of the previous lemma it is sufficient to show that (ηλ)
and (ξλ) are uniformly integrable in Ω × (0, T ) × D. But this is true, in view of

11



part (c) of the previous lemma, because k∗(ηλ) and j∗(ξλ) are uniformly bounded
in L1(Ω× (0, T )×D). Vitali’s theorem then yields∫ T

0

〈
Φζλ(ω, t), ψ(ω, t)

〉
dt −→

∫ T

0

〈
Φζ(ω, t), ψ(ω, t)

〉
dt in L1(Ω),

hence, in particular,

Φ(ηλ, ξλ) −→ Φ(η, ξ) weakly in L1(Ω× (0, T );V ′0).

Furthermore, from the uniform integrability of (ηλ) and (ξλ) in Ω× (0, T )×D it
also follows that, along a subsequence µ of λ,

(ηµ, ξµ) −→ (η̄, ξ̄) weakly in L1(Ω× (0, T )×D)d+1,

hence also
Φ(ηµ, ξµ) −→ Φ(η̄, ξ̄) weakly in L1(Ω× (0, T );V ′0).

An application of Mazur’s lemma yields, in complete analogy to the case of u, that
η̄ and ξ̄ are predictable processes with values in L1(D)d and L1(D), respectively.
Since µ is a subsequence of λ, by uniqueness of the weak limit we have that
Φ(η, ξ) = Φ(η̄, ξ̄), i.e.

−div η + ξ = −div η̄ + ξ̄.

This implies that the identity (3.2) remains true with η and ξ replaced by η̄ and
ξ̄, respectively. In other words, modulo relabeling, we can just assume, without
loss of generality, that η and ξ in (3.2) are predictable and that

(ηλ, ξλ) −→ (η, ξ) weakly in L1(Ω× (0, T )×D)d+1.

By weak lower semicontinuity and Lemma 3.3, this also implies, arguing as in
[9, 10, 11, 13], that

u ∈ L2(Ω;L∞(0, T ;H)) ∩ L1(Ω;L1(0, T ;W 1,1
0 (D))),

η ∈ L1(Ω× (0, T )×D)d,

ξ ∈ L1(Ω× (0, T )×D),

k(∇u) + k∗(η) = ∇u · η ∈ L1(Ω× (0, T )×D),

j(u) + j∗(ξ) = uξ ∈ L1(Ω× (0, T )×D).

In order to show that η ∈ γ(∇u) and ξ ∈ β(u) a.e. in Ω× (0, T )×D, it suffices to
prove, by the maximal monotonicity of γ and β, that

lim sup
λ→0

E
∫ T

0

∫
D

(
ηλ · ∇uλ + ξλuλ

)
≤ E

∫ T

0

∫
D

(
η · ∇u+ ξu

)
(3.3)
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(cf. [9, pp. 17-18]). To this purpose, note that the ordinary Itô formula and
Proposition 3.1 yield

1

2
E‖uλ(T )‖2 +E

∫ T

0

∫
D

(
ηλ · ∇uλ + ξλuλ

)
=

1

2
E‖u0‖2 +

1

2
E
∫ T

0

∥∥B(s)
∥∥2

L 2(U,H)
ds

and

1

2
E‖u(T )‖2 + E

∫ T

0

∫
D

(
η · ∇u+ ξu

)
=

1

2
E‖u0‖2 +

1

2
E
∫ T

0

∥∥B(s)
∥∥2

L 2(U,H)
ds,

respectively (the stochastic integrals appearing in both versions of Itô’s formula
are in fact martingales, not just local martingales, hence their expectation is zero).

Since uλ(T )→ u(T ) weakly in L2(Ω;H), one has E‖u(T )‖2 ≤ lim infλ→0 E‖uλ(T )‖2,
hence, by comparison, (3.3) follows.

Finally, the strong pathwise continuity (in H) of u is an immediate consequence
of the corollary to Proposition 3.1.

Remark 3.5. Another way to “restore” uniqueness of limits for the pair ζλ =
(ηλ, ξλ) is to view it as element of the quotient space L1(D)d+1/M , where M :=
ker Φ. Note that M is a closed subset of L1 (we suppress the superscript as well
as the indication of the domain just within this remark), as the inverse image
of the closed set {0} through a continuous linear map, hence L1/M is a Banach
space. However, working with the spaces L1(0, T ;L1/M) and L1(Ω×(0, T );L1/M)
present technical difficulties due to the fact that their dual spaces are hard to
characterize. A bit more precisely, this has to do with the fact that the dual of
L1(0, T ;E) is L∞(0, T ;E′) if and only if E has the Radon-Nikodym property. This
property is enjoyed by reflexive spaces, but not by L1 spaces (see, e.g., [3]).

3.3 Well-posedness in the general case

Let us consider now equation (1.1) with general additive noise, i.e. with

B ∈ L2(Ω;L2(0, T ; L 2(U,H))).

Thanks to classical elliptic regularity results, there exists m ∈ N such that the
(I − δ∆)−m is a continuous linear map from L1(D) to W 1,∞(D) ∩ H1

0 (D) for
every δ > 0. Setting then V0 := (I − ∆)−m(H) and Bδ := (I − δ∆)−mB, we
have Bδ ∈ L2(Ω;L2(0, T ; L 2(U, V0))), hence, by the well-posedness results already
obtained, the equation

duδ − div γ(∇uδ) dt+ β(uδ) dt 3 Bδ dW, uδ(0) = u0,

admits a strong solution (uδ, ηδ, ξδ). Arguing as in [9, 10, 11, 13], one can show
using Itô’s formula that (uδ) is a Cauchy sequence in L2(Ω;C([0, T ];H)) and that
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(∇uδ), (ηδ), and (ξδ) are relatively weakly compact in L1(Ω× (0, T )×D), so that

uδ −→ u in L2(Ω;C([0, T ];H)),

uδ −→ u weakly in L1(Ω× (0, T );W 1,1
0 (D)),

ηδ −→ η weakly in L1(Ω× (0, T )×D)d,

ξδ −→ ξ weakly in L1(Ω× (0, T )×D),

from which it follows that (u, η, ξ) solves the original equation. Moreover, the
strong-weak closure of β readily implies that ξ ∈ β(u) a.e. in Ω × (0, T ) × D.
Finally, arguing as in the previous subsection, by weak lower semicontinuity of
convex integrals and Itô’s formula one can show that

lim sup
λ→0

E
∫ T

0

∫
D

ηλ · ∇uλ ≤ E
∫ T

0

∫
D

η · ∇u,

so that η ∈ γ(∇u) a.e. in Ω× (0, T )×D as well.
Continuous dependence on the initial datum is a consequence of Itô’s formula

and the monotonicity of γ and β. Finally, the generalization to the case of mul-
tiplicative noise follows using the Lipschitz continuity of B and a classical fixed
point argument. A detailed exposition of the arguments needed to prove these
claims can be found in [9, 10, 11, 13].

References

[1] V. Barbu, Existence for semilinear parabolic stochastic equations, Atti Accad.
Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 21 (2010),
no. 4, 397–403. MR 2746091 (2012d:35424)

[2] , Nonlinear differential equations of monotone types in Banach spaces,
Springer, New York, 2010. MR 2582280

[3] J. Diestel and J. J. Uhl, Jr., Vector measures, American Mathematical Society,
Providence, R.I., 1977. MR 0453964
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