1 An integrated chemostratigraphic (δ^{13} C- δ^{18} O- 87 Sr/ 86 Sr- δ^{15} N) study of

- 2 the Doushantuo Formation in western Hubei Province, South China.
- 3

Zhongwu Lan ^{a,b*}, Yuji Sano ^b, Takuya Yahagi ^b, Kentaro Tanaka ^b, Kotaro Shirai ^b, Dominic
Papineau ^{c,d}, Yusuke Sawaki ^e, Takeshi Ohno ^f, Mariko Abe ^g, Hongwei Yang ^h, Hai Liu ^h, Tao
Jiang ^h, Teng Wang ^h

- 7
- ^a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese
 Academy of Sciences, Beijing 100029, China
- ^b Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
- 11 ^c London Centre for Nanotechnology, University College London, London WC1E 6BT, UK

^d Department of Earth Sciences, and Center for Planetary Sciences, University College London,
 London WC1E 6BT, UK

- ^e Department of Earth Science and Astronomy, The University of Tokyo, 3-8-1, Komaba,
 Meguro-ku, Tokyo 153-8902, Japan
- ^f Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, 1-5-1, Toshima-ku,
 Tokyo 171-8588, Japan
- 18 ^g Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for
- Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka, Kanagawa
 237-0061, Japan
- 21 ^h Central South Institute of Metallurgical Geology, Yichang 443003, China
- 22

23 ABSTRACT

24

High-resolution isotopic analyses were conducted on core samples from the Ediacaran 25 26 Doushantuo Formation at the Wangjiapeng section, western Hubei Province in South China, 27 whereby two laterally traceable, negative $\delta^{13}C_{carb}$ excursions (EN1 and EN3) were recognized. The magnitude and duration of these excursions permit intra-basinal and inter-basinal correlation, 28 which indicates that they probably represent a global change in seawater composition. The 29 occurrence of decoupled $\delta^{13}C_{car}-\delta^{13}C_{org}$ with almost invariable $\delta^{13}C_{org}$ values at Wangjiapeng, 30 Zhongling, Yangjiaping sections is consistent with remineralization of a dissolved organic carbon 31 32 (DOC) pool by means of sulfate reduction, as recorded in EN3. The synchronous presence of EN3, a shift to higher 87 Sr/ 86 Sr and decrease of Mn and Fe contents and δ^{15} N values together points to a 33 glacial influence whereby oxygenation and remineralization of reduced carbon produced 34 ¹³C-depleted DIC. Glaciations cause a decrease in sea level, which itself leads to increased 35 continental shelf area to be exposed to surface weathering, and ultimately to enhanced delivery of 36 radiogenic ⁸⁷Sr. The increase of ⁸⁷Sr/⁸⁶Sr ratios, sulfate and phosphate are consequences of surface 37 runoff into oceanic environments and such perturbations induce biogeochemical changes. 38

39

40 **KEY WORDS**: Ediacaran chemostratigraphy; δ^{13} C- δ^{18} O- 87 Sr/ 86 Sr- δ^{15} N; Doushantuo Formation;

- 41 South China; Ediacaran glaciation; open marine environment
- 42

43 **1. Introduction**

44

The Ediacaran Period (c. 635-c. 541 Ma) has increasingly attracted worldwide 45 attention because it was during this time interval that glaciations occurred (Pu et al., 46 2016) and that new animal forms (e.g. bilaterians) and behaviors (e.g. 47 biomineralization and bioturbation) first emerged (McCall, 2006; Xiao et al., 1998, 48 2014; Muscente et al., 2015). This period witnessed intriguing and unprecedented 49 chemo-oceanographic fluctuations related to a significant oxygenation event and 50 widespread biogeochemical perturbations (Shields-Zhou and Och, 2011). The carbon 51 isotopic record of ancient seawater recorded in marine carbonates serves as a key 52 53 proxy for exploring these variations, especially the temporal and causal relationships with biological and environmental factors, although they are often ambiguous partly 54 because of the lack of high resolution chemostratigraphic data. 55

Information on these biological and environmental events is well preserved in the 56 lower-middle Ediacaran Doushantuo Formation in South China (Xiao et al., 2007; Li 57 et al., 2010; Lu et al., 2013; Liu et al., 2014; Cui et al., 2015, 2016; Muscente et al., 58 2015; Xiao et al., 2016). The Doushantuo Formation is dominated by carbonate, 59 phosphorite, and black shale that show depositional facies varying from 60 shallow-marine shelf to deep-marine basin (Zhu et al., 2007). As such, the 61 Doushantuo Formation presents a natural sedimentological laboratory for 62 chemostratigraphic study. Three striking fluctuations in ocean composition occurred 63 during the deposition of the Doushantuo Formation as evidenced by three negative 64 $\delta^{13}C_{carb}$ excursions, which may record global-scale events following the late 65 Cryogenian glaciation (Jiang et al., 2003; Wang et al., 2008; Tahata et al., 2013; Lu et 66 al., 2013; Zhu et al., 2013; Furuyama et al., 2016; Zhou et al., 2016). These are 1) the 67 negative $\delta^{13}C_{carb}$ excursion (EN1) in the basal Ediacaran cap carbonates that locally 68 exhibits $\delta^{13}C_{carb}$ values down to -48% indicative of methane release from a gas 69 hydrate destabilization event (Jiang et al., 2003; Wang et al., 2008), 2) the relatively 70 less negative δ^{13} C excursion of ca. -5% (EN2) in middle Ediacaran strata (Zhou and 71 Xiao, 2007), and 3) the remarkable negative $\delta^{13}C_{carb}$ excursion (EN3) with values as 72 low as -12% recorded globally in middle Ediacaran strata (McFadden et al., 2008). 73 These three negative $\delta^{13}C_{carb}$ excursions have been frequently used for correlation of 74 Ediacaran stratigraphy as well as reconstruction of Ediacaran palaeoenvironments in 75 view of their different amplitudes and stratigraphic levels (Zhou and Xiao, 2007; Zhu 76 et al., 2007). However, the origin of these negative $\delta^{13}C_{carb}$ excursions, particularly 77 EN2 and EN3, and their possible global correlation remain unclear, with various 78 models proposed such as involvement of a DOC reservoir or recycled/detrital organic 79 carbon (McFadden et al., 2008; Jiang et al., 2010, 2012; Johnston et al., 2012; 80 Ishikawa et al., 2013; Wang et al., 2016). In view of the potential diagenetic 81 overprinting and variations in the depth of chemocline between different sections, 82 more detailed work is required to give further constraints. 83

Carbon isotope stratigraphy combined with strontium and nitrogen isotopic stratigraphy, sequence stratigraphy and redox sensitive elements such as Fe and Mn has helped to clarify some problematic correlations of Ediacaran sedimentary

successions and the origin of negative $\delta^{13}C_{carb}$ excursions as well as recover redox 87 conditions of ancient seawater, although in some sections correlations have been 88 difficult to establish due to spatially limited outcrops, poor constraints on 89 bathymetry-dependent facies variations, and low sampling resolution (Yang et al., 90 1999; Sawaki et al., 2010; Jiang et al., 2007, 2011; Zhu et al., 2013; Cremonese et al., 91 2013; Kikumoto et al., 2014; An et al., 2015; Cui et al., 2015; Zhou et al., 2017; Wang 92 et al., 2018). As a result, the origin and timing of both EN2 and EN3, and their 93 chronological order with respect to Ediacaran glaciation, remains ambiguous, which 94 has led to the proposal of two possible models for Ediacaran subdivisions and 95 correlation (Xiao et al., 2016). Further high resolution chemostratigraphic studies can 96 contribute to enhance our understanding of the occurrence, order and causal 97 relationships between chemo-oceanographic chemical variations and Ediacaran 98 glaciation during this key geological period. 99

In this study, drill core samples of the Doushantuo Formation are used to ensure that the chemostratigraphy is complete, continuous, and studied at high-resolution as well as to minimize the influence of late oxidation and surface weathering. Previously published $\delta^{13}C_{carb}$, $\delta^{13}C_{org}$, $\delta^{15}N$ and ${}^{87}Sr/{}^{86}Sr$ stratigraphy are compiled and directly compared to new detailed chemostratigraphy of $\delta^{13}C$ and ${}^{87}Sr/{}^{86}Sr$. With this approach, the origin of Ediacaran negative $\delta^{13}C_{carb}$ excursions and their chemostratigraphic correlations are discussed.

107

108 2. Geological setting

109

The Ediacaran Yangtze platform in South China developed on a Neoproterozoic 110 rifted continental margin that is believed to have started along the southeastern side of 111 the Yangtze block at ca. 800 Ma (Wang and Li, 2003; Jiang et al., 2007). A passive 112 margin setting is assumed to accommodate the post-glacial Ediacaran carbonate and 113 siliciclastic rocks (Jiang et al., 2003a). Ediacaran sedimentary rocks are widely 114 exposed around the Yangtze block and preserve a key biostratigraphic and 115 chemostratigraphic record of the co-evolution of life and its environments in the 116 Doushantuo and Dengying formations (Figure 1A, B; Zhou and Xiao, 2007; Zhu et al., 117 2007; Chen et al., 2014; Liu et al., 2014; Xiao et al., 2014; Cui et al., 2015). 118

Detailed facies analyses and palaeogeographic reconstructions based on more 119 than twenty sections suggest that the Doushantuo Formation was deposited in three 120 platform facies belts, as represented by 1) proximal inner shelf peritidal mixed 121 carbonate and shale, 2) an intra-shelf lagoon containing mixed carbonate, phosphorite, 122 and shale, and 3) an outer shelf shoal complex with increasing water depth from 123 northwest to southeast (Figure 1C; Zhu et al., 2007; Jiang et al., 2011). The 124 Doushantuo Formation was deposited in two stages. The first stage and, in particular, 125 the couplet of cap carbonate and overlying black shale of the lower Doushantuo 126 127 Formation indicates an open shelf/ramp depositional environment after the Nantuo glaciation. The second stage is characterized by its rimmed carbonate shelf with a 128 shelf-margin barrier separating the intra-shelf lagoon from open ocean settings (Jiang 129 et al., 2011). One of the most complete and continuous outcrops of the Doushantuo 130

Formation is exposed at the intra-shelf basin Jiulongwan section within the Yangtze 131 Gorges area (Liu and Sha, 1963; Sawaki et al., 2010). Therein, the mixed shale and 132 carbonate of the Doushantuo Formation have a total thickness of ca. 160 m and 133 conformably overlie the Nantuo Formation, which is dominated by greenish 134 diamictite with minor red sandstone beds interpreted to be glaciogenic sediments 135 correlative with the late Cryogenian 'Marinoan glaciation' (Liu and Sha, 1963; Lang 136 et al., 2018). The Doushantuo Formation at Jiulongwan is divisible into, in ascending 137 order, Member 1 composed of cap dolostone, Member 2 dominated by black shale, 138 Member 3 dominated by dolostone and Member 4 composed exclusively of black 139 shale (with carbonate concretions). Conformably overlying the Doushantuo 140 141 Formation is the Dengying Formation, which is mainly composed of mixed dolostone and limestone that can be divided into three members: the Hamajing, Shibantan and 142 Baimatuo members, in ascending order (Zhu et al., 2003). 143

The outer-shelf Wangjiapeng section is well-represented in drill core No. 144 WZK101, which is situated between the Jiulongwan section and the Yangjiaping 145 section, with GPS coordinates of (30°31'36"N; 111°01'29"E) (Figure 1B). The 146 Doushantuo Formation at Wangjiapeng begins with ca. 5 m of cap carbonate on top of 147 the Nantuo glacial diamictite, succeeded by ca. 80 m of muddy dolostone intercalated 148 with muddy limestone and shale, which is followed in turn by ca. 170 m of thick 149 muddy limestone, muddy dolostone, shale and dolostone. Such lithological 150 assemblage is similar to that occurring around Jiulongwan section where black shale 151 or calcareous shale is also present, indicating that these two sections are adjacent and 152 could have deposited in a similar sedimentary environment. At Wangjiapeng section, 153 the Doushantuo/Dengying boundary can be identified by the thick-bedded dolostone 154 at the bottom of the Dengving Formation. No radiometric ages have been obtained 155 from these drill core samples. However, the depositional age of the Doushantuo 156 Formation at Jiulongwan section is constrained to cover the interval between circa 157 635 Ma and 551 Ma by means of TIMS U-Pb dating of zircon grains from two 158 159 interbedded tuff beds around the base of the Doushantuo Formation and close to the Doushantuo-Dengying Formation boundary (Condon et al., 2005) and Lu-Hf age of 160 584 ± 26 Ma and Pb-Pb age of 599.3 ± 4.2 Ma from the phosphorite of Doushantuo 161 Formation (Barfod et al., 2002), which means that the Doushantuo Formation spans 162 roughly 80 million years. 163

- 165 **3. Analytical methods**
- 165

164

167 *3.1. Imaging analyses*

168

Thin sections were prepared by cutting samples perpendicular to the bedding plane surface so as to detect typical internal microstructures under the Nikon Eclipse E800 Microscope equipped with a Nikon DS-Fi 1 camera using transmitted and reflected lights. This is because microtextures such as cemented grains and diagenetic pyrite are better observed in cross sections. The Zeiss 1555 VP-FESEM was utilized to detect minerals of micron to submicron meters. The SEM was specifically manipulated to get an optimal resolution at 50,000-200,000. It was tuned to an
optimal working distance of 7-15 mm and a voltage of 10-20 kV.

177 178

3.2. Carbonate carbon and oxygen isotope analyses

179

In order to limit as far as possible influence of late-stage diagenetic alteration of 180 carbonate minerals, penetration of carbonate/quartz veins and field outcrop 181 weathering, 144 samples were taken from drill core at the Central South Institute of 182 Metallurgical Geology, Yichang, China for $\delta^{13}C_{carb}$ and $\delta^{18}O_{carb}$ analyses. Carbonate 183 $\delta^{13}C_{carb}$ and $\delta^{18}O_{carb}$ values were measured using a continuous gas flow mass 184 spectrometer (Delta V Plus; Thermo Fischer Scientific Inc.) coupled to a carbonate 185 reaction device (Gasbench II, Thermo Fischer Scientific Inc.) at the Atmosphere and 186 Ocean Research Institute of The University of Tokyo. Powdered samples (~0.2 mg) 187 were loaded into vials sealed with rubber septae. After replacing air in the vials with 188 ultrapure He gas, carbonate was reacted with phosphoric acid at 72 °C to produce CO₂ 189 gas. An automated needle was used to transfer the carbon dioxide analyte gas from the 190 head space in a stream of ultrapure He gas, which was separated by gas 191 chromatography and water removal with a Nafion trap before being introduced into 192 the source of the isotope ratio mass spectrometer. Isotopic results are reported in the 193 delta notation as per mil (‰) deviations from the V-PDB based on NBS-19. Based on 194 repeated analyses of a CaCO₃ standard (JCt-1, Okai et al., 2002), reproducibility for 195 $\delta^{13}C_{carb}$ and $\delta^{18}O_{carb}$ was 0.12‰ and 0.14‰ (n=11, 1 σ), respectively. 196

197

198

199

For nitrogen and organic carbon isotope analyses, the sediment samples were 200 subjected to removal of carbonate and rinsing procedures before chemical analysis. 201 About 200 mg of the powdered samples were digested in 10mL of 10 M HCl at 60°C 202 203 overnight. After centrifugation, the supernatant was removed, and the sediment rinsed with MQ water several times to remove residual acid. After drying at 60°C overnight, 204 the residual sample (~40-100 mg) was wrapped within a tin capsule with a 205 combustion improver (WO₃). Nitrogen and carbon isotope ratios (δ^{15} N and $\delta^{13}C_{org}$) of 206 the residual samples were measured by elemental analyzer (vario MICRO cube, 207 elementar) connected to an isotope ratio mass spectrometry (IsoPrime100, IsoPrime, 208 U.K.) coupled with combustion device (vario MICRO cube, elementar, Germany), 209 installed at Atmosphere and Ocean Research Institute, The University of Tokyo, Japan. 210 In this study, stable isotope compositions are expressed as δ values that were 211 determined as a ratio of the heavy to light isotopes in the sample relative to the 212 international standard reference materials by an equation:

213 214

 $\delta X(\%) = (R_{sample}/R_{standard}-1) \times 1000$

3.3. Nitrogen and organic carbon isotope analyses

where, X is the isotope (${}^{13}C_{org}$ and ${}^{15}N$) value in permil (‰) and R is the ratio of the heavy to light isotope of the sample (R_{sample}) and the international standard reference materials, namely N₂ air for $\delta^{15}N$ and Viem Pee Dee Belemnite for $\delta^{13}C_{org}$ ($R_{standard}$). The isotope ratios of nitrogen and carbon in the samples were calibrated against a commercial standard (L-alanine (SS13), Shoko Scientific), of which δ^{15} N and $\delta^{13}C_{org}$ are 13.7 ± 0.2‰ air and -19.6 ± 0.2‰ VPDB, respectively. The NIST SRM2976 (National Institute of Standards and Technology, USA) was analyzed for monitoring the instrumental condition during the course of analysis. Reproducibility for δ^{15} N and $\delta^{13}C_{org}$ (RSD of NIST 2976 repetition n = 6) was 0.27 and 0.28‰, respectively. Total Organic Carbon (TOC) and Total Nitrogen (TN) were not measured in this study so C/N ratios could not be obtained.

226

228

227 3.4. Strontium isotope analyses

229 Powdery samples were prepared from the 144 drill core samples. They were crushed into 200 mesh powder using an agate shatter box. The rock powders were 230 dissolved in 2 M acetic acid at 70 °C overnight for chemical composition analysis. 231 Dilute acetic acid was used in order to avoid dissolving the detrital silicate minerals. 232 The acid-macerated samples were rinsed three times with Milli-Q water to remove 233 strontium from the carbonate minerals. The supernatant was then centrifuged to 234 separate insoluble residues followed by decantation and drying. Following the 235 extraction of insoluble residues from sample solutions, dissolved samples were dried 236 and then re-dissolved in 2 M nitric acid. After dilution by adding 2% nitric acid, an 237 inductively coupled plasma-mass spectrometry (ICP-MS; Agilent 7700, Agilent 238 Technologies) at Gakushuin University, Japan was used to obtain Al, Si, K, Mn, Fe, 239 Rb, and Sr concentrations. The precision for these measurements is better than 3%. 240 Any insoluble residue was deducted from the calculation of elemental concentrations. 241 For more details please refer to Sawaki et al. (2010). 242

Strontium isotope analyses were selectively conducted on 40 drill core samples 243 guided by detailed petrographic observations so as to characterize the primary 244 isotopic compositions of seawater. In order to avoid the influence of isobaric 245 interferences. Sr was chemically separated from coexisting matrix elements such as 246 247 Rb by a chromatographic technique using Sr Resin (Eichrom Technologies, Incorporation) (Ohno and Hirata, 2007). Following dissolution in 2 M nitric acid, the 248 samples were loaded onto ca. 0.25 ml of preconditioned Sr Spec column (i.d. 6 mm, 249 height 10 mm, particle 50-100 um). Sr was eluted by 5 ml of 0.05 M nitric acid 250 following removal of matrix elements by 5 ml of 7 M nitric acid and 3 ml of 2 M 251 nitric acid. 252

The Sr isotope compositions of ⁸⁶Sr, ⁸⁷Sr, and ⁸⁸Sr were measured with a Nu 253 plasma 500 MC-ICP-MS (Nu Instrument Ltd, Wrexham, Wales) at Gakushuin 254 University, Japan. The analytical standard solution NIST SRM 987 was used to 255 calibrate peak intensities of sample solutions to obtain the elemental abundances. The 256 sample-standard bracketing technique was employed to improve the reproducibility of 257 the measurements. All ⁸⁷Sr/⁸⁶Sr ratios of the Doushantuo samples were corrected by 258 normalizing the ⁸⁷Sr/⁸⁶Sr isotope ratios relative to the NIST standard SRM 987, the 259 ⁸⁷Sr/⁸⁶Sr ratio of which is 0.71025. Description of the mass discrimination effect has 260 been detailed in previous studies (Ohno and Hirata, 2007; Ohno et al., 2008; Sawaki 261 et al., 2010). The primary values of radiogenic ⁸⁷Sr/⁸⁶Sr isotope ratios were calculated 262

from the minimum depositional ages (551 Ma) and Rb/Sr ratios by applying a half-life of 4.88×10^{10} years for ⁸⁷Rb.

- 265
- 266 **4. Results**
- 267
- 268 269

4.1. Petrography of the studied rock samples

A total of 144 drill core samples were collected with a sampling interval ranging 270 from 0.8-1.6 m, which can be classified into five lithofacies (Figures 2-5). They are 271 calcareous shale, dolostone, muddy dolostone, limestone, and muddy limestone, all of 272 273 which exhibit a dark color. Chert veins occasionally occur in the limestone and muddy dolostone. Shale is found at the bottom, middle and upper parts of the Doushantuo 274 Formation, and is mainly composed of clay minerals and feldspar with minor amounts 275 of dolomite, apatite and pyrite (Figures 2A-B). Dolostone is found at the bottom, 276 middle and top parts of the Doushantuo Formation, and is mainly composed of 277 microcrystalline dolomite with minor amounts of calcite and pyrite (Figures 2C-D). 278 The grain contour of dolomite is not so clear so it is not easy to assess the grain size. 279 In contrast to dolomite, calcite shows a relatively bright BSE color and is present as 280 pore-filling cement between dolomite crystals with a size commonly $<10 \,\mu m$. 281

Muddy dolostone occurs at lower, middle and upper part of the Doushantuo 282 Formation, and is mainly composed of dolomite and calcite with minor amount of 283 quartz and feldspar (Figures 3A-D). Some samples contain calcite veins that are 284 generally 50-200 µm in width and oriented in various directions (Figure 3C). 285 Dolomite generally shows a clear contour with a size range of 10-30 µm. Framboidal 286 pyrites are abundant and fill pore spaces with a size range of typically <7 µm. Ouartz 287 grains are occasionally present with a size range of 25-30 µm. Limestone occurs in the 288 middle-lower part of the Doushantuo Formation and is dominated by calcite with 289 negligible amount of dolomite, apatite, pyrite and organic material (Figure 4). Neither 290 291 calcite nor dolomite grain outlines are clear so individual grains are hard to recognize. Apatite grains, commonly 20-25 µm long, show a sub-rounded morphology 292 intergrown with calcite. Some limestone samples contain chert veins that are 293 generally 2-4 mm in width and oriented in various directions (Figure 4B). Like 294 limestone, muddy limestone also occurs in the middle-lower part of the Doushantuo 295 Formation and is dominated by calcite with minor amounts of dolomite, apatite and 296 clay minerals (Figure 5). Calcite grain outlines are not so clear so individual grains 297 are hard to recognize. 298

- 299
- 300 *4.2. Geochemical compositions*
- 301

Chemical and isotopic compositions of the 144 carbonate core samples are shown in Table 1 and plotted in Figure 6. Strontium isotope (87 Sr/ 86 Sr) values remain steady in a narrow range of 0.7080-0.7084 in the lower part of the succession, while they increase to the range of 0.7084-0.7090 with a maximum of 0.7094-0.7100 in the upper part (Figure 6). Rb/Sr ratios vary in the range of 10⁻⁵-10⁻² with 6-7 fluctuations

in the lower part followed by a steady increase to 10⁻³-10⁻² in the lower part and drop 307 to 10⁻⁴-10⁻² in the upper part. Mn/Sr ratios mainly vary in the range of 0.1-1 in the 308 upper part, whereas they spread more widely in the range of 0.01-10 in the lower part. 309 Mn contents first reach values around 1,000 ppm in the basal part and then decrease to 310 around 100 ppm on the top, where two positive excursions punctuated by one 311 negative excursion are recorded. Fe contents generally fluctuate between 312 1,000-10,000 ppm. Except for the lower part, Fe contents show covariation with Mn 313 content. Decoupling occurs between Mn and Fe in the lower part. 314

Sr contents show generally steady levels in the range of 100-1,000 ppm 315 throughout the succession except at the top where they drop to <100 ppm. Carbonate 316 carbon isotope ($\delta^{13}C_{carb}$) values reveal two negative excursions in the middle-lower 317 part with the lowest values of ca. -4‰ and ca. -6‰, respectively, but they mainly vary 318 in the range of 4-8‰ in middle-upper part (Figure 6). In particular, the $\delta^{13}C_{carb}$ values 319 in the basal cap dolostone at ca. 1-2 m sampling horizon vary from -4‰ to -2‰, 320 slightly more positive than those observed in several worldwide Marinoan cap 321 carbonates (Kennedy et al., 1998; Zhou and Xiao, 2007; Lu et al., 2013; Wang et al., 322 2014). The second negative excursion occurs in muddy dolostone of the middle 323 Doushantuo Formation at ca. 200 m's stratigraphic horizon. Organic carbon isotope 324 data ($\delta^{13}C_{org}$) mainly range between -30‰ and -28‰ with five data points >-28‰ at 325 the bottom and five data points <-30% at the top of the section. The magnitude of 326 carbon isotope fractionation ($\Delta \delta^{13}$ C) can be approximated by comparing the measured 327 carbonate carbon and organic carbon isotope values in individual samples. The $\Delta\delta^{13}C$ 328 values mainly vary between 30% and 35% through most of the measured section, 329 with the exception of a deceasing trend to 25-27‰ at the bottom and upper part (ca. 330 200 m horizon) of the measured section. 331

Only 131 out of the 144 samples produce meaningful δ^{15} N values because of low 332 total organic carbon (TOC) and total nitrogen (TN) contents. The $\delta^{15}N$ values 333 generally vary from 3‰ to 9‰, with an average of 5.6‰. Five samples fluctuates 334 between 1‰ to 3‰, whereas one sample has a higher values of >9‰. The $\delta^{15}N$ 335 profile is dividable into four intervals designated as NS1, NS2, NS3 and NS4 based 336 on its temporal variations. $\delta^{15}N$ data from NS1 center around 5‰ to 7‰, 337 accompanied by low $\delta^{13}C_{car}$ and relatively high $\delta^{13}C_{org}$. $\delta^{15}N$ values in interval NS2 338 display relatively low values from 2% to 7%, with a maximum value nearly reaching 339 up to 8‰, accompanied by relatively high $\delta^{13}C_{car}$ and low $\delta^{13}C_{org}$. In contrast, $\delta^{15}N$ 340 values in interval NS3 show higher values varying from 5% to 9‰, with a maximum 341 value nearly reaching 10%, concurrent with slightly decreasingly $\delta^{13}C_{car}$ values and 342 relatively invariant $\delta^{13}C_{org}$ values. $\delta^{15}N$ values in interval NS4 display decreasing 343 values varying from 8‰ to 3‰, broadly concurrent with negative $\delta^{13}C_{car}$ excursion 344 and relatively invariant $\delta^{13}C_{org}$ values. Carbonate oxygen isotope ($\delta^{18}O$) values range 345 from -12 to 0‰ but is dominantly in the range of -8 to -2‰. A positive δ^{18} O excursion 346 347 can be delineated in the upper Doushantuo Formation, which occurs simultaneously with positive 87 Sr/ 86 Sr and negative δ^{13} C_{carb} excursions. 348

- 349
- 350 **5. Discussion**

352 5.1. Evaluating the influence of post-depositional alteration and detrital 353 components

354

Efforts were made to obtain primary ⁸⁷Sr/⁸⁶Sr values by evaluating the influence 355 of post-depositional alteration and detrital components. Importantly, samples with 356 feldspar and clay were avoided as far as possible from these analyses as these phases 357 can lead to the mixing of this geochemical signal. Post-depositional processes tend to 358 increase ⁸⁷Sr/⁸⁶Sr values as a result of the addition of ⁸⁷Sr induced by radioactive 359 decay of ⁸⁷Rb (Walther, 2009). Because of the tendency of Rb to substitute for K, 360 K-bearing silicates release ⁸⁷Sr into interstitial fluids where it may be taken up during 361 growth or recrystallization of carbonates during diagenesis. Excess ⁸⁷Sr could also be 362 supplied by radiogenic basinal or hydrothermal fluids during burial. Basically, 363 ⁸⁷Sr/⁸⁶Sr ratios do not show any clear covariation with Mn/Sr and Rb/Sr ratios, while 364 most Doushantuo samples are relatively Sr-rich (64-1,257 ppm with an average of 365 470 ppm) and have low Mn/Sr ratios (<0.9) and Rb/Sr ratios (<0.0109) (Figures 7A, 366 B). Such low Rb/Sr ratios fall in the range of 0.001-0.01 proposed in previous studies 367 for unaltered samples (Kaufman et al., 1993; Sawaki et al., 2010). Additionally, 368 mixtures of different Sr sources would show a linear relationship in the ⁸⁷Sr/⁸⁶Sr-Sr 369 binary plot and high Sr content is generally interpreted to indicate good preservation 370 of an original marine signature as shown by broad covariation in the Doushantuo 371 Formation (Figure 7C; c.f. Fairchild et al., 2017). These lines of evidence suggest that 372 post-depositional alteration processes on Sr isotopic ratios are negligible and thus that 373 samples preserve primary ⁸⁷Sr/⁸⁶Sr ratios. 374

Sr isotope compositions in carbonate rocks are easily influenced by input of 375 crustal detrital materials because of their tendency to possess radiogenic Sr isotopic 376 compositions. This is particularly true if clay minerals and feldspar sourced from 377 continental crust are involved which would increase Rb/Sr and ⁸⁷Sr/⁸⁶Sr ratios. Given 378 379 that clay minerals and feldspars contain higher levels of Al, Si, K and Rb than carbonate minerals, the influence of such detrital component can be further examined 380 by means of plotting binary correlations between ⁸⁷Sr/⁸⁶Sr ratios and Al, Si and K 381 contents. The absence of any covariation between ⁸⁷Sr/⁸⁶Sr ratios and Rb/Sr, Al, Si 382 and K contents suggests that the influence of clay minerals and feldspar on ⁸⁷Sr/⁸⁶Sr 383 ratios is insignificant (Sawaki et al., 2010) and that most of the samples selected are 384 suitable for preservation of primary oceanic signature (Figures 7D, E, F). While most 385 Doushantuo samples in the current study were initially screened for suitability using 386 geochemistry and SEM-based petrography, two samples show significantly higher 387 ⁸⁷Sr/⁸⁶Sr values despite lower Mn/Sr and Rb/Sr ratios (DST271 and DST311) than 388 others from the same stratigraphic unit. The presence of abundant cherty veins in 389 sample DST271 suggests post-depositional hydrothermal influence from radiogenic 390 basinal or hydrothermal fluids, whereas the presence of calcite veins in sample 391 DST311 may be responsible for its higher ⁸⁷Sr/⁸⁶Sr values. These two samples are 392 thus excluded from the discussion below. 393

351

The positive correlations between δ^{18} O and δ^{13} C values in carbonate rocks have 394 been traditionally treated as an indication of diagenetic alteration by mixed 395 fresh-marine waters (Allan and Matthews, 1982). The absence of such relationships in 396 our samples (Figure 7g) thus represents evidence of the geochemical integrity of 397 samples (Jacobsen and Kaufman, 1999; Fike et al., 2006; Halverson et al., 2007; 398 Knauth and Kennedy, 2009). On the basis of experiments conducted on the shallow 399 sub-surface of the Bahamas, positive correlations do not necessarily indicate meteoric 400 alteration as it is not necessarily produced within the traditionally defined mixing 401 zone, which means that there will be no correlation between $\delta^{18}O$ and $\delta^{13}C$ values in 402 the altered vadose zone (Swart and Oehlert, 2018). In this regard, appraisal of 403 404 diagenetic history should be based on combined geochemical evidence rather than δ^{18} O and δ^{13} C values alone. Post-depositional alteration would also cause a 405 simultaneous shift of carbonate and organic δ^{13} C towards lower values (Oehlert and 406 Swart, 2014). The lack of a covariation trend between carbonate and organic δ^{13} C 407 values throughout the Wangjiapeng section, the presence of commonly low Mn/Sr (<1) 408 ratios (Figure 6), the absence of positive correlations between δ^{18} O and 87 Sr/ 86 Sr ratios 409 (Figure 7h), and the fact that our samples fall away from the meteoric alteration trend 410 defined by comparing carbonate carbon and oxygen isotope abundances (Knauth and 411 Kennedy, 2009) collectively indicate insignificant influence of secondary alteration. 412 Therefore, the drill core samples preserve primary $\delta^{13}C_{carb}$ and $\delta^{18}O$ ratios. 413 Authigenic carbonate would influence isotope compositions by precipitating highly 414 ¹³C-depleted calcite cement or relatively coarse-grained dolomite grains possessing 415 less negative or sometimes slightly positive δ^{13} C values, a process that could produce 416 δ^{13} C values less than \leq -10‰ (Melezhik et al., 2005; Furuyama et al., 2016; Zhou et 417 al., 2017). The commonly fine-grained texture of dolomite, the relatively high $\delta^{13}C$ 418 values (> -6‰), the lack of any correlation between $\delta^{13}C_{carb}$ and $\delta^{18}O_{carb}$ values, and 419 the gradual nature of $\delta^{13}C_{carb}$ trends, which are independent of lithological variability 420 also point to an insignificant influence of diagenetic overprint for the negative carbon 421 422 isotope excursions at Wangjiapeng section.

423

424 5.2. Chemostratigraphic correlation

425

Lithostratigraphic and sequence stratigraphic correlations have previously been 426 attempted for most of the Yangtze platform sedimentary successions around shallow 427 and deep water settings across the Nanhua Basin (Ader et al., 2009; Jiang et al., 2011; 428 Wang et al., 2016). However, in some sections these correlations are hampered by 429 depositional bathymetry-dependent facies variations, the absence of marker beds, or 430 age diagnostic fossils for biostratigraphy (An et al., 2015; Zhou et al., 2017). Instead, 431 chemostratigraphic correlations have been extensively attempted (Zhou and Xiao, 432 2007; Ader et al., 2009; Zhu et al., 2007, 2013). Three negative $\delta^{13}C_{carb}$ excursions 433 have previously been proposed in the Doushantuo Formation (namely EN1, EN2, 434 EN3, Jiang et al., 2007; Zhou and Xiao, 2007; McFadden et al., 2008; Sawaki et al., 435 2010), whereas five excursions (NI-1, NI-2, NI-3, NI-4, NI-5) are also proposed by 436 others (Tahata et al., 2013) based on a chemostratigraphic study of two successive drill 437

cores around the Wuhe-Aijiahe area around the Three Gorges. While the three major 438 negative $\delta^{13}C_{carb}$ excursions (NI-1, NI-4, NI-5) are correlative with EN1, EN2 and 439 EN3 (Lu et al., 2013; Wang et al., 2014; Cui et al., 2015; Pokrovsky and Bujakaite, 440 2015; Xiao et al., 2016), the other minor negative $\delta^{13}C_{carb}$ excursions (NI-2, NI-3) are 441 fragmented or ambiguous as they could have been induced by post-depositional 442 alteration processes (Jiang et al., 2007; Tahata et al., 2013). Carbon, oxygen, and 443 strontium isotopes coupled with trace element analyses suggest that dolomite resting 444 on the diamictite of the Nantuo Formation at the Wangjiapeng section is similar to the 445 cap carbonates found around the Ediacaran Yangtze platform and other sections 446 worldwide (Hoffman et al., 1998; Jiang et al. 2003b, 2006; Zhou and Xiao, 2007; Zhu 447 et al., 2007). Thus the negative $\delta^{13}C_{carb}$ excursion correlates with EN1, which likely 448 occurred globally following the Marinoan glaciation (Hoffman et al., 1998; Hoffman 449 and Schrag, 2002). 450

The similar magnitude and duration of the upper negative $\delta^{13}C_{carb}$ excursions at 451 the Wangjiapeng section suggest correlation with the adjacent Zhongling and 452 Yangjiaping sections of Hunan Province (Figure 8; Cui et al., 2015; Furuyama et al., 453 2016). This means that the upper negative $\delta^{13}C_{carb}$ excursion at the Wangjiapeng 454 section, like that at the Zhongling and Yangjiaping sections, could also be part of EN3 455 (EN3a, McFadden et al., 2008; Cui et al., 2015). Based on a high-resolution 456 time-series trend of multiple chemostratigraphic proxies ($\delta^{13}C-\delta^{34}S-\delta^{87}Sr/\delta^{86}Sr-Ce/Ce^*$), 457 Cui et al. (2015) documented a negative $\delta^{13}C_{carb}$ excursion (as low as -10‰) at 458 Yangjiaping section and correlate it with part of EN3 and the worldwide 459 Shuram-Wonoka anomaly. Reexamination of the same section led Furuyama et al. 460 (2016) to propose such highly negative $\delta^{13}C_{carb}$ excursions may have experienced 461 diagenetic overprint, and that the newly obtained negative $\delta^{13}C_{carb}$ excursions (< -5‰) 462 coupled with relatively high ⁸⁷Sr/⁸⁶Sr ratios could correlate with EN2. Furuyama et al. 463 (2016) further argued that Cui et al. (2015)'s correlation is mainly based on placement 464 of the Doushantuo/Dengying boundary in the middle of the sedimentary unit above 465 the phosphorite, and their ⁸⁷Sr/⁸⁶Sr data lack higher ratios (0.7088-0.7090) typical of 466 EN3 interval. After detailed petrographic and geochemical observations, Cui et al. 467 (2016) proposed that Furuyama et al. (2016)'s correlation scheme is mainly based on 468 a putative rise of ⁸⁷Sr/⁸⁶Sr ratios in the EN2 interval, measurement of which was 469 conducted on muddy and silty dolostone with Mn/Sr >1 and total carbonate <60%. 470 Both of these studies have contributed to our understanding of the chemostratigraphic 471 correlation. A fair judgement is that Furuyama et al. (2016)'s work best explains the 472 influence of diagenetic overprint on the original carbon isotope composition of 473 seawater, whereas Cui et al. (2015, 2016)'s works adequately accounts for oxidizing 474 conditions to provide adequate sulfate for the organic carbon to be remineralized 475 producing the negative $\delta^{13}C_{carb}$ excursion. They both emphasized that this negative 476 $\delta^{13}C_{carb}$ excursions links enhanced oxidative continental weathering that transports 477 radiogenic strontium and sulfate to the Ediacaran ocean. For samples containing total 478 carbonate <60%, it should be called muddy carbonate or calcaresous shale by 479 definition. This means it must contain certain amount of feldspar and clay minerals, 480 which could potentially lead to the higher ⁸⁷Sr/⁸⁶Sr ratios. Similarly, samples from the 481

482 stratigraphic interval of upper negative $\delta^{13}C_{carb}$ excursions at the Wangjiapeng section 483 have higher ⁸⁷Sr/⁸⁶Sr ratios ranging from 0.7084-0.7088, which could also result from 484 analyses of feldspar and clay minerals given its dominant muddy dolomite 485 composition.

Correlation of the upper negative $\delta^{13}C_{carb}$ excursions at the Wangjiapeng section 486 with EN3 is also supported by the paired $\delta^{13}C_{carb}$ - $\delta^{13}C_{org}$ trends. The upper negative 487 $\delta^{13}C_{carb}$ excursion at Wangjiapeng section is typical of decoupled $\delta^{13}C_{carb}$ - $\delta^{13}C_{org}$ with 488 nearly invariable $\delta^{13}C_{org}$ values, which is similar to the EN3 documented from the 489 Zhongling and Yangjiaping sections (Cui et al., 2015), and the EN3 described from 490 the Jiulongwan section (McFadden et al., 2008). It shows a short occurrence (less than 491 492 10 m) with a lowest value of ca. -6‰, which seemingly cannot be easily correlated with EN3 at Jiulongwan section, where the excursion has a relatively longer duration 493 (more than 40 m) and is more δ^{13} C-depleted (lowest value of -10‰) (Jiang et al., 494 2007; McFadden et al., 2008; Tahata et al., 2013). The δ^{13} C variations in the upper 495 Doushantuo Formation are more complex than previously recognized, which was 496 demonstrated in recent detailed chemostratigraphic studies of multiple sections of the 497 Doushantuo Formation in South China (Cui et al., 2015; Furuyama et al., 2016; Zhou 498 et al., 2017). As Zhou et al. (2017) pointed out, the stratigraphic complexity of $\delta^{13}C_{carb}$ 499 negative excursions in the upper Doushantuo Formation implies that some carbon 500 isotope excursions are probably absent in some sections, particularly when they are 501 dominated by non-carbonate rocks or compromised by sedimentary hiatus. This 502 means the negative $\delta^{13}C_{carb}$ excursion from the upper part of Wangjiapeng, like those 503 from the inner shelf Xiaofenghe section and outer shelf Zhongling and Yangjiaping 504 sections (Cui et al., 2015), could also be part of EN3. EN3 with similar magnitude and 505 duration has also been documented from other sections around the Huangling 506 Anticline area (Zhou et al., 2017), and from worldwide sections in Oman (Fike et al., 507 2006) and Siberia (Pokrovsky and Bujakaite, 2015). 508

EN2 occurs within the 70-80 m stratigraphic horizons at the Jiulongwan section 509 (Figure 9). Coincidently, negative $\delta^{13}C_{carb}$ excursion with magnitude and duration 510 comparable to EN2 at the Jiulongwan section occurs also within the 70-80 m 511 stratigraphic horizons at the Zhongling section. Given that the Wangjiapeng section is 512 situated between the Jiulongwan and Zhongling sections, it can be envisaged that EN2 513 could have originally occurred somewhere around the 70-80 m stratigraphic horizon 514 at the Wangjiapeng section but was later eroded away because of depositional hiatus. 515 Unfortunately, the limited lateral extent of core samples and poor outcrops makes this 516 hypothesis untestable for us to clearly define the stratigraphic position of the 517 unconformity. The original thickness of the sedimentary units would have changed in 518 response to faulting or folding related tectonic activities. Geographically, the 519 Jiulongwan section is situated in the depocenter within an intra-shelf setting so 520 theoretically it must have the largest thickness. However, the stratigraphic thickness at 521 522 the Wangjiapeng section is 100 m thicker than that at the Jiulongwan section, which suggests potential stratigraphic repetition in the former possibly related to faulting 523 activity. This is particularly possible for the structurally complex Wangjiapeng 524 section. 525

Alternatively, the similar magnitude and duration means that the upper negative $\delta^{13}C_{carb}$ excursions at Wangjiapeng section could be correlated with EN2 within the Hushan-Dayukou, Baiguoyuan, Liuhuiwan, Miaohe, and Xiangdangping sections around the Three Gorges area as well as in Guizhou Province (Zhu et al., 2013). Nevertheless, absence of paired $\delta^{13}C_{carb}-\delta^{13}C_{org}$ values as well as ⁸⁷Sr/⁸⁶Sr ratios means that this correlation scheme requires future confirmation. Pending further geological and geochemical evidence, this problem remains open for discussion.

534 5.3. Genesis of EN3

533

535

The formation of such a negative $\delta^{13}C_{carb}$ anomaly (EN3) demands an additional 536 flux of isotopically light dissolved inorganic carbonate (DIC), with several plausible 537 sources of ¹³C-depletion alkalinity proposed, including 1) flux of methane hydrates 538 from an anoxic ocean that is enriched in dissolved organic carbon (Bjerrum and 539 Canfield, 2011), 2) dissolved organic compounds (DOC) pool in the oceans (Rothman 540 et al., 2003), 3) fossil organic substances exposed on continent (Kaufman et al., 2007), 541 and 4) involvement of authigenic carbonates of anomalous isotopic composition 542 formed via SRB-AOM in normal seawater precipitates (Schrag et al., 2013). The last 543 possibility can be easily discounted as authigenic carbonates formed via SRB-AOM 544 generally have extremely low $\delta^{13}C_{carb}$ values (<-30‰, VPDB) despite mixing with 545 normal seawater precipitates (Zhou et al., 2016). 546

Remineralization of DOC pool is a possible way to account for the 547 non-covariation trend between $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ values and a steady, invariable 548 trend of $\delta^{13}C_{org}$ values during the $\delta^{13}C_{carb}$ excursion (Rothman et al., 2003). This is 549 because a relatively small DIC pool would be more easily influenced by isotope 550 variations if the DOC pool was large, and accordingly this would decouple carbonate 551 and organic carbon isotope signatures. Based on the $\delta^{13}C_{carb}$ study of four sections 552 deposited in basin to slope to platform settings, Jiang et al. (2007) ascribed the EN2 553 and EN3 to the remineralization of an oceanic DOC pool by means of sulfate 554 reduction. This model was accepted by Ishikawa et al. (2013) who associated the 555 decoupling of $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ with the presence of a huge DOC pool which lasts 556 from terminal Proterozoic to Early Cambrian. The spatial limitation of paired 557 $\delta^{13}C_{carb}-\delta^{13}C_{org}$ data restricted the wide application of a large DOC model. Subsequent 558 research suggests that the decoupling of $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ could depend on lithology 559 and the decoupled $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ pattern could have resulted from involvement 560 of recycled/detrital organic carbon (Jiang et al., 2010, 2012; Johnston et al., 2012). 561 Wang et al. (2016) proposed the growth of a DOC reservoir from Ediacaran to the the 562 early Paleozoic is episodic, and the spatial $\delta^{13}C_{org}$ variations does not necessarily link 563 the decoupled $\delta^{13}C_{carb}$ - $\delta^{13}C_{org}$ with direct buffering of a DOC reservoir but possibly 564 with recycling of organic materials derived from chemoautotrophs and methanotrophs. 565 The presence of nearly invariable $\delta^{13}C_{org}$ values and decoupled $\delta^{13}C_{carb}$ - $\delta^{13}C_{org}$ signals 566 in EN3 from the Doushantuo Formation at the Wangjiapeng, Jiulongwan (McFadden 567 et al., 2008), Zhongling and Yangjiaping sections (Cui et al., 2015) suggest that EN3 568 possibly resulted from the remineralization of an oceanic DOC pool via sulfate 569

reduction. However, the possibility that the decoupled $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ pattern have resulted from involvement of recycled/detrital organic carbon cannot be totally discounted given the dominant muddy dolomite composition from the EN3 interval at the Wangjiapeng section.

As with previous studies (Sawaki et al., 2010; Tahata et al., 2013; Furuyama et al., 574 2016), association of the negative $\delta^{13}C_{carb}$ excursion in EN3 with remineralization of 575 reduced carbon sources induced by the Gaskiers glaciation is favored at Wangjiapeng 576 section. The limestone-dominated carbonate of EN3 around the Three Gorges sections 577 have a dominant ¹⁸O spread range of -8 to -4‰ (Tahata et al., 2013). The $\delta^{18}O_{carb}$ 578 values of muddy dolostone of EN3 at the Wangjiapeng section range between -4 to 579 580 0‰. Considering the differential fractionation factors between calcite and dolomite, i.e. the former being 2-3‰ more depleted in ¹⁸O than the latter (Vasconcelos et al., 581 2005), the nadir values of EN3 between the Three Gorges and Wangjiapeng sections 582 would be indistinguishable, both of which may have resulted from a common glacial 583 influence. 584

Hydrothermal influx from oceanic crust and riverine input from continental 585 weathering are the two dominant sources of marine manganese and iron, the contents 586 of which are generally influenced by redox conditions of the water column (Sawaki et 587 al., 2010; Tagliabue et al., 2010). Mn^{2+} and Fe^{2+} are enriched in anoxic conditions 588 where they form solid solutions in carbonate minerals, whereas under oxic conditions 589 Mn^{2+} and Fe^{2+} tend to be oxidized forming oxide and oxyhydroxide nanoscopic 590 minerals. The decrease of Mn and Fe contents of Wangjiapeng sediments coincides 591 592 with EN3, and also significantly decrease after EN3, which further indicates overall oxygen-poor condition of ambient seawater during the Gaskiers glaciation because of 593 oxidative decay of the DOC and an abrupt increase of the oxygen content following 594 the glaciation (Sawaki et al., 2010). 595

Normal marine production is typical of a state of equilibrium among nitrate 596 assimilation, N₂ fixation and denitrification, achieving near modern oceanic values in 597 598 the range of +2‰ to +9‰ (Cremonese et al., 2013; Kikumoto et al., 2014; Wang et al., 2017, 2018). The δ^{15} N values from the Wangjiapeng section are mostly scattered from 599 +3‰ to +9‰ (Figure 6), suggestive of typical modern oceanic values. It is worth 600 noting that $\delta^{15}N$ values of the Doushantuo Formation at Wangjiapeng section are 601 broadly consistent with those of the Doushantuo Formation at Three Gorges section 602 (Kikumoto et al., 2014), Yangjiaping section (Ader et al., 2014) and the Lantian 603 Formation (equivalent of Doushantuo Formation) at Lantian section (Wang et al., 604 2017) (Figure 10). In particular, the Doushantuo Formation at Wangjiapeng section 605 (average $\delta^{15}N = 5.1\%$) has statistically consistent values with the Lantian Formation 606 (average $\delta^{15}N = 5.3\%$) within errors, but higher values than the Doushantuo 607 Formation at Yangtze Gorges area (average $\delta^{15}N = 4.8\%$) and Yangjiaping (average 608 $\delta^{15}N = 4.4\%$) of South China with difference in average $\delta^{15}N$ values within 1‰. 609 From the perspective of $\delta^{15}N$ values, the Doushantuo and Lantian formations are 610 broadly similar to the Ediacaran successions in Svalbard ($\delta^{15}N = 5.1 \pm 0.5\%$) and 611 Brazil (5.1 \pm 2.0‰ in Brazil), but differ from that in northwestern Canada ($\delta^{15}N = 2.9$ 612 $\pm 0.6\%$) (Wang et al., 2017 and literatures therein). As Wang et al. (2017) pointed out, 613

the overall similarity in δ^{15} N values of the Doushantuo and Lantian formations in South China indicate the nitrogen cycle was influenced by basinal rather than local factors despite the requirement of further solid evidence.

Microbial denitrification leads to partial reduction of nitration into N₂/N₂O. This 617 would produce large isotopic fractionation and resultant ¹⁵N-enrichment in nitrate 618 followed by assimilation into biomass (Sigman et al., 2009; Cremonese et al., 2013). 619 Accordingly, higher $\delta^{15}N$ values are generally interpreted to represent an 620 oxygen-depleted condition where supply of nitrate into the ocean was depressed by 621 denitrification or assimilation, whereas lower $\delta^{15}N$ values are regarded as an 622 indication of relatively oxygenated/oxygen-rich depositional setting where supply of 623 nitrate exceeded denitrification or assimilation (Cremonese et al., 2013; Kikumoto et 624 al., 2014; Wang et al., 2018). Some δ^{15} N values dropped from +8% to nearly +3% 625 during NS4 (broadly coeval with EN3/Shuram $\delta^{13}C_{carb}$ excursion). Shift of $\delta^{15}N$ to 626 lower values during this interval is interpreted to represent an increasing nitrate 627 reservoir under oxygenated/oxygen-rich depositional setting, which is consistent with 628 the decreasing trend of Mn and Fe contents. Such a decreasing trend is consistent with 629 the gradual oxidation of Ediacaran oceans (Fike et al., 2006; McFadden et al., 2008; 630 Kikumoto et al., 2014). Decrease of the $\delta^{15}N_{TN}$ value occurred near synchronously 631 with the Shuram $\delta^{13}C_{carb}$ excursion, before which a large organic carbon pool existed 632 in the ocean as evidenced by the decoupled $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ values. Coupling of 633 $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ values resumed following the termination of the Shuram excursion, 634 which may indicate oxidation of the large organic carbon pool in the ocean (Kikumoto 635 et al., 2014). In this regard, the synchronous presence of negative $\delta^{13}C_{carb}$ excursions 636 combined with positive δ^{18} O shifts, decrease of Mn and Fe contents and decrease of 637 δ^{15} N values together point to transition from low oxygen to oxygen rich environment 638 possibly related to the melting of Ediacaran glaciation. 639

Global cooling can induce global regression and enhance the oxidative decay of 640 exposed marine sediments rich in organic matter. Continental weathering can increase 641 as sea levels would be significantly lowered, and therefore marine sediments on 642 continental shelves would be widely exposed as a result of glaciation-induced 643 regression (Sawaki et al., 2010). Draining of terrestrial radiogenic Sr-enriched rocks 644 precursor carbonate (⁸⁷Sr/⁸⁶Sr~0.705-0.709) and/or silicate rocks such as 645 (⁸⁷Sr/⁸⁶Sr>0.715) by means of river water flux would induce an increase of radiogenic 646 Sr contents and a corresponding increase of ⁸⁷Sr/⁸⁶Sr (Banner, 2004; Pokrovsky and 647 Bujakaite, 2015). As such, increased ⁸⁷Sr/⁸⁶Sr ratios during this interval are generally 648 associated with enhanced delivery of radiogenic ⁸⁷Sr that originated from rapid 649 continental weathering (Sawaki et al., 2010; Wang et al., 2014; Cui et al., 2015; 650 Furuyama et al., 2016). Enhanced, post-glacial, continental weathering and erosion 651 increase the influx of sulfate and phosphorus into the ocean (Sawaki et al., 2010; 652 Papineau, 2010). Influx of nutrients contributed to primary productivity producing 653 dissolved oxygen (She et al., 2014), interactions of which with reduced carbon 654 sources in the deep ocean would have induced the oxidation of organic matter and 655 therefore produce ¹²C-enriched dissolved inorganic carbon (DIC) in seawater. 656 Meanwhile, such negative $\delta^{13}C_{\text{carb}}$ anomaly would be enhanced as a result of 657

remineralization of DOC by means of active sulfate reduction (Halverson and Hurtgen, 2007). As such, EN3 in the upper Doushantuo Formation at Wangjiapeng is probably best ascribed to oxygenation and remineralization of biomass, which produced ¹³C-depleted DIC.

This study detected another distinct increase of $\delta^{13}C_{carb}$ values at ca. 50 m 662 stratigraphic horizon (labelled EP in Figure 6). Such short-term positive $\delta^{13}C_{carb}$ 663 coincides with the decrease of δ^{18} O and δ^{15} N values, Rb/Sr and Mn/Sr ratios as well 664 as Mn and Fe contents. In particular, the widespread range of $\delta^{15}N$ values (+2% to 665 +8‰) during this interval were probably formed via an aerobic nitrogen cycle in a 666 relatively stable nitrate pool where partial water column denitrification might occur 667 (Wang et al., 2018). The transition of higher $\delta^{15}N$ to lower $\delta^{15}N$ values may be 668 induced by degradation of particulate organic matter (POM) when POM sinks quickly 669 (Sigman et al., 2009). Rapid sinking of POM would leave the formation of 670 ¹³C-enriched carbonate. Zooplankton would induce the effective sinking of organic 671 matter by means of producing fecal pellets despite its rarity in the Ediacaran ocean. 672

674 6. Conclusions

675

673

An integrated sequence- and chemo-stratigraphic study of the Ediacaran 676 Doushantuo Formation carbonate platform around western Hubei Province reveals 677 two negative $\delta^{13}C_{carb}$ excursions (EN1 and EN3) at two stratigraphic levels. The 678 absence of positive covariation between $\delta^{13}C$ and $\delta^{18}O$ values and ${}^{87}Sr/{}^{86}Sr$ ratios, and 679 presence of low Mn/Sr (<1) ratios indicate negligible influence of secondary 680 alteration, and thus confirm that the core samples preserve primary $\delta^{13}C_{carb}$ and $\delta^{18}O$ 681 ratios. In combination with previously published chemostratigraphic data from 682 Yangtze Platform and Northern India, the two stratigraphic levels display remarkable 683 lateral $\delta^{13}C_{carb}$ consistency, which thus indicates they are related to open marine 684 environments. The stratigraphic complexity of $\delta^{13}C_{carb}$ negative excursions in the 685 upper Doushantuo Formation means that some carbon isotope excursions are probably 686 absent in some sections, which means that only EN1 and EN3 are present and that 687 EN2 is missing at the Wangjiapeng section. 688

The synchronous presence of negative $\delta^{13}C_{carb}$ excursions combined with positive 689 δ^{18} O shifts and decrease of Mn and Fe contents and δ^{15} N values during EN3 point to a 690 common glacial influence. EN3 recorded in the upper Doushantuo Formation at 691 Wangjiapeng can probably be ascribed to remineralization of a dissolved organic 692 carbon (DOC) reservoir producing ¹³C-depleted DIC, as evidenced by the invariable 693 $\delta^{13}C_{org}$ values and decoupled $\delta^{13}C_{carb}\text{-}\delta^{13}C_{org}$ characteristics. Ediacaran glaciation 694 caused a sea level fall, prompting more continental shelf to be exposed. Increased 695 ⁸⁷Sr/⁸⁶Sr values during this interval are generally associated with enhanced delivery of 696 radiogenic ⁸⁷Sr that originated from continental weathering, which together with 697 sulfate and phosphate was brought into the ocean via surface runoff. 698

- 700 Acknowledgements
- 701

699

Editor Guochun Zhao and associate editor Shuhai Xiao are thanked for handling this manuscript. Ganqing Jiang and two anonymous reviewers are thanked for their critical and constructive comments, which have improved the scientific quality of this manuscript. Beneficial discussions with Xuelei Chu were acknowledged. Graham Shields is thanked for polishing the writing. This work was supported by National Science of Foundation of China (41673016) and Japanese Society for the Promotion of Science Fellowship (Grant15F15330).

- 709710 References
- 711
- Ader, M., Macouin, M., Trindade, R.I.F., Hadrien, M.H., Yang, Z., Sun, Z., Besse, J.,
 2009. A multilayered water column in the Eidacaran Yangtze platform? Insights
 from carbonate and organic matter paired δ¹³C. Earth and Planetary Science
 Letters, 288, 213–227.
- Ader, M., Sansjofre, P., Halverson, G.P., Busigny, V., Trindade, R.I.F., Kunzmann, M.,
 Nogueira, A.C.R., 2014. Ocean redox structure across the Late Neoproterozoic
 Oxygenation Event: A nitrogen isotope perspective. Earth and Planetary Science
 Letters, *396*, 1–13.
- Allan, J.R., Matthews, R.K., 1982. Isotope signatures associated with early meteoric
 diagenesis. Sedimentology, 29, 797–817.
- An, Z.H., Jiang, G.Q., Tong, J.N., Tian, L., Ye, Q., Song, H.J., 2015. Stratigraphic
 position of the Ediacaran Miaohe biota and its constrains on the age of the upper
 Doushantuo δ¹³C anomaly in the Yangtze Gorges area, South China. Precambrian
 Research, 271, 243–253.
- Banner, J.L., 2004. Radiogenic isotopes: systematics and applications to Earth surface
 processes and chemical stratigraphy. Earth Science Review, 65, 141–194.
- Barfod, G.H., Albarede, F., Knoll, A.H., Xiao, S.H., Telouk, P., Frei, R., Baker, J.,
 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth
 and Planetary Science Letters, 201, 203–212.
- Bjerrum, C.J., Canfield, D.E., 2011. Towards a quantitative understanding of the late
 Neoproterozoic carbon cycle. Proceedings of National Academy of Sciences,
 U.S.A., 108, 5542–5547.
- Bowring, S.A., Myrow, P.M., Landing, E., Ramezani, J., 2003. Geochronological
 constraints on terminal Neoproterozoic events and the rise of metazoans.
 Geophysical Research Abstracts, 5, 13219.
- Bristow, T.F., Grotzinger, J.P., 2013. Sulfate availability and the geological record of
 cold seep deposits. Geology, 41, 811–814.
- Bristow, T.F., Kennedy, M.J., 2008. Carbon isotope excursions and the oxidant budget
 of the Ediacaran atmosphere and ocean. Geology, 36, 863–866.
- Burns, S.J., Haudenschild, U., Matter, A., 1994. The strontium isotopic composition
 of carbonates from the late Precambrian (~560-540 Ma) Huqf Group of Oman.
 Chemical Geology, 111, 269–282.

- Calver, C.R., 2000. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the
 Adelaide Rift Complex, Australia, and the overprint of water column
 stratification. Precambrian Research, 100, 121–150.
- Campbell, K.A., 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments
 and paleontology: past developments and future research directions.
 Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 362–407.
- Chen, Z., Zhou, C.M., Xiao, S.H., Wang, W., Guan, C.G., Hua, H., Yuan, X.L., 2014.
 New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Report, 4, DOI: 10.1038/srep04180.
- Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., Jin, Y., 2005. U–Pb ages from
 the Neoproterozoic Doushantuo Formation, China. Science, 308, 95–98.
- Cremonese, L., Shields-Zhou, G., Struck, U., Ling, H.-F., Och, L., Chen, X., Li, D.,
 2013. Marine biogeochemical cycling during the early Cambrian constrained by a
 nitrogen and organic carbon isotope study of the Xiaotan section, South China. *Precambrian Research*, 225, 148–165.
- Cui, H., Kaufman, A.J., Xiao, S.H., Zhu, M.Y., Zhou, C.M., Liu, X.M., 2015. Redox
 architecture of an Ediacaran ocean margin: Integrated chemostratigraphic
 (δ¹³C-δ³⁴S-⁸⁷Sr/⁸⁶Sr-Ce/Ce*) correlation of the Doushantuo Formation, South
 China. Chemical Geology, 405, 48–62.
- Cui, H., Xiao, S., Zhou, C., Peng, Y., Kaufman, A.J., Plummer, R.E., 2016.
 Phosphogenesis associated with the Shuram Excursion: petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China. Sedimentary Geology, 341, 134–146.
- Fike, D.A., Grotzinger, J.P., Pratt, L.M., Summons, R.E., 2006. Oxidation of the
 Ediacaran Ocean. Nature, 444, 744–747.
- Furuyama, S., Kano, A., Kunimitsu, Y., Ishikawa, T., Wang, W., 2016. Diagenetic
 overprint to a negative carbon isotope anomaly associated with the Gaskiers
 glaciation of the Ediacaran Doushantuo Formation in South China. Precambrian
 Research, 276, 110–122.
- Guo, Q., Liu, C., Strauss, H., Goldberg, T., Zhu, M., Pi, D., Wang, J., 2006. Organic
 carbon isotope geochemistry of the Neoproterozoic Doushantuo Formation,
 South China. Acta Geologica Sinica, 80, 670–683.
- Grey, K., Walter, M.R., Calver, C.R., 2003. Neoproterozoic biotic divesification:
 Snowball Earth or aftermath of the Acraman impact? Geology, 31, 459–462.
- Grotzinger, J.P., Knoll, A.H., 1995. Anomalous carbonate precipitates: is the
 Precambrian the key to the Permian? Palaios, 10, 578–596.
- Halverson, G.P., Dudás, F.Ö., Maloof, A.C., Bowring, S.A., 2007. Evolution of the
 ⁸⁷Sr/⁸⁶Sr composition of Neoproterozoic seawater. Palaeogeography,
 Palaeoclimatology, Palaeoecology, 256, 103–129.
- Halverson, G.P., Hoffman, P.F., Schrag, D.P., Maloof, A.C., Rice, A.H.N., 2005.
 Toward a Neoproterozoic composite carbon-isotope record. Geological Society of
 America Bulletin, 117, 1181–1207.
- Halverson, G.P., Hurtgen, M.T., 2007. Ediacaran growth of the marine sulfate
 reservoir. Earth and Planetary Science Letters, 263, 32–44.

- HBGMR (Hubei Bureau of Geology and Mineral Resources), 1988. Memoir on
 Regional Geology of Hubei Province. Geological Publishing House, Beijing, 705
 pp (in Chinese with English Abstract).
- Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A Neoproterozoic
 Snowball Earth. Science, 281, 1342–1346.
- Hoffman, P.F., Schrag, D.P., 2002. The Snowball Earth hypothesis: testing the limits
 of global change. Terra Nova, 14, 129–155.
- Hoffman, P.F., Li, Z.X., 2009. A palaeogeographic context for Neoproterozoic
 glaciations. Palaeogeography, Palaeoclimatology, Palaeoecology, 277, 158–172.
- Jacobsen, S.B., Kaufman, A.J., 1999. The Sr, C and O isotopic evolution of
 Neoproterozoic seawater. Chemical Geology, 161, 37–57.
- Jiang, G.Q., Christie-Blick, N., Kaufman, A.J., Banerjee, D.M., Rai, V., 2002.
 Sequence stratigraphy of the Neoproterozoic Infra Krol Formation and Krol
 Group, Lesser Himalaya, India. Journal of Sedimentary Research, 72, 524–542.
 Jiang, G.Q., Sohl, L.E., Christie-Blick, N., 2003a. Neoproterozoic stratigraphic
 comparison of the Lesser Himalaya (India) and Yangtze Block (South China):
 paleogeographic implications. Geology, 31, 917–920.
- Jiang, G.Q., Kennedy, M.J., Christie-Blick, N., 2003b. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426, 822–
 807 826. Jiang, G.Q., Kennedy, M.J., Christie-Blick, N., Wu, H.C., Zhang, S.H., 2006.
 808 Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic
 809 Doushantuo cap carbonate in South China. Journal of Sedimentary Research, 76, 978–995.
- Jiang, G.Q., Kaufman, A.J., Christie-Blick, N., Zhang, S., Wu, H., 2007. Carbon
 isotope variability across the Ediacaran Yangtze platform in South China:
 implications for a large surface-to-deep ocean δ¹³C gradient. Earth and Planetary
 Science Letters, 261, 303–320.
- Jiang, G.Q., Shi, X.Y., Zhang, S.H., Wang, Y., Xiao, S.H., 2011. Stratigraphy and
 paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in
 South China. Gondwana Research, 19, 831–849.
- Kaufman, A.J., Jacobsen, S.B., Knoll, A.H., 1993. The Vendian record of Sr and C
 isotopic variations in seawater: implications for tectonics and paleoclimate. Earth
 and Planetary Science Letters, 120, 409–430.
- Kaufman, A.J., Jiang, G.Q., Christie-Blick, N., Banerjee, D.M., Rai, V., 2006. Stable
 isotope record of the terminal Neoproterozoic Krol platform in the Lesser
 Himalayas of northern India. Precambrian Research, 147, 156–185.
- Kaufman, A.J., Corsetti, F.A., Varni, M.A., 2007. The effect of rising atmospheric
 oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie
 Formation, Death Valley, USA. Chemical Geology, 237, 47–63.
- Kennedy, M.J., Runnegar, B., Prave, A.R., Hoffmann, K.H., Arthur, M.A., 1998. Two
 or four Neoproterozoic glaciations? Geology, 26, 1059–1063.
- Kikumoto, R., Tahata, M., Nishizawa, M., Sawaki, Y., Maruyama, S., Shu, D., Han, J.,
 Komiya, T., Takai, K., Ueno, Y., 2014. Nitrogen isotope chemostratigraphy of

- the Ediacaran and Early Cambrian platform sequence at Three Gorges, South
 China. *Gondwana Research*, 25, 1057–1069.
- Knauth, L.P., Kennedy, M.J., 2009. The late Precambrian greening of the Earth.
 Nature, 460, 728–732.
- Lan, Z.W., Chen, Z.Q., 2012. Exceptionally preserved microbially induced
 sedimentary structures from the Ediacaran post-glacial successions in the
 Kimberley region, northwestern Australia. Precambrian Research, 200-203, 1–25.
- Lang, X.G., Chen, J.T., Cui, H., Man, L., Huang, K.J., Fu, Y., Zhou, C.M., Shen, B.,
 2018. Cyclic cold climate during the Nantuo Glaciation: Evidence from the
 Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian
 Research, 310, 243–255.
- Li, C., Love, G.D., Lyons, T.W., Fike, D.A., Sessions, A.L., Chu, X.L., 2010. A
 stratified redox model for the Ediacaran Ocean. Science, 328, 80–83.
- Liu, H.Y., Sha, Q.A., 1963. Some problems on the Sinian system of the Yi Chang
 Gorge districts of the Yangtze River. Scientia Geologica Sinica, 4, 177–188.
- Liu, P.J., Xiao, S.H., Yin, C.Y., Chen, S.M., Zhou, C.M., Li, M., 2014. Ediacaran
 acanthomorphic acritarchs and other micro fossils from chert nodules of the
 upper Doushantuo Formation in the Yangtze Gorges area, South China. Journal of
 Paleontology, 88, 1–139.
- Lu, M., Zhu, M.Y., Zhang, J.M., Shields-Zhou, G., Li, G.X., Zhao, F.C., Zhao, X.,
 Zhao, M.J., 2013. The DOUNCE event at the top of the Ediacaran Doushantuo
 Formation, South China: broad stratigraphic occurrence and non-diagenetic
 origin. Precambrian Research, 225, 86–109.
- McCall, G.J.H., 2006. The Vendian (Ediacaran) in the geological record: enigmas in
 geology's prelude to the Cambrian explosion. Earth Science Review, 77, 1–229.
- McFadden, K.A., Huang, J., Chu, X.L., Jiang, G.Q., Kaufman, A.J., Zhou, C.M., Yuan,
 X.L., Xiao, S.H., 2008. Pulsed oxidation and biological evolution in the
 Ediacaran Doushantuo Formation. Proceedings of National Academy of Sciences,
 105, 3197–3202.
- Melezhik, V., Fallick, A.E., Pokrovsky, B.G., 2005. Enigmatic nature of thick
 sedimentary carbonates depleted in ¹³C beyond the canonical mantle value: the
 challenges to our understanding of the terrestrial carbon cycle. Precambrian
 Research, 137, 131–165.
- Muscente, A.D., Hawkins, A.D., Xiao, S.H., 2015. Fossil preservation through
 phosphatization and silicification in the Ediacaran Doushantuo Formation (South
 China): a comparative synthesis. Palaeogeography, Palaeoclimatology,
 Palaeoecology, 434, 46–62.
- Myrow, P.M., Kaufman, A.J., 1999. A newly discovered cap carbonate above
 Varanger-age glacial deposits in Newfoundland, Canada: Journal of Sedimentary
 Research, 69, 784–793.
- Oehlert, A.M., Swart, P.K., 2014. Interpreting carbonate and organic carbon isotope
 covariance in the sedimentary record. Nature Communications, 5, 1–7.

- Ohno, T., Hirata, T., 2007. Simultaneous determination of mass-dependent isotopic
 fractionation and radiogenic isotope variation of strontium in geochemical
 samples by MC-ICP-MS. Analytical Sciences, 23, 1275–1280.
- Ohno, T., Komiya, T., Ueno, Y., Hirata, T., Maruyama, S., 2008. Determination of
 ⁸⁸Sr/⁸⁶Sr mass-dependent isotopic fractionation and radiogenic isotope variation of
 ⁸⁷Sr/⁸⁶Sr in the Neoproterozoic Doushantuo Formation. Gondwana Research, 14,
 126–133.
- Okai, T., Suzuki, A., Kawahata, H., Terashima, S., Imai, N., 2002. Preparation of a
 new geological survey of Japan geochemical reference material: Coral JCp-1.
 Geostand Newsletters, 26, 95–99.
- Palmer, M., Edmond, J., 1992. Controls over the strontium isotope composition of
 river water. Geochimica et Cosmochimica Acta, 56, 2099–2111.
- Papineau, D., 2010. Global Biogeochemical Changes at Both Ends of the Proterozoic:
 Insights from Phosphorites. Astrobiology, 10, 165–181.
- Pierrehumbert, R.T., 2004. High levels of atmospheric carbon dioxide necessary for
 the termination of global glaciation. Nature, 429, 646–649.
- Pu, J.P., Bowring, S.A., Ramezani, J., Myrow, P., Raub, T.D., Landing, E., Mills, A.,
 Hodgin, E., Macdonald, F.A., 2016. Dodging snowballs: Geochronology of the
 Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44,
 955–958.
- Pokrovsky, B.G., Bujakaite, M.I., 2015. Geochemistry of C, O, and Sr isotopes in the
 Neoproterozoic carbonates from the southwestern Patom paleobasin, southern
 Middle Siberia. Lithology and Mineral Resources, 50, 144–169.
- Rothman, D.H., Hayes, J.M., Summons, R., 2003. Dynamics of the Neoproterozoic
 carbon cycle. Proceedings of National Academy of Sciences U.S.A., 100, 8124–
 8129.
- Sawaki, Y., Ohno, T., Tahata, M., Komiya, T., Hirata, T., Maruyama, S., Windley, B.F.,
 Han, J., Shu, D.G., Li, Y., 2010. The Ediacaran radiogenic Sr isotope excursion in
 the Doushantuo Formation in the Three Gorges area, South China. Precambrian
 Research, 176, 46–64.
- Schrag, D.P., Higgins, J.A., Macdonald, F.A., Johnston, D.T., 2013. Authigenic
 carbonate and the history of the global carbon cycle. Science, 339, 540–543.
- She, Z.B., Strother, P., Papineau, D., 2014. Terminal Proterozoic cyanobacterial
 blooms and phosphogenesis documented by the Doushantuo granular phosphorites
 II: Microbial diversity and C isotopes. Precambrian Research, 251, 62–79.
- Shields, G., 2007. A normalised seawater strontium isotope curve: possible
 implications for Neoproterozoic-Cambrian weathering rates and the further
 oxygenation of the Earth. eEarth, 2, 35–42.
- Shields-Zhou, G., Och, L., 2011. The case for a Neoproterozoic Oxygenation Event:
 geochemical evidence and biological consequences. GSA Today, 21, 4–11.
- Sigman, D.M., Karsh, K.L., Casciotti, K.L., 2009. Ocean process tracers: Nitrogen
 isotopes in the ocean. Encyclopedia of ocean science. Elsevier, Amsterdam, pp.
 4138–4153.

- Swart, P.K., Oehlert, A.M., 2018. Reviese interpretations of stable C and O patterns in
 carbonate rocks resulting from meteoric diagenesis. Sedimentary Geology, 364,
 14–23.
- Tagliabue, A., Bopp, L., Dutay, J.C., Bowie, A.R., Chever, F., Jean-Baptiste, P.,
 Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G., Aumont, O., Gehlen, M.,
 Jeandel, C., 2010. Hydrothermal contribution to the oceanic dissolved iron
 inventory. Nature Geoscience, 3, 252–256.
- Tahata, M., Ueno, Y., Ishikawa, T., Sawaki, Y., Murakami, K., Han, J., Shu, D., Li, Y.,
 Guo, J., Yoshida, N., Komiya, T., 2013. Carbon and oxygen isotope
 chemostratigraphies of the Yangtze platform, South China: Decoding temperature
 and environmental changes through the Ediacaran. Gondwana Research, 23, 333–
 353.
- 928 Vasconcelos, C., McKenzie, J.A., Warthmann, R., Bemasconi, S.M., 2005. Calibration 929 of the δ^{18} O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33, 317–320.
- Walther, J.V., 2009. "Rubidium–Strontium Systematics". *Essentials of geochemistry*.
 Jones & Bartlett Learning, pp. 383–385.
- Wan, B., Yuan, X.L., Chen, Z., Guan, C.G., Pang, K., Tang, Q., Xiao, S.H., 2016.
 Systematic description of putative animal fossils from the Early Ediacaran
 Lantian Formation of South China. Palaeontology, 59, 515–532.
- Wang, J., Li, Z.X., 2003. History of Neoproterozoic rift basins in South China:
 implications for Rodinia break-up. Precambrian Research, 122, 141–158.
- Wang, J.S., Jiang, G.Q., Xiao, S.H., Li, Q., Wei, Q., 2008. Carbon isotope evidence
 for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in
 south China. Geology, 36, 347–350.
- Wang, W., Zhou, C.M., Guang, C.G., Yuang, X.L., Chen, Z., Wan, B., 2014. An
 integrated carbon, oxygen, and strontium isotopic studies of the Lantian
 Formation in South China with implications for the Shuram anomaly. Chemical
 Geology, 373, 10–26.
- Wang, W., Guan, C.G., Zhou, C., Peng, Y., Pratt, L.M., Chen, X., Chen, L., Chen, Z.,
 Yuan, X., Xiao, S., 2017. Integrated carbon, sulfur, and nitrogen isotope
 chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial
 gradient, ocean redox oscillation, and fossil distribution. Geobiology, 15, 552–
 571.
- Wang, X.Q., Jiang, G.Q., Shi, X.Y., Peng, Y.B., Morales, D., 2018. Nitrogen isotope
 constraints on the early Ediacaran ocean redox structure. Geochimica et
 Cosmochimica Acta, in press.
- Xiao, S.H., Zhang, Y., Knoll, A.H., 1998. Three-dimensional preservation of algae
 and animal embryos in a Neoproterozoic phosphorite. Nature, 391, 553–558.
- Xiao, S., Zhou, C., Yuan, X., 2007. Undressing and redressing Ediacaran embryos.
 Nature, 446, E10–E11.
- Xiao, S.H., Zhou, C.M., Liu, P.J., Wang, D., Yuan, X.L., 2014. Phosphatized
 acanthomorphic acritarchs and related microfossils from the Ediacaran

- Doushantuo Formation at Weng'an (South China) and their implications forbiostratigraphic correlation. Journal of Paleontology, 88, 1–67.
- Yiao, S.H., Narbonne, G.M., Zhou, C.M., Laflamme, M., Grazhdankin, D.V.,
 Moczydlowska-Vidal, M., Cui, H., 2016. Towards an Ediacaran Time Scale:
 Problems, Protocols, and Prospects. Episodes 39, 540–555.
- Yang, J.D., Sun, W.G., Wang, Z.Z., Xue, Y.S., Tao, X.C., 1999. Variations in Sr and C
 isotopes and Ce anomalies in successions from China: Evidence for the
 oxygenation of Neoproterozoic seawater? Precambrian Research, 93, 215–233.
- Yin, L.M., Zhu, M.Y., Knoll, A.H., Yuan, X.L., Zhang, J.M., Hu, J., 2007. Doushantuo
 embryos preserved inside diapause egg cysts. Nature, 446, 661–663.
- Zhang, S.H., Jiang, G.Q., Zhang, J.M., Song, B., Kennedy, M.J., Christie-Blick, N.,
 2005. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo
 Formation in south China: constraints on late Neoproterozoic glaciations. Geology,
 33, 473–476.
- 973Zhou, C.M., Xiao, S.H., 2007. Ediacaran δ^{13} C chemostratigraphy of South China.974Chemical Geology, 237, 89–108.
- Zhou, C.M., Guan, C.G., Cui, H., Ouyang, Q., Wang, W., 2016. Methane-derived authigenic carbonate from the lower Doushantuo Formation of South China:
 Implications for seawater sulfate concentration and global carbon cycle in the early Ediacaran ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 145–155.
- Zhou, C.M., Xiao, S.H., Wang, W., Guan, C.G., Ouyang, Q., Chen, Z., 2017. The
 stratigraphic complexity of the middle Ediacaran carbon isotopic record in the
 Yangtze Gorges area, South China, and its implications for the age and
 chemostratigraphic significance of the Shuram excursion. Precambrian Research,
 288, 23–38.
- Zhu, M.Y., Zhang, J.M., Steiner, M., Yang, A.H., Li, G.X., Erdtmann, B.D., 2003.
 Sinian-Cambrian stratigraphic framework for shallow- to deep-water
 environments of the Yangtze Platform: an integrated approach. Progress in Natural
 Science, 13, 951–960.
- M.Y., Zhu, Zhang, J., Yang, A., 2007. Integrated Ediacaran (Sinian) 989 China. Palaeogeography, chronostratigraphy of South Palaeoclimatology. 990 Palaeoecology, 254, 7-61. 991
- Zhu, M.Y., 2010. The origin and Cambrian explosion of animals: Fossil evidences
 from China. Acta Palaeontologica Sinica, 49, 269–287.
- Zhu, M.Y., Lu, M., Zhang, J.M., Zhao, F.C., Li, G.X., Yang, A.H., Zhao, X., Zhao,
 M.J., 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of
 the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian
 Research, 225, 7–28.

998

999 Figure and table captions

1000

Figure 1 (A) Geological map of China with the Yangtze platform highlighted in purple color. (B) Reconstructed Ediacaran depositional environments on the Yangtze platform (Jiang et al., 2011). Red star marks the location studied in this paper. (C)
Sketch diagram showing sedimentary facies variations of the Doushantuo Formation
within the middle Yangtze Platform (Zhu et al., 2013).

1006

Figure 2 Shale from the upper Doushantuo Formation in the Wangjiapeng drill core (A, B). (A) Scanned image of polished thin section, sample number DST217, stratigraphic height 174.4 m. (B) BSE image of polished thin section, sample number DST217, stratigraphic height 174.4 m. Dolostone from the middle Doushantuo Formation in the Wangjiapeng drill core (C, D). (C) Scanned image of polished thin section, sample number DST115, stratigraphic height 94.2 m. (D) BSE image of polished thin section, sample number DST115, stratigraphic height 94.2 m.

1014

Figure 3 Muddy dolostone from the lower Doushantuo Formation in the Wangjiapeng drill core. (A) Scanned image of polished thin section, sample number DST041, stratigraphic height 31.8 m. (B) BSE image of polished thin section, sample number DST041, stratigraphic height 31.8 m. (C) Scanned image of polished thin section, sample number DST089, stratigraphic height 73.4 m. Note this sample bears calcite veins. (D) BSE image of polished thin section, sample number DST089, stratigraphic height 73.4 m.

1022

Figure 4 Organic-rich limestone from the lower Doushantuo Formation in the Wangjiapeng drill core. (A) Scanned image of polished thin section, sample number DST057, stratigraphic height 44.6 m. (B) BSE image of polished thin section, sample number DST057, stratigraphic height 44.6 m. (C) Scanned image of polished thin section, sample number DST069, stratigraphic height 54.2 m. Note this sample bears chert veins. (D) BSE image of polished thin section, sample number DST069, stratigraphic height 54.2 m.

1030

Figure 5 Muddy limestone from the upper Doushantuo Formation in the Wangjiapeng
drill core. (A) Scanned image of polished thin section, sample number DST193,
stratigraphic height 156 m. (B) BSE image of polished thin section, sample number
DST193, stratigraphic height 156 m.

1035

1036 Figure 6 Integrated time-series elemental and isotopic data from the Doushantuo 1037 Formation at the Wangjiapeng section. DST271 and DST311 are marked by different 1038 symbols as indicated by filled green color, because they might have suffered 1039 post-depositional alteration. Arrows indicate the decreasing trend of δ^{15} N values.

1040

Figure 7 Cross plots of isotope and elemental data of the Doushantuo Formation at theWangjiapeng section to help evaluate diagenetic effects.

1043

1044 Figure 8 Carbonate carbon isotope ($\delta^{13}C_{carb}$) and strontium isotope ($^{87}Sr/^{86}Sr$) 1045 chemostratigraphic correlations of the Ediacaran Doushantuo Formation across the 1046 Yangtze platform. Data of the Jiulongwan, Zhongling and Yangjiaping sections are from Cui et al. (2015) and the literature cited therein, whereas those of Wangjiapengsection are from this study.

1049

1055

Figure 9 Carbonate carbon isotope $(\delta^{13}C_{carb})$ and organic carbon isotope $(\delta^{13}C_{org})$ chemostratigraphic correlations of the Ediacaran Doushantuo Formation across the platform. Data of the Jiulongwan, Zhongling and Yangjiaping sections are from Cui et al. (2015) and literatures cited therein, whereas those of Wangjiapeng section are from this study.

1056 Figure 10 Spatial variations in δ^{15} N values of the Doushantuo Formation and its 1057 stratigraphic equivalent Lantian Formation. Also indicated is the relative 1058 paleobathymetric location of sections on simplified cross section within the Yangtze 1059 Platform (Jiang et al., 2011). δ^{15} N values of the Yangtze Gorges section, Yangjiaping 1060 section and Lantian section are from Kikumoto et al. (2014), Ader et al. (2014) and 1061 Wang et al. (2017), respectively, whereas those of the Wangjiapeng section is from the 1062 current study.

1063

Table 1 High-resolution geochemical data of the Doushantuo Formation atWangjiapeng section.

	Table 1 Isotopic and geochemical data														
	Sample ID	Formation	Member	Depth (m)	Rock name	dissolve rate (%)	Sr (ppm)	Al (ppm)	Si (ppm)	K (ppm)	Mn (ppm)	Fe (ppm)	Mn/Sr	Rb/Sr	$\delta^{13}C_{car}$ (‰ vs.PDB)
0	DST001	Doushantuo	Ι	712.40	calcareous shale	45.52	192	127	294	15	934	418	4.867	0.0002	-3.45
1.6	DST003	Doushantuo	Ι	710.80	dolostone	89.87	243	506	426	23	1355	1285	5.588	0.0003	-3.11
2.4	DST005	Doushantuo	Ι	710.00	dolostone	91.35	127	562	527	52	718	1222	5.645	0.0011	-3.33
4.8	DST007	Doushantuo	Ι	707.58	calcareous shale	41.59	451	1258	485	458	636	2398	1.410	0.0014	3.23
6.4	DST009	Doushantuo	Ι	706.03	muddy dolostone	53.43	123	1072	488	327	1430	3456	11.619	0.0036	1.11
8.0	DST011	Doushantuo	Ι	704.43	siltstone	8.68	99	950	516	121	119	1031	1.206	0.0058	1.98
8.6	DST013	Doushantuo	Ι	703.79	siltstone	9.85	93	933	524	140	128	962	1.380	0.0065	2.49
11.8	DST017	Doushantuo	Ι	700.60	calcareous shale	49.52	264	944	550	130	656	1774	2.483	0.0027	3.96
13.4	DST019	Doushantuo	II	699.01	muddy dolostone	57.18	317	535	613	168	256	2043	0.809	0.0013	4.78
15.0	DST021	Doushantuo	II	697.43	muddy dolostone	58.27	292	345	562	113	207	2198	0.709	0.0011	5.20
16.6	DST023	Doushantuo	II	695.81	calcareous shale	49.64	281	599	671	251	168	1878	0.598	0.0019	5.52
18.2	DST025	Doushantuo	II	694.21	muddy dolostone	63.44	289	357	590	170	233	2719	0.805	0.0012	5.06
19.8	DST027	Doushantuo	II	692.58	muddy dolostone	61.37	331	443	679	223	266	2841	0.803	0.0012	5.07
21.4	DST029	Doushantuo	II	691.01	muddy dolostone	57.87	338	288	421	130	191	3078	0.564	0.0008	5.40
23.8	DST031	Doushantuo	II	688.61	muddy dolostone	56.97	307	327	502	239	172	3354	0.560	0.0014	5.50
25.4	DST033	Doushantuo	II	687.02	muddy dolostone	55.63	271	343	543	313	182	3376	0.670	0.0018	5.39
28.6	DST037	Doushantuo	II	683.83	muddy dolostone	52.89	219	224	418	264	141	4031	0.644	0.0017	5.30
30.2	DST039	Doushantuo	II	682.21	muddy dolostone	51.98	277	371	454	411	153	3589	0.552	0.0023	5.45
31.8	DST041	Doushantuo	II	680.63	muddy dolostone	54.58	330	716	651	772	161	3581	0.487	0.0029	5.69
33.4	DST043	Doushantuo	II	679.03	muddy dolostone	52.76	309	503	542	557	173	4259	0.561	0.0025	5.90
35.0	DST045	Doushantuo	II	677.43	dolostone	86.59	194	123	244	143	201	2712	1.036	0.0008	5.91
36.6	DST047	Doushantuo	II	675.81	muddy dolostone	56.26	377	347	626	359	194	6543	0.514	0.0013	6.40
38.2	DST049	Doushantuo	II	674.19	limestone	88.91	313	70	128	70	93	821	0.296	0.0003	6.56
39.8	DST051	Doushantuo	II	672.62	limestone	94.81	1007	99	151	59	45	912	0.044	0.0001	7.32
41.4	DST053	Doushantuo	II	671.02	limestone	90.31	965	84	149	83	53	931	0.055	0.0001	7.47
43.0	DST055	Doushantuo	II	669.41	limestone	95.77	1211	67	96	49	25	912	0.021	0.0001	7.88
44.6	DST057	Doushantuo	II	667.82	limestone	97.11	1257	33	63	22	21	872	0.017	0.0000	8.15
46.2	DST059	Doushantuo	II	666.21	limestone	85.73	1118	81	136	57	73	867	0.065	0.0001	7.52
47.8	DST061	Doushantuo	II	664.61	muddy limestone	73.30	790	109	217	77	58	846	0.073	0.0001	6.93
49.4	DST063	Doushantuo	II	663.02	limestone	75.80	1103	136	231	116	83	881	0.075	0.0002	7.45
51.0	DST065	Doushantuo	II	661.42	limestone	84.53	521	107	195	100	60	998	0.116	0.0002	6.98
52.6	DST067	Doushantuo	II	659.82	limestone	82.19	384	108	215	109	50	804	0.132	0.0004	7.96
54.2	DST069	Doushantuo	II	658.21	limestone	80.79	438	122	246	110	77	1486	0.175	0.0004	6.97
55.8	DST071	Doushantuo	II	656.63	limestone	80.92	412	182	323	182	77	1424	0.188	0.0005	6.64

57.4	DST073	Doushantuo	II	655.04	muddy limestone	59.49	316	312	513	351	153	3440	0.485	0.0013	7.46
59.0	DST075	Doushantuo	II	653.44	calcareous shale	49.83	298	403	956	432	132	4367	0.443	0.0019	7.98
65.4	DST079	Doushantuo	II	647.01	muddy limestone	51.74	452	470	576	402	151	3559	0.334	0.0017	6.75
67.0	DST081	Doushantuo	II	645.41	muddy limestone	52.60	405	371	740	420	179	5368	0.441	0.0014	6.69
68.6	DST083	Doushantuo	II	643.81	calcareous shale	27.92	206	577	598	691	87	3647	0.420	0.0047	6.24
70.2	DST085	Doushantuo	II	642.20	muddy dolostone	52.60	392	493	681	536	205	6354	0.523	0.0017	6.40
71.8	DST087	Doushantuo	II	640.61	muddy dolostone	50.66	334	572	446	645	183	5946	0.549	0.0024	6.75
73.4	DST089	Doushantuo	II	639.03	muddy dolostone	56.29	383	323	501	321	196	6783	0.512	0.0011	6.46
75.0	DST091	Doushantuo	II	637.42	muddy dolostone	58.01	401	385	1005	391	176	6054	0.439	0.0013	6.27
76.6	DST093	Doushantuo	II	635.81	calcareous shale	47.34	255	421	1172	475	149	5292	0.587	0.0025	6.11
78.2	DST095	Doushantuo	II	634.22	muddy dolostone	52.41	246	489	586	536	163	5607	0.661	0.0027	6.17
79.8	DST097	Doushantuo	II	632.61	muddy dolostone	58.19	388	535	583	519	139	6395	0.359	0.0020	6.90
81.4	DST099	Doushantuo	II	631.00	muddy dolostone	66.20	432	623	879	630	154	7072	0.356	0.0016	6.42
83.0	DST101	Doushantuo	II	629.41	muddy limestone	71.63	501	363	517	282	170	7650	0.340	0.0006	5.93
84.6	DST103	Doushantuo	II	627.81	muddy limestone	62.66	364	500	676	537	142	6483	0.391	0.0018	6.09
86.2	DST105	Doushantuo	II	626.23	muddy limestone	71.71	532	436	869	354	161	7708	0.303	0.0008	6.13
87.8	DST107	Doushantuo	II	624.61	muddy dolostone	55.09	324	470	995	562	118	5314	0.365	0.0026	5.98
89.4	DST109	Doushantuo	II	623.03	muddy dolostone	68.95	304	262	376	257	137	6088	0.450	0.0012	6.11
91.0	DST111	Doushantuo	II	621.41	dolostone	75.96	345	325	445	359	126	5012	0.366	0.0013	5.99
92.6	DST113	Doushantuo	II	619.83	dolostone	79.94	387	252	386	286	129	4937	0.333	0.0009	6.26
94.2	DST115	Doushantuo	II	618.22	dolostone	80.52	433	255	365	290	117	4631	0.270	0.0008	5.32
95.8	DST117	Doushantuo	II	616.59	muddy limestone	67.41	689	56	141	39	41	1447	0.060	0.0001	5.39
97.4	DST119	Doushantuo	II	615.02	limestone	91.21	372	53	119	55	37	1621	0.100	0.0003	6.51
98.9	DST121	Doushantuo	II	613.51	limestone	88.53	529	46	105	58	53	2030	0.099	0.0002	5.91
100.6	DST123	Doushantuo	II	611.82	muddy limestone	74.05	450	279	410	335	100	4118	0.222	0.0012	6.21
102.2	DST125	Doushantuo	II	610.23	muddy limestone	66.67	350	330	439	316	92	4178	0.264	0.0019	6.32
103.8	DST127	Doushantuo	II	608.61	muddy limestone	74.02	439	407	512	325	102	4518	0.233	0.0014	6.20
105.4	DST129	Doushantuo	II	607.01	muddy limestone	60.21	362	369	399	289	105	5047	0.291	0.0017	6.28
107.0	DST131	Doushantuo	II	605.43	muddy limestone	63.21	438	317	438	299	126	5666	0.287	0.0013	6.42
108.2	DST133	Doushantuo	II	604.23	limestone	94.73	353	49	107	57	125	1881	0.355	0.0003	2.90
109.8	DST135	Doushantuo	II	602.63	muddy limestone	72.76	520	56	189	70	58	1262	0.112	0.0002	5.07
111.4	DST137	Doushantuo	II	601.02	limestone	79.29	493	111	174	81	54	954	0.109	0.0005	5.87
113.6	DST139	Doushantuo	II	598.80	muddy limestone	71.47	486	149	285	109	75	1300	0.154	0.0006	6.05
115.3	DST141	Doushantuo	II	597.12	muddy limestone	74.89	426	192	272	178	68	1513	0.160	0.0016	6.21
117.2	DST143	Doushantuo	II	595.22	limestone	83.82	623	204	270	122	65	1387	0.104	0.0007	6.17
119.6	DST147	Doushantuo	II	592.81	muddy dolostone	57.65	929	752	909	408	141	2583	0.152	0.0015	5.95
120.8	DST149	Doushantuo	II	591.62	muddy dolostone	59.19	1019	527	755	340	146	2549	0.143	0.0011	5.99

122.4	DST151	Doushantuo	II	590.03	muddy dolostone	66.39	778	560	803	342	157	2953	0.201	0.0016	6.03
124.0	DST153	Doushantuo	II	588.41	calcareous shale	34.45	630	122	188	75	34	804	0.055	0.0004	5.57
125.6	DST155	Doushantuo	II	586.83	muddy limestone	59.10	669	122	468	184	57	983	0.085	0.0009	5.66
128.8	DST159	Doushantuo	II	583.62	calcareous shale	49.97	819	523	1349	761	68	1850	0.084	0.0028	5.74
130.4	DST161	Doushantuo	III	582.00	muddy limestone	52.63	810	438	1245	777	80	2294	0.099	0.0016	5.60
132.0	DST163	Doushantuo	III	580.42	muddy limestone	59.59	1118	490	1009	348	159	2422	0.142	0.0032	6.27
132.8	DST165	Doushantuo	III	579.62	muddy limestone	55.56	933	557	1347	558	142	2132	0.152	0.0025	6.27
136.0	DST167	Doushantuo	III	576.40	calcareous shale	39.53	723	610	1238	938	101	1667	0.140	0.0047	5.97
137.6	DST171	Doushantuo	III	574.83	calcareous shale	48.87	865	464	970	549	98	2829	0.113	0.0025	3.95
140.0	DST173	Doushantuo	III	572.41	muddy limestone	58.24	769	581	1177	675	103	2816	0.133	0.0032	4.03
141.6	DST175	Doushantuo	III	570.81	muddy dolostone	60.82	670	612	1194	512	173	2056	0.258	0.0035	6.61
144.8	DST179	Doushantuo	III	567.62	muddy dolostone	59.76	945	665	1408	473	227	2262	0.240	0.0027	6.04
146.4	DST181	Doushantuo	III	566.02	calcareous shale	45.38	777	539	1327	578	127	3307	0.163	0.0030	3.92
148.0	DST183	Doushantuo	III	564.41	calcareous shale	37.88	665	919	1432	819	107	2381	0.161	0.0044	4.10
149.6	DST185	Doushantuo	III	562.81	calcareous shale	47.64	598	613	1063	776	84	1383	0.140	0.0051	3.51
151.2	DST187	Doushantuo	III	561.22	muddy limestone	72.33	879	266	1481	353	75	1064	0.085	0.0016	4.59
154.4	DST191	Doushantuo	III	558.01	muddy limestone	69.01	876	375	1113	281	97	1460	0.111	0.0013	4.05
156.0	DST193	Doushantuo	III	556.41	muddy dolostone	61.88	743	665	1116	376	227	1367	0.306	0.0028	5.61
157.6	DST195	Doushantuo	III	554.81	muddy dolostone	50.54	665	655	1710	565	148	2239	0.223	0.0035	3.42
159.0	DST197	Doushantuo	III	553.42	muddy dolostone	52.01	830	709	2279	632	95	2285	0.115	0.0031	4.16
160.6	DST199	Doushantuo	III	551.82	calcareous shale	43.98	617	593	1763	773	99	1528	0.160	0.0047	4.46
162.2	DST201	Doushantuo	III	550.21	calcareous shale	49.47	608	352	839	602	126	2302	0.206	0.0036	4.02
163.8	DST203	Doushantuo	III	548.61	calcareous shale	33.10	1022	838	1240	937	85	1599	0.083	0.0033	2.59
165.3	DST205	Doushantuo	III	547.10	calcareous shale	49.07	600	609	1042	836	165	1765	0.275	0.0054	4.15
166.9	DST207	Doushantuo	III	545.50	calcareous shale	46.46	550	620	1039	646	137	2324	0.249	0.0048	3.72
168.4	DST209	Doushantuo	III	544.00	calcareous shale	49.38	696	819	1139	1154	147	3162	0.211	0.0062	3.04
170.0	DST211	Doushantuo	III	542.40	muddy dolostone	61.22	541	705	1220	447	221	1750	0.408	0.0038	3.72
171.2	DST213	Doushantuo	III	541.20	calcareous shale	36.12	612	880	999	1627	126	2204	0.206	0.0087	3.56
172.4	DST215	Doushantuo	III	540.00	calcareous shale	37.55	758	815	932	1615	169	3247	0.222	0.0079	3.26
174.4	DST217	Doushantuo	III	538.00	calcareous shale	45.49	717	739	1806	989	184	2031	0.256	0.0052	4.15
176.0	DST219	Doushantuo	III	536.40	calcareous shale	39.34	624	1088	2430	1193	173	1783	0.278	0.0069	3.87
177.7	DST221	Doushantuo	III	534.70	muddy dolostone	56.23	604	908	1276	458	217	1762	0.359	0.0040	2.71
179.2	DST223	Doushantuo	III	533.20	muddy dolostone	60.60	744	830	1525	257	191	2041	0.257	0.0017	2.93
180.8	DST225	Doushantuo	III	531.60	muddy dolostone	59.59	617	594	1543	610	183	2373	0.296	0.0033	0.27
182.4	DST227	Doushantuo	III	530.00	muddy dolostone	55.55	550	377	1729	449	103	1247	0.188	0.0028	4.35
183.8	DST229	Doushantuo	III	528.60	calcareous shale	34.60	484	823	1579	826	112	1438	0.231	0.0058	1.61
185.2	DST231	Doushantuo	III	527.20	muddy dolostone	60.30	481	691	1605	830	158	1402	0.329	0.0053	1.60

186.8	DST233	Doushantuo	III	525.60	muddy dolostone	53.75	543	497	1395	769	202	3235	0.372	0.0043	1.08
188.4	DST235	Doushantuo	III	524.00	muddy dolostone	50.89	429	481	1017	425	141	1611	0.329	0.0041	2.97
189.8	DST237	Doushantuo	III	522.60	calcareous shale	41.65	435	675	2518	754	129	1327	0.296	0.0057	2.86
191.4	DST239	Doushantuo	III	521.00	calcareous shale	26.46	363	800	790	812	67	1343	0.185	0.0067	2.77
193.0	DST241	Doushantuo	III	519.40	muddy dolostone	54.70	398	598	983	289	136	1345	0.341	0.0040	1.86
195.2	DST243	Doushantuo	III	517.20	muddy dolostone	52.67	475	511	581	282	108	1373	0.228	0.0029	2.97
196.4	DST245	Doushantuo	III	516.02	calcareous shale	45.19	404	486	538	572	105	1498	0.260	0.0043	3.34
198.0	DST247	Doushantuo	III	514.43	muddy dolostone	53.20	531	596	1825	760	189	1665	0.355	0.0049	2.82
199.6	DST249	Doushantuo	III	512.81	muddy dolostone	57.98	492	630	1264	279	127	1617	0.259	0.0034	2.10
202.7	DST253	Doushantuo	III	509.70	muddy dolostone	54.82	405	692	1925	881	173	1238	0.426	0.0068	-2.20
204.3	DST255	Doushantuo	III	508.10	muddy dolostone	57.08	380	615	1309	734	169	1434	0.445	0.0064	-1.21
205.9	DST257	Doushantuo	III	506.51	muddy dolostone	52.32	439	967	1662	1012	152	1159	0.346	0.0080	-2.27
207.5	DST259	Doushantuo	III	504.93	muddy dolostone	59.35	301	1039	1590	487	163	1304	0.543	0.0074	-1.36
209.1	DST261	Doushantuo	III	503.31	calcareous shale	34.25	377	1009	1765	928	98	1108	0.259	0.0090	-5.36
210.7	DST263	Doushantuo	III	501.72	calcareous shale	45.26	266	753	1296	913	165	1134	0.620	0.0106	-3.01
212.3	DST265	Doushantuo	III	500.12	muddy dolostone	53.54	237	818	2164	892	139	1205	0.584	0.0109	-1.89
213.9	DST267	Doushantuo	III	498.51	muddy dolostone	72.85	194	654	1259	209	216	1214	1.110	0.0056	3.75
215.3	DST269	Doushantuo	III	497.12	dolostone	77.24	153	495	998	205	162	1009	1.054	0.0053	3.37
216.9	DST271	Doushantuo	III	495.53	dolostone	81.05	246	478	1027	154	161	970	0.657	0.0029	0.47
220.5	DST275	Doushantuo	III	491.90	muddy dolostone	72.43	230	464	1282	575	133	795	0.580	0.0050	3.26
223.4	DST279	Doushantuo	III	489.02	limestone	77.41	212	90	1521	109	123	425	0.580	0.0015	3.73
225.0	DST281	Doushantuo	III	487.41	muddy dolostone	74.26	159	108	975	81	54	502	0.342	0.0013	6.35
226.6	DST283	Doushantuo	III	485.82	dolostone	84.36	233	80	572	97	65	747	0.278	0.0008	4.78
227.9	DST285	Doushantuo	III	484.51	dolostone	84.24	369	95	831	34	42	420	0.115	0.0003	5.41
229.5	DST287	Doushantuo	III	482.91	dolostone	88.17	158	73	1064	38	48	562	0.304	0.0006	5.44
232.7	DST291	Doushantuo	IV	479.72	dolostone	91.69	175	51	247	18	72	916	0.412	0.0003	3.02
234.3	DST293	Doushantuo	IV	478.14	dolostone	88.79	80	49	801	35	69	644	0.864	0.0011	3.39
235.9	DST295	Doushantuo	IV	476.53	dolostone	84.19	86	93	759	63	56	541	0.655	0.0018	3.77
239.1	DST299	Doushantuo	IV	473.31	dolostone	81.61	182	96	175	8	55	442	0.302	0.0000	1.66
253.9	DST311	Doushantuo	IV	458.50	dolostone	89.29	174	209	140	30	40	524	0.230	0.0002	4.26
255.4	DST313	Doushantuo	IV	457.00	dolostone	87.89	85	272	387	200	57	669	0.675	0.0025	5.43
257.2	DST315	Doushantuo	IV	455.20	dolostone	87.05	85	253	305	159	53	682	0.622	0.0020	5.65
246.4	DST317	Doushantuo	IV	466.00	dolostone	90.70	73	150	267	149	58	721	0.794	0.0019	2.81
247.7	DST319	Doushantuo	IV	464.70	dolostone	84.15	134	199	386	183	80	886	0.599	0.0015	3.51
249.2	DST321	Doushantuo	IV	463.20	dolostone	90.85	64	205	334	199	57	875	0.891	0.0028	2.85
250.7	DST323	Doushantuo	IV	461.70	dolostone	76.00	68	253	322	194	40	623	0.586	0.0039	4.93

$\delta^{13}C_{org}$	$\Delta^{13}C_{car-org}$	$\delta^{15}N_{TN}$	$\delta^{18}O_{car}$	⁸⁷ Sr/ ⁸⁶ Sr	orror (2 m)	Δge	(Ma)	⁸⁷ Sr/ ⁸⁶ Sr
(‰ vs.PDB)	(‰ vs.PDB)	(‰ vs.AIR)	(‰ vs.PDB)	measured	enor (20)	1150	(1110)	initial
0	0	0.0	-10.90			>	551	
0	0	0.0	-11.29			>	551	
0	0	0.0	-6.29			>	551	
-20.9	24.18	4.9	-0.91	0.71186	0.00001	>	551	0.71182
-23.6	24.73	6.8	-3.12			>	551	
-27.7	29.72	7.7	-8.37			>	551	
-27.2	29.67	6.1	-7.41			>	551	
-26.7	30.64	7.3	-2.69			>	551	
-28.8	33.53	5.6	-5.99	0.70824	0.00002	>	551	0.70821
-28.8	34.04	6.7	-8.11			>	551	
-28.6	34.16	6.7	-7.52			>	551	
-27	32.06	5.7	-6.64			>	551	
-28.9	33.94	4.2	-5.88			>	551	
-28.9	34.27	5.0	-5.44	0.70828	0.00001	>	551	0.70826
-29	34.54	6.8	-4.66			>	551	
-29.1	34.46	6.7	-7.15			>	551	
-29.2	34.49	5.9	-8.01			>	551	
-29.2	34.64	5.8	-5.95			>	551	
0	0	0.0	-6.15			>	551	
-29.1	35	5.8	-5.23			>	551	
0	0	0.0	-8.98			>	551	
-28.9	35.26	6.5	-5.21	0.70811	0.00002	>	551	0.70808
0	0	0.0	-10.12			>	551	
0	0	0.0	-8.16	0.70823	0.00001	>	551	0.70823
0	0	0.0	-7.84			>	551	
0	0	0.0	-7.23	0.70801	0.00002	>	551	0.70801
0	0	0.0	-7.60	0.70830	0.00002	>	551	0.70830
0	0	0.0	-8.33	0.70871	0.00002	>	551	0.70871
-26.3	33.27	6.0	-7.65			>	551	
-29.3	36.77	3.1	-7.32	0.70804	0.00002	>	551	0.70804
-29	35.99	7.6	-8.61			>	551	
-29.4	37.4	6.0	-7.34			>	551	
-29.2	36.15	2.3	-8.31	0.70803	0.00002	>	551	0.70802
-28.6	35.27	2.9	-8.32			>	551	

-28.4	35.86	6.0	-5.14			>	551		
-28.6	36.57	5.2	-4.09			>	551		
-28.5	35.2	5.3	-4.66	0.70835	0.00001	>	551	0.70831	
-28.7	35.37	4.2	-4.46			>	551		
-28.4	34.68	6.5	-5.24			>	551		
-28.1	34.45	5.3	-4.91			>	551		
-28.5	35.28	4.0	-4.43			>	551		
-28.3	34.8	2.9	-4.99			>	551		
-29	35.25	5.7	-4.82	0.70805	0.00002	>	551	0.70803	
-29.3	35.41	5.3	-5.17			>	551		
-27.6	33.73	6.8	-5.35			>	551		
-28.5	35.43	5.2	-3.38			>	551		
-28.1	34.51	2.1	-4.24			>	551		
-28	33.88	4.7	-4.81	0.70811	0.00001	>	551	0.70809	
-27.9	34.02	5.4	-4.34			>	551		
-27.9	34.04	6.6	-4.47	0.70809	0.00002	>	551	0.70807	
-29	34.93	6.8	-4.18			>	551		
-30	36.07	4.3	-4.86	0.70816	0.00002	>	551	0.70814	
-28.4	34.44	5.7	-4.88			>	551		
-28.8	35.11	5.8	-4.96			>	551		
-28.8	34.14	5.7	-5.86	0.70835	0.00002	>	551	0.70834	
-29.1	34.47	7.6	-6.23	0.70813	0.00002	>	551	0.70813	
0	0	0.0	-6.40			>	551		
-28.3	34.18	7.4	-6.67	0.70826	0.00002	>	551	0.70826	
-29	35.2	5.0	-5.19			>	551		
-28.9	35.18	6.5	-5.50			>	551		
-28.9	35.08	6.1	-5.91	0.70807	0.00002	>	551	0.70804	
-28.8	35.1	6.3	-4.58			>	551		
-28.9	35.31	1.3	-4.14			>	551		
0	0	0.0	-7.00			>	551		
-28.8	33.84	6.7	-7.01	0.70811	0.00002	>	551	0.70810	
-27.9	33.8	8.2	-10.52	0.70887	0.00002	>	551	0.70886	
-27.9	33.92	6.4	-9.32	0.70844	0.00002	>	551	0.70843	
-28.4	34.65	7.1	-8.32			>	551		
-28.8	34.97	7.9	-9.19	0.70823	0.00002	>	551	0.70821	
-28.7	34.67	6.8	-2.41			>	551		
-28.9	34.9	6.9	-1.88			>	551		

-28.8	34.85	7.5	-2.44			>	551	
-28.8	34.33	5.1	-8.13	0.70839	0.00002	>	551	0.70839
-27.9	33.58	7.6	-7.78			>	551	
-28.3	34.09	7.1	-5.26			>	551	
-28.5	34.09	8.1	-4.65	0.70820	0.00001	>	551	0.70817
-29	35.28	8.1	-2.99			>	551	
-29	35.3	7.5	-2.96			>	551	
-29	34.96	8.2	-3.06			>	551	
-28.5	32.42	7.8	-6.24			>	551	
-28.4	32.47	7.5	-7.72	0.70860	0.00002	>	551	0.70853
-28.8	35.44	8.3	-1.70			>	551	
-28.6	34.65	6.6	-1.82			>	551	
-28.3	32.23	8.4	-5.66			>	551	
-28.4	32.46	7.7	-4.80			>	551	
-28.6	32.15	8.3	-5.53			>	551	
-29.3	33.85	9.4	-7.36	0.70884	0.00001	>	551	0.70880
-28.7	32.77	6.3	-7.83	0.70888	0.00001	>	551	0.70885
-28.6	34.26	6.7	-1.60			>	551	
-28.4	31.79	6.5	-3.67			>	551	
-28.8	32.96	5.0	-5.48	0.70884	0.00002	>	551	0.70877
-29	33.49	6.0	-3.72			>	551	
-28.8	32.82	6.5	-4.45			>	551	
-28.8	31.42	4.7	-5.43			>	551	
-28.9	33.08	7.2	-2.05			>	551	
-29.2	32.88	6.2	-3.48			>	551	
-29.3	32.36	6.1	-4.05			>	551	
-28.7	32.42	4.2	-1.35	0.70845	0.00002	>	551	0.70837
-29.4	32.95	7.0	-3.47			>	551	
-29.4	32.64	6.3	-4.38			>	551	
-29.2	33.4	5.9	-2.44			>	551	
-28.7	32.58	7.1	-1.45			>	551	
-28.8	31.52	6.2	-1.00			>	551	
-28.8	31.69	4.8	-3.31	0.70877	0.00002	>	551	0.70873
-29.4	29.72	5.1	-5.12			>	551	
-29.7	34.06	6.1	-2.51			>	551	
-29.4	31.05	6.2	-3.12			>	551	
-29.2	30.82	5.9	-1.76			>	551	

-29.5	30.53	4.8	-4.42			>	551	
-29.4	32.36	7.1	-2.29	0.70853	0.00001	>	551	0.70844
-29.3	32.2	5.8	-2.22			>	551	
-30.6	33.39	5.8	-4.31			>	551	
-28.8	30.68	5.3	-1.73			>	551	
-30.4	33.39	7.0	-3.22	0.70852	0.00002	>	551	0.70846
-30.1	33.42	7.0	-3.03			>	551	
-29.2	31.98	7.2	-2.25			>	551	
-30.1	32.22	6.4	-3.02	0.70863	0.00002	>	551	0.70855
-28.9	26.7	5.6	-1.95			>	551	
-29.1	27.94	7.3	-2.48			>	551	
-28.2	25.97	7.0	-1.57			>	551	
-28.1	26.74	7.7	-1.74			>	551	
-28.8	23.45	7.0	-2.32			>	551	
-28.6	25.56	7.2	-2.21			>	551	
-28.8	26.95	5.3	-2.22			>	551	
-28.2	31.95	0.0	-1.77			>	551	
-28.6	32	0.0	-1.39			>	551	
-29.1	29.6	0.0	-5.94	0.70949	0.00001	>	551	0.70942
-29.7	32.92	6.7	-4.08			>	551	
-27.3	31.05	7.1	-5.07	0.70866	0.00002	>	551	0.70863
-28.3	34.68	6.6	-1.93			>	551	
-28.8	33.55	0.0	-4.26			>	551	
-28.9	34.27	0.0	-4.92	0.70874	0.00002	>	551	0.70873
-28.4	33.86	0.0	-4.12			>	551	
-28.8	31.79	0.0	-6.33			>	551	
-27.9	31.33	0.0	-6.40			>	551	
-27.7	31.46	0.0	-6.28			>	551	
-29.5	31.16	0.0	-6.75			>	551	
-29.8	34.04	3.5	-5.98	0.71308	0.00002	>	551	0.71307
-29.7	35.11	3.9	-4.14			>	551	
-29.3	34.97	3.7	-4.13			>	551	
-29.1	31.89	3.9	-4.11			>	551	
-29.9	33.46	4.0	-4.17	0.70840	0.00002	>	551	0.70836
-28.7	31.56	5.0	-3.77			>	551	
-30.3	35.22	4.2	-4.60	0.70990	0.00002	>	551	0.70982

limestone dolostone muddy limestone diamictite shale shale intraclast intraclast oolite oolite phosphorite is siltstone A diachronous boundary intra shelf Jiulongwan 000 outer shelf Zhongling diachronous boundary? diachronous Wangjiapeng boundary? EN3a EN3a p orma ଝ ଞ୍ଚ 0.7080 0.7085 LĨ ⁸⁷Sr/⁸⁶Sr tuo Ō an Doush 20 --10 10 0.7080 0.7085 0.7090 10 · •¹³C_{car} ⁸⁷Sr/⁸⁶Sr 0 m -20 Ę -10 •¹³C_{car} 0 m **E** EN1 0.7080 0.7085 -10 0 m ⁸⁷Sr/⁸⁶Sr • $^{13}C_{car}$ Ę 4 8 0.7076 0.7084 0.7092 0.7100 -8 -4 0 •¹³C_{car} ⁸⁷Sr/⁸⁶Sr

outer shelf Yangjiaping

