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Abstract 20 

To estimate regional-scale winter wheat (Triticum aestivum) yield, we developed 21 

a data-assimilation scheme that assimilates remote-sensed reflectance into a coupled 22 

crop growth–radiative transfer model. We generated a time series of 8-day, 30-m-23 

resolution synthetic Kalman Smoothed (KS) reflectance by combining MODIS 24 
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surface reflectance products with Landsat surface reflectance using a KS algorithm. 25 

We evaluated the assimilation performance using datasets with different spatial and 26 

temporal scales (e.g., three dates for the 30-m Landsat reflectance, 8-day and 1-km 27 

MODIS surface reflectance, and 8-day and 30-m synthetic KS reflectance) into the 28 

coupled WOFOST–PROSAIL model. Then we constructed a four-dimensional 29 

variational data assimilation (4DVar) cost function to account for differences between 30 

the observed and simulated reflectance. We used the shuffled complex evolution–31 

University of Arizona (SCE-UA) algorithm to minimize the 4DVar cost function and 32 

optimize important input parameters of the coupled model. The optimized parameters 33 

were used to drive WOFOST and estimate county-level winter wheat yield in a region 34 

of China. By assimilating the synthetic KS reflectance data, we achieved the most 35 

accurate yield estimates (R
2
 = 0.44, 0.39, and 0.30; RMSE = 598, 1288, and 595 kg/ha 36 

for 2009, 2013, and 2014, respectively), followed by Landsat reflectance (R
2
 = 0.21, 37 

0.22, and 0.33; RMSE = 915, 1422, and 637 kg/ha for 2009, 2013, and 2014, 38 

respectively) and MODIS reflectance (R
2
 = 0.49, 0.05, and 0.22; RMSE =1136, 1468, 39 

and 700 kg/ha for 2009, 2013, and 2014, respectively) at the county level. Thus, our 40 

method improves the reliability of regional-scale crop yield estimates. 41 

Keywords: 42 

WOFOST; PROSAIL; canopy reflectance; data assimilation; winter wheat yield 43 

estimation 44 

1. Introduction 45 

Regional-scale monitoring of crop growth, yield estimation, and forecasting are 46 

essential to design informed regional and national agricultural policies, and for 47 

commercial or planning purposes. Assimilating remote sensing information into crop 48 
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growth models has been demonstrated as an effective approach for estimating or 49 

forecasting crop yield at regional scales (Dente et al., 2008; de Wit et al., 2012; Ma et 50 

al., 2013a, 2013b; Huang et al., 2015a, 2015b, 2016; Zhang et al., 2016). 51 

Process-oriented crop growth models are powerful tools to simulate the 52 

physiological development, growth, and yield of a given crop. However, crop models 53 

do not simulate the crop canopy reflectance which is the main observation of satellite 54 

remote sensing (van Diepen et al., 1989). Although radiative-transfer models (RTMs) 55 

such as PROSAIL or the A two-layer Canopy Reflectance Model (ACRM) can 56 

simulate the spectral and bidirectional reflectance of the crop canopy (Jacquemoud et 57 

al., 2009; Kuusk, 2001), they cannot simulate crop growth, water balance, or nutrient 58 

dynamics processes. A data-assimilation scheme aims to provide optimal merging of 59 

observations, models, and prior knowledge in order to obtain the best possible 60 

estimate of the state of a system. Modeling frameworks that couple crop models with 61 

RTMs result in more comprehensive modeling of temporal changes in the crop 62 

canopy’s spectral reflectance response and in the underlying crop, water, and nutrient 63 

processes (Ma et al., 2008; Thorp et al., 2012; Wu et al., 2013; Zhou et al., 2017). 64 

Thus, the assimilation of remote sensing reflectance into crop growth models has 65 

showed promise for crop yield estimates and forecasting at regional scale. 66 

Simulation results can be constrained by RS observations by reinitialize the input 67 

parameters of the RTM and crop model. Then crop yield and other biophysical 68 

variables that cannot be directly estimated solely by RS inversion can be simulated. 69 

Rather than using high-level remotely sensed biophysical products (e.g., LAI, 70 

evapotranspiration, soil moisture), it is advantageous to directly assimilate satellite 71 

canopy-surface such as the reflected spectral radiance or albedo. From a data-72 

assimilation perspective, this also has the obvious advantage of allowing researchers 73 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

to track uncertainties in the observations, which can be far more easily characterized 74 

for satellite radiance or reflectance than for higher-level remotely sensed products 75 

such as LAI (Quaife et al., 2008). 76 

Two main categories of data-assimilation schemes can be divided into two types 77 

in the context of crop yield estimation. The first is re-initialization or calibration, in 78 

which parameters of the crop growth model are updated based on multiple 79 

observations. LAI is widely used in this category generally, although estimates of 80 

evapotranspiration (ET) can also provide key constraints to water-use estimates. Such 81 

an approach is usually implemented through a cost function based on a variational 82 

data-assimilation strategy (Dente et al., 2008; Wang et al., 2010). The second data-83 

assimilation category uses a sequential strategy to correct the trajectory of crop state 84 

variables (typically, LAI or soil moisture) by getting a balance between the model’s 85 

expectation and observations (Qin et al., 2009; Ines et al., 2013).  86 

A number of researchers have used LAI as a direct driver of the model (e.g., 87 

Fang et al., 2011) or have directly assimilated the LAI product into the model (Dente 88 

et al., 2008; de Wit et al., 2012; Huang et al., 2015b, 2016). Regional remotely sensed 89 

LAI products (e.g., MODIS MOD15 or CYCLOPES LAI) are usually retrieved by 90 

physically inversion based on canopy-reflectance models (Knyazikhin et al., 1998). 91 

Scale mismatch between coarse remotely sensed pixels and typical field sizes 92 

simulated by crop model is a major factor to limit the performance of agricultural data 93 

assimilation applications at a regional scale (Duveiller et al., 2013; Huang et al., 94 

2015b, 2016). 95 

Several previous studies found that time series of reflectance or vegetation index 96 

data could be assimilated into a coupled crop growth–RTM model to obtain 97 

successful results and avoid the process of regional LAI retrieval. Weiss et al. (2001) 98 
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coupled canopy RTM (Scattering by Arbitrarily Inclined Leaves, SAIL) and a crop 99 

growth model (STICS) to simulate reflectance time series; Launay and Guerif (2005) 100 

assimilated four to six SPOT and aerial photography datasets into the SUCROS model, 101 

which was coupled with the SAIL reflectance model; and our previous work (Ma et 102 

al., 2013b) assimilated an NDVI time series from the Chinese HJ-1 A/B satellite into 103 

the coupled WOFOST–ACRM model using an ensemble Kalman filter assimilation 104 

strategy. Besides that, there are some studies demonstrated that a successful 105 

assimilation of remote sensing observations into crop growth models requires suitable 106 

spatial and temporal resolutions data (Machwitz et al., 2014; Huang et al., 2015b). 107 

Thus, upscaling the temporal resolution of Landsat data by taking advantage of 108 

MODIS data would provide fundamental data to investigate the impacts of the 109 

optimal assimilation timing on the performance of the data assimilation. 110 

Several approaches based on information available from other dates and sensors 111 

have been proposed to simulate medium-resolution RS data at locations and times for 112 

which observation does not exist (Gao et al., 2006; Roy et al., 2008; Zhu et al., 2010). 113 

Our previous research demonstrated the suitability of using a Kalman Smoother 114 

algorithm to generate a continuous time series of synthetic medium-resolution images 115 

for various ecosystems (Sedano et al., 2014). The Kalman smoother differs from 116 

previous approaches because it uses a state-space model framework to explicitly 117 

incorporate uncertainties in the calculation of a variable’s state and provides the best 118 

unbiased linear estimate for each state (Mathieu and O’Neill, 2008). This approach 119 

can create a continuous time series of synthetic medium-resolution images of spectral 120 

indices and spectral reflectance. By accounting for uncertainties, this approach 121 

becomes suitable for regions with different data volumes, including data-scarce 122 

regions and regions where the cloud coverage reduces the number of available 123 
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medium-resolution images. This approach has been successfully implemented to 124 

improve crop mapping in Western Europe with the  PROBA-V satellite (Kempeneers 125 

et al., 2014) and to integrate higher-resolution remote sensing information into a crop 126 

model to estimate winter wheat yields in the Northern China Plains (Huang et al., 127 

2016). 128 

In the present study, we developed a data-assimilation framework that 129 

incorporates remotely sensed reflectance into a coupled WOFOST–PROSAIL model 130 

to estimate wheat yield in the North China Plain. First, we generated a continuous 131 

time series of synthetic surface reflectance images at medium spatial resolution with 132 

30 m using a Kalman Smoother algorithm that integrates the available Landsat and 133 

MODIS imagery. Second, a four-dimensional variational data assimilation (4DVar) 134 

cost function was constructed to assimilate remote sensing and WOFOST-PROSAIL 135 

coupled model simulated reflectance using a faster but equally accurate computation 136 

of the data-assimilation algorithm at a 30-m scale. Finally, we assessed the accuracy 137 

of the winter wheat yield estimates based on official statistics using remotely sensed 138 

reflectance datasets for three different spatial and temporal scales. To demonstrate the 139 

benefits of this approach, we used reflectance data from 2009, 2013, and 2014 for an 140 

agricultural region of the North China Plain. 141 

2. Study area  142 

The study was conducted in a planting area dominated by winter wheat in 143 

China’s southern Hebei Province and northern Shandong Province (Figure 1). The 144 

region consists of 58 counties. The prevailing planting pattern is an intensive dual-145 

cropping system based on winter wheat and summer crops such as corn. The region is 146 

characterized by alluvial plains, with loam soils and abundant organic matter, and its 147 

continental monsoon climate. Figure 2 contains the daily temperature and 148 
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precipitation data for the three years in our study; these data suggest that 2009 and 149 

2014 had normal climatic conditions for the study area, whereas 2013 was unusually 150 

cold and had several damaging cold weather events mid-March, mid-April, and grain-151 

filling stage that induced subsequent production losses. Accumulated rainfall is 152 

commonly below annual evapotranspiration (300 to 500 mm) in the winter wheat 153 

growing season, and an average of 350 mm of underground water must be extracted 154 

for irrigation annually to cover the water deficiency of winter wheat. High winter 155 

wheat yields are traditionally reported from this region. Generally, winter wheat is 156 

sown at the beginning of October and harvested in early or mid-June in the following 157 

year.  158 

[Insert Figure1 near here] 159 

[Insert Figure2 near here] 160 

3. Models and Data 161 

3.1 WOFOST 162 

The WOFOST crop-growth model (de Wit, 1965; Diepen, 1989; Boogaard et al., 163 

2013) is a mechanistic model that simulates crop growth based on underlying 164 

processes such as photosynthesis and respiration, and how these processes are 165 

influenced by environmental conditions. WOFOST estimates LAI, aboveground 166 

biomass, and storage organ biomass (i.e., grain yield) at a daily time step for a specific 167 

crop type. The model can run in potential mode (with no limitations caused by water 168 

and nutrient stress) or in water-limited mode (with soil moisture stress). In the present 169 

study, we chose potential mode because winter wheat in the study area does not 170 

usually suffer from water stress through adequate irrigation. Ma et al. (2013b) and 171 

Huang et al. (2015b) provide details of the parameterization and calibration of 172 

WOFOST for winter wheat in the study area.  173 
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3.2 PROSAIL 174 

PROSAIL combines the SAIL canopy reflectance model (Verhoef, 1984, 1985) 175 

with the PROSPECT leaf optical properties model (Jacquemoud and Baret, 1990; 176 

Jacquemoud et al., 1995). PROSPECT simulates leaf reflectance and transmission as 177 

a function of the chlorophyll a + b concentration (Cab, μg·cm
-2

), brown pigment 178 

content (Cbrown, μg·cm
-2

), leaf water content (Cw, g·cm
-2

), dry matter content (Cm, 179 

g·cm
-2

), and a leaf structure variable (N, unitless). SAIL is a one-dimensional 180 

bidirectional turbid-medium canopy-reflectance model, and was one of the earliest 181 

models to simulate reflectance from the top of the canopy (Verhoef, 1984, 1985). The 182 

model has been improved to consider the hot-spot effect (Kuusk, 1991). The model’s 183 

inputs are LAI (m
2
·m

-2
), two leaf-inclination distribution-function parameters (LIDFa 184 

and LIDFb, which vary with the leaf distribution), a hot-spot parameter (hot, unitless), 185 

the fraction of diffuse incoming solar radiation (skyl, unitless), a dry/wet soil factor 186 

parameter (psoil, unitless), a soil brightness factor (rsoil, unitless), a sun zenith angle 187 

(tts, °), an observer zenith angle (tto, °), and a relative azimuth angle (psi, °) between 188 

the observer and the sun (Jacquemoud et al., 2009). The coupling of the two models is 189 

done through the leaf reflectance and transmittance values output by PROSPECT, 190 

which are used as inputs to SAIL for simulation of the whole bidirectional canopy 191 

reflectance. 192 

3.3 Field data 193 

We selected 29 sample plots that represented a range of winter wheat growing 194 

conditions throughout the study area, and monitored them from March to June 2009, 195 

during the main winter wheat growing season. Sample fields are chosen respectively 196 

from typical wheat planting parcels that are no less than 500×500 m
2
 large; crop 197 

growth in these filed parcels should be representative. Five square sample subplots are 198 
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taken from each sample field, measuring 100 m on each side, and crop in each subplot 199 

must be homogenous. Within these subplots in 100 m sizes, five 1-m sample plots are 200 

chosen randomly, and then the location of each test site was recorded and in situ 201 

measurements were obtained, such as the chlorophyll content (Cab), leaf water 202 

content, LAI, key phenological dates, dry matter production, and grain yield. LAI was 203 

measured using a LAI-2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE, USA) 204 

during seven key phenological stages: green-up, jointing, elongation, booting, heading, 205 

anthesis, and grain-filling. Field measurements of winter wheat yields were obtained 206 

by weighing the grain after harvesting in mid-June. Finally, calculating median of 207 

crop variable of a particular sample fields and recording its location. Detailed crop 208 

management was also surveyed by interviews, including the emergency dates and 209 

harvest date, planting density, irrigation dates and depth, fertilizing date and volume, 210 

and other information. Official government statistics on winter wheat yields at a 211 

county level were obtained from the 2009, 2013, and 2014 statistical yearbooks for 212 

Hebei Province (Office of People's Government of Hebei Province 2010, 2014, 2015) 213 

and Shandong Province (Statistics Bureau of Dezhou 2010, 2014, 2015, Statistics 214 

Bureau of Liaocheng 2010, 2014, 2015,). 215 

3.4 Remote sensing data 216 

We compiled a dataset of cloud-free (less than 10% cloud coverage) Landsat 5 217 

TM and Landsat 8 OLI surface reflectance images. The images were acquired during 218 

the winter wheat growing seasons of 2009, 2013, and 2014, and the study area was 219 

covered by two Landsat scenes (P123R033 and P123R034). Table 1 presents an 220 

overview of Landsat images we assimilated and their corresponding growth stages, in 221 

addition, we do use more images out of growing season for the KS synthetic 222 

algorithms to constraint the synthetic reflectance curves (5, 6, 8 extra images were 223 
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used in 2009, 2013, 2014 respectively).  All images were obtained from the United 224 

States Geological Survey (USGS) Center for Earth Resources Observation and 225 

Science (http://earthexplorer.usgs.gov). 226 

We also obtained MODIS surface reflectance products for the study area 227 

(MOD09A1). MOD09A1 represents the best possible observation during an 8-day 228 

period for MODIS bands 1 to 7 at 500-m resolution. We acquired two MODIS tiles 229 

(h26v05 and h27v05) form NASA Reverb (https://reverb.echo.nasa.gov) to cover the 230 

study area during all three years of our Landsat dataset. Each MODIS image was 231 

projected into the UTM/WGS84 coordinate system, and was then resampled to 30-m 232 

spatial resolution using the nearest-neighbor method to match the Landsat pixel size 233 

for use in the retrieval of a continuous time series of synthetic Landsat surface 234 

reflectance images. We established 50 ground control points distributed equally 235 

throughout the study area to ensure precise co-registration and reprojection of the 236 

MODIS and Landsat datasets. Besides that, we used the “China Meteorological 237 

Forcing Dataset” (He and Yang, 2011; Chen et al., 2011) as our weather driver data, 238 

this dataset contains six weather variables (temperate, pressure, humidity, wind speed, 239 

precipitation rate and download shortwave/longwave radiation) with temporal 240 

resolution of 3-hr, on a 0.1° x 0.1° grid. 241 

[Insert Table 1 near here] 242 

4. Data assimilation 243 

4.1 Continuous time series of medium-resolution synthetic reflectance images 244 

using a Kalman Smoother 245 

Reflectance information at the key phenological stages is crucial for crop 246 

monitoring and for yield estimation and forecasting. We implemented a Kalman 247 

Smoother algorithm to generate a time series of synthetic surface reflectance images 248 

at medium spatial resolution (30 m) based on the available Landsat and MODIS 249 

http://earthexplorer.usgs.gov/
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imagery for the study area. The Kalman Smoother algorithm is a state-space statistical 250 

model that combines observations, model estimations, and their respective 251 

uncertainties in a recursive manner to estimate the state of a process while minimizing 252 

the error (Kalman, 1960; Welch and Bishop, 2006). This approach uses the available 253 

Landsat surface reflectance images as observations and the available MODIS surface 254 

reflectance images as the source of a transition model that defines crop phenology. 255 

Sedano et al. (2014) provide a detailed description of the implementation. We used a 256 

crop type mask to stratify the analysis into different categories of coverage by winter 257 

wheat (40 to 60%, 60 to 80%, and 80 to 100%) and define specific transition models 258 

for areas with different crop cover percentages. 259 

4.2 Coupling the WOFOST and PROSAIL models 260 

Unlike when LAI is assimilated into a process-based dynamic model to obtain 261 

crop yield estimates, assimilating remotely sensed reflectance into a crop growth 262 

model requires linking the crop growth model with an RTM (e.g., PROSAIL, ACRM) 263 

to simulate the effects of the daily reflectance in the visible, NIR, and SWIR parts of 264 

the spectrum during the growing season. This is done through the LAI simulated by 265 

the crop model, which is used as input for the RTM along with other biophysical or 266 

biochemical parameters (Fang et al., 2011; Ma et al., 2013b; Wu et al., 2013). 267 

WOFOST simulates daily LAI when the meteorological, soil, and crop input 268 

parameters are specified. In this study we used the WOFOST-simulated LAI as the 269 

input parameter for PROSAIL to calculate the daily spectral reflectance for the 270 

wavelength range from 400 to 2500 nm. Both models were coupled through the LAI 271 

state variable using a program written in FORTRAN.  272 

In addition, we generated Cab through a piecewise linear interpolation method 273 

based on field data for three key periods (booting, heading, and grain-filling) as inputs. 274 
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We determined the leaf structure parameter N based on an empirical relationship with 275 

specific leaf area (SLA) developed by Jacquemoud and Baret (1990). The Cm values 276 

were given through empirical relationship with dry matter of leaves simulated by 277 

WOFOST, the LIDFa parameter was given an initial value of 0.8 and re-initialized by 278 

the 4DVar data-assimilation, and LIDFb was set as a fixed value of 0. The view zenith 279 

angle was obtained from the Landsat metadata and the solar zenith angle was 280 

calculated from the longitude and overpass time in the Landsat metadata. The time 281 

series of psoil (the dry/wet soil factor) was determined through an empirical 282 

relationship with daily precipitation; in this relationship, we set psoil to 0 after an 283 

effective rainfall (i.e., more than 3 mm of rain), then added 0.1 to the parameter each 284 

day until the next effective rainfall event. We set rsoil (the soil brightness factor), Cw 285 

to a fixed value during winter wheat growing season.  286 

[Insert Table 2 near here] 287 

4.3 Assimilation of remotely sensed reflectance into WOFOST–PROSAIL using 288 

the 4DVar algorithm 289 

Minimization of cost function of four-dimensional variational (4DVAR) was 290 

conducted to derive a new set of input parameters (re-initialized parameters) that will 291 

be an input for the WOFOST-based yield estimate. The selection of re-initialization 292 

parameters is crucial in a 4DVar assimilation strategy (de Wit et al., 2012; Huang et 293 

al., 2015b). Only the parameters that most strongly affect LAI and yield are selected 294 

for the re-initialization; however, the correlations among the parameters and the 295 

physical meaning of the re-initialized parameters must be accounted for. One 296 

particular parameter, the sum of the effective temperatures from emergence to 297 

anthesis (TSUM1), has been shown by previous sensitivity analyses to be key 298 

WOFOST parameters for grain and biomass yield estimates (Ma et al., 2013a). Also, 299 

the total initial dry weight of the crop (TDWI) greatly influences the rate of increase 300 
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of the crop LAI and affects the maximum LAI that to be reached during the growing 301 

season (de Wit et al., 2012; Huang et al., 2015b). While WOFOST does not include a 302 

crop planting-density parameter, planting density strongly influences the subsequent 303 

biomass and yield. TDWI can represent a proxy for the crop planting density because 304 

TDWI reflects the actual biomass that generates subsequent growth. The SPAN 305 

parameter represents the lifespan (in days) of leaves growing at 35°C. Thus, SPAN 306 

determines the rate and timing of leaf senescence, and therefore determines the time 307 

when LAI begins to decrease after heading (Curnel et al., 2011, Huang et al., 2015b). 308 

The WOFOST-simulated LAI values are sensitive to TSUM1, TDWI, and SPAN, 309 

subsequently it greatly influences reflection in the visible, NIR, and SWIR 310 

wavelengths (Figure 3a-c). In addition, leaf inclination distribution in SAIL model 311 

was presented by two parameters, LIDFa controls the average leaf inclination angle 312 

while LIDFb affects the bimodality (Verhoef, 1998). For simplicity and efficiency, we 313 

set LIDFb equal to 0. We found that LIDFa can strongly influences spectral 314 

reflectance in the red, NIR, and SWIR bands (Figure 3d), but it varies with crop’s 315 

development. For winter wheat, it was erectophile at beginning and turn to planophile 316 

at maturity (Duan et al., 2016). Thus, we applied a linear interpolation between the 317 

two stages to obtain a LIDF parameter series along with DVS. Simultaneously, we 318 

reinitialized TSUM1, TDWI, SPAN, and LIDFa at the grain-filling stage (DVS=1.3, 319 

at filling stage) for winter wheat pixels in this variational assimilation procedure. 320 

[Insert Figure 3 near here] 321 

Figure 4 shows the flowchart for the process of assimilating remotely sensed 322 

reflectance into the coupled model to estimate the winter wheat yield. The WOFOST-323 

PROSAIL coupled model was considered as a dynamic-process model. The LAI 324 

simulated by WOFOST were used as input for the PROSAIL model in the retrieval of 325 
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spectral reflectance at red, NIR and SWIR wavelengths. The 4DVar data assimilation 326 

procedure integrates remotely sensed reflectance (observations) and modeled 327 

reflectance from coupled WOFOST-PROSAIL model. Four parameters, including 328 

TSUM1, TDWI and SPAN, LIDFa (DVS=1.3, at filling stage) were re-initialized 329 

through the minimization of 4DVar cost function. The 4DVar cost function in this 330 

study, J(x), was constructed as follows: 331 

           
 
          

 

 
                         

 

   
 (1) 332 

where X represents the vector of reinitialized parameters (TSUM1, TDWI, SPAN, 333 

LIDFa); X
b
 represents the prior knowledge on these four parameters; B is the error 334 

covariance matrix for the four parameters; T represents the set of observation times; Yt 335 

represents the remotely sensed reflectance vector for the specific red, NIR, and SWIR 336 

wavelengths on observation date t; Ht represents the observation operator namely the 337 

coupled WOFOST–PROSAIL model, X is model’s inputs parameters, and it's outputs 338 

are reflectance; c is a constant value to balance the impact of the observations in the 339 

assimilation procedure; and Q represents the observation error covariance matrix at 340 

different wavelengths. In the present study, we used constant values for the 341 

observational errors at different times: 0.05, 0.03, and 0.04 for the red, NIR, and 342 

SWIR wavelengths, respectively. B was defined through Markov Chain Monte Carlo 343 

approach based on Bayesian theory (Toshichika et al., 2009).  344 

[Insert Figure 4 near here] 345 

To find the optimal values of the four parameters, we used the shuffled complex 346 

evolution–University of Arizona (SCE-UA) algorithm (Duan, 1994) to minimize the 347 

error between the modeled reflectance and the remotely sensed reflectance in the 348 

4DVar cost function. The graphs in Figure 3 present the initial values for these 349 

parameters and their minimum and maximum ranges in the SCE-UA optimization 350 
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algorithm. We recalibrated the four parameters of TSUM1, TDWI, LIDFa, and SPAN 351 

using the 4DVar assimilation procedure and used these values as the new inputs for 352 

WOFOST to estimate the winter wheat yield for each cell in the grid.  353 

4.4 Assimilation of the 30-m-resolution data  354 

There are totally 12.77×10
6
 30-m grid cells within our study area, it would make 355 

the computation unacceptable slow if we conduct assimilation on every 30-m cell size. 356 

We developed a “grid and cluster” strategy based on the canopy reflectance profile so 357 

that the data assimilation would be conducted only for each pixel category. Figure 5 358 

shows that the grid and cluster strategy included three steps: In the first step, we 359 

stacked the 30-m-resolution time series of TM/OLI and KS synthetic reflectance 360 

values during winter wheat growing season, and clipped it into 10-km grid cells. In 361 

the second step, we conduct ISODATA clustering analysis (Bezdek, 1980) for the 30-362 

m-resolution time series of reflectance values during the growing season. Each 10-km 363 

cell in the grid was classified into up to approximately 40 cluster categories, with the 364 

number of categories calculated by dividing the number of pixels by 20, and with a 365 

maximum of 40 categories. Then each cluster category was assigned the mean 366 

reflectance value of all the pixels in this category. In the third step, we ran the data-367 

assimilation algorithm for all the clusters in all cells of the grid, thereby obtaining an 368 

assimilated yield table for every cluster category within each 10-km cell of the grid. 369 

Finally, we regenerated the spatial yield map using the assimilated yield table and the 370 

clustering analysis map, thereby obtaining the spatial pattern of yield at a 30-m spatial 371 

resolution. In this study, we assimilated two 30-m reflectance datasets (i.e., the 372 

Landsat reflectance and the synthetic KS reflectance) into WOFOST–PROSAIL using 373 

the 4DVar algorithm. 374 

[Insert Figure 5 near here] 375 

The right part of Figure 5 shows an example of the reflectance spectrum for all 376 
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30-m pixels within a typical 10-km cell. The colors of the spectrum profiles represent 377 

the cluster categories, and each profile represents a stack of the reflectance values in 378 

three wavelength bands (red, NIR, and SWIR) on 15 observation dates that cover the 379 

entire growing season. In total, the 10-km grid cell in Figure 5 contains 60,100 30-m 380 

pixels, which we classified into 40 clusters; the mean reflectance in the red, NIR, and 381 

SWIR for the 30-m pixels ranged from 0.03 to 0.48. The average value for a cluster 382 

category can substitute for the observation to be assimilated into coupled WOFOST–383 

PROSAIL model. Higher dispersion of reflectance curves from DOY 160 to 176 was 384 

observed due to the difference of harvest of winter wheat and the sowing of summer 385 

maize. 386 

5. Results 387 

5.1 Synthetic reflectance using the Landsat and MODIS reflectance 388 

We produced a continuous time series of surface reflectance (red, NIR, and 389 

SWIR) values at a 30-m spatial resolution and an 8-day time step for three years 390 

(2009, 2013, and 2014) using two Landsat images. The synthetic KS reflectance 391 

improved the temporal resolution of the Landsat data during the winter wheat growing 392 

season. We then used the continuous time series of synthetic reflectance values at 30-393 

m resolution as inputs for the 4DVar cost function. 394 

Figures 6 show the resulting evolution of NIR surface reflectance during the 395 

winter wheat growth cycle (DOY 68 to 164), using the 2013 data as an example. 396 

Overall, the synthetic time series of surface reflectance generally captured the 397 

temporal dynamics of the winter wheat phenological cycle while retaining the spatial 398 

detail of the Landsat images. The spatial detail in these images is sufficient to reveal 399 

the locations of population centers, main roads, and individual fields, and reveals the 400 

variation in surface reflectance between fields and how these differences change over 401 

time. Given the mismatch between field size and the MODIS resolution, this level of 402 
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detail is not visible in the MODIS sequence, where the reflectance of each pixel 403 

results from the contribution of many fields. 404 

[Insert Figure 6 near here] 405 

Figure 7 shows the temporal evolution of the synthetic KS, Landsat, and MODIS 406 

reflectance data for a representative pixel, using data from 2013 as an example. The 407 

red and SWIR curves present similar patterns, with minima during the peaks of the 408 

winter wheat and maize cycles and a maximum after the winter wheat harvest. The 409 

NIR curve presents a peak between DOY 120 and 140 that corresponds to the heading 410 

stage of winter wheat, followed by a decline around DOY 160 to 180 during the 411 

harvest, followed by a second cultivation cycle of the summer maize. The lower 412 

spatial resolution of the MODIS surface reflectance results in smoother temporal 413 

profiles, whereas the synthetic KS reflectance shows larger temporal variations in 414 

reflectance for a given pixel during the growing season. The uncertainties of the KS 415 

were lowest (zero) when Landsat observations existed, but the uncertainty increased 416 

as the number of time steps without a Landsat observation increased, highlighting the 417 

importance of frequent Landsat observations to obtain accurate estimates. 418 

[Insert Figure 7 near here] 419 

5.2 Simulated reflectance using WOFOST–PROSAIL model 420 

WOFOST–PROSAIL generated reflectance from the initial WOFOST-simulated 421 

LAI inputs. Figure 8 compares these simulated reflectance values to the MODIS 500-422 

m reflectance product (MOD09A1) for seven wavelength bands. We observed similar 423 

trends for the temporal evolution of the WOFOST–PROSAIL simulations and the 424 

MODIS reflectance, but there were discrepancies in the amplitudes of the variations. 425 

Reflectance in the NIR region increased rapidly during the winter wheat growth due 426 

to the increasing amount of green leafy vegetation, but decreased in the visible region, 427 

including red, green, and blue wavelengths. For the SWIR region, which is sensitive 428 
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to the leaf water content, the maximum values correspond to the start of grain-filling 429 

stage.  430 

A large lag between the observed and modeled reflectance was observed in the 431 

post-heading period for the MODIS Bands 5 and 6 (0.21 and 0.08, respectively, on 432 

average; Figure 8). This can be explained by the difficulty of accurately specifying 433 

how the Cw values vary with phenology during winter wheat growing season. We 434 

observed systematic underestimation in the red (620-670 nm) and blue (459-479 nm) 435 

bands. A possible reason may be that the characteristics of the reflectance depend on 436 

phenology for several key inputs of PROSAIL (e.g., soil reflectance, N, Cw) was not 437 

accurately given the values. Another potential reason is that PROSAIL assumes the 438 

simulated units as pure planting areas, but most of the 30-m Landsat pixels represent a 439 

mixture of crops and of other land uses; thus, other components of the image would 440 

influence the signal perceived by the sensors. 441 

[Insert Figure 8 near here] 442 

5.3 Assimilation of the three reflectance datasets into WOFOST–PROSAIL at 443 

the field scale 444 

We assessed the accuracy of the assimilated yield in comparison with field-445 

measured yields from the 29 sample plots at the field scale. Table 3 compares the 446 

estimated yield with field-measured data for the three spatial and temporal resolutions 447 

in the reflectance datasets. We achieved the best accuracy by assimilating the 448 

synthetic KS reflectance into WOFOST–PROSAIL, with the highest R
2
 (0.52) and 449 

lowest RMSE (710 kg ha
-1

). This can be explained because the synthetic KS 450 

reflectance increases the amount of temporal information at key stages of the growing 451 

season with respect to the Landsat images and improves the spatial details with 452 

respect to the MODIS dataset. Assimilation of the Landsat reflectance achieved the 453 

second-highest accuracy, with R
2
 = 0.38 and RMSE = 762 kg/ha. Assimilating the 454 
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time series from the MODIS reflectance achieved a lower accuracy, with R
2
 = 0.25 455 

and RMSE = 803 kg/ha. The WOFOST-simulated yields without data assimilation 456 

achieved the lowest accuracy, with R
2
 = 0.15 and RMSE = 808 kg/ha. 457 

[Insert Table 3 near here] 458 

5.4 Assimilation of the three reflectance datasets into WOFOST–PROSAIL at a 459 

regional scale  460 

We assimilated three remote sensing-based reflectance data with different spatial 461 

and temporal resolutions (1 km and 8-day for the MODIS data, 30 m for the Landsat 462 

TM/OLI data, and 30 m and 8-day for the KS synthetic reflectance) from 2009, 2013, 463 

and 2014 into WOFOST–PROSAIL using the 4DVar assimilation algorithm. Figure 9 464 

compares the mapped WOFOST-simulated yield for each dataset and year. The 465 

WOFOST simulation without assimilation was applied at a 10-km grid size, which is 466 

the same as the meteorological datasets.  On the other hand, 1-km MODIS pixels with 467 

at least 60% winter wheat pixel purity was assimilated, and 30-m Landsat reflectance 468 

and KS synthetic data were assimilated by the “grid and cluster” strategy. 469 

 [Insert Figure 9 near here] 470 

In the government statistics, yields are compiled at a county level. To allow a 471 

comparison with these statistics, we aggregated the assimilated yield pixels or clusters 472 

at a county level for the 58 counties in the study area so that the results could be 473 

validated. Figure 10 shows the resulting scatterplots for the simulated yields and 474 

government statistics. The results indicated that WOFOST is not capable of capturing 475 

the dynamic range in the regional statistics. However, the data assimilation is more 476 

successful in reducing bias then representing the spatial variability. The region-wide 477 

mean wheat yield averaged 6089, 6609, and 6659 kg ha
-1 

in 2009, 2013 and 2014 478 

respectively, and 95% of the yield was in the range of 4000 to 8000 kg ha
-1

. The 479 

yields without assimilation had a low coefficient of determination and large error (R
2
 480 
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= 0.14, 0.06, and 0.10 and RMSE = 1002, 1586, and 1315 kg ha
-1

 for 2009, 2013, and 481 

2014 respectively). Although the WOFOST simulation without data assimilation 482 

captured some of the spatial variability of wheat yield (Figure 9), it generally 483 

overestimated wheat yields except in 2013 (6398, 4780, 7502 kg ha
-1

 on average in 484 

2009, 2013 and 2014 respectively). 485 

[Insert Figure 10 near here] 486 

The 1-km and 8-d MODIS reflectance time series from green-up (about DOY 60) 487 

to maturity (about DOY 160) was directly assimilated into WOFOST–PROSAIL 488 

using the 4DVar assimilation strategy (Figure 10). The assimilation results indicated 489 

low accuracy, with R
2
 = 0.49, 0.05, and 0.22 and RMSE = 1136, 1468, and 700 kg ha

-
490 

1
 for 2009, 2013, and 2014, respectively.  491 

Direct assimilation of the 30-m Landsat TM/OLI reflectance data captured more 492 

of the spatial variability of winter wheat yields throughout the study area because of 493 

the high spatial resolution (Figure 9c). Its yield simulation accuracy was also higher 494 

than that of the MODIS data, with R
2
 = 0.21, 0.22, and 0.33 and RMSE = 915, 1422, 495 

and 637 kg ha
-1

 for 2009, 2013, and 2014, respectively. Comparison of the results 496 

from the three years shows that the assimilation at two key growth stage (heading, 497 

grain-filling) achieves better results, but due to the impact of the 16-day Landsat 498 

revisit frequency, it is difficult to obtain the required key information during the 499 

growing season.  500 

The estimated yields from assimilation of the synthetic KS reflectance dataset 501 

from DOY 60 to maturity, with 30-m resolution and an 8-day interval, agreed well 502 

with the spatial pattern of the official statistical yields at the county level (Figure 9d). 503 

Overall, the assimilation of the KS synthetic reflectance dataset took advantage of the 504 

benefits of the MODIS MOD09A1 and Landsat TM/OLI data, and maintained a good 505 
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balance between improving correlation and low error, with R
2
 = 0.44, 0.39, and 0.30 506 

and RMSE = 598, 1288, and 595 kg ha
-1

 for 2009, 2013, and 2014, respectively. This 507 

can be explained by the higher temporal and spatial resolution of the synthetic KS 508 

reflectance series, which resulted from integration of the MODIS reflectance time 509 

series with the more accurate Landsat TM/OLI reflectance values.  510 

 511 

6. Discussion  512 

In this study, we have developed a data-assimilation framework to incorporate 513 

high resolution reflectance data into a coupled crop growth and canopy radiative 514 

transfer model (WOFOST–PROSAIL). The coupling of the reflectance observations 515 

within the assimilation scheme has obvious advantages, as it accounts for the 516 

propagation of uncertainty through the mapping from reflectance data to the state 517 

variable (LAI), and can directly incorporate observations from different sensors in a 518 

consistent and coherent fashion. However, this strategy requires an accurate 519 

calibration of key parameters in the coupled crop–RTM model, particularly when the 520 

data-assimilation practices extend to a regional scale. 521 

Determining the optimal values for free parameters is a time-consuming process 522 

for large datasets. Thus, improving the computational efficiency is crucial for use of 523 

our method for data assimilation in large regions and in high spatial resolutions. We 524 

developed a grid and cluster method to solve the problem of long computation times 525 

and improve the efficiency of the data assimilation calculations. The grid and cluster 526 

strategy developed in the present study was generally successful and enabled us to 527 

conduct the assimilation scheme at a large scale with 30-m resolution. It illustrates 528 

that full coupling of the RTM within a data-assimilation system would become 529 

possible, improving biophysical and biochemical monitoring of crops. Besides of that, 530 

new technological breakthroughs such as the use of machine-learning approaches 531 
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(Lewis et al., 2012; Gómez-Dans et al. 2016) can be used to represent the input–532 

output relationships of RTMs would greatly accelerate performance, we are planning 533 

to address this in a future study. 534 

In this study, we generated Kalman Smoothed reflectance with 30-m and 16-d 535 

resolution, it’s actually a both temporally and spatially upscaled dataset. The 536 

comparison between assimilating KS reflectance and MOD09 indicates that 537 

assimilating spatially upscaled reflectance result in accuracy improvement (lower 538 

RMSE) and similar precision (R
2
). Meanwhile, the comparison between assimilating 539 

KS reflectance and TM/OLI illustrates that assimilating temporally upscaled 540 

reflectance could improve assimilation accuracy and precision both.  541 

A low temperature caused frost damage in 2013 and significantly affected the 542 

performance of data assimilation. This indicates that WOFOST requires further 543 

calibration to account for the effect of low temperature on dry matter accumulation 544 

during subsequent growth periods. When frost damage occurs, several important crop 545 

parameters (e.g., the leaf CO2 assimilation rate, conversion efficiency of assimilates, 546 

and partitioning parameters) would change for the following growth period. Thus, 547 

taking into account temporal variability of these parameters are crucial for improve 548 

the simulation of growth process.   549 

We conducted data assimilation for three years, the perfect evaluating the 550 

performance of data assimilation should be performed both at the field and regional 551 

scales. Due to the lack of enough field data in 2013 and 2014, we only validated the 552 

data assimilation results at the county level for 2013 and 2014. We also conducted 553 

data assimilation in 2009 with the same method and scheme because we have plenty 554 

of field survey data in this year for validation.  In future work, adequate field data are 555 

needed to validate the performance of data assimilation under the under extreme 556 
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weather conditions (such as low and high temperatures).  557 

The frequency of remote sensing observations has an obvious effect on the 558 

assimilation accuracy: the more reflectance observations that can be obtained during 559 

highly sensitive growth periods (from heading to flowering), the better the 560 

assimilation results. However, there’s a tradeoff between high spatial resolution and 561 

high temporal resolution: the assimilation of data with high spatial resolution is more 562 

accurate and provides more detail on spatial variation, but it requires observations that 563 

are often unavailable during the key growth periods; in contrast, yield estimation by 564 

assimilating data with high frequency results in a high correlation with official yield 565 

statistics, but it is unsuitable in actual application because few pure pixels exist in the 566 

relatively coarse-spatial-resolution data. The synthetic Kalman filter reflectance 567 

generated by the MODIS and Landsat datasets combines the advantages of high 568 

spatial resolution and high frequency; as a result, our assimilation experiments 569 

showed that the synthetic product is more stable in different years and in large region   570 

and more effective than relying on only one of the two datasets. In addition, the 571 

reflectance data (with similar spatial resolution) from different sources are easier to 572 

compare, making this approach suitable for assimilation of data from multiple sources. 573 

In addition, with time series of Sentinel 2A/2B available, these data can be assimilated 574 

to ensure sufficient frequency and spatial detail, and the reliance on synthetic 575 

reflectance images will be reduced. 576 

The parameterization of a coupled growth – RTM model in which several key 577 

parameters vary during the crop growth period represents a challenging problem. In 578 

previous researches, we used LAI as the state variable, and assimilated the adjusted 579 

LAI into the WOFOST model to significantly reduce the RMSE for the estimated 580 

winter wheat yields using the 4DVar assimilation algorithm (Huang et al., 2015b) and 581 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

an ensemble Kalman filter algorithm (Huang et al., 2016). In the present study, we 582 

instead assimilated the remotely sensed reflectance data from red, NIR, and SWIR 583 

wavelengths into the coupled crop growth and radiative transfer model. Another 584 

challenge for our previous approaches is that large amounts of high-quality ancillary 585 

data are required to generate the scale-adjusted LAI or KF synthetic LAI over a 586 

regional scale (Huang et al., 2015b, 2016). The present approach integrates the more 587 

direct remotely sensed observational reflectance signals into the coupled crop and 588 

RTM model, thereby avoiding the need for LAI retrieval and reducing the 589 

requirement for high-quality ancillary data over a regional scale. Thus, assimilating 590 

reflectance data appears to be a more promising approach for operational monitoring 591 

and forecasting of regional crop yield. At a regional scale, both strategies improved 592 

the estimation accuracy for winter wheat yield compared with running WOFOST 593 

without data assimilation. In the previous research, accuracy of yield estimation by 594 

assimilating LAI with 4DVar (R
2
 = 0.48; RMSE = 151.92 kg ha

-1
) and with an 595 

ensemble Kalman filter (R
2
 = 0.43; RMSE = 439 kg ha

-1
) achieved slightly higher 596 

accuracy than assimilating reflectance in the present study (R
2
 = 0.44, RMSE = 598 597 

kg ha
-1

) in 2009. By assimilating the Landsat and KS synthetic data using the grid and 598 

cluster strategy, we retained the same level of spatial detail while greatly improving 599 

the computational efficiency. 600 

In previous studies, grain yield RRMSE values at field scale were between 18 601 

and 24% based on assimilating LAI and canopy cover data at a 30-m resolution 602 

(Silvestro et al., 2017), and some research reported RRMSE less than 10% at a field 603 

scale by assimilating 30-m-resolution vegetation indices (Zhang et al., 2016). Our 604 

results indicated that the number and distribution over the year of the Landsat images 605 

is important to capture the dynamics of the crop cycle and thus achieve a precise yield 606 
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estimation. Thus, the number and acquisition dates of the Landsat images in different 607 

years and different scenes will result in variations in the accuracy of yield estimates, 608 

as it can be observed by the larger RRMSE obtained for year 2013, as we did not have 609 

any Landsat images before DOY 132 in P123R033. Integrating images from multiple 610 

sensors into this framework will ensure key periods of crop development are captured 611 

and increase the robustness of yield estimations. Working over a larger temporal and 612 

spatial domain than previous studies, our results demonstrate the effectiveness of 613 

assimilating reflectance values instead of biophysical variables or remote sensing 614 

vegetation indices and the feasibility to operate over large regions, which is a crucial 615 

consideration for practical application of this approach. 616 

Larger spatial extents and multiple-year analysis are required to validate the 617 

robustness of data-assimilation approaches and determine how well they account for 618 

the spatial and inter-annual variability in crop yield estimates (Claverie et al., 2012; de 619 

Wit et al., 2012). Variables such as the choice of cultivars, the weather conditions, and 620 

the management decisions often change between years, and introduce uncertainties 621 

into yield estimates. There are a few studies of the variations of assimilation 622 

performance during multiple years (e.g., de Wit et al., 2012). In the present study, we 623 

conducted data assimilation for three years and the performance differs in each year, it 624 

suggests that some of the biotic or abiotic processes are probably not covered in the 625 

model, so further work need to focus on the calibration of the effects of weather 626 

conditions (such as low and high temperatures) and some other method like sequential 627 

assimilation may need to be considered. Experiments over longer periods, such as a 628 

decade, are worth to conduct to reveal the key factors that control the accuracy of the 629 

assimilation scheme.  630 

 631 

7. Conclusions 632 
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In this study, we used the coupled WOFOST–PROSAIL model to estimate 633 

winter wheat yield at a regional level and enhanced the model's simulation accuracy 634 

by assimilating remotely sensed Landsat, MODIS, and synthetic KS surface 635 

reflectance values using the 4DVar cost function combined with the SCE-UA 636 

optimization algorithm. Assimilation of the Landsat reflectance data improved the 637 

results by providing higher-resolution data during key growth stages, whereas 638 

assimilation of the MODIS reflectance data improved the frequency of the 639 

observations; combining these two advantages using the synthetic KS approach 640 

further improved the results. Our results showed that the current 1-km MODIS surface 641 

reflectance products are not suitable for assimilation into the WOFOST–PROSAIL 642 

model because despite the relatively high R
2
 achieved with this data, the RMSE was 643 

relatively large. The proposed grid and cluster strategy, a data-assimilation algorithm 644 

at a 30-m scale, produced wheat yield estimates that retained fine spatial detail while 645 

improving the computational efficiency. Our validation results showed that 646 

assimilating the time series of synthetic KS surface reflectance values improved the 647 

estimates of wheat yield at both individual-field and regional (county-level) scales. 648 

These results indicated that our new method, based on the 4DVar strategy and 649 

synthetic reflectance data, is a promising way to estimate winter wheat yield at a 650 

regional scale in the North China Plains, and may be adaptable to improve crop yield 651 

estimation in other agricultural regions of the world. 652 
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Captions of Figures 

Figure 1. Study area. P123R033 and P123R034 represent the two Landsat scenes that covered 

the study area. These are part of MODIS tiles h26v05 and h27v05. 

 

Figure 2. Daily mean temperature and precipitation of study area in 2009, 2013 and 2014 

 

Figure 3. Profiles of the reflectance values simulated by the coupled WOFOST–PROSAIL 

model with (a) TSUM1 ranging from 700 to 1300 °C d and (b) the TDWI ranging between 140 

and 350 kg·ha-1, (c) SPAN ranging between 23 and 43 days, and (d) LIDF(at vegetation 

developmental stage 1.3, grain-filling) ranging from –0.95 to 0.85. 

 

Figure 4. Flowchart for the process of assimilating remotely sensed reflectance (ref.) data into 

the coupled crop growth and radiative transfer model using the 4DVar assimilation algorithm. 

KF, Kalman filter; SCE–UA, shuffled complex evolution–University of Arizona algorithm. 

“Clusters” refers to different categories after ISODATA clustering analysis. 

 

Figure 5. Illustration of the grid and cluster strategy for cells in the grid. 

 

Figure 6. Temporal sequences of the spatial variation in the smoothed 500-m MODIS band 2 

(NIR, 841–876 nm) surface reflectance and synthetic Kalman filter (KF) Landsat 8 band 5 

(NIR, 851-879 nm) surface reflectance from cloud-free images during the winter wheat 

growing season (using data from 2013 as an example). 

 

Figure 7. The temporal pattern of surface reflectance for a representative pixel based on the 

synthetic Kalman filter (KF) and the Landsat and MODIS reflectance data, and uncertainty in 

the Kalman filter value for a given pixel: (a) red:  MODIS 500-m band 1 (620–670 nm), 

synthetic Kalman filter, and Landsat 8 band 4 (636-673 nm); (b) NIR: MODIS 500-m band 2 

(841–876 nm), synthetic Kalman filter, and Landsat 8 band 5 (851-879 nm); (c) SWIR: MODIS 

500-m band 6 (1628–1652 nm), synthetic Kalman filter, and Landsat 8 band 6 (1566-1651 nm). 

 

Figure 8. Comparison of the reflectance (ref.) simulated by the coupled model and the three 

kinds of observations. KF, Kalman filter.  

 

Figure 9. Comparisons of the spatial patterns of winter wheat yield simulated by the WOFOST 

model (a) without data assimilation and (b-d) with assimilation based on three different 

remotely sensed reflectance datasets. (e) Official statistics for yield in (1) 2009, (2) 2013, and 

(3) 2014. 

 

Figure 10. Accuracy of the estimated winter wheat yield at a county level in comparison with 

government statistics. Results are for assimilating the (left) MODIS reflectance, (center) 

Landsat reflectance, and (right) synthetic Kalman filter reflectance using the 4DVar 

assimilation strategy for (top) 2009, (center) 2013, and (bottom) 2014. 
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Figure 1. Study area. P123R033 and P123R034 represent the two Landsat scenes 

that covered the study area. These are part of MODIS tiles h26v05 and h27v05. 

 

 

Figure 2. Daily mean temperature and precipitation of study area in 2009, 2013 

and 2014 

 



 

Figure 3. Profiles of the reflectance values simulated by the coupled 

WOFOST–PROSAIL model with (a) TSUM1 ranging from 700 to 1300 °C d and (b) 

the TDWI ranging between 140 and 350 kg·ha
-1

, (c) SPAN ranging between 23 and 

43 days, and (d) LIDFa (at vegetation developmental stage 1.3, grain-filling) ranging 

from –0.95 to 0.85. 

 



Figure 4. Flowchart for the process of assimilating remotely sensed reflectance (ref.) 

data into the coupled crop growth and radiative transfer model using the 4DVar 

assimilation algorithm. KF, Kalman filter; SCE–UA, shuffled complex 

evolution–University of Arizona algorithm. “Clusters” refers to different categories 

after ISODATA clustering analysis. 

 

 

Figure 5. Illustration of the grid and cluster strategy for cells in the grid. 

 

 

 

Figure 6. Temporal sequences of the spatial variation in the smoothed 500-m MODIS band 

2 (NIR, 841–876 nm) surface reflectance and synthetic Kalman filter (KF) Landsat 8 band 

5 (NIR, 851-879 nm) surface reflectance during the winter wheat growing season 

(using data from 2013 as an example). 
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Figure 7. The temporal pattern of surface reflectance for a representative pixel based 

on the synthetic Kalman filter (KF) and the Landsat and MODIS reflectance data, and 

uncertainty in the Kalman filter value for a given pixel: (a) red:  MODIS 500-m band 

1 (620–670 nm), synthetic Kalman filter, and Landsat 8 band 4 (636-673 nm); (b) 

NIR: MODIS 500-m band 2 (841–876 nm), synthetic Kalman filter, and Landsat 8 

band 5 (851-879 nm); (c) SWIR: MODIS 500-m band 6 (1628–1652 nm), synthetic 

Kalman filter, and Landsat 8 band 6 (1566-1651 nm). 

 

 

 

 



Figure 8. Comparison of the reflectance (ref.) simulated by the coupled model 

and the three kinds of observations. KF, Kalman filter.  

 

 

Figure 9. Comparisons of the spatial patterns of winter wheat yield simulated by the 

WOFOST model (a) without data assimilation and (b-d) with assimilation based on 

three different remotely sensed reflectance datasets. (e) Official statistics for yield in 

(1) 2009, (2) 2013, and (3) 2014. 

 



 

 

Figure 10. Accuracy of the estimated winter wheat yield at a county level in 

comparison with government statistics. Results are for assimilating the MODIS 

reflectance(left column) , Landsat reflectance (center column), and synthetic KF 

reflectance (right column) using the 4DVar assimilation strategy for the year of 2009 

(top row), 2013 (center row), and 2014 (bottom row). 

 

 



Tables 

Table 1 Landsat image acquisition dates during the winter wheat growing season 

for each path and row. 

Landsat 

scene  

2009 

Landsat 5 TM 

2013 

Landsat 8 OLI 

2014 

Landsat 8 OLI 

Total 

P123R033 DOY25 winter dormancy 

DOY41 winter dormancy 

DOY 73 green-up 

DOY137 grain-filling 

DOY132 anthesis 

DOY164 maturity 

DOY 103 elongation 

DOY 119 booting 

DOY135 grain-filling 

9 

P123R034 DOY25 winter dormancy 

DOY41 winter dormancy 

DOY 73 green-up 

DOY137 grain-filling  

DOY116 booting 

DOY132 anthesis 

DOY164 maturity 

DOY 103 jointing 

DOY 119 booting 

DOY135 grain-filling 

10 

Total 8 5 6 19 

 

 

 

Table 2 Input parameters in the PROSAIL model and data sources. 

Parameter Unit Range Data sources 

LAI - 0 to 8 Simulated by WOFOST 

Cab μg∙cm
-2

 20 to 80 Empirical relationship for the 

vegetation developmental stage 

(DVS) in WOFOST 

Cm μg∙cm
-2

 0.002 to 0.200 Empirical relationship with dry 

matter of leaf  simulated by 

WOFOST 

Cbrown μg∙cm
-2

 0 to 0.2 Linearly associated with Cab 

N - 1.2 to 1.8 Empirical relationship with SLA 

simulated by WOFOST 

LIDFa - -1 to 1 Linear interpolation with optimized 

value through 4DVar assimilation 

LIDFb - 0 Default value 

psoil - 0.5 to 3.5 Empirical relationship with daily 

precipitation 

View zenith  ° 0 to 90 from Landsat metadata 

Solar zenith  ° 0 to 90 from Landsat metadata 

Relative azimuth  ° -180 to 180 from Landsat metadata 

Cw cm 0.0185 Empirical value from Zhang et al. 

(2016) 

rsoil - 1 Default value 

 

Table



Table 3 Comparison of the assimilated wheat yield using the three reflectance datasets 

with the field-measured yield in 29 sample plots. Significance: ns, not significant; * p 

< 0.05; ** p < 0.01 

Scheme 
Mean 

(kg/ha) 

Max  

(kg/ha) 

Min 

(kg/ha) 

R
2
 RMSE  

(kg/ha) 

Field-measured yield at the 29 sample plots 7291 8295 5700 — — 

Simulated yield without data assimilation 7188 8521 6367 0.15 * 808 

Simulated yield with assimilation of the 

MODIS reflectance 

7140 7565 6855 0.25 ns 803 

Simulated yield with assimilation of the 

Landsat reflectance from three dates 

7009 7255 6761 0.38 ** 762 

Simulated yield with assimilation of the 

synthetic Kalman filter reflectance 

6579 7250 5760 0.52 ** 710 

 


