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Abstract: This paper describes an improved ensemble empirical mode decomposition (EEMD) algorithm, in which the sifting and ensemble 

number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated 

with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better 

filtering performance compared with conventional EEMD. The filter results further show that the feature of the signal can be distinguished 

clearly with the proposed algorithm, and which implies that the fault characteristics of locomotive bearing can be detected successfully. 
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Nomenclature 

x      original signal 

u       extreme envelope 
m     average value 

n      noise signal 

c     IMF component 

r      residue signal 

N    number of the IMF 

L    signal length 

P    sifting number 

f    sampling frequency  

e    amplitude 
Abbreviations 

EMD       empirical mode decomposition 

IMF        intrinsic mode function 

EEMD    ensemble empirical mode decomposition 

SD          standard deviation 
Superscripts 

th      added noise 
Subscripts 

i       component 

1 Introduction  

With economic and social developments in modern times, 
the need for railway transportation capability has been 
increasing considerably [1]. The railway transportation has 
been playing a critical role, and its faults would cause 
significant casualties and property losses [2-3]. To ensure a 
safety, fluid and efficient traffic circulation, it is of importance 
to diagnose the status of trains in terms of the train bearing. In 
the locomotive driving system, the whole weight of the 
locomotive is supported by the bearings. When the locomotive 
is running, the bearings also spin at a very fast speed. Thus, the 
health of the bearings is very important for the continuous, safe 
and stable operation of locomotives. In consequence, more 
effective algorithms are needed to diagnose locomotive bearing 
conditions [4]. 

Signal processing technique is one of the primary means of 
fault diagnosis, which relies on the signal released from the 
diagnostic objectives, like vibration signal released from 
rotating machinery [5-7]. Empirical mode decomposition 
(EMD) [8-9] is one of popular algorithms used for non-
stationary and nonlinear signal processing, which is widely 
used for fault diagnosis and feature extraction of different kinds 
of rotating machinery [10-11]. In EMD algorithm, it 
decomposes a non-stationary signal into of a series of signals, 
also known as intrinsic mode function (IMF) [12-13], which 
are composed of different frequencies and a trends signal. The 

typical characteristics of EMD algorithm are adaptive, 
orthogonally and completeness, which means that the IMFs are 
determined by the characteristics of the signal instead of 
predetermined algorithms. However, EMD algorithm still has 
some problems, like mode mixing [14], stop condition [15], the 
end effect [16]. For mode mixing, its existence in IMF 
components is due to the facts that single IMF contains a 
widely disparate scales of components and components have a 
similar scale residing [17-18].  

In order to solve the mode mixing problem existed in EMD 
algorithm, ensemble empirical mode decomposition (EEMD), 
an ameliorative algorithm of EMD, was proposed to improve 
the performance of EMD algorithm in mode mixing problem. 
EEMD algorithm is also a signal decompose algorithm, but it is 
noise-assisted. With plus finite white noise whose average 
value is zero into the vibration signal that is need to be 
processed, EEMD algorithm is expected to solve the mode 
mixing problem that exists in EMD algorithm to some extent 
[19]. However, the decomposing effect of EEMD algorithm 
relies on the parameters of the while noise and sifting number 
utilized in the EEMD algorithm, which is included in the 
amplitude and the frequency of the white noise, the sifting and 
the ensemble number etc. Usually, the parameters of EEMD 
algorithm are set up as constant values in most instances. 
However, different kinds of frequency components existed in 
the vibration signal have different sensitivities to the chosen 
parameters [20]. Consequently, mode mixing problem still 



exists and the decomposition capacity of EEMD algorithm 
needs to be improved in other ways, like change parameters 
used in EEMD algorithm. 

According to the relationship between the decomposing 
behavior of EEMD algorithm and the decomposed results of 
different IMFs with different frequencies, this paper aims to 
propose an ameliorative EEMD algorithm with self-adaptive 
parameters and compare its performances with conventional 
EEMD algorithm on the mode mixing problem in the feature 
extraction of vibration signal and fault diagnosis for locomotive 
bearing. 

2 Fault diagnosis system design and vibration 

signal process methods 

2.1 Fault diagnosis system design 

In this study, a signal process algorithm was developed for 

train bearing fault detection through vibration signal analysis, 

and it is expected to deliver a design of fault diagnosis system 

for locomotive driving system. The proposed scheme for 

locomotive bearing fault diagnosis is shown in Figure 1.  
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Fig 1. Proposed scheme for locomotive bearing fault diagnosis 

In the proposed scheme, there are two sets of vibration 
signals of the locomotive obtained by the data acquisition 
system. The training data is used to train and study to get the 
feature of the fault bearing corresponding to the fault type, the 
original data is used to diagnose the fault to get the fault type of 
the bearing. The sampled vibration signals (original and 
training) are first processed to filter the noisy signal, and 
followed by feature extraction. Then the training and study 
signal is used to analysis the original signal and further 
diagnosis the fault of the bearing. It can be seen that signal 
process is not only a basic step but also a necessary step for 
fault diagnosis, and the filtering effect determines the precision 
of diagnosis results. 

2.2 EMD analysis 

EMD method is essentially a algorithm of “screening” data 
[17-18], and it is capable to decompose a vibration signal into a 
series of IMFs, which meet the following two conditions: (1) 
The number of zero-crossing and the number of extrema must 
be the same or differ by one at most in the entire data set; (2) 
Throughout the signal curve, the mean value of the envelope 
defined by the local minima and the envelop defined by the 
local maxima are zero. The original EMD is based on the 
characteristic time scale which defined by the extreme [21]. It 
is well known that EMD is used for sifting process. The 
procedure of the EMD algorithm can be summarized as 
follows. 

Step 1: Marking the original signal as ( )x t , and  find all 

the local maxima and the minima of the signal. 

Step 2: Connect the maxima to form a curve as the upper 

envelope ( )maxu t ; then the same with the minima to form a 

curve as the lower envelop ( )minu t . Then identify the average 

value, ( )( ) ( ) ( ) / 2max minm t u t u t= + . 

Step 3: Extract the remain signal 1( )h t , 

1( ) ( ) ( )h t x t m t= − , and if ( )h t meets the two conditions of 

the IMF, then the 1( )h t is regarded as the first IMF component. 

Otherwise, repeat the same process until the k iterations from 

step 1 to 3 until 1( )h t  meets the IMF’s conditions, then 

1( ) ( )kc t h t= . Stopping criteria (standard deviation, SD) are 

used in this study, such as: 
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Generally, the SD value is set between 0.2 and 0.3, which is 
called standard deviation. 

Step 4: The first IMF component 1( )c t  is separated from 

the original signal ( )x t , then calculate the first residue signal, 

denote by 1( )r t , 1 1( ) ( ) ( )r t x t c t= − . 

Step 5: Take the residual signal as the original signal and 

repeating the step 1 to 4 to obtain 2 3( ), ( ), , ( )nc t c t c t  . 

At last we get a collection of all the IMF components and a 

residue ( )r t .So the signal ( )x t can be expressed as : 
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2.3 EEMD analysis 

Currently, although EMD algorithm is widely used in the 
vibration signal process, it still has the problem of mode 
mixing. To solve this problem, Wu and Huang [17] proposed 
the EEMD algorithm, which is a kind of noise-assisted data 
analysis technology. This algorithm defines the IMF 
components as the mean of an ensemble of trials. Each trial 
consisted of the decomposed results of the original signal and a 
white noise with finite amplitude decomposed by EMD 
algorithm. 

The mechanism of how to avoid mode mixing problem in 
EEMD algorithm is briefly described as follows. In the process, 
white noise is added into the signal that is need to be 
decomposed to make the signal continuous in different scale. 
Due to the statistical characteristics of the white noise, it has no 
impact on the original signal after repeating average operation. 
Therefore, the integral mean value can be treated as the final 
decomposition results.  



The specific steps of EEMD algorithm are listed as follows 
[18]: 

Step 1: Add white noise, zero mean and constant amplitude 
standard deviation, to the original signal, : 

)()()( tntxtx ii +=                                         (3) 

Where ( )ix t  is the signal added with the 
thi  white noise. 

Step 2: Decompose ( )ix t  using EMD algorithm and obtain 

the respective IMFs marked as ( )ijc t  and a residue of data 

denoted by ( )ir t .Where ( )ijc t  is the  
thj  IMF after 

decomposition, which is the 
thi  added white noise to the 

original signal. 

Step 3: Calculate the above corresponding IMFs and 
finalize them using an ensemble average way. 
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Where: ( )jc t represents the 
thj  IMF of EEMD. 

The decomposition performance of EEMD highly depends 
on the selected parameters during the course of  EEMD 
algorithm. Once the parameters in the EEMD changed, the 
decomposition results might be different accordingly. Fig. 2 is 
a simulation signal to support the above statement. The signal 
x(t) can be treated as the superposition of three signals (x1(t), 
x2(t) and x3(t)). x1(t) is an impact signal, x2(t) is a high-
frequency sinusoidal signal wave, and x3(t) is a low-frequency 
sinusoidal signal wave. 

The simulation signal is decomposed using EEMD algorithm 
and during the process different white noises are used. First, the 
simulation signal is decomposed with the added white noise 
(amplitude 0.001). The decomposition results are shown in 
Fig.3 (a) - (d), respectively. The impact signal (x1(t)) and the 
high-frequency sinusoidal signal (x2(t)) are decomposed into 
the same IMF c2, which means that the mode mixing exists and 
occurs between high frequency components. This can be 
ascribed to that the added noise is not large enough to change 
the position of the extreme. 

Then, the experimental signal is decomposed using EEMD 
algorithm with the added white noise (amplitude 0.01, which is 
the standard deviation). The decomposed results are shown in 
Fig.4 (a)-(d), respectively. The low frequency sinusoidal signal 
(x3(t)) is decomposed into IMF c4, and the signal also has mode 
mixing problem, which occurs between low frequency 
components. One of the reasons is that the white noise added 
into the signal is too large which breaks the extreme 
distribution of the low frequency signals, and results the mode 
mixing problem. 

 

Fig 2. (a-c) the three components x1(t), x2(t), x3(t), and (d) the 
simulation signal x(t) 

 

Fig 3. The partial decomposed results with added noise amplitude of 
0.001 

 

Fig 4. The partial decomposed results with added noise amplitude of 
0.01 

According to the above experimental results, the conclusion 
can be drawn is that IMFs with different frequencies have 
different sensitivities to the white noise added into the 
simulation signal in the process of the EEMD algorithm. 
Nevertheless, the EEMD algorithm always imports the white 
noise with a constant amplitude and sifting number for the 
IMFs with different frequencies. The problem of mode mixing 
still exists in the process of EEMD algorithm and the 
performance of the EEMD algorithm still need to be further 
improved. 

3 The proposed self-adaptive EEMD method  

3.1 The Proposed Method 

In the proposed algorithm, based on the fact that IMFs with 
different frequencies have different sensitivities to white noise, 



different amplitude noises and sifting numbers are used in 
different frequency components, which means that large noise 
and great sifting number are used in obtaining high-frequency 
components, while small noise and small sifting number are 
used in obtaining low frequency components. In order to meet 
the criterion of white noise, many types of signal have been 
tested to find an appropriate noise signal that amplitude 
changes as a sinusoidal function of the frequency. In this study, 
such noise signal was used in the proposed algorithm instead of 
using statical white noise during the EEMD process. Figure 5 
shows the constructed sinusoidal signal, here fs represents the 
sampling frequency and e represents the amplitude.  

 

Fig 5. The spectrum of the constructed noise 

The flow chart of the self-adaptive EEMD method is shown 
in Fig.6. The flow chart shows the following detailed 
procedural steps. 

Step 1: Set the original signal as x(t), according to the 
length of signal. Equation (5) is the number of the IMF [20]: 

2=log 1N L−                           (5) 

Where L is the signal length. 

Step 2: Initialize the number of the ensemble M and the 
amplitude e of the highest frequency of the added noise, 
usually, e=0.3 and M=150, let m=1. 

Step 3: Calculate the sifting number Pi for the ith IMF 
component adaptively using Equation (6). 

22 2 , 1,2, ,N i

iP i N−= + =               (6) 

Step 4: Cconstruct the noise signals nk(t) according to 
Figure 5, and add the noise signal to the original signal which 
need to be processed. 

( ) ( ) ( ) , 1,2, ,m mx t x t n t m M= + =         (7) 

Step 5: Process xm(t) and obtain a series IMF components 
using EMD algorithm, namely as imf1m imf2m,…, imfim. 

Step 6: Repeat the step (4) to step (5) with 1m m= +   

until m=M. 

Step 7: calculate the ensemble mean imfi with the M 
experimentations for every IMF according to equation (8). Use 
the mean as the final result of the IMF. 
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Initialize the number of the ensemble M, and the amplitude 

e of the highest frequency of the added noise, unusually, set 

e=0.3 and M=150, let m=1.
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Fig 6. Flow chart of the proposed self-adaptive EEMD method 

3.2 Alogrthm simulation 

In this section, an experimental signal is processed using 
the above proposed algorithm to test this algorithm . Some 
typical signals in locomotive bearing vibration are chosen to 
make up the simulation signal. As we know, the impact and 
modulation signals are two kinds of typical signal in 
locomotive, so the simulation signal consists of impact and 
modulation signals. Since a train have different speeds in 
motion, different kinds of frequency sinusoidal signals were 



used to represent specific rotating frequencies of the 
locomotive bearing. Therefore, four signals were selected to 
represent the different physical meanings of the locomotive 
bearing in the simulated signals. Figure 7 (a)-(e) shows the four 
components and the simulated signal. 

 

Fig 7. The four components and the simulation signal 

First the proposed algorithm is applied to process the 
simulated signal to identify the effect of the algorithm. The 
decomposition results of the first four IMFs are shown in 
Figure 8. Obviously, the figures of IMF 1-4 are respectively 
corresponding to the impact signal, the modulation, the high-
frequency sinusoidal components and the low frequency 
sinusoidal. Compared the results of the IMFs in Figure 8 with 
the original signal components in Fig.7 (a)-(d), it could find 
that different signal components contained in the experimental 
signal are effectively decomposed by using the proposed 
algorithm. 

 

Fig 8. The first four IMFs of the simulation signal processed with self-
adaptive EEMD method 

 

Fig 9. The first four IMFs of the simulation signal processed with 
original EEMD method 

To show the validity of the proposed algorithm, the 
simulated signal was also processed with added noise, which 
amplitude was 0.3 and the sifting number was 20. Figure 9 
shows the decomposition results of the IMFs. The mode 
mixing problem still exists in some IMF components and lead 
to distortions. For instance, the first IMF component includes 
both impact signal and modulation signal. Moreover, the fourth 
IMF component is distorted at some maximum points. The 
results show that the conventional EEMD is unable to 
decompose the signal accurately. 

From the above simulations, it could be concluded that the 
proposed self-adaptive EEMD algorithm is capable of 
decomposing signal more accurate than EEMD algorithm. In 
the process of the decomposition, the amplitude of the added 
white noise signal change as a sinusoidal function, and the 
frequency also has a variable sifting number for different IMF 
components. 

 4 Application to fault diagnosis of locomotive 

driving system 

In this section, the proposed method is applied to diagnose 
the early flaw fault occurring in locomotive driving system. 
The locomotive driving system is one of the major components 
and also one of the typical rotating machinery used in wheel of 
bogie. It is of great importance to diagnose the fault of the train 
wheel as early as possible to avoid the casualties and property 
losses.  

Figure 10 shows the train wheel and the location of the 
vibration data acquisition device. An accelerometer is installed 
on the locomotive driving system, which is used to acquire the 
vibration signals. The schematic model of the wheel bogie is 
shown in Figure 11. This train wheel consists of a gearbox, a 
motor, an axle and a pair of wheels. The gearbox connects the 
motor and the axle. 

In this study, two kinds of fault locomotive bearing were 
tested to evaluate the performance of the self-adaptive EEMD 
method. A crack at the inner ring and at the outer ring is 
created respectively to simulate the locomotive bearing faults. 
Figure 12(a) shows the inner ring fault, and (b) shows the outer 
ring fault of the locomotive bearing. 

The outer race vibration signal and the inner race vibration 
signal were used in this paper. Each record was digitized at 12 
KHz with 16-bit resolution. The experimental locomotive 
bearing parameters of the gearing are shown in Table 1. 



 

Fig 10. The location of accelerometer 
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Fig 11. The schematic model of wheel bogie 

 

Fig 12. (a) The inner ring fault, (b) the outer ring fault of the 
locomotive bearing 

Table 1. The specifications of the testing locomotive bearing 

Type SKF 6205-2RS 

Diameter of the outer race 52mm 

Diameter of the inner race 25mm 

Pitch diameter (D) 7.49mm 

Number of the roller (z) 8 

Contact Angle(α) 0 

 

To simulate the fault of the locomotive bearing, an artificial 
crack with a width of 0.007mm on the surface of out race and a 
width of 0.21mm on the inner surface were made with a wire-
electrode cutting machine. Two sets of data were used to run 
the test. The acquired vibration signal from the locomotive 
bearing with the flaw on the outer race is given in Figure 13(a), 
Figure 13(b) shows its frequency spectrum. Figure 14(a) shows 
the vibration signal with crack on the inner race, and Figure 
14(b) shows its frequency spectrum. 

From Figure 13 and Figure 14, we can see that there is a 
serious of impulses in both of the time-domain waveform. The 
vibration signal usually contains different kinds of noise, and it 
is hard to identify the feature of the signal. There is a crack on 
the bearing in the locomotive driving system, which pass the 
fixed accelerometer every turn. It can be seen that every time 
the flaw rotate with the bearing, and there is an impulse in the 
time-domain waveform which is the mainly components of the 
vibration collected from. Apart from these impulses, it is hardly 
to find any useful fault characteristics. This might be due to the 
fault characteristics of the locomotive driving system are 
hidden by the background noise and some other normal 
vibration components. 

 

Fig 13. The vibration signal with cracked on outer race (a) time 
domain waveform (b) frequency spectrum 

 

Fig 14. The (a) time domain waveform (b) frequency spectrum 

To extract the fault characteristic of the locomotive bearing 
with cracks, the proposed self-adaptive EEMD is used to 
process the acquired vibration signals. The first IMF 
decomposed by the proposed method contains the most 
abundant information more than all of the other IMFs, and 
therefore it had been chosen for further study. 



The first IMF of the vibration signal with outer race fault is 
plotted in Figure 15. Figure 15(a) is the result processed using 
self-adaptive EEMD method and Figure 15(b) is the result 
processed using EEMD method. From Figure 15(a), there are 
impulses with the period T1=0.0095s. Figure 16 shows the IMF 
results the vibration signal with inner race fault, where Figure 
16(a) shows the result decomposed by using self-adaptive 
EEMD method, and (b) is processed by EEMD method. It is 
easy to get the impulses with the period T2= 0.0078s from 
Figure 16(a). 

 The parameters of the locomotive bearing in the Table 1 
were used to identify the fault type. The ball pass frequency of 
the outer race (BPFO) can be obtained by the following 
formula. 

1
(1 cos )

2
n

M

d
BPFO f Z

D
= −               (9) 

If the surface of the outer race suffers a defect, every time 
the rolling element passes through the crack and periodic 

impulses will be created with interval t as: 

1
t

BPFO
 =                                   (10) 

      Similarly, the ball pass frequency of the inner race (BPFI) 
is given by: 

1
(1 cos )

2
n

M

d
BPFI f Z

D
= +                   (11) 

According to the parameters of the test locomotive bearing 
listed in Table 1 and Equation (9), the outer race characteristic 
frequency BPFO was 101.5Hz and the periodical impact 
intervalΔt1 was 0.0099s. It is very close to the calculation 
(T1=0.0095s). Calculated by using Equation (11), the inner race 
characteristic frequency BFPI was 138.2Hz and the periodical 
impact interval Δt2 was 0.0072s, which is approximate to T2 
(0.0078s). Thus, the proposed self-adaptive EEMD algorithm is 
capable of extracting the fault characteristics from the normal 
components effectively. 

In order to compare the performance of the proposed 
algorithm with EEMD, use EEMD to process the same signal. 
With a sifting number of 20, a white noise with amplitude of 
0.2 was used to process the collected vibration signal and the 
first IMF component is shown in respectively figure. Despite 
the periodic impulses in the waveform of the IMF, the impulse 
caused by the crack, the rotation of the bearing and background 
noise are decomposed into the same IMF, which means the 
mode mixing problem still exists. In view of the decomposition 
results, it is inferred that the proposed algorithm has a better 
performance than the EEMD in the extracting fault 
characteristics from the locomotive bearing vibration signal. 

Although the proposed algorithm shows a better 
decomposition performance than EEMD in the experiments 
and application, we cannot absolutely make sure that it is 
effective for all applications. The self-adaptive EEMD 
algorithm is proposed based on some simulations and therefore 

it has its shortcoming. We are still working to figure out a way 
to improve the integrity and the effectiveness of the proposed 
algorithm and hopeful the improved result can be achieved and 
will be shown in near feature. 

 

Fig 15. The first IMF with outer race fault extracted by (a) self-
adaptive EEMD method, (b) original EEMD method 

 

Fig 16. The first IMF with inner race fault extracted by (a) self-
adaptive EEMD method, (b) original EEMD method 

5 Conclusions 

This paper proposed a self-adaptive EEMD algorithm to 
improve the decomposition performance of the EEMD method 
in mode mixing for the locomotive driving system in the 
feature extract and fault diagnosis. Different from the EEMD 
method with fixed parameters, the amplitude and the sifting 
number of the added noise are self-adaptively chosen in the 
process of the decomposition process. Compared the proposed 
self-adaptive EEMD algorithm with the EEMD method, it is 
found that the results decomposed by the proposed algorithm is 
more accurate. Then the proposed algorithm was applied to 
diagnose an early fault occurring in locomotive driving system. 
All the results proved that the proposed algorithm has a better 
performance than the EEMD in the feature extraction and fault 
diagnosis. 
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