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Abstract—Modeling of ultrasound waves propagation in hard
biological materials such as bones and skull has a rapidly
growing area of applications, e.g. brain cancer treatment
planing, deep brain neurostimulation and neuromodulation, and
opening blood brain barriers. Recently, we have developed a
novel numerical model of elastic wave propagation based on the
Kelvin-Voigt model accounting for linear elastic wave proration
in heterogeneous absorption media. Although, the model offers
unprecedented fidelity, its computational requirements have
been prohibitive for realistic simulations. This paper presents
an optimized version of the simulation model accelerated by
the Nvidia CUDA language and deployed on the best GPUs
including the Nvidia P100 accelerators present in the Piz Daint
supercomputer. The native CUDA code reaches a speed-up of
5.4 when compared to the Matlab prototype accelerated by
the Parallel Computing Toolbox running on the same GPU.
Such reduction in computation time enables computation of
large-scale treatment plans in terms of hours.

Keywords—Ultrasound simulations; Elastic model; Pseudospec-
tral methods; k-Wave; CUDA; GPU

I. INTRODUCTION

Simulation of elastic wave propagation has many appli-
cations in ultrasonics [1] spreading from the assessment of
bone quality to non-destructive testing [2], [3]. In biomedical
ultrasound in particular, elastic wave propagation models have
been used to investigate a propagation of ultrasound in the
skull and brain.

The High Intensity Focused Ultrasound (HIFU) is a method
where several rays of ultrasound are focused in such a way
they form a single focal point [4], [5]. Although each ray
passes through a tissue with only little effect, the energy of
all beams combined together in the focal point leads to a
temperature rise and/or mechanical ablation.

HIFU has a tremendous potential to improve the treatment
of certain types of brain cancer. As this modality is non-
invasive and accurate, it may be able to ablate only targeted
tissue (e.g. a tumor) while sparring healthy adjacent tissue
[6]. This is especially critical in the brain where any damage
to healthy tissue can result in significant loss of function. In
addition, focused ultrasound has the potential to reduce the

Fig. 1. Comparison of electronic and simulation based time-reversal focusing
where the wave is first propagated from the desired focus in a time reversal
manner, recorded in the transducer, corrected for aberrations and send back
into the brain [10].

risk of infection and bleeding, lower procedural morbidity
by not opening the skull, and avoid the toxicity of radiation
[7]. Nevertheless, HIFU can also be used in treatment of
many different diseases due to variable intensity. For example,
lower-intensity HIFU can be used to destruct blood cloths in
arteries. Another use of low-intensity HIFU is an ultrasonic
drug delivery [8]. In this process nanoparticles carrying a
therapeutic agent are injected into the bloodstream and then
exposed to ultrasound in a targeted area, which results in
release of the agent only at this location. Moreover, HIFU
can also be used to temporarily open the blood-brain barrier
which only increases the effectiveness of the drug delivery [9].

The key requirement of an effective HIFU treatment is the
precise focus placement and appropriate energy delivery. This
requirement can be satisfied by accurate simulation of the
elastic wave propagation and techniques such as time-reversal
focusing [10], see Fig. 1. Originally, numerical model of the
simulation was implemented in Matlab as a part of the open-
source k-Wave toolbox1. However, the computational require-
ments of the model did not allow for computation of realistic
simulation cases. Therefore, it has been decided to create a
native implementation in the CUDA and C++ languages to
accelerate the simulation by using modern graphics processing
units (GPUs).

1http://www.k-wave.org



A. Related work

There are several articles about simulation of wave propa-
gation accelerated by GPUs. In [11] and [12] a finite element
method and a spectral element method were used respectively.
The main difference between the mentioned implementations
and our work is the numerical method used to solve the
elastic wave equation. The greatest advantage of finite element
method is its straightforward parallelization. On the other
hand, it requires very fine computation grids compared to
other approaches. The spectral element method reduces the
amount of grid points required, but for frequencies and domain
sizes of our interest, the memory requirements exceeds the
GPU’s on-board memory capacity. Therefore, the model based
on a pseudo-spectral method with sampling requirements
approaching Nyquist theorem is used.

II. NUMERICAL MODEL

When an acoustic wave passes through a compressible
medium, it causes dynamic fluctuations in the acoustic pres-
sure, density, and particle velocity. These changes can be
described by a series of coupled first-order partial differential
equations based on the conservation of mass, momentum, and
energy within the medium [13]. For example, in the classical
case of a small amplitude acoustic wave propagating through
a homogeneous and lossless fluid medium, the first-order
equations are given by [14]:

∂u

∂t
= − 1

ρ0
∇p

∂ρ

∂t
= −ρ0∇ · u

p = c20ρ

(1)

where u represents acoustic particle velocity, p acoustic pres-
sure and ρ acoustic density in medium, which all exhibit
a time-dependent behavior. Contrary, ρ0 and c0 representing
acoustic density of equilibrium and isotropic sound speed are
properties of the medium and thus constant. Eq. (1) assumes
the medium is fluid, lossless, quiescent (there is no net flow
and the other ambient parameters do not change with time),
and isotropic (the material parameters do not depend on the
direction the wave is traveling). However, this is insufficient
for simulation of ultrasound propagation in hard tissues such
as bones.

Therefore, we adopted an accurate elastic wave model
presented in [15]. The numerical model is based on several
fundamental equations for studying lossy wave propagation
which are derived from the Hook’s law. Provided Kelvin-
Voigt model is used to simulate viscoelasticity [16], resulting
equation can be written using Einstein summation as follows

σij = λδijεkk + 2µεij + χδ
∂

∂t
εkk + 2η

∂

∂t
εij , (2)

where σ is stress tensor, ε is dimensionless strain tensor, λ
and µ are Lame parameters. Here µ is ratio of shear stress to
shear strain. Coefficients χ and η represent compressional and

shear viscosity respectively. The Lame parameter are related
to compressional and shear sound speed of medium by

µ = c2sρ0, λ+ 2µ = c2pρ0, (3)

where ρ0 is mass density. If relation between strain and particle
displacement ui

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4)

is used, then Eq. (2) can be re-written as function of a particle
velocity vi, where vi = ∂ui/∂t

∂σij
∂t

=λδij
∂vk
∂xk

+ µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ χδij

∂2vk
∂xk∂t

+ η

(
∂2vi
∂xj∂t

+
∂2vj
∂xi∂t

)
.

(5)

To be able to simulate wave propagation in elastic medium,
Eq. (5) is combined with equation representing momentum
preservation. The equation is a function of stress and particle
velocity and it is given by the relation

∂vi
∂t

=
1

ρ0

∂σij
∂xj

. (6)

Eqs. (5) and (6) are coupled first-order partial differen-
tial equations which model pressure waves propagation in
isotropic viscoelastic medium. A computationally efficient
simulation model can be created using these equations and
Fourier pseudospectral method [17]. This method uses Fourier
collocation spectral method [18] to calculate spatial derivatives
and a finite-difference method to integrate in time domain. A
single simulation step is composed of several operations (for
the sake of simplicity only x dimension operations are listed).

First, spatial gradients of stress field is calculated using the
Fourier collocation spectral method

∂xσ
−
xx = F−1

x

{
ikxe

+ikx∆x/2Fx

{
σ−xx
}}
. (7)

Here, Fx {} and F−1
x {} are 1D forward and inverse Fourier

transforms in the x dimension, i is the imaginary unit, kx
is a discrete set of wavenumber in the x dimension, and
∆x represents the Cartesian grid spacing. In order to achieve
higher precision, variables are stored in staggered grids to
avoid odd-even decoupling between the pressure and velocity.
Odd-even decoupling is a discretization error that can occur on
collocated grids and which leads to checkerboard patterns in
the solutions [19]. The principles of staggered grid is shown in
Fig. 2. Therefore the exponential terms represents spatial shift
operators which translate the output by half the grid point.

Next, the particle velocity is updated using a leapfrog time
stepping scheme with a time step of ∆t

v+
x = v−x +

∆t

ρ0

(
∂xσ

−
xx + ∂yσ

−
xy

)
, (8)

where superscripts − and + denote the value at the current
and next time step, respectively. Leapfrog method is numerical



Fig. 2. Schematic showing the principles of using a staggered spatial grid
in 2D. Here ∂xσxx is evaluated at grid points staggered in the x-direction
(crosses), while ∂xσyy evaluated at grid points staggered in the y-direction
(triangles) .

integration of the second-order differential equations where
f ′′(x) is calculated at k∆t, k ∈ {0, 1, . . . , n} and f ′(x) is
evaluated at k∆t+ ∆t

2 , k ∈ {0, 1, . . . , n}.
Afterwards, the spatial gradients of the updated particle

velocity is calculated again using the Fourier collocation
spectral method

∂xv
+
x = F−1

x

{
ikxe

−ikx∆x/2Fx

{
v+
x

}}
. (9)

Consequently, the spatial gradients of the time derivative of
the particle velocity are calculated using Eq. (6)
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−
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x
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.

(10)

Finally, the stress field is updated using a finite-difference time
scheme

σ+
xx = σ−xx + λ∆t
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+
y

)
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x

)
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y

)
+ η∆t

(
2∂x∂tv

−
x

)
.
(11)

The Fourier pseudospectral method has a significant benefit
in the reduction of the number of grid points needed per
wavelength while preserving the same accuracy as local finite
difference methods. However, the use of the FFT to calculate
spatial gradients implies the simulation domain is periodic.
This causes waves leaving one side of the domain to reappear
at the opposite side. This behavior can be largely eliminated
by the use of a Perfectly Matched Layer (PML) [19], [20], a
thin absorbing layer that encloses the computational domain
and cause anisotropic absorption at the domain edges.

III. IMPLEMENTATION

The simulation of elastic wave propagation takes place in
a discrete grid with a size and spacing derived from the
physical dimensions of the examined body region and maximal
frequency appearing in the domain. The time step is then
derived from the minimum sound speed in the medium and the

grid spacing. Apart from basic acoustic quantities (stress and
velocity), the model requires the medium properties, usually
estimated from the tissue scans acquired by conventional
methods (e.g. CT/MR scans).

With all parameters specified, the model is able to solve
the initial value problem where values of stress and velocity
serve as initial conditions. Alternatively, the simulation code
allows to specify stress or velocity sources operating in an
additive or Dirichlet mode. The shape and placement of the
source within the grid is defined by a source mask. The signal
of the source is defined as a time-varying sequence of values,
either common or distinct at source grid points.

Analogously to the source mask, it is also possible to define
a sensor mask where desired quantities are sampled, further
processed and stored in the output file in the HDF5 file
format2.

A. Nvidia CUDA library

The abbreviation CUDA3 stands for Compute Unified De-
vice Architecture and refers to Nvida’s concept of GPU being
composed of unified units. These units can be programmed
to serve any purpose in the rendering pipeline according
to specific needs of certain applications. This concept can
also be exploited in the General Purpose computing on GPU
(GPGPU), which uses graphics cards to compute generic
algorithms. For this purpose, Nvidia develops and releases
CUDA SDK to ease programmers writing and executing GPU
applications. Besides that, it also offers a set of fine-tuned
libraries implementing typical parallel algorithms such as Fast
Fourier Transform (FFT) or dense algebra operations (e.g.
parallel matrix multiplication).

Since GPUs are massively parallel by nature, they require
the computation to be spread among millions of lightweight
threads executed independently. Fortunately, the simulation
code satisfy this condition by using the accelerated CUDA
FFT library to perform batches of 1D FFTs, and a number of
custom CUDA kernels processing the supportive operations
mostly composed of element-wise matrix-matrix and matrix-
vector operations. Since there are usually no dependencies
between grid points, these operation can be distributed among
a various number of CUDA thread blocks and threads.

B. Matlab implementation

Listing 1 shows the principle of the Matlab implementation
on the calculation of the stress gradient in a 3D space outlined
in Eq. (7). The complete Matlab implementation can be
downloaded as part of the k-Wave toolbox.
%C a l c u l a t e s p a t i a l g r e d i e n t s o f s t r e s s t e n s o r i n n e x t t i m e s t e p
dsxxdx = r e a l ( i f f t ( b s x f un ( @times , ddx k p , f f t ( sxx x + sxx y + sxx z , 1 ) ) , 1 ) ) ;
dsyydy = r e a l ( i f f t ( b s x f un ( @times , ddy k p , f f t ( syy x + syy y + syy z , 2 ) ) , 2 ) ) ;
d sz zd z = r e a l ( i f f t ( b s x f un ( @times , ddz k p , f f t ( s zz x + szz y + szz z , 3 ) ) , 3 ) ) ;
dsxydx = r e a l ( i f f t ( b s x f un ( @times , ddx k n , f f t ( sxy x + sxy y , 1 ) ) , 1 ) ) ;
dsxydy = r e a l ( i f f t ( b s x f un ( @times , ddy k n , f f t ( sxy x + sxy y , 2 ) ) , 2 ) ) ;
dsxzdx = r e a l ( i f f t ( b s x f un ( @times , ddx k n , f f t ( sxz x + sxz z , 1 ) ) , 1 ) ) ;
dsxzdz = r e a l ( i f f t ( b s x f un ( @times , ddz k n , f f t ( sxz x + sxz z , 3 ) ) , 3 ) ) ;
dsyzdy = r e a l ( i f f t ( b s x f un ( @times , ddy k n , f f t ( syz y + syz z , 2 ) ) , 2 ) ) ;
dsyzdz = r e a l ( i f f t ( b s x f un ( @times , ddz k n , f f t ( syz y + syz z , 3 ) ) , 3 ) ) ;

Listing 1. Calculation of the stress gradient written in Matlab in 3D space.

2https://www.hdfgroup.org/
3https://developer.nvidia.com/cuda-zone



Here fft and ifft represent forward and inverse 1D Fast
Fourier Transforms, respectively. The second parameter of the
FFT calls specifies the axis the FFT is performed along (1
for x, 2 for y and 3 for z). The ddx_k_shift_pos and similar
variables holds precomputed terms ikxe+ikx∆x/2 from Eq. (7).
Since these terms are stored as vectors rather than matrices to
save memory, the bsxfun routine with parameter @times is
used to apply (multiply) these terms correctly onto the entire
matrix. The function real extracts only the real part of its
complex argument.

The native CUDA simulation code follows the Matlab ones
in such a way the FFTs are calculated by the CUDA FFT
library and the operation in between the FFTs are packed into
CUDA kernels.

C. Structure of proposed application

The basic structure of the proposed CUDA application is
depicted in Fig. 3. Please note that the diagram does not
contain all components of the application.

The PstdElastic3DSolver class represents the main appli-
cation class responsible for handling the entire simulation.
It provides interface for the data preprocessing, execution
of the simulation time loop and data post-processing. Dur-
ing the pre-processing phase, the solver invokes methods of
MatrixContainer to allocate the memory and load simulation
data. The solver class also precalculates constants needed
repeatedly. During the simulation phase, the solver invokes
appropriate methods implemented in the SolverCUDAKernels

class according to the simulation model and the type of the
media (e.g., linear/nonlinear simulation, homogeneous/hetero-
geneous and absorption/lossless medium). In this process,
the CPU only controls the simulation flow and executes the
I/O operations. All of the computation is done on the GPU
side. Once the simulation is over, the solver class invokes
methods from MatrixContainer to store specified data into
the output file and free memory. Let us note that time varying
quantities are progressively stored during the simulation in a
non-blocking manner with the help of the CUDA zero-copy
memory and double buffering approaches. Consequently the
application terminates.

The SolverCUDAKernels class implements computations
occurring during the simulation on the GPU. Once one of its
methods is invoked, SolverCUDAKernels calls an appropriate
CUDA kernel on data provided by MatrixContainer class.

The MatrixContainer class is responsible for data handling
in the simulation code. This class implements methods to
create, allocate/destroy, and load data into matrices from an
input HDF5 file. The create method populates the container
with predefined matrices. The existence of some matrices
is conditioned by the value of certain control parameters
specifying the type of the simulation and the medium. The
matrices in the container are then allocated by the allocate
method. For each matrix, the memory on both CPU and GPU
is allocated. The MatrixContainer is also responsible for
loading data from the file and data transfers between the device
(GPU) and host (CPU) memory spaces.

Fig. 3. Diagram of main classes being part of the CUDA application includ-
ing: main PstdElastic3DSolver class, SolverCUDAKernels class
containing computational kernels, MatrixContainer class responsible for
matrix handling, Parameters class, HDF5 class which manipulates HDF5
files and Logger class to format and display messages.

The Parameters class processes the command line param-
eters, loads simulation control parameters from the input file,
sets up device constants and serves other classes with these
parameters. This class is modeled as singleton.

The Logger class is responsible for all outputs to the
standard and error output. It provides diagnostic and progress
information to the user as well as inform about possible errors
and exceptions.

The HDF5 class implements a simplified interface to the
HDF5 library for easy manipulation, loading and storing of
the data.

D. Simulation code workflow

Providing a correct input file is present, a typical code
workflow consists of following stages:
• Initialization – parameters provided via standard input

are checked. A user can specify the input and output
file, the GPU to use (otherwise the first available is
selected), the number of time steps to perform (useful for
benchmarking and debugging), the checkpoint creation
interval, the verbosity level and quantities to be recorded.
Afterwards, the appropriate GPU is selected, initialized
and its compute capability checked.

• Data loading – in this stage, the input file is checked
first. All the simulation flags are parsed and appropriate
matrices allocated. The application may terminate with an
error at this point due to an insufficient memory space
on the GPU side (this depends on size of simulation).
Providing GPU memory can hold all the simulation data,



necessary matrices are loaded from the input file. In this
step, CUDA device constants are also set.

• Data preprocessing and uploading – during this stage,
the necessary constants and auxiliary variables are pre-
calculated. The conversion from the Matlab to the C-style
notation is preformed. And all the data is transferred to
the GPU memory.

• Simulation run – provided all data is stored on the GPU,
the main simulation loop is started and executed for a
given number of time steps with occasional flush of the
simulation data to disk.

• Postprocessing and finalizing – At the end, the output
and checkpoint file is created. The checkpoint file is
only generated if the simulation cannot be completed in
one go and has to be split into multiple legs, e.g. to
satisfy maximum allowed wall clock limitation. When
the simulation finishes, the post-processing takes place.
Several sampled data may be aggregated and stored into
the output file according to command line parameters.

One time step of the simulation consists of the following
computations:

1) Calculation of stress gradient – described in Eq. (7).
As the Cartesian components of σ are kept separately,
we first execute a matrix addition kernel to calculate
σ out of its components. Next, the 1D FFT of σ is
calculated using the CUDA FFT library. Afterwards, a
kernel applying the shift term of ikxe+ikx∆x/2 to σ is
executed, which is coded as multiplication of two com-
plex numbers. Finally, the inverse 1D FFT is calculated
using the CUDA FFT library again. Unfortunately, since
CUDA does not allow to directly calculate 1D FFTs
in other dimensions than the x one, the transposition
kernels are inserted before and after the forward and the
inverse FFTs, respectively, and the shift term applied
in the transposed space. The 3D transpose kernels were
implemented and optimized manually using the shared
memory, warp synchronous programming approach and
C++ templates.

2) Calculation of particle velocity – described in Eq. (8).
The calculation is done by multiple kernels composed of
a matrix addition and either an element-wise matrix mul-
tiplication (heterogeneous medium) or matrix by scalar
multiplication (homogeneous medium). Then, the PML
is applied near to the domain edges by an additional
element-wise matrix multiplication.

3) Application of velocity source – done by setting or
adding the value of the driving source signal at current
time step into the domain at places specified by the
source mask. In the case of the velocity source, we
modify the v matrix.

4) Calculation of velocity gradient – described in Eq. (9)
is very similar to the calculation of the stress gradient.

5) Calculation of stress using Kelvin-Voigt model.
a) Calculation of additional terms – described in Eq.

(10). This is also very similar to the calculation

of stress gradient. The difference is that the matrix
addition can be combined with either an element-
wise matrix multiplication or scalar matrix mul-
tiplication into a single kernel. Next, the forward
FFT is preformed (data transposed if needed), the
shift operator is applied and the inverse FFT is
calculated.

b) Calculation of stress – described in Eq. (11). The
implementation is composed of a matrix addition
and either an element-wise matrix multiplication
(heterogeneous medium) or scalar matrix multi-
plication (homogeneous medium). The implemen-
tation accounts for any combination of scalar or
matrix variants of the parameters by means of C++
templates and conditional code dispatch.

6) Calculation of stress using lossless model – described
in Eq. (11). In the lossless case, however, the spatial
gradient terms of the time derivative of particle veloc-
ity (e.g. ∂x∂tvx) are omitted. The implementation is
composed of several element-wise matrix additions and
multiplications. Here both λ and/or µ can be either scalar
or matrix, and the implementation has to account for any
combination of λ, µ, χ and η. This is achieved by C++
templates again.

7) Application of stress source – the principle is the same
as for the velocity source. In this case, the σ matrix is
modified.

8) Calculation of acoustic pressure – is straightforward.
The normal components of stress (σxx, σyy and σzz) are
added together and the value is multiplied by − 1

3 .

IV. PERFORMANCE INVESTIGATION

A. Computational performance

The performance of the developed native CUDA application
was evaluated on several Nvidia GPUs based on the Kepler,
Maxwell and Pascal architectures with 4 to 24 GB of on-
board memory. Table I summarizes the hardware configura-
tion and theoretical performance and memory bandwidth of
investigated GPUs. For the lack of C++ version, the original
Matlab implementation executed on one node of the Anselm
supercomputer4 integrating 2 8-core Intel Haswell E5-2660
CPUs were taken as reference points.

Fig. 4 shows the growth of the execution time of one
simulation time step with increasing domain size from 643

to 5123 grid points. The actual number time steps to complete
the simulation is proportional to the size of the simulation
domain. Bigger simulations thus take much longer time than
smaller ones.

Examining Fig. 4, there is a significant difference between
the native CUDA application and the Matlab version caused
by manual tuning of the simulation kernels, better spatial and
temporal data locality, and the use of optimized FFT kernels.
Interestingly, there is a remarkably low difference between
different GPU architectures. Although the raw computational

4http://www.it4i.cz/



TABLE I
HARDWARE CONFIGURATION OF THE INVESTIGATED CPU AND GPUS.

Processor Memory
CPU name Architecture Cores Peak performance Capacity Throughput

2×Intel E5-2470 Sandy bridge 8 18.4 GFLOPs (per core) 96 GB 38.4 GB/s (per CPU)
GPU name Architecture Cores Peak performance Capacity Throughput
Tesla K20 Kepler 2,496 3.5 TFLOPs 5 GB 208 GB/s
GTX 980 Maxwell 2,048 4.6 TFLOPs 4 GB 224 GB/s
Titan X Maxwell 3,072 6.1 TFLOPs 12 GB 336 GB/s

Tesla P40 Pascal 3,840 10 TFLOPs 24 GB 345 GB/s
Tesla P100 Pascal 3,584 9.3 TFLOPs 16 GB 720 GB/s
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Fig. 4. Execution times for one simulation time step. The domain size vary
between 643 and 5123 grid points. The first two curves M-CPU and M-GPU
stand for the Matlab code running on a CPU and GPU, respectively, using the
Matlab Parallel Computing Toolbox. The others represent the native CUDA
application. The numbers at the curves represent the maximal and average
speed-up with respect to the Matlab CPU code.

performance grew by an order of magnitude between Kepler
and Pascal architectures, the observed speed-up is close to
4. This suggests the code is strongly memory bound, which
can be supported by an n log n time complexity of the FFT,
and a linear time complexity of other simulation kernels. The
execution times thus copy the memory bandwidth shown in
the legend of Fig. 4. To highlight the benefits of our imple-
mentation, let us mention that the performance of the native
code is approx. 5.6 times higher than the Matlab GPU code
when running on the same GPU. The best performance was
achieved on the Pascal P100 GPU, which was on average 108
times faster than Matlab CPU version with peak acceleration
factor of 158.5.

Fig. 4 also reveals that some simulation domain sizes cannot
be executed on particular GPUs. This is given by the memory
requirements. Therefore, an analytic model predicting the GPU
memory consumption was derived, see Eq. (12).

B. Memory consumption

Since realistic ultrasound simulations require large domains
and memory capacity of GPU’s is very limited, we derived a
memory consumption model to help reveal approximate limits

of certain GPUs. The memory consumption model can be
described by following equation:

Mem [GB] ≈ (46 +A)NxNyNz

10243/4
+

6(Nx+Ny +Nz)

10243/4

+
2GCS + input

10243/4
(12)

In Eq. (12), Nx, Ny and Nz represent the grid dimensions.
Number A in the first term has a value from interval < 0, 8 >
and this number is dependent on the number of material
properties that are heterogeneous. For example, when the
material density is heterogeneous, 4 additional matrices have
to be allocated. The GSC term holds the maximum of values
(Nx

2 + 1)NyNz, Nx(Ny
2 + 1)Nz and NxNy(Nz

2 + 1). At
most, the GCS number of elements is needed to store all
results computed by 1D FFTs. However, the values in the
frequency domain are complex numbers, and therefore, the
actual number of elements in this matrix is double the GCS.
The input represents the amount of additional user-defined
input data, usually sources. There could be up to 10 sources
that can have sizes up to the size of the domain (very unlikely
except for the initial pressure condition source_p0 which is
always the size of domain). Furthermore, each source has a
time varying signal assigned to it. This means that for each
point of source there could be a time series of values. Number
46 represents variables that are mandatory and have to be
allocated for every type of the simulation. Also, 1D vector
variables are taken into account. There are six 1D vectors
needed for each dimension for storing values of shift terms
and values of PML. The equation does not account for every
allocation though, for example device constants are omitted.
These kinds of allocation are not part of the equation because
they are either hard to predict or negligible.

This memory model was compared with the maximal
amount of memory consumed by Pascal P40 GPU. Fig. 5
shows a close agreement with small differences caused by the
size of the executable, FFT plans and the CUDA driver.

C. Performance limitations

Fig. 6 shows the flat profile of the application produced
by the Nvidia profiler determining the order of importance of
particular kernels and the theoretical limits of the acceleration.
The kernels implementing FFT are part of CUDA FFT library,
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643 and 5123.
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Fig. 6. The flat profile of the simulation code. On left side, values for the
domain size of 643 grid points. On right, values for the domain size of 2563
grid points.

and therefore, believed to be highly optimized. In addition,
the transposition kernels were taken from our previous work
where their quality had been proven. Therefore, there is no
space to further accelerate these kernels. All other kernels are
implemented by hand, therefore, their optimization present a
way to increase the performance. However, these kernels do
not take up the vast majority of the overall execution time.
In fact, they take up between 36.9% and 47.5% of execution
time on domain of a size 643 (left side of figure) and 2563

(right side of figure), respectively. Considering the Amdhal’s
law, there is very little room for further improvement.

Table II presents important performance metrics of selected
kernels. The metrics were calculated base on the load in-
structions only because, unlike write instructions, they are
source of stalls. Relative throughput and performance are cal-
culated according to peak values (345 GB/s and 10 TFLOPs).
The throughput metric is gathered from the kernel point of
view which allows the relative throughput to be more than
100% due to cache hits. Load efficiency is reaching peak
values for almost all kernels. Please note that application
is operating on single-precision numbers and therefore peak

Memory dependences

64.5%

Execution dependences

26.4%

Others
9.1%

Stall reasons of velocity kernel 

Fig. 7. Stall reasons in the velocity computation kernel on Pascal P40
simulating domain of 2563 grid points.

value of load efficiency is 50%. However, FFT operates on
complex numbers which are composed of 2 single-precision
numbers (equivalent of double-precision number in terms of
bit width) which allows FFT operation to reach 100% of load
efficiency. All kernels exhibits poor relative performance and
high achieved memory throughput. This is another indication
that the application is strongly memory bound. Fig. 7 clearly
supports this fact. In the figure, it can be seen that more than
two thirds of the stalls are caused by memory dependencies.
This means the next instruction cannot be issued due to data
dependency on the previous load instruction.

V. CONCLUSIONS

This paper has presented a GPU-accelerated implementation
of the elastic wave propagation in biological materials. A part
of the paper is extensive performance analysis. The Matlab
version accelerated by the GPU is sped-up by a factor of 5
when running on the same GPU. Considering the standard
Matlab implementation executed by a dual 8 core server, the
modern Pascal P100 GPU can offer more than 150 times faster
execution, which not only means a great time savings, but
also a great reduction of computation cost. Since the Matlab is
excluded from the critical part, the execution of the simulation
is no longer dependent on Matlab installation.

Using the implemented CUDA code, the simulation in
domain of at most 4483 grid points is possible. Such a
simulation executing over 4,655 time steps would last for
about 47.9 minutes on an Nvidia Pascal P40 GPU. A typical
simulation on domain of a 2563 grid points carried over 2,660
steps would then last for 8.6 minutes on less powerful Tesla
K20. This presents a great breakthrough in the ultrasound
treatment planning, since dozens of simulations are necessary
before the therapy could be applied, and the time allocated to
treatment planning should not exceed several hours.

The performance of the algorithm on a specific GPU is
strongly dependent on its memory throughput. Therefore, it
is possible to say that if a Tesla V100 GPUs with new Volta
architecture is used, the acceleration factor of the elastic code
will rise significantly. It has theoretical memory bandwidth



TABLE II
PROFILE OF SELECTED KERNELS ORDERED BY THE TIME OF EXECUTION.

Kernel name Achieved throughput Rel. throughput Load efficiency Performance
FFT 1 143.32 GB/s 41.54 % 99.28 % 5.43 %
FFT 2 154.46 GB/s 44.77 % 86.00 % 2.72 %

TransposeXY 288.45 GB/s 83.60 % 42.11 % 0.00 %
Velocity 609.95 GB/s 176.79 % 41.48 % 1.20 %

TransposeXZ 274.28 GB/s 79.50 % 42.11 % 0.00 %
MatrixAdd3 418.14 GB/s 121.20 % 50.00 % 0.32 %

ComputeShearStress 556.06 GB/s 161.17 % 43.30% 1.17 %
MatrixAdd2 368.21 GB/s 106.72 % 50.00 % 0.21 %

of 900 GB/s and therefore, the CUDA implementation would
accelerate the Matlab solution approximately by a factor of
200.
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the propagation of elastic waves using spectral elements onacluster of192
gpus,” Computer Science - Research and Development, vol. 25, no. 1,
pp. 75–82, May 2010.

[12] D. Micha and D. Komatitsch, “Accelerating a three-dimensional finite-
difference wave propagation code using gpu graphics cards,” Geophys-
ical Journal International, vol. 182, no. 1, pp. 389–402, 2010.

[13] E. Robinson and D. Clark, “The wave equation,” The Leading Edge,
vol. 6, p. 14, 1987.

[14] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics,
Radiation, and Heat, 2011, vol. 24.

[15] B. E. Treeby, J. Jaros, D. Rohrbach, and B. T. Cox, “Modelling elastic
wave propagation using the k-Wave MATLAB Toolbox,” in 2014 IEEE
International Ultrasonics Symposium, no. 5. IEEE, sep 2014, pp. 146–
149.

[16] M. Caputo, J. M. Carcione, and F. Cavallini, “Wave Simulation in
Biologic Media Based on the Kelvin-Voigt Fractional-Derivative Stress-
Strain Relation,” Ultrasound in Medicine and Biology, vol. 37, no. 6,
pp. 996–1004, 2011.

[17] Q. H. Liu, “The pseudospectral time-domain (PSTD) algorithm for
acoustic waves in absorptive media,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 45, no. 4, pp. 1044–1055,
1998.

[18] M. Y. Hussaini, D. A. Kopriva, and A. T. Patera, “Spectral collocation
methods,” Applied Numerical Mathematics, vol. 5, no. 3, pp. 177–208,
1989.

[19] M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for
coupled first-order acoustic propagation equations.” The Journal of the
Acoustical Society of America, vol. 111, no. 1 Pt 1, pp. 53–63, jan 2002.

[20] K. C. Meza-Fajardo and A. S. Papageorgiou, “On the stability of a non-
convolutional perfectly matched layer for isotropic elastic media,” Soil
Dynamics and Earthquake Engineering, vol. 30, no. 3, pp. 68–81, mar
2010.


