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Abstract

Navigation and positioning is inherently dependent on the context, which com-

prises both the operating environment and the behaviour of the host vehicle or

user. The environment determines the type and quality of radio signals available

for positioning, while the behaviour can contribute additional information to the

navigation solution. Although many navigation and positioning techniques have

been developed, no single one is capable of providing reliable and accurate posi-

tioning in all contexts. Therefore, it is necessary for a navigation system to be

able to operate across different types of contexts. Context adaptive navigation

offers a solution to this problem by detecting the operating contexts and adopting

different positioning techniques accordingly.

This study focuses on context determination with the available sensors on

smartphone, through framework design, behavioural and environmental context

detection, context association, comprehensive experimental tests, and system

demonstration, building the foundation for a context-adaptive navigation system.

In this thesis, the overall framework of context determination is first de-

signed. Following the framework, the behavioural contexts, covering different

human activities and vehicle motions, are recognised by different machine learn-

ing classifiers in hierarchy. Their classification results are further enhanced by

feature selection and a connectivity dependent filter. Environmental contexts

are detected from GNSS measurements. Indoor and outdoor environments are

first distinguished based on the availability and strength of GNSS signals using

a hidden Markov model based method. Within the model, the different levels of

connections between environments are exploited as well. Then a fuzzy inference

system is designed to enable the further classification of outdoor environments

into urban and open-sky.

As behaviours and environments are not completely independent, this study

also considers context association, investigating how behaviours can be associ-

ated within environment detection. Tests in a series of multi-context scenarios
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have shown that the association mechanism can further improve the reliability of

context detection. Finally, the proposed context determination system has been

demonstrated in daily scenarios.



Impact Statement

Navigation and positioning techniques are context-dependent, subject to the op-

erating environment and the behaviour of the host vehicle or user. To deliver

better navigation performance, this study investigated reliable methods of con-

text determination for advanced navigation using smartphone sensors. Through-

out context determination, both behavioural and environmental contexts can be

determined from the independent classification models, context connectivity and

context association. With the context detected, an integrated navigation system

can automatically adopt different suitable positioning techniques accordingly.

This study contributes knowledge to the relevant research domain relying

on context determination from three main aspects. First, the research has proved

that a reliable environment detection can be achieved by using GNSS signals. Sec-

ond, the time-domain filters have been proposed and implemented for behaviour

and environment detection to enhance their performances. Finally, in the pre-

vious research, behavioural and environmental contexts have been distinguished

independently. But this study has investigated and made use of their association

to improve the reliability of context determination. The relevant research achieve-

ments have been published in one journal paper and several conference papers.

There is one more paper in preparation for further journal publication.

The main impact of the context determination research is to form the fun-

damental basis for context-adaptive navigation, leading to better navigation per-

formance in terms of both availability and positioning accuracy. This will benefit

many different positioning, navigation and tracking applications for both pedestri-

ans and vehicles. For instance, the step-by-step guidance for the visually impaired

and visitors can benefit from higher positioning accuracy in urban areas in order

to work. Better positioning solutions may also help the vehicle lane detection to

determine if the vehicle is travelling on the right lane to avoid accidents. Asset

tracking can be improved through context adaptation which will allow the client

to track valuable belongings and vulnerable people (such as patients and children)
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reliably across both indoor and outdoor environments in real-time.

The study also boosts the application of context-aware services. To reduce the

power consumption, the smartphone could automatically switch off the sensors or

software modules that are not used by the applications under the current contexts.

For more applications, the smartphone app could automatically silence calls if the

user is at an office or driving the vehicle. The health conditions of the old and

people with diseases (e.g. Parkinson’s disease) can be monitored from the sensor

measurements of wearable devices, and trigger the emergence alert once some

specific behaviours have been detected (e.g. falling). With the widespread use of

the smartphones, especially among young generations, location-based advertising

systems could use the context and location information to target the most suitable

customers for more effective marketing and better shopping experience.
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Chapter 1

Introduction

1.1 Brief motivation

Navigation is the science of getting a subject from one place to another (Ka-

plan and Hegarty, 2006). This encompasses two meanings: first, to determine

the position and velocity of the subject relative to a known reference, known as

positioning; then, to plan and execute the manoeuvres necessary to reach the

destination, often described as guidance or pilotage. Each of us conducts some

forms of navigation everyday, such as driving to work or walking to a restaurant.

The thesis only focuses on the first capability, which is the basis of achieving

the second one accurately. Herein, the term navigation refers to only the first

capability.

Over the past 30 years, navigation and positioning techniques have played a

significant role in a wide spectrum of applications, both militarily and commer-

cially. Before the 1990s, electronic navigation mainly concerned the requirements

of marine and air applications, while land navigation was largely manual. The

advent of the Global Navigation Satellite System (GNSS) provides a single tech-

nology that can be implemented across sea, air and land navigation, enabling

millions of users to determine their locations. For example, relying on the Global

Positioning System (GPS), as a subset satellite constellation of GNSS, a user can

receive a global 24-hour positioning service and meters level positioning accuracy

(USA government, 2017) in open sky areas.

Today, the majority of GNSS users are land-based. The dropping price of

GNSS receiver components, coupled with telecommunication technologies and ge-

ographical information system (GIS), boost a variety of location-based services

(LBS). Examples include asset tracking, tour guidance, emergency report, per-

sonal advertisement, etc. LBS enables to send and receive location-related data

from the user to a service provider. With an in-vehicle navigation device, drivers
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can find the nearby petrol stations by making a query, receive traffic alerts and

warnings, and find detours around traffic problems. Uber is a typical application,

a company providing peer-to-peer ridesharing and minicab services. The services

can be booked in advance from the application on smartphone or the website.

It aims at helping the registered user to find a nearby Uber taxi according to

both the passenger’s and the taxi’s location. Another example is the smartphone

recreational game known as “Pokemon GO”. The game utilises the real-world

position of the player to locate, capture, battle and train the virtual creatures in

the game. Precise GNSS has also been applied in a variety of scientific research

domains, such as monitoring of geological hazards (Grapenthin et al., 2014; Qu

et al., 2014), analysis of structural health and deformation (Roberts et al., 2014;

Wang et al., 2017; Yu et al., 2016), tracking atmospheric changes and disturbances

(Jiao et al., 2017; Lee et al., 2017b; Xiang et al., 2017).

Many capability gaps still remained. In dense urban and indoor areas, due

to the blockage, reflection and diffraction of the signals, the poor performances

of GNSS positioning limits a broader range of location based applications. For

example, GNSS positioning are not available in very deep indoor scenarios. The

multipath interference and non-line-of-sight (NLOS) GNSS reception in urban

canyon cause severe degradation in positioning performance, affecting the nav-

igation services for both pedestrians and vehicles. In addition, the low power

level of GNSS signals makes it susceptible to jamming and spoofing. To bridge

the gaps, many new positioning techniques have been investigated to improve

or complement GNSS since the turn of the century. Examples include multi-

constellation GNSS (Betz, 2015), 3D city model aided GNSS positioning (Adjrad

and Groves, 2017a; Groves, 2011; Wang et al., 2015), indoor Wi-Fi fingerprinting

(Bell et al., 2010; Ching et al., 2010; Mok and Retscher, 2007), pedestrian dead

reckoning (PDR) using step detection (Beauregard and Haas, 2006; Collin et al.,

2003), ultra-wideband (UWB) positioning (Gezici et al., 2005; Sahinoglu et al.,

2008; Yu and Oppermann, 2004), Bluetooth low energy positioning (Chen et al.,

2013; Faragher and Harle, 2015) and positioning using signals of opportunity or

environmental features (Mathews et al., 2011; Walter et al., 2015; Yang et al.,

2014).

Although a large number of new navigation and positioning techniques have

emerged, they are designed to operate in certain contexts, handling its associated

environments and behaviours. Conventional GNSS performs best in open-sky en-

vironments. Shadow matching and 3D-mapping aided (3DMA) GNSS ranging
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Table 1.1: Example scenarios of the context

Subject Behaviour Environment

Pedestrian Walking Urban street

Car Driving Motorway

Aerial vehicle Flying Sky

Swimmer Diving Underwater

only improve the positioning accuracy in urban areas. The PDR model is in-

herently only valid for pedestrian motions. It will give wrong information when

the assumed and actual contexts diverge. As the examples of contexts in daily

scenarios shown in Table 1.1, many navigation systems need to operate across

different contexts nowadays, but no single one is able to operate across all con-

texts. To meet the increasing demand of providing more accurate and reliable

positioning services with lower latency across a wider range of contexts, an inte-

grated navigation system that can switch between different navigation techniques

and output optimal positioning results is therefore required. In this work, the so-

lution for advanced navigation is multi-sensor context-adaptive navigation, which

is capable of detecting the operating context and reconfiguring the positioning

algorithms accordingly with multiple sensors (Groves et al., 2013b, 2014). This is

sometimes also known as cognitive navigation (Lohan and Seco-Granados, 2013;

Shivaramaiah and Dempster, 2001) or context-aware navigation (Saeedi et al.,

2014).

Generally, the context for an application covers the issues of who (sub-

ject/entity), where (location), when (time), what the user is doing and why the

situation is occurring. From the perspective of navigation, context is concerned

with the environments that the navigation system operates in and the behaviours

of its host user or vehicles. Environmental and behavioural context reveal where

the system is and what the user is doing under the circumstance respectively.

Environmental context determines the type of available radio signals for nav-

igation. For example, GNSS reception is good in open environments, but poor

indoors and in deep urban areas. Wi-Fi signals are not available in rural ar-

eas, in the air or at sea. In an underwater environment, most radio signals do

not propagate at all. Terrain referenced navigation typically determines terrain

height using radar or laser scanning in the air, sonar or echo sounding at sea
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and a barometer on land (Groves, 2013b). Processing techniques can also depend

on the environment. In an open environment, NLOS reception of GNSS signals

or multipath interference may be detected using consistency checking techniques

based on sequential elimination (Groves and Jiang, 2013). In dense urban areas,

more sophisticated algorithms are required for GNSS positioning in the presence

of severe multipath interference and NLOS reception (Adjrad and Groves, 2017b).

Behaviours can contribute additional information to better understand the

context for positioning and navigation. A stationary pedestrian indicates a fixed

location and will not need to update its velocity and position. Land vehicles

normally remain on the ground, effectively removing one dimension from the

position solution. Similarly, boats, ships and underwater vehicles typically travel

on the sea or rivers, and only exhibit on land for construction, maintenance or

storage at specific places. Within a GNSS receiver, the behaviour can be used

to set the bandwidths of tracking loop and coherent integration intervals, and

to predict the temporal characterization of multipath (Lin et al., 2011). The

requirements of navigation (e.g. accuracy, availability and update rate) also vary

based on different behaviours. For example, a room-level accuracy is enough for

a costumer to find the correct shop in a shopping mall. However, an autonomous

vehicle may require decimetre accuracy to ensure operating in the right lane.

To deliver better navigation services and meet the needs of new applications,

the consideration of context is essential for two reasons. First, as new techniques

have been developed, increasing number of positioning hardwares and algorithms

can be integrated for navigation. Consequently, navigation systems become more

complex. However, most of the implemented techniques are inherently context-

dependent. To make full use of these techniques in practical applications, it is

necessary to implement suitable algorithms according to the operating contexts.

Second, as the number of navigation and positioning applications grows, there

is a need to share the information from hardware and software modules between

different applications to reduce development and production costs (Groves, 2014).

This expects the navigation system to be reconfigurable based on contexts and

users’ requirements.

In the last ten years, the increasing popularity of the smartphone makes it

an indispensable device in people’s daily life. Nowadays a smartphone is not only

treated as a mobile means of communication, but also a tool for new applications,

including ubiquitous navigation and LBS. With the advance of electronics and

miniaturization, a rich set of low-cost sensors are now embedded in smartphones.



1.2. OBJECTIVES 27

Table 1.2: Sensor list of Pixel smartphone

Radio Sensor Environment Sensor Inertial Sensor Others

cellular module barometer accelerometers cameras

GNSS magnetometers gyroscopes microphone

Wi-Fi thermometer speaker

Bluetooth humidity sensor proximity sensor

FM radio ambient light sensor

(Frequency Modulation) fingerprint sensor

For example, Table 1.2 lists the sensors in the Google Pixel smartphone (manu-

factured in 2016). Even though they were originally introduced for their specific

purposes (e.g. Bluetooth for communication and accelerometers for screen ori-

entation), these built-in sensors enable a smartphone to perceive the navigation

context from different perspectives and harness their signals for navigation. This

renders the smartphone to be an ideal platform for testing and demonstrating

context-adaptive navigation.

The fundamental concept of context-adaptive navigation was first proposed

in Groves et al. (2013b), along with tentative experiment results on context de-

tection. Carrying on the previous work, this study aims to determine both be-

havioural and environmental context for advanced navigation and demonstrate the

framework with smartphone sensors. By applying context determination frame-

work into mobile devices, it could serve with better navigation performance for

mass market applications.

To reach the research target, the study first reviews the background (Chapter

2) and identifies the research gaps from the literature (Chapter 3), then builds

the framework of context determination and defines a suitable set of context

categories for navigation (Chapter 4). After that, the study focuses on detecting

both behavioural (Chapter 5) and environmental context (Chapter 6 & 7) and

further investigates on their association for better detection performance (Chapter

8). The whole context determination framework will be finally demonstrated on

smartphone in practical scenarios (Chapter 9).

1.2 Objectives

The overall objective of this thesis is to establish a context detection framework

for navigation that can determine both users’ behaviours and environments with

smartphone sensors, building the foundation of a context-adaptive navigation sys-
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tem. To address this general objective, there are a series of research questions

grouped into five themes to be addressed. They are summarised as follows:

� Optimisation of behaviour detection for navigation application

Among different behaviours, which behavioural contexts should be considered

for context adaptive navigation on smartphone? How can a behaviour detection

framework be designed specifically for context-adaptive navigation to effectively

recognise different behavioural contexts? How can the framework be extended to

add more new behaviours if necessary?

What are the most suitable classification algorithms to recognise different be-

havioural contexts?

Which sensors on the smartphone, to which degree, can contribute to be-

haviour detection?

What are the optimal feature combinations as the inputs of the classification

algorithms?

� Environment detection for context adaptive navigation

For a context adaptive navigation application, what is the suitable environ-

ment categorization that can be reliably identifiable and provide useful indications

on the availability and quality of navigation signals?

Among the smartphone sensors, what are the pros and cons of these sensors?

Which sensors shall be used for reliable environment classification?

Based on the selected sensors, what are the features that can show the differ-

ences of environments and what is the classification model to distinguish the basic

indoor and outdoor environment? How is the performance?

How can the classification of different outdoor environments bring benefit

for better navigation performance? If the features extracted for indoor/outdoor

detection are not enough for this task, which available information may be useful?

What is the suitable approach to address this classification task and how should

the classification results be expressed quantitatively?

� Context connectivity between epochs

How can time-domain information be used to improve the reliability of be-

haviour recognition?

How can time-domain information be used to improve the reliability of envi-

ronment detection?
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� Context association

If the behaviours and environments are not independent in reality, how can

they be associated? How can context association be used to reduce the chances of

the context determination algorithms selecting an incorrect context?

� Demonstration of context-adaptive navigation

How can context determination be implemented for context adaptive naviga-

tion? What improvements can context adaptations bring for a positioning system?

1.3 Organization of the thesis

This thesis consists of 9 chapters and is structured as follows:

Chapter 2 introduces the background of this study. This chapter first gives an

overview of the available navigation and positioning technologies, including GNSS

and other technologies to bridge the limitations of conventional GNSS positioning

in indoor and urban areas. Their operating contexts are described as well, which

leads to the motivation for research on context-adaptive navigation. Then the key

concepts of context determination used in later chapters are introduced in detail.

Chapter 3 first provides an in-depth review of the previous work conducted

on each aspect of context detection, behaviour recognition and environment detec-

tion, along with the approaches, advantages and limitations of existing research.

The related work on contextual navigation applications are then presented as well.

At the final the chapter, the overall scheme of context determination for context

adaptive navigation is proposed, including behavioural and environmental context

detection, connectivity and association processes.

Chapter 4 presents the study of behaviour recognition. Based on the proposed

framework, the behaviour categorisation is first described. Then the scheme of

behaviour recognition is proposed, with both human activities and vehicle mo-

tions detected. Both time and frequency domain features are extracted from

smartphone sensor signals, followed by the implementation of feature selection al-

gorithms to decrease the dimension of features. Then the performances of different

classification algorithms are evaluated and compared. Based on the probabilistic

output, a connectivity dependent filter is developed to improve the reliability of

behavioural detection.

Chapter 5 investigates the classification of indoor and outdoor environments.

First, the environment categorisation is proposed, followed by a discussion on

how it can benefit context adaptive navigation. Among smartphone sensors, the
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choice of GNSS measurements for environment detection is discussed. The fea-

tures based on the availability and strength of GNSS signals (containing GPS and

GLONASS constellations) are extracted and classified by a probabilistic Support

Vector Machine (SVM), followed by a hidden Markov model (HMM) used for time-

domain filtering. The performances of both static and kinematic experiments are

evaluated and compared.

Chapter 6 explores the further classification of outdoor environments into

urban and open-sky environments. The importance of urban and open-sky en-

vironments is first identified. Then the derivation of pseudorange residuals from

raw GNSS measurements in the Android smartphone is described in detail. The

detailed architecture of the fuzzy inference system is then designed and imple-

mented for urban and open-sky classification. Experimental results are finally

presented.

Chapter 7 investigates how behavioural and environmental context associa-

tion can contribute to context determination. This chapter focuses on improving

environment detection by the results of behaviour recognition. The performance

with and without association are compared and discussed.

Chapter 8 demonstrates how navigation solutions benefit from the the pro-

posed context determination framework by a context-adaptive navigation experi-

ment. The experiment presents a navigation system that combine pedestrian dead

reckoning and conventional GNSS across indoor and outdoor environments. The

positioning performances with and without context adaptation are compared.

The final chapter summarizes the work presented in this thesis and reiterates

the contributions made by this study. Some future work is suggested as a basis

for further research and development on context-adaptive navigation.

1.4 Research outputs

1.4.1 Publications

JOURNALS

� Gao, H., and Groves, P.D. (2018), Environmental Context Detection for

Adaptive Navigation using GNSS Measurements from a Smartphone, Jour-

nal of The Institute of Navigation, 65(1), 99-116. DOI: 10.1002/navi.221

� Martinelli, A., Gao, H., Groves, P.D., and Morosi, S. (2018), Probabilis-

tic Context-Aware Step Length Estimation for Pedestrian Dead Reckoning,
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IEEE Sensors Journal, 18(4), 1600-1611. DOI: 10.1109/JSEN.2017.2776100

� Gao, H., and Groves, P.D., Improving Environment Detection by Behaviour

Association for Context Adaptive Navigation, Journal of The Institute of

Navigation. (under review)

CONFERENCE PROCEEDINGS

� Gao, H. (2018), Behaviour-Aided Environment Detection for Context Adap-

tive Navigation, Institute of Navigation (ION) GNSS+ Conference, Miami,

FL, USA (peer-reviewed and won ION student paper award)

� Gao, H., and Groves, P.D. (2017), Context Detection for Advanced Self-

Aware Navigation using Smartphone Sensors, International Navigation Con-

ference (INC), Brighton, UK

� Gao, H., and Groves, P.D. (2016), Context Determination for Adaptive

Navigation using Multiple Sensors on a Smartphone, Institute of Navigation

(ION) GNSS+ Conference, Portland, OR, USA

� Groves, P.D., Adjrad, M., Gao, H., and Ellul, C. (2016), Intelligent GNSS

Positioning using 3D Mapping and Context Detection for Better Accuracy

in Dense Urban Environments, International Navigation Conference (INC),

Glasgow, UK

1.4.2 Main contributions of the thesis

The main contribution of this thesis are as follows:

1. Design of the context determination framework for context adaptive naviga-

tion. The framework includes behaviour and environment categorization for

both pedestrians and vehicles, and enables contexts to be determined from

classification, connectivity and association steps. All contexts are estimated

as probabilities so that the navigation system can have different responses

according to the uncertainties of decisions.

2. Application of the connectivity models into behaviour and environment de-

tection to improve the recognition reliability. The details and performances

of the proposed behaviour time-domain filter are described in Chapter 4.

The application of the hidden Markov model and its improvements are de-

scribed in Chapter 5.
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3. Proposing two approaches to enhance indoor-outdoor detection using GNSS

signals, the empirical HMM and SVM-HMM approaches. Two new features

are extracted based on the availability and strength of GNSS signals and

used for indoor/outdoor detection. The performance and comparison of two

approaches are discussed in Chapter 5.

4. First exploitation of classifying open-sky and urban environments using GPS

measurements. The urban index was proposed for classification because a

Boolean classification is not applicable here. The fuzzy inference system

has been implemented to determine categories whose boundaries are not

clearly defined in reality. The extraction of the features from raw GPS

measurements and the detailed construction of the fuzzy inference system

are described in Chapter 6.

5. Improvement of the reliability of context determination by associating be-

havioural and environmental contexts. In the association, the behavioural

recognition results are applied to aid within the process of environment

detection. The details of two association mechanisms are investigated in

Chapter 7.

6. Demonstration of the context adaptive navigation by using the developed

context determination algorithms to select different positioning techniques

according to context. Context adaptive navigation is demonstrated by inte-

grating the positioning solutions of PDR and GNSS based on the detected

behaviours and indoor/outdoor environments. The details of the demo and

the performance of context adaptive navigation are described in Chapter 8.



Chapter 2

Review of Existing Navigation

Techniques

In daily application, a navigation system is required to operate across a wide range

of contexts. This chapter first reviews a number of available navigation techniques

in Section 2.1. They include satellite positioning and other positioning techniques

that are commonly used to augment or substitute GNSS when it is degraded or

subject to outage. The characteristics, pros and cons of each method are then

discussed in detail. The limitations of the current positioning techniques motivates

this investigation on “context adaptive navigation”. Finally the key concepts

of context adaptive navigation proposed in previous research are introduced in

Section 2.2.

2.1 Overview of navigation system

To meet the greater demand for advanced navigation, many navigation techniques

have been developed or investigated to augment existing techniques. This section

provides an overview of these navigation systems, mainly for mobile devices. As

one of the key positioning techniques, the status of GNSS is first introduced in Sec-

tion 2.1.1, with its performance and limitations described. To fill the positioning

capability gaps of GNSS, the alternative techniques for indoor and urban environ-

ments are reviewed in Section 2.1.2 and 2.1.3 respectively. Some other techniques

that may be applied in either environment as GNSS backups on mobile devices

are introduced in Section 2.1.4.

2.1.1 GNSS: status and limitations

Global Navigation Satellite System refers to the navigation systems that broad-

casting satellite signals from space transmitting positioning and timing data to

GNSS receivers. The receivers can then use this data to determine locations. It
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consists of global navigation systems and some regional systems. There are four

constellations aiming to provide global coverage individually: the US GPS, the

Russian GLONASS, the European Union’s Galileo system and the Chinese Bei-

dou System (BDS). Among them, GPS and GLONASS are now fully operational

while Galileo and BDS are currently under development. The status of each con-

stellation, at the time of writing, is provided in Table 2.1. The performances of

GNSS in certain regions can also be improved by some regional navigation satellite

systems (RNSS) and satellite-based augmentation systems (SBAS).

Table 2.1: An overview of the global satellite navigation systems (IOC refers to Initial
Operational Capability, FOC refers to Full Operational Capability)

System GPS GLONASS Galileo BeiDou

Owner United States Russian European
Union

China

Altitude 20,180 km 19,130 km 23,222 km 21,150 km

Satellites 31 24 26 in orbit, 6
to be launched

23 in orbit, 35
by 2020

Frequency
(MHz)

1575.42 (L1)
1227.60 (L2)
1176.45 (L5)

1602.00 (L1)
1246.00 (L2)
1202.025 (L3)

1575.42 (E1)
1176.45 (E5a)
1207.14 (E5b)
1278.75 (E6)

1561.098 (B1)
1207.14 (B2)
1268.52 (B3)

Status Global Global Early Opera-
tional

Regional

IOC Dec 1993 Sep 1993 Dec 2016 Dec 2012

FOC April 1995 Dec 1995 by 2020 Global FOC
by 2020

The four global satellite systems operate in a similar manner. Global coverage

for each constellation is generally achieved by 24-35 satellites spread at medium

Earth orbit (MEO, at an altitude of about 20,000 km). Each constellation vary,

but use orbital inclination of above 50◦ and orbital periods of roughly 12 hours. A

worldwide network of ground control stations monitors the status of the satellites

and uploads navigation data to the satellites. The principle of satellite navigation

is based on time-of-arrival (TOA) ranging. Each satellite carries a highly precise

atomic clock that is periodically synchronised to the clock at the ground master

control station, so that every satellite is synchronised with others in the same

constellation. The satellite broadcasts a signal that contains the ranging codes

and orbital information. The ranging codes enable a user to determine the precise

time when the signal was transmitted, while orbit information can be used to
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determine the location of the satellite at the time of signal transmission. From

this information, the time propagated from the satellite to the users’ receiver can

be thereby calculated and further corrected for multiple factors such as satellite

clock errors, Earth rotation effect, atmospheric propagation delays and relativistic

effects (Kaplan and Hegarty, 2006). This time interval can then be converted into

a distance by being multiplied by the speed of light, which is referred to as a

pseudorange.

This technique requires the clock in the user receiver to be synchronised with

the satellite clocks, so that only three ranging measures from the satellite would be

sufficient to fix the position of the receiver antenna in the three-dimensional world

using trilateration. However, an inaccurate crystal clock is usually employed in the

user receiver to minimize its cost, size and complexity (Kaplan and Hegarty, 2006).

This means an extra unknown, the receiver clock error, must be accounted for in

order to achieve synchronisation. Therefore, at least four ranging measurements

will be required to determine the latitude, longitude, altitude and receiver clock

error for a unique positioning solution.

In theory, if four or more LOS satellites are directly visible, the positioning

solutions are typically accurate to a few meters anywhere and anytime on the

earth. However, in reality, the assumption of good GNSS reception conditions

does not always hold in most indoor and urban cases.

In urban canyons where city streets are surrounded by tall buildings, satellite

signals may be blocked, reflected or diffracted. Buildings and other obstacles

deteriorate GNSS performance in three ways. First, where signals are completely

blocked, GNSS positioning will not be available any more. Second, where the

LOS signals are blocked (or attenuated), but some (stronger) signals can still be

received under NLOS reception. NLOS signals exhibit positive ranging errors

because reflection always increases the length of path. This will typically cause

positioning errors as large as a few tens of metres. Finally, where both LOS and

NLOS signals are received, multipath interference occurs. This can lead to either

positive or negative ranging errors, whose magnitude depends on the conditions

and receiver designs (Groves, 2013a). Figure 2.1 illustrates the blockage, NLOS

reception and multipath phenomena.

For a receiver inside a building, GNSS satellites may be fully blocked, severely

attenuated by walls, roofs or received via multipath. These result in its positioning

performance being seriously degraded or even totally unavailable indoors. Similar

conditions may also happen when the user is inside tunnels or under trees.
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(a) Singal blockage and non-line-of-sight reception
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(b) Multipath interference

Figure 2.1: Signal blockage, NLOS reception and multipath interference

In summary, GNSS can provide accurate positioning solutions with 24-hour

availability in open environments (US Department of Defense, 2018), but its limi-

tations in indoor and urban environments hinder a wider application of navigation

services.

2.1.2 Positioning in indoor environments

In indoor environments, the usability of the GNSS technology is limited, due to

the lack of line of sight and attenuation of the signals as they cross through walls.

Thus, considerable efforts have been made on indoor positioning systems during

the last fifteen years. These indoor positioning methods mainly fall into three

classes: fingerprinting-based, ranging-based and angle-of-arrival (AOA)-based.

Fingerprinting positioning involves two phases. During the survey phase, the

strengths of received signals at selected locations are typically recorded and added

to an offline database. Then, in the second phase, the location is estimated by

matching the current observed signal features to the values in the prerecorded
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Figure 2.2: Interpretation of positioning using TOA, TDOA and RSS measurements

(Left: In the TOA/RSS case, the user is located at the intersection of all the circles
that centred at each AP with radius equal to the corresponding ranging measurements.
Right: In the TDOA case, only pseudoranges can be obtained which contain a common
bias. The bias is cancelled in the pseudorange difference, so the user is located on the
hyperbola with two of the APs as the foci. Hence, the user is located at the intersection
of all the hyperbolas.)

database. Ranging-based positioning methods estimate the location based on the

distances from at least three transmitters at known locations to the user. Most

ranging based algorithms assume the received signals are LOS. The typical mea-

surements used to generate distances are time of arrival (TOA), time difference

of arrival (TDOA) and received signal strength (RSS) (Yan et al., 2013). The

details have been interpreted in Figure 2.2. Among them, TOA and TDOA im-

plementations require highly synchronized clocks for more precise estimation of

the propagation time, which makes their deployment more complex and expensive.

Another variation of TDOA created with the objective of avoiding synchronisa-

tion is differential TDOA (DTDOA). It requires the reference nodes to place at

known distances and with line-of-sight from a master node that performs two-way

communication with the unknown node (Nur et al., 2012; Winkler et al., 2005).

AOA-based positioning utilizes multiple antennas to estimate the incoming an-

gles and then uses geometric information to obtain the user position. For high

accuracy, this method needs the antenna array which is generally an expensive

solution for low-cost sensor node.

This section briefly introduces Wi-Fi, Bluetooth and magnetic positioning,

three representative indoor positioning technologies that can be realised using

smartphone sensors. Their limitations to context are discussed as well.
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2.1.2.1 Wi-Fi positioning

Wireless local area network (WLAN) technology, also known as Wi-Fi or IEEE

802.11, transmits and receives data using electromagnetic waves at radio frequen-

cies around 2.4 and 5 GHz. It provides wireless Internet connection within the

coverage area and has currently become the dominant local wireless networking

standard. The massive indoor allocation of Wi-Fi access points (AP) situated in

homes, offices and public areas enables indoor positioning using Wi-Fi signals. Al-

though Wi-Fi access points have been allocated in many metropolitan areas, tests

over a number of sites suggest that the outdoor GPS provides better accuracy

than Wi-Fi and cellular positioning (Zandbergen, 2009).

Three approaches are commonly used for indoor Wi-Fi positioning.

In timing-based Wi-Fi positioning, WLAN transmissions are not normally

synchronised, so TDOA based ranging is often used across the receivers. Actually,

the accuracy of timing-based method in practice is typically worse than 10 m

with standard user equipment (Galler et al., 2006; Izquierdo et al., 2006). This

is mainly due to the limited timing resolution of standard WLAN equipment and

the attenuation and reflection of received signals in complex indoor environments.

The WLAN transceivers measure timing measurements at the device-driver lever

(Makki et al., 2015), which has a timing resolution of roughly 1 µs, corresponding

to a radio propagation resolution of 300 m. A higher timing resolution may

be supported by measurements at the physical layer in the future IEEE 802.11

standard.

In signal-strength-based Wi-Fi positioning, location is estimated from the

measured signal strength from at least three different Wi-Fi access points by a

multilateration method. A propagation model is implemented to describe the

dependency between the received signal strengths and the distance from an ac-

cess point to the receiver, taking path loss and signal fading into consideration.

Following IEEE 802.11 standard, the measured power of Wi-Fi signals is given

by received signal strength indicators (RSSI), which is usually not equal to RSS.

It is also different from one manufacturer to another. Each vendor of the de-

vices may or may not offer its relationship between RSSI and RSS (Buchman and

Lung, 2013). The accuracy of typical WLAN positioning systems using RSSI is

approximately 3 to 30 m (Khudhair et al., 2016), depending on the specific in-

door environments. The main challenges of this method are the instability of the

RSSI values and the complexity of modelling the signal propagation according to

different fading patterns in indoor environments.
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The Wi-Fi fingerprinting method has become the most widely used approach

on smartphone for indoor localization. The fundamental principle of fingerprinting

is that the signal strength from different access points varies in different locations

in an area covered by Wi-Fi signals. Therefore, from the received Wi-Fi signals,

the user’s location can be inferred. The fingerprint database is created over a grid

mapped to a floor plan of the coverage area. RSSI measurements of each location

are recorded over the grids throughout the area. The database can also be con-

structed via crowdsourcing where a large number of users contribute to collect and

share the Wi-Fi data and location information. This does not require an accurate

grid of the areas. When positioning, real-time RSSI measurements received from

all access points in range are compared with the pre-surveyed locations in the

database to find the best match one. Since the fingerprinting approach avoids

modelling signals under different propagation conditions, it can achieve a posi-

tioning accuracy of less than 5 metres, depending on the number of APs within

the area (Bensky, 2016). The main drawback of a WLAN fingerprinting system

is that the changes of the AP deployment and the environments such as moving

of furniture may require an update of the database. It also needs a large amount

of calibration and training when constructing the fingerprint database.

2.1.2.2 Bluetooth positioning

Bluetooth is a wireless technology for rapid exchange of data over short distances.

It was defined by IEEE 802.15.1. Bluetooth low energy (BLE) is introduced as

an ultra-low power consumption form of Bluetooth in its fourth version (v4.0) in

2010. Power consumption is minimised through a low duty cycle, enabling the

devices to run on button batteries for several years. BLE chips are now supported

by most smartphones, tablets, computers and wearable devices, while they are still

compatible with previous versions of Bluetooth.

Bluetooth positioning using the RSSI measurements from the physical layer

has been investigated (Bandara et al., 2004; Feldmann et al., 2003). The locations

are obtained by RSSI triangulation with least square estimation. It was found that

the Bluetooth RSSI measurements are imprecise and not strictly proportioned to

the strength of the received signal. In addition, the Bluetooth signal strengths are

sensitive to the attenuation and reflection of indoor obstacles. These two points

restrict the accuracy of the RSSI based positioning method. As a competitor to

Wi-Fi, BLE fingerprinting has been explored thoroughly in Faragher and Harle

(2015). According to the tests, the deployment of one Bluetooth beacon per 30 m2

gave 95th percentile positioning accuracy of 2.5 m, while one beacon per 100 m2
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degraded the accuracy to 5.5 m. It has also shown that the positioning improve-

ment of Bluetooth over Wi-Fi fingerprinting is possible where Wi-Fi achieved only

8.5 m accuracy via the established Wi-Fi network in the same area. Some inte-

gration of Wi-Fi and Bluetooth have also been reported (Galvan-Tejada et al.,

2012).

Proximity positioning has been considered by installing a BLE tag in the

room. The room-level accuracy may be adequate for certain location services.

Apple’s iBeacon is an application of Bluetooth technology to help users determine

their approximate locations. Taking advantage of the short range of Bluetooth

transmission, the smartphones or receiving devices are triggered to approximately

estimate the user’s location to the iBeacon from its signals. The distance is

categorised into three broad ranges: immediate (less than 50 cm), near (usually

up to 10 metres), and far (greater than 10 metres away). With the proximity

information, mobile softwares may then perform various actions for location based

services, such as nearby advertising.

The main strength of Bluetooth positioning is its low-cost, long lifetime and

low power consumption. Like other radio frequency signals, it suffers the multi-

path fading in the indoor environments (Zhou and Pollard, 2006), so it is typically

able to achieve only room-level accuracy.

2.1.2.3 Magnetic positioning

Inside a building, the Earth’s magnetic field is disturbed by magnetic interference

caused by steel structures. Therefore, the location can be inversely inferred from

the local magnetic variations by creating a geomagnetic fingerprinting database

unique to the building. The strength and direction of the magnetic field are

measured from the magnetometers supported by most mobile devices. A series of

measurements can be collected by either the magnetic density in three dimensions

or its overall magnitude over the grids. The test measurements are then compared

with the fingerprint database to determine the position and direction of travel.

Positioning with the ambient magnetic field does not suffer from the effects

of multipath and different fading conditions that are typical of radio frequency

technologies. Another advantage is that no infrastructure is required to be de-

ployed, which makes this positioning method relatively cost effective. It achieved

positioning accuracies within 2 metres in laboratory conditions in most relevant

literatures (Chung et al., 2011; Haverinen and Kemppainen, 2009; Pasku et al.,

2017). When there is sufficient local magnetic field variation, submeter level ac-

curacy may be achieved (De Angelis et al., 2015; Pasku et al., 2016). However,
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in practice different places may have the same magnetic field readings, sometimes

incurring the user to be located to the wrong building by standalone magnetic

positioning (Li et al., 2012). To avoid false matches, other positioning methods

(e.g. dead reckoning) are usually applied to find the approximate location, then

the sequences of ambient magnetic field measurements can be used to match a

more precise position. The main disadvantage is that the local magnetic field is

easily affected by moving ferromagnetic objects, like lifts.

2.1.3 Positioning in urban areas

Although GNSS has been widely applied for navigation in outdoor environments,

its availability and accuracy in dense urban are hindered by the poor environment

visibility, poor dilution of precision (DOP), NLOS receptions and multipath in-

terferences. Several techniques have been proposed to improve the GNSS-based

applications to urban environments. They can be broadly categorised as follows.

Use of multi-constellation GNSS to increase the number of mea-

surements and reduce the DOP. For positioning using one constellation, at

least four satellite signals are required to form a positioning solution. In urban

areas, this does not always hold due to signal blockage by the surrounding build-

ings. The number of available GNSS signals for positioning can be increased by

involving additional constellations. Once adding an extra satellite constellation,

it may require one more satellite to estimate system time offset to complete a

navigation solution, depending on the positioning strategy. When more satellites

from different constellations have been received, the positioning accuracy may be

improved through an optimised DOP (Misra and Enge, 2010). At the same time,

the integrity of the solution can be enhanced because of higher satellite redun-

dancy. Even though, when lots of NLOS and multipath signals are received by the

receiver, a smaller DOP does not necessarily correspond to an improved position

accuracy. In some rare cases, there may be insufficient signals for a navigation

solution.

Modification of traditional GNSS receiver processing strategies to

enhance signal processing or tracking. Vector tracking combines signal track-

ing and position/velocity determination into a single estimation process, which can

mitigate multipath interference by filtering out most of the multipath code error

(Hsu et al., 2015). It can also eliminate position errors through NLOS reception

via distant reflectors. Other typical signal processing strategies include frequency-

domain tracking, block processing, synthetic aperture processing, ultra-tight in-

tegration, maximum likelihood tracking and batch-processing tracking (Groves
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et al., 2013a). Most of these techniques require movement to work, thus relying

on the dynamic contexts. Some of them need a more complex receiver architec-

ture with higher cost and power consumption, thus may not be suitable for mobile

positioning.

Adoption of GNSS signal parameter estimation techniques. The

higher the elevation angles as well as signal-to-noise ratios, the less likely that

the signal is contaminated by NLOS reception, destructive multipath interfer-

ence or diffraction. Based on this assumption, multipath interference and NLOS

reception may be simply mitigated by selecting the signals with high elevations

or rejecting/downweighting low-C/N0 measurements. Thus the impact of both

NLOS reception and multipath interference on the navigation solution may be re-

duced, but not completely eliminated. In Groves and Jiang (2013), tests in urban

canyons have shown that C/N0-based weighting technique provides more accurate

navigation solution, on average, than elevation-based weighting one. This research

also suggested that consistency checking is a much more effective way than the

weighting method for higher positioning improvements if there are enough good

signals (from multiple constellations). For dynamic application, by taking advan-

tage of the high spatial variation in multipath errors, carrier smoothing may be

implemented in a Hatch filter inputting carrier-phase or Doppler-shift, in order

to average out the code multipath error (Bahrami and Ziebart, 2010). Carrier

smoothing only mitigate the effects of multipath not NLOS reception where the

code and carrier are affected in the same way. The advantage of these techniques is

that they are easy to implement on GNSS receivers without any hardware changes

and the corresponding processing load is low.

Implementation of 3D building models to detect NLOS signals and

compensate their effects for positioning. 3D building models can be used

to predict whether the signals are blocked or directly visible where the location

is known. As shown in Figure 2.3, GNSS shadow matching determines position

by comparing the received signal availability and strength with predictions made

using a 3D city model. This enables across-street position accuracies within a few

meters have been achieved in dense urban areas where the conventional GNSS po-

sitioning error is tens of meters (Wang et al., 2015). Shadow matching is typically

more accurate in the cross-street direction than the along-street direction, while

the ranging-based GNSS is the opposite. By integrating shadow matching with

3D mapping-aided ranging GNSS, a single-epoch horizontal positioning accuracy

in dense urban areas of 6.1 m has been reported using a u-blox receiver (Adjrad
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Figure 2.3: Illustration of the shadow matching concept

and Groves, 2017b). More sophisticated approaches (Gu et al., 2015; Hsu et al.,

2016b; Suzuki and Kubo, 2013) have enabled signals predicted to be NLOS from

3D models to contribute the position solution by adjusting the GNSS pseudorange

measurements due to NLOS reception.

Use GNSS signals from multiple frequencies. The signal frequencies

of different GNSS constellations have been presented in Table 2.1. Using GNSS

signals from multiple frequencies can bring benefits for positioning from different

aspects. First, multi-frequency receiver can remove ionosphere error from the po-

sition calculation. Since ionosphere error varies with frequency, its effects can be

removed by comparing two or more carrier signals (Lemmens, 2012). In contrast,

tropospheric delays and orbit errors have the same effect on all carrier signals,

irrespective of their frequencies. For the dynamic urban scenarios, tests showed

that the use of the L1-L2C ionosphere-free linear combination results in position-

ing accuracy of 9.032 m (95%) with an improvement of 39% over the L1 C/A

code based solution without ionospheric error correction (El Hajj, 2017). Second,

multi-frequency GNSS signals can also provide more immunity to interference.

For example, if there is interference in the L2 frequency band around 1227 MHz,

a multi-frequency receiver is still able to track L1 and L5 signals to ensure ongo-

ing positioning. In addition, it is also reported that multipath interference can be

detected by comparing the received GNSS signals with different frequencies. This

is based on the principle that multipath with a particular path delay will lead

to constructive interference on some frequencies and destructive interference on

others. Therefore, the difference in the corresponding C/N0 values between fre-
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quencies will change in the presence of multipath interference (Strode and Groves,

2016).

Integration of other complementary sensors/systems. Different kinds

of navigation sensors have been used to improve the performance of GNSS in

urban areas or bridge its outage, depending on the subjects and requirements

(Angrisano et al., 2012; Hsu et al., 2016a; Soloviev, 2008; Syed and Cannon,

2004). Road vehicles typically combine GNSS with map-matching algorithms and

may use odometers or inertial sensors as well. Autonomous vehicles incorporate

GNSS with LiDAR (stands for Light Detection and Ranging) and cameras for

route guidance and collision avoidance. Pedestrian navigation users may combine

GNSS with cell phone signals or dead reckoning algorithms using inertial sensors

and magnetometers.

2.1.4 Other related positioning techniques

2.1.4.1 Dead reckoning

Dead reckoning is a method of calculating the user’s current position by measuring

the travelled course and distance over a known interval of time and adding this

to the previously determined position (Groves, 2013b).

An illustration of dead-reckoning method is shown in Figure 2.4. Based

on its principle, dead reckoning requires the measurements of the distance and

direction travelled over a time interval. A basic way of estimating distance is to

multiply the speed by the interval time. In reality, there are various approaches to

determine the distance travelled, depending on the applications. For pedestrian

application, pace counts can be automatically measured by a pedometer while
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step length can be determined by using accelerometers (Collin et al., 2003; Judd,

1997; Kappi et al., 2001). For sensors mounted on the body or in handheld

device, pedestrian dead reckoning using step detection gives significantly better

positioning performance than conventional inertial navigation. An odometer in a

land vehicle measures distance by counting the rotations of a wheel. Aircraft can

use the Doppler shift of radar reflections to determine its velocity. Traditionally,

heading may be measured from magnetic sensors, a compass or magnetometers.

For 3-D navigation applications, the changes in attitude may be obtained from

gyroscopes that measure angular rates. The roll and pitch components of attitude

can be estimated by using the gravity components from the accelerometer outputs.

Dead-reckoning navigation is able to operate continuously and provide atti-

tude, velocity and position updated without external information. However, to

obtain the absolute positioning solutions, the system must be initialized. Due

to the uncertainty of the sensor measurements within each update, the position

and heading derived from the distance and direction measurements are subject to

cumulative errors, rendering the long-term dead reckoning results useless. There-

fore, the accuracy of dead reckoning degrades over time and should be improved

by using other position-fixing measurements or technologies for correction and

calibration.

2.1.4.2 Image-based navigation

Image-based navigation systems use the information from 2D or 3D images of

the surrounding environments to determine the positions of the objects. The ad-

vancement of both imaging sensors and image processing algorithms has made

it feasible to navigate with cameras or other optical sensors. Broadly speak-

ing, imaging sensors operate in either an active or a passive way. It depends on

whether the sensors transmit and receive signals to observe the space (active) or

just sense part of the light spectrum from the surrounding environment (passive)

(Grejner-Brzezinska et al., 2016). The most common passive sensor is the monoc-

ular camera, within which the 3D object is projected to a 2D image plane. For

navigation, a reconstruction step is required to recover the 3D information from

2D images. On the contrary, some of the active sensors, such as LiDAR and laser

scanner, can directly provide relatively accurate and reliable 3D data (Alharthy

and Bethel, 2002; Xiong et al., 2013). But due to the cost, only infrared cameras

can be found on the front of some latest smartphones for the purpose of facial

recognition.

Three fundamental approaches are commonly used for image-based navi-
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gation. The first one is visual odometry where the position is determined by

analysing a series of sequential images. Visual odometry approach relies on match-

ing features between successive images, which requires at least parts of the images

to display the same scene (Nistér et al., 2004). Without any partially overlap, it

is impossible to obtain a visual odometry solution. The images are usually taken

by the same optical sensors from a similar angle under similar viewpoint, so that

it is more straightforward for feature matching. As a form of dead reckoning, a

standalone visual odometry method can only determine the travelled distance and

the orientation changes from 3D images. To obtain the absolute position of the

object, it should be integrated with other technologies.

The second approach is to get the absolute positioning results by image fin-

gerprinting. For absolute positioning, a database must be created with image

features as well as the feature or camera positions. Then, when a new image has

been taken, the goal is to identify the image with the most matching features in

the database. Once this is completed, the position of the taken image can thereby

be determined (Seo et al., 2004). Compared to visual odometry, feature matching

process is more challenging in this approach, because there are more factors to be

considered. For example, images are often taken by different cameras of different

image scales and resolutions under different lighting conditions and from differ-

ent directions. Like magnetic fingerprinting, it is typically integrated with other

positioning approaches to know the approximate position before doing the image

fingerprinting (Grejner-Brzezinska et al., 2016). This is more computationally

effective and unlikely to match a wrong place due to the similar appearance.

Another approach is simultaneous localisation and mapping (SLAM), which

can be achieved by a mixture of visual odometry and absolute positioning meth-

ods. It is building or updating the map of unknown environments while at the

same time keeping track of the location. Within SLAM approach, features are

identified from a sequence of images with the orientation and position of the cam-

era simultaneously estimated (Durrant-Whyte and Bailey, 2006). The absolute

positioning results are available when the matched features in the database have

a known absolute coordinate. Otherwise, SLAM approach tends to operate more

as dead-reckoning visual odometry approach. It is also worth to note that SLAM

does not have to rely on image based approaches. Instead, the map can be built

from the radio signals, magnetic anomalies etc. (Bruno and Robertson, 2011;

Mirowski et al., 2013); while the dead reckoning may be achieved with inertial

sensors or wheel-speed sensors.
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One important characteristic of image-based navigation is its resistance to

radio frequency interference, so it can provide a good alternative to conventional

GNSS. However, all the above approaches depend on feature matching, which im-

plies that they perform well in the scenarios with lots of features (Groves, 2013b).

For example, it is difficult for image-based positioning to apply in scenarios over

water.

2.2 Context adaptive navigation

Although many navigation techniques have been developed, as reviewed in Sec-

tion 2.1, no single one is enough to operate across different contexts in practical

application. There are two reasons.

First, most techniques are designed to be implemented in a particular type

of environments or associated behaviours. For example, GNSS works best in the

open-sky areas, while techniques reviewed in Section 2.1.2 and 2.1.3 work best in

indoor and urban environments. Image-based positioning requires the operating

environment with many features. PDR is applicable for pedestrian navigation,

not for vehicle navigation. On the contrary, wheel-speed odometry is applicable

to vehicle, but not pedestrians.

Second, each technique has its own pros and cons. Wi-Fi and Bluetooth

positioning inherently depend on the allocation of the corresponding communica-

tion devices. Magnetic positioning relies on the local magnetic disturbances that

are prone to change with time. Dead reckoning must be initialized and subject

to the cumulative errors of the sensor measurements. Thus an integrated sys-

tem is required to make best of the advantages and bypass the disadvantages of

the individual techniques for better availability and accuracy of the navigation

solution.

One solution to the problem is context adaptive navigation, which is first

proposed in Groves et al. (2013b). Context comprises the environment that a

navigation system operates in and the behaviour of its host vehicle or user. By

detecting the current context, the navigation system is able to reconfigure its al-

gorithms accordingly for the optimal navigation solution. For example, different

radio positioning signals and navigation techniques may be selected, inertial sen-

sor data may be processed in different ways, and the tuning of the integration

algorithms may be varied.

To implement an integrated navigation system adapting to a wide range of

contexts, a common set of context categories must be established. In Groves



48 CHAPTER 2.

Figure 2.5: Proposed attributes of a context category in Groves (2013a)

et al. (2013b), a five-attribute framework, comprising environment class, envi-

ronment type, behaviour class, vehicle type, and activity type, was proposed.

Figure 2.5 shows the relationship between the attributes. The environmental and

behavioural contexts are treated separately because they perform fundamentally

different roles in navigation. A detailed review of current environmental and be-

havioural determination research will be covered in Section 3.

Since the results from the context detection algorithms are not completely

accurate, the reliability may be improved by context reasoning that incorporates

various sources of information into a decision and generates a clearer understand-

ing of the current context. The term “reliability” is used throughout the thesis

to describe the rate of correct detection from context determination algorithm,

as distinguished from the classification “accuracy” and positioning “accuracy”.

Context reasoning may improve the efficiency of context determination as well.

By considering the possibility of the combination of environment type, vehicle

type and activity type in practice, the number of context categories can be re-

duced. Context reasoning can be considered from three aspects: context scope,

connectivity information and context association.

For a particular application, the scope defines each context category at three

levels. The required categories are the ones that the navigation system must de-

tect and respond to. Unsupported categories are those that could occasionally

happen in practice, but need not be detected and responded to. The forbid-

den context categories are those that cannot occur. For example, a navigation

system permanently fitted to a car cannot be flying or running. Thus, scope

definition enables forbidden context categories to be eliminated from the context

determination process and required categories to be treated as more likely than

unsupported categories. The scope definitions for each context category should
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be adjusted with the changes in real-world over time. Although a land vehicle

cannot fly in the sky at now, it might become possible for a taxi to operate both

on land and in the sky in the future to take full use of the transport space.

Connectivity describes the relationship between consecutive contexts. If a

direct transition between two categories can occur, they are connected. Otherwise,

they are not. Connectivity can be considered from both temporal and spatial

aspects. A typical example of temporal connectivity is that a stationary vehicle

behaviour is connected to pedestrian behaviour, whereas moving vehicle behaviour

is not because a vehicle must normally stop to enable a person to get in or out.

With the help of GIS information, the spatial connectivity could be considered.

Around the train station, the users are more likely to transit to train than aircraft.

Association is the connection between different attributes of context. Certain

behaviours are associated with certain environments. A train always operates on

the track, does not appear in the air, not at the bottom of the sea. Thus, com-

binations that are not associated in practice may be eliminated, while weakly

associated combinations may be downweighted in the context determination pro-

cess.

2.3 Chapter summary

This chapter have overviewed a number of existing navigation and positioning

techniques, with their strengths and weaknesses identified. Each technique is

subject to operate in particular contexts. This limitation drives the research on

context adaptive navigation. By determining the user’s behaviours and environ-

ments, the navigation system can determine the optimal positioning techniques

and algorithms for seamless and more accurate navigation performance. The over-

all structure and basic concepts of context determination are finally summarised.
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Relevant Research on Context

Determination

During the past decade, with the rapid development of microelectronics and com-

puter technologies, a rich set of small size and low-cost sensors have been embed-

ded into mobile devices. These sensors have enabled the smartphones to sense

contexts continuously, opening the doors for behaviour recognition, environment

detection and other new applications.

Context refers to the environment that a navigation system operates in and

the behaviour of its host vehicle or user. This chapter provides a literature re-

view of the research investigating context determination. The previous research

work on behaviour recognition and environment detection are reviewed in Sec-

tion 3.1 and Section 3.2, respectively. Then the existing systems that incorporate

both behaviours and environments for context detection are introduced in Section

3.3. To bridge the research gaps and serve for navigation purpose, the context

determination framework for this thesis is proposed in Section 3.4.

3.1 Behaviour recognition

Behaviour recognition has become a task of high interest across a wide range of

areas, from healthcare (Najafi et al., 2003), sports (Ermes et al., 2008) to transport

(Hemminki et al., 2013; Reddy et al., 2010). Within the navigation field, there

has been numerous research into pedestrian dead reckoning (PDR) using step

detection (Martinelli et al., 2018; Park et al., 2001; Pei et al., 2011; Saeedi et al.,

2014), assuming all steps detected are forward walking. Thus it has to rely on

behaviour recognition to tune both the step-detection and step-length-estimation

processes accordingly within a PDR algorithm.

The behaviour is consisted of a series of successive motions. Behaviour recog-
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Figure 3.1: Workflow of behaviour recognition

nition refers to the process of identifying the behaviour from the sensor measure-

ments during an interval of time, while the environment can be detected from the

single-epoch measurement. Regardless of the aim of conducting behaviour recog-

nition, a three-step process is typically implemented for recognition: sensing,

information extraction and behaviour classification. The processes of behaviour

recognition are illustrated in Figure 3.1. To enable the recognition of different be-

haviours, different features are extracted from raw sensor measurements. Then,

the recognition model will be built from the set of features by means of pattern

recognition algorithms. Once the model is trained, the unknown test instances

can be evaluated from the recognition model, yielding the corresponding predicted

behaviour.

With regards to different processes of behaviour recognition, this section first

reviews different behaviour categories that have been distinguished in the previous

research, then identifies the sensors and features have been used for information

extraction and the application of different classification algorithms in Section 3.1.2

and Section 3.1.3. Finally, different implementation modes of existing systems will

be discussed in Section 3.1.4.

3.1.1 Scope of recognised behaviours

In the previous studies, various behaviours have been recognised. Accordingly,

different types of categorization have been proposed, serving the requirements

of the application. Among them, recognition of different physical activities has
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attracted the most interest. These activities are composed of a single repeated

basic actions, for example, walking, running, cycling, stationary, climbing and

descending stairs. Other examples include some behaviours specifically for fitness

monitoring purposes (Tapia et al., 2007), such as rowing, lifting weights, bicep-

curls and doing push-ups. Beyond that, some researchers (Choujaa and Dulay,

2008; Dernbach et al., 2012) used mobile devices to detect more complex daily

activities, such as shopping, sleeping, going to work, cooking, sweeping and eating.

These are composed of a series of multiple basic actions and proposed primarily for

lifestyle services. Besides, recent applications also consider to distinguish different

transport modes on smartphone (e.g. walk, car, bus or train) (Reddy et al., 2010;

Sankaran et al., 2014; Zheng et al., 2008) and the placement of the smartphones

relative to the user body (e.g. in pocket, hand, waist and arm) (Chen and Shen,

2017; Saeedi et al., 2014).

The set of behaviour categories to be recognised plays an important role in

the design of a behaviour recognition system. It can help the developers to decide

which sensors, features or classifiers to use. For example, using only accelerometer

measurements has been shown to be enough for distinguishing different transport

modes (Hemminki et al., 2013; Shafique and Hato, 2015), but performs poorly for

distinguishing climbing and descending stairs (Shoaib et al., 2014; Xue and Jin,

2011). The boundaries between walking and jogging, or jogging and running are

difficult to define, thus are hard to recognise using most classifiers (Singpurwalla

and Booker, 2004).

3.1.2 Selection of sensors and features

Different types of sensors have been applied for behaviour recognition. Among

them, accelerometers were used as the dominant sensor in most studies. An ac-

celerometer measures the nongravitational acceleration along the sensitive axes

with respect to inertial space. The nongravitational acceleration is also known

as specific force. Bouten et al. (1997) first estimated the significant relationships

between accelerometer output and energy expenditure, which built the theoretical

foundation of the behaviour recognition research that followed. Van Laerhoven

et al. (2002) later tried to use 30 three-axis accelerometers distributed over the

body to analyse the influence of the number of sensors on classification accu-

racy. They found that most algorithms perform better as the number of sensors

increases, but the performance for a set of behaviours does not improve mono-

tonically as sensors are added. Then the improved performance of data mining

techniques enabled behaviour recognition to employ machine learning and pattern
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recognition algorithms. In the work of Bao and Intille (2004), a decision tree clas-

sifier was applied to distinguish 20 daily activities with an overall accuracy rate of

84%. All the data were collected using five biaxial accelerometers worn on different

parts of body. The sensing capabilities of smartphone accelerometers for different

behaviours have been further illustrated in the subsequent work (Guidoux et al.,

2014; Khan et al., 2013; Mitchell et al., 2013; Zhang et al., 2010). Moreover,

the recognition of behaviours was not limited to human activities. Hemminki

et al. (2013) used the accelerometers in a smartphone alone to distinguish dif-

ferent types of land vehicles and transport modes, including stationary, walking,

bus, train and metro.

Researchers have also explored the integration of other sensors with ac-

celerometers to improve the recognition accuracy, depending on the classification

tasks. With the incorporation of gyroscopes, the measurements of the rotation

due to movements can be obtained, from which the angular velocity about the sen-

sitive axes with respect to inertial space can be determined. Kunze and Lukowicz

(2008) showed that the combination of accelerometers and gyroscopes could lead

to a recognition accuracy of about 90% compared to 65% using only accelerometers

and 72% using only gyroscopes. The magnetometers measure the magnetic flux

density, from which the orientation of the device relative to the Earth’s magnetic

field can then be estimated. Bahle et al. (2010) found that integrating the mag-

netic variations accompanying with the behaviours could improve the recognition

accuracy that merely relies on combinations of accelerometers and gyroscopes. He

and Li (2013) further confirmed that a combination of inertial sensors and mag-

netometers was effective to detect postural changes. The altitude changes of the

device can be determined from a barometer. It measures the absolute pressure,

from which the altitude above sea level can be inferred. It was illustrated that

the integration of a barometer with accelerometers can increase the classification

accuracy of climbing and descending stairs from between 80% and 85% to about

95% (Moncada-Torres et al., 2014). It has also been shown that the fusion of

the barometer and accelerometers can be used for the detection of the states idle,

walking and vehicle, with classification performances better than either sensor

used alone (Sankaran et al., 2014). Due to their sensing ability and relatively low

power consumption, accelerometers, gyroscopes, magnetometers and the barom-

eter form the main sensor combination for behaviour recognition.

Additional information pertaining to the behaviours could also be useful for

behaviour recognition. Audio data can provide sound intensity information on
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the surrounding situation. As for the transport modes, microphone is activated

to capture audio data, which is then utilised to detect whether a person is in a bus

or an underground train (Han et al., 2012). The frequency domain features, mel-

frequency cepstral coefficients, were employed for audio data classification. Ward

et al. (2006) combined microphones with triaxial accelerometers to identify nine

physical movements that are characterized by different hand motions in a work-

shop environment. The microphones were mounted on two positions on the user’s

arm to record the accompanying sound with hand motions. The system proposed

by Khan et al. (2014) fused information from accelerometers, a barometer and

a microphone to detect 15 activities (e.g. walking, running treadmill, watching

TV and driving a car). The time domain features, zero-crossing rate and sig-

nal energy, were extracted from the audio data and employed in SVM classifiers.

The comparison results showed that the optimum classification performance was

achieved when all the sensors were used at the same time.

Speed values calculated from GPS data were also considered to assist with

behaviour recognition. By modelling the speed distribution of each activity, Ban-

croft et al. (2012) used a foot-mounted device equipped with a GPS receiver and an

inertial measurement unit (IMU) to determine motion-related activities including

walking, running, biking and moving in a vehicle. They achieved a classification

error of less than 1% using a Näıve Bayes probability model. Bolbol et al. (2012)

investigated to infer the transport modes (car, walk, metro, train and bus) from

GPS data on the u-blox receiver. The speed, acceleration, distance and heading

change were derived as features applied in an SVM classifier, achieving an 88%

prediction accuracy. Among them, the underground part of metro mode where

GPS signals are lost of track might be recognised from the time interval and dis-

tance between two successive GPS fixes. In another similar work (Reddy et al.,

2010), different transport modes were identified using a built-in GPS receiver and

accelerometers in the smartphone with an overall classification accuracy of 93.6%

when GPS is available.

Other sensors, such as light sensors, humidity sensors and temperature sen-

sors have also been used in the literature (Choudhury et al., 2008; Lester et al.,

2006). However, they have proved to be inappropriate for behaviour recognition

as they tend to sense the environment in which a device operates in rather than

the behaviour itself.

In information extraction phase, various features are extracted from the sen-

sor signals. The main motivation of feature extraction is to obtain the representa-
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Table 3.1: Typical features for behaviour recognition

Domain Features

Time

Mean, standard deviation, variance, kurtosis, range,

interquartile range, entropy, autoregressive coefficients,

peak-to-peak amplitude, zero crossing rate

Frequency
Fast Fourier transform coefficients,

Discrete cosine transform coefficients, energy

tive and non-redundant characteristics from raw sensor data and interpret the raw

measurement as a finite number of parameters, so that the extracted features can

then be used in both training and testing of the classification methods. There are

two main types of features: time and frequency domain features. Time domain

features are directly calculated from raw measurements across sequential epochs

of time. They are typically some statistical measures, such as mean, range and

standard deviation. High and low pass filters have been used in some studies

to separate the signals on a frequency basis. The frequency domain features are

obtained from a fast Fourier transform (FFT). The output of a FFT provides a

series of coefficients that represent the amplitudes of the frequency components

of the signal and the distribution of the signal energy. Then different frequency

domain features can then be used to characterize the spectral distribution from

these coefficients. The most commonly used features in both time and frequency

domains among literatures are listed in Table 3.1.

Some extracted features might contain redundant or irrelevant information

that can negatively affect the recognition accuracy. Then, selection of features

can be implemented to find the optimal feature subset from original features that

can best distinguish behaviours. Feature selection is fundamentally a process of

heuristic search of subsets, with each state in the search space specifying a candi-

date subset for evaluation. For a dataset with N features, there exist 2N candidate

subsets. Thus for a large-scale dataset, an exhaustive search becomes impractical.

On the contrary, a sequential search gives up completeness by adding or removing

features at one time. Examples include sequential forward selection, sequential

backward elimination and bi-directional selection (adding and removing features

simultaneously). Algorithms with sequential search are simple to implement and

fast in producing results as the order of the search space is usually O(N2) or less

(Liu and Yu, 2005). At the same time, the randomization for feature selection
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algorithm is essential in order to escape local optima in the search space. Two

different approaches of randomization can be implemented, depending on the al-

gorithms. One is to include or exclude random feature subset into consideration,

which is explicitly part of sequential searching processes. The other is to generate

the next subset in a completely random manner, which is typically fairly low to

find the optimal feature subsets and difficult to choose the parameters.

3.1.3 Classification algorithms

Once features have been derived from the sensor data, they are used as inputs

to the classification algorithm. The degree of complexity of these classification

algorithms varies from threshold-based methods to different machine learning al-

gorithms. With a threshold-based classification, features are simply compared to

a predetermined threshold to determine if a behaviour is being performed. This

approach has been successfully implemented for some simple recognition tasks,

such as fall detection (Bourke et al., 2007; Nyan et al., 2006), either static or

dynamic activity classification (Mathie et al., 2003; Veltink et al., 1996).

In machine learning approaches, a classification model is constructed from

the training dataset, from which the future data can be classified to one of the

categories. There are two main machine learning approaches, supervised and

unsupervised learning, depending on whether the classification models are built

from labelled data or not. Since a behaviour recognition system should return a

label, such as walking, sitting or running, a supervised machine learning approach

was adopted by most studies. Among numerous supervised machine learning al-

gorithms that have been applied for behaviour recognition, Näıve Bayes (NB),

k-Nearest Neighbours (kNN), artificial neural network (ANN), decision tree (DT)

and support vector machine (SVM) are the most commonly used ones. In Guin-

ness (2015), the author compared the performances of different machine learning

algorithms for distinguishing 7 behaviours (walking, static, moving slowly, run-

ning, driving, on a bus or train) using accelerometers and GPS measurements.

The results suggested that DT (95.4%) and RF (Random Forest, 96.5%) algo-

rithms exhibits the better classification accuracy than ANN (87.2%), NB (81.5%),

Bayesian Network (90.9%) and SVM (80.2%). It is important to notice that not

all contexts are equally easy or hard to detect. Some behaviour recognition tasks

are more difficult than others, depending on many factors, such as sensors used,

sensor placements and features selected. Therefore the performances of different

recognition research studies in most cases are not directly comparable.

The supervised learning approach requires all training data to be clearly la-
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belled. In semi-supervised learning, even though some data may be unlabelled,

they can still contribute to train a classification model. For instance, a semi-

supervised learning based solution was proposed in Guan et al. (2007) and tested

with ten daily behaviours. Experiment results showed that the proposed system

performs better than three supervised classifiers (NB, kNN and DT) with the

classification accuracy around 85% when 90% of the training data were not la-

belled. Nevertheless, an implementation of semi-supervised learning approach for

real-time behaviour prediction is still missing by now. This is mainly because

most semi-supervised classification approaches should first estimate the labels of

all unlabelled training data through iterations and then apply a conventional su-

pervised learning algorithm. The first step is very computationally expensive.

Additional efforts are still required to overcome the challenges.

3.1.4 Online/offline implementation

In machine learning, the offline approach is to ingest all the data at one time

to build a model or for classification, whereas the online approach is to ingest

one instance at one time to update the parameters of the training models or to

obtain the classification results. Although there have been numerous research

on behaviour recognition, most of the studies were performed offline, for both

training and testing. A complete offline implementation may be useful for some

applications where the user does not need an immediate feedback. However, for

a context adaptive navigation application, we are interested in what the user

is currently doing. Thus an online recognition/classification running on mobile

devices becomes necessary. By online behaviour recognition, the data collection,

preprocessing and classification steps shall be done locally on the smartphones.

Figure 3.2 presents different online and offline implementations. For an online

classification system, its training phase can still be handled with offline processing.

According to the literature surveyed, most of the studies adopt this approach,

mainly due to the limited memory and battery resources of mobile devices. The

classification models from the whole training dataset can be created first, so that

these models can be used in the online classification phase without dealing with

the burden of the training phase.

Besides, there is a client-server approach that can support online classifica-

tion as well. The mobile devices, acting like a client, upload the sensed data to

a backend server or a cloud server and download the classification results via an

Internet connection (Shoaib et al., 2015). This approach is adapted to run heavy

load computation on the server side but can cause time delays at the same time,
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Figure 3.2: Different online/offline implementation of behaviour recognition

thus it may not be the best option for the continuous real-time navigation appli-

cations. It is also noticed that Google Play has launched an Activity Recognition

API (Google, 2018b) that can support the activity recognition using Google’s

pretrained models on most Android platforms.

3.1.5 Limitations for navigation applications

Although there are plenty of research on behaviour recognition, the following two

aspects should be improved in order to provide useful behavioural information for

navigation applications.

First, the frameworks of behaviour recognition have been developed for a wide
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range of different applications, such as healthcare and transport. The frameworks

designed in general may not be suitable for context adaptive navigation purposes,

so specific categorization and recognition frameworks need to be proposed fit for

navigation purpose. For example, most previous research focused on either human

activities or different transport modes. However, few studies combined both of

them. Second, even though many features from different sensors have been applied

for behaviour recognition. The contributions of both the sensors and features have

not been identified explicitly.

3.2 Environment detection

Knowing the environmental context of mobile users plays an essential role in en-

abling context adaptive navigation applications. Numerous navigation techniques

only perform best in certain environments. For instance, Wi-Fi positioning tech-

niques require Wi-Fi signals, which are unlikely to be presented in remote or open

areas, whereas GNSS shadow matching is optimised for an urban environment.

For more accurate and reliable navigation solutions, environmental context can

help the navigation system select the optimum set of radio frequency signals used

for positioning. Environment classification can be beneficial for other fields be-

sides navigation, such as automatic image tagging or upstream phone application.

3.2.1 Indoor/outdoor classification

In the literature, existing research on environment detection mainly concentrated

on distinguishing if the user is indoors or outdoors, which is the basis of detecting

more detailed environment categories. It can also provide primitive and essential

information for a context adaptive navigation system, since indoor and outdoor

navigation fundamentally rely on different kinds of radio frequency signals and

quite distinct techniques.

Most of the existing indoor/outdoor detection methods can be classified into

either GNSS-based methods, or cellular-signal-based methods. Other sensor mea-

surements are sometimes combined alongside, such as Wi-Fi signals, the intensity

of local magnetic field, ambient light and sound.

Several systems rely on the availability and strength of GNSS signals as

indicators to infer if the user is indoors. Lin et al. (2010, 2011) first showed

that it is possible to differentiate indoors from outdoors on a geodetic GNSS

receiver. The C/N0 values indicate the attenuation level of the signals while

Rician K-Factors from GNSS signals indicate the signal fading level. The average

of these two quantities are both lower indoors than outdoors. Bancroft et al.
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(2012) further found that the C/N0 decreased substantially when the antenna

was pointed downward, which would lead to indecisive detections. Groves et al.

(2013b) later demonstrated the difference of C/N0 between indoor and different

kinds of outdoor environments by tests on a smartphone receiver. Test results

suggest that the average received C/N0 is lower in indoor environments than in

urban environments and lower in urban environments than in open environments.

Cho et al. (2014) proposed a deterministic method to infer an indoor or outdoor

environment by comparing the skyplot using the received satellite information

(elevation and azimuth) from the smartphone and the satellite orbit information.

To further improve classification accuracy, GNSS signals were used in combination

with other sensors. For instance, the light sensor is used to assist indoor/outdoor

detection, assuming the indoor light intensity is lower than the outdoor one (Xu

et al., 2014; Zeng et al., 2018). Inside the buildings with complex structure and

electrical equipments, the indoor magnetic variance changes more dramatically

than the outdoor changes, which can be detected from magnetometers (Zeng et al.,

2018). Bluetooth signals can help to detect the transition between semi-outdoor

and indoor environment by deploying Bluetooth beacons (Zou et al., 2016).

Cellular modules are supported by almost all smartphones to maintain its

telecommunication function via a network. Although cellular signals have al-

most universal coverage in both indoor and outdoor environments, their signal

strengths vary with different environments due to the attenuation of walls. Li

et al. (2014) discovered the significant drop of the cellular signal strength rather

than its absolute value when entering indoors from outdoors. An indoor/outdoor

detection system called IODetector was further proposed for indoor and outdoor

detection in the paper, relying on the cellular, light and magnetic sensor features.

These three sub-detectors provided their individual estimates and corresponding

confidence in those estimates. A hidden Markov model was then employed to

aggregate these results and output the final estimation with the highest overall

confidence. However, this IODetector uses fixed thresholds for each sensor feature

to distinguish between indoors, outdoors and semi-outdoors, which may lead to

loss of accuracy when applying for different environments or devices. According to

tests and analysis in Liu et al. (2015b) and Marina et al. (2015), the hard-coded

thresholds of cellular signals that are used to estimate the indoor and outdoor

state are not always reliable. The received RSSI values in practice depend on the

density, transmitting power and how far away from the base stations.

To overcome the limitation of hard-coded thresholds to the sensing parame-
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ters, machine learning approaches have been proposed for indoor and outdoor de-

tection. In Radu et al. (2014), a semi-supervised learning approach was considered

where part of the unlabelled data can still contribute to training a classification

model. In co-training, one of the semi-supervised learning methods, two classifiers

work in parallel with different sensor features to learn from each other for better

performance. It shows an accuracy of exceeding 90% and demonstrates a robust

detection performance in unfamiliar scenarios. Furthermore, Zhang (2016) com-

pared the classification performances of different semi-supervised learning classi-

fiers for indoor/outdoor detection. The results suggested that label spreading via

Gaussian weighed approach outperforms the co-training one consisting of kNN

and SVM classifiers. Following the initial proof of the approach, the classification

performances using different supervised machine learning algorithms were also

tested (Wang et al., 2016).

Besides GNSS and cellular signal based methods, researchers also used other

sensors for indoor/outdoor detection. The Wi-Fi network has become the most

popular technology for the Internet access, covering many indoor daily activity

zones, like residences, offices, restaurants and supermarkets. Thus Wi-Fi signals

have been considered for indoor and outdoor detection as well. Shafiee et al.

(2011) suggested that it might be potentially possible to use the number of Wi-Fi

AP with a signal-to-noise ratio (SNR) threshold setting for indoor and outdoor

detection. However, based on a series of tests on smartphone, Groves et al. (2013b)

showed that the AP number and received Wi-Fi signal strength, although useful

at detecting context changes, are not enough on their own to reliably differentiate

indoors from outdoors. In Canovas et al. (2017), a machine learning approach

relying on only Wi-Fi signal was proposed. However, its training and test data

were collected in the same places, making the claimed performance of this method

open to question. In addition, a sound-based indoor/outdoor detection approach

(Sung et al., 2015) was presented where a chirp signal is generated from the

phone’s speaker as a sound probe and received back through the microphone.

The environments are then determined from different indoor and outdoor acoustic

patterns of reverberations of the retrieved probe. Furthermore, the temperature

information has also been reported to help indoor/outdoor detection (Edelev et al.,

2015; Lee et al., 2017a). If the sensed temperature measured by the thermometer

differs from the current local value obtained from the website for more than the

maximum error by the manufacturer, the environment of the user may be inside

a building.
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3.2.2 Finer environment detection beyond indoor/outdoor

For a navigation system, a good categorization of environmental context is ex-

pected to provide an indicator of the availability of signals and other features that

may be used for determining position. A conventional GNSS technique performs

well in an open-sky environment, but degrades seriously in deep urban areas. In

a shallow indoor environment, some GNSS and cellular signals are available but

they are not when deep inside a building. Except indoor and outdoor environ-

ments, there are also some transition areas where a mixture of indoor and outdoor

positioning signals are available. Therefore, a simple indoor and outdoor environ-

ment classification is far from the requirements of a practical context adaptive

navigation application.

Although there have been substantial research into determining indoor and

outdoor environments, a much finer categorization and classification beyond that

is still in its infancy. For example, five typical scenarios (office, nature, street,

home and restaurant) were distinguished from the features extracted from GPS,

Wi-Fi, Bluetooth and audio signals using a Bayesian maximum a posteriori clas-

sifier (Parviainen et al., 2014). Wang et al. (2016) used features derived from

GSM (Global System for Mobile communications) signals and classified them into

one of four environment types (open outdoors, semi-outdoors, light indoors, deep

indoors) with the best performance achieved using the random forest machine

learning method.

There are two main problems with the relevant research. First, for a navi-

gation application, the context categorization should be proposed specifically for

navigation purposes. An environmental categorization proposed in general or for

another purpose may not be suitable for context adaptive navigation. Second,

most of the existing research distinguished the detailed environmental categories

using a supervised machine learning method, which requires the categories to

be clearly defined. However, the boundary between some environments can be

ambiguous in reality, such as urban canyons and open environments.

3.3 Contextual navigation application

Since behavioural and environmental contexts are not completely independent in

reality, there has been some context detection research into incorporating both

behaviours and environments. Most of the previous work focused on spatial con-

text association, improving behaviour recognition with environment information.

For example, Lu and Fu (2009) presented a location-aware activity recognition
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approach utilising a Bayesian Network, suggesting the accuracy of activity recog-

nition can be improved with spatial information (e.g. in the kitchen, study room

and living room). Following this work, Pei et al. (2013) demonstrated a Location-

Motion-Context (LoMoCo) model that used Bayesian reasoning to infer human

behaviour by estimating the probability of motion patterns occurring at the loca-

tions. The location was determined by using a combination of GPS and Wi-Fi fin-

gerprinting positioning, while the behaviours were estimated from the accelerom-

eters, gyroscopes and magnetometers of the smartphone. Using the same sensors,

a similar framework (Liu et al., 2015a) was later presented under hidden Markov

models, where the pedestrian location and motion states were used in a reciprocal

manner to improve their estimation of one another. An upgraded version of the

model (Chen et al., 2015) was further proposed to improve the performance of

human activity recognition from time tags, environments and the dwelling dura-

tion within the environments. The framework evaluated the behaviours using a

Näıve Bayes classifier. The test results demonstrated the multi-context solution

outperforms the solution relying only on the location information.

On the contrary, little work has been done on assisting environment detection

with behaviours. Recently, a SenseIO framework (Ali et al., 2018) was published

that used the detected activity status (in vehicle, on foot, or still) to help indoor

and outdoor classification. However, its basic assumption that the environment

will be outdoors if the user is in vehicle, does not always hold. For example, a

passenger may travel a train that operates under the ground.

3.4 Overall context determination framework

Most of the existing research on context detection has focused on either behaviour

recognition or environment detection. This thesis aims to determine both be-

havioural and environmental contexts, serving for the context adaptive navigation

system.

Figure 3.3 shows the overall framework of the context detection algorithm.

There are three main phases within context determination that will be investigated

in the next following chapters of the thesis: behaviour recognition (Chapter 4),

environment detection (Chapter 5 and 6) and context association (Chapter 7).

To validate the whole framework, a demonstration of context adaptive navigation

will be presented in Chapter 8.

In order to support the context determination process, it is necessary to

agree a common set of context categories that are clearly defined and can be dis-
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Figure 3.3: Overview of context determination framework

tinguished by the classification algorithms. A good categorization should also be

designed for navigation and positioning purposes, so that a multisensor navigation

system with many different subsystems may adapt to the corresponding context.

The behaviour and environment categorization are proposed at the start of Chap-

ter 4 and Chapter 5 respectively. The behavioural context covers different kinds

of pedestrian activities and vehicle motions, while the environmental context will

be classified into indoor, intermediate, urban and open-sky categories.

Shown inside left and right dotted boxes in Figure 3.3, behaviour recognition

and environment detection have similar processes. A wide range of features are

first extracted from the respective sensor measurements on smartphone. Then in

the training phase they are used to construct the classification models that are able

to distinguish the context categories of the test instances based on their features.

Furthermore, if necessary, context connectivity is exploited in both behaviour

and environment detection by taking advantage of the time-domain relationship of

measurements between successive epochs to reduce incorrect context classification

results from pattern recognition algorithms.

Certain behaviours are correlated with certain environment types. Behaviour

and environment association is finally considered to further improve the accuracy

of context determination. Different association mechanisms are then proposed
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and tested on both pedestrian and vehicle. All of the context estimates within

context determination shall be estimated as probabilities, so that the following

navigation system can adopt different strategies according to the certainty of the

results. The results of context determination can be used to implement suitable

positioning techniques, select different subsystems and vary the tuning of the

integration algorithms for better navigation availability and accuracy, which will

be presented in the context adaptive navigation demonstration.



Chapter 4

Behavioural Context Recognition

Behavioural context refers to the activities of users and different motions of host

vehicles. Recognition of the user’s behaviours play a important role in context

adaptive navigation. It will provide the navigation system with the additional

information about what the user is doing under a particular circumstance. For a

walking person, the pedestrian dead reckoning solution can be offered in GNSS-

denied environments. For different vehicles, horizontal and vertical constraints

may be applied to limit the positioning solution. In this chapter, behavioural

context recognition using smartphone sensors has been investigated for navigation

purposes.

This chapter begins by presenting the behaviour categorization in Section

4.1. Based on that, the overall behavioural recognition scheme is proposed in

Section 4.2 based on the categorization. Then Section 4.3 goes into details of the

construction of the classification model. A comprehensive performance assessment

is then conducted to test different aspects of the classification model in Section

4.4. As there may be faulty detection results from the classification model, a time-

domain filter is further proposed for context connectivity by using the relationship

between successive epochs and examined in Section 4.5.

4.1 Behaviour categorization

The behavioural context for navigation may be divided into several broad classes:

human activity, land vehicle, water vehicle, aircraft and spacecraft. The be-

haviours of each class rely on different host subjects, either moving in different

ways in terms of speed, acceleration and attitude, or happening in different regions

of the space. Each class may contain its detailed subdivisions or corresponding

actions. Among them, behaviours in human activity and land vehicle classes are

the navigation contexts most relevant to daily smartphone applications. Thus
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Behaviours

Pedestrian

• Stationary;

• Walking;

• Running;

• Ascending stairs;

• Descending stairs.

Vehicle

• Stationary vehicles 

with the engine on;

• Moving buses;

• Moving diesel trains;

• Moving electric trains.

Figure 4.1: The behaviour categories considered in this study

they are considered within the scope of this study to illustrate the effectiveness

of context determination framework. A set of detailed categories inside each class

are presented in Figure 4.1.

The human activity class contains typical pedestrian behaviours, including

being stationary, walking, running, ascending and descending stairs. The station-

ary category is the collection of static human activities (e.g. sitting, standing

or lying) and always indicates no position change. A finer granularity of the

stationary category is not beneficial for a navigation system but increases the

complexity of context determination, so stationary activities are not subdivided

further in the categorization. The boundary between walking and running is not

as unambiguous as others. Experiments have shown that the average speed for

walking instances is about 5 km/h with nearly 8% of them greater than 7 km/h,

while the average speed for running is around 10 km/h with 6% of measurements

less than 7 km/h (Guinness, 2015). Jogging is the activity in the between of these

two behaviours, fast walking or running slowly. Previous studies (Guinness, 2015;

Thammasat, 2013) have found that jogging cannot be detected from walking and

running, so it is not treated as an independent category here.

Different types of land vehicles may vary in map matching approaches. For

example, different buses and trains are normally mapped to different routes. A

parked vehicle is more likely to be at a station or off the road network. Land

vehicles are propelled by internal combustion engines or electric motors, sometimes

combinations of the two. The most typical public transport modes come across

in practice are covered in this study including buses, diesel trains and electric

trains. Note that all underground trains are electric for safety reasons. Different

types of vehicles can be distinguished from velocity and acceleration profiles and
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by engine vibration or road-induced vibration patterns. Engine vibration applies

mainly to internal combustion engines, whereas road-induced vibration affects

all moving land vehicles. The mode of stationary vehicles with the engine on

is included within the categorization because it can play a significant role in

context association to minimise impossible behavioural context transitions, such

as from a moving vehicle to another moving vehicle directly, or one human activity

connected to a moving vehicle without transitional behaviour categories.

Finally, the categorization of cycling shall be discussed here which is likely

to provoke controversy although it is one of the categories to be determined in

this thesis. By intuition, cycling can be treated as either the pedestrian activity

or the vehicle motion. However, as bicycles are not triggered by the engine, only

road induced vibrations can be sensed. So it is more reasonable to classify cycling

as pedestrian activity when the smartphone are taken by the user.

4.2 Recognition scheme

According to the categorization proposed in Section 4.1, a hierarchical detection

scheme is designed for behaviour recognition to proceed from a coarse-grained

classification towards fine-grained recognition subtasks. To detect different kinds

of behaviours, the recognition system consists of three classifiers: a human-vehicle

classifier, a human activity classifier and a vehicle motion classifier, which are or-

ganized into a hierarchy as presented in Figure 4.2. A human-vehicle classifier is

organized at the top level of the system to distinguish between vehicle motions

and human activities. They are detected separately because all the vehicle be-

haviours are subject to motion induced vibrations while human activities are not.

When motorised transport is recognised, the detection system proceeds to the

vehicle motion classifier for classification of different vehicle motions. Otherwise,

it proceeds to the human activity classifier.

Human-Vehicle

Classifier

Human Activity 

Classifier

Vehicle Motion 

Classifier

Figure 4.2: Overview of behaviour recognition system



4.3. CONSTRUCTION OF BEHAVIOUR RECOGNITION MODEL 69

Broad category

Classifier

Human Activity 

Classifier

Land Vehicle

Classifier

Water Vehicle

Classifier

Aircraft

Classifier

standing

walking

Using an 

escalator

shipbus

speedboat

canoe

helicopter

airliner

glider

train

car

...

...

... ... ...

Figure 4.3: Extensive framework of behaviour detection

Compared with a single classifier dealing with all behavioural scenarios, this

hierarchical scheme has two benefits. Different features and machine learning

algorithms may be implemented in different classifiers in order to achieve bet-

ter recognition performance. For instance, features relevant to motion-induced

vibrations can be applied specifically within the land vehicle classifier, but not

the human activity classifier. Then the optimal classification algorithms for each

classifier can be used accordingly. Moreover, a flexible scheme is offered as new

classes (e.g. water vehicle or aircraft) or subclasses can be added to extend the

framework. As illustrated in Figure 4.3, the top level of classifier is responsible

for distinguishing between the broad classes while the bottom level of classifiers is

capable of recognising the subclasses within each broad class. Thus introducing a

new category, such as “helicopter”, will only increase the computation complex-

ity of the aircraft classifier and not affect the complexity of the broad-category

classifier and other subclass classifiers. The classifiers and classes in solid boxes

indicate those that have been already implemented within the current context

determination framework, while those in dashed boxes indicate potential future

extensions.

4.3 Construction of behaviour recognition model

The construction of a behavioural recognition model consists of four main phases:

sensing, preprocessing, feature extraction and pattern recognition. They are gen-

eralized as follows and will be described in detail from Section 4.3.1 to 4.3.4
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respectively.

1) Sensing: In this step, different smartphone sensors are used to collect the

sensor measurements about behaviours at specific sampling rates;

2) Preprocessing: Subsequently, the sensor measurements can be processed in

various ways, such as cleaning and band-pass filtering. Then, the measurements

are divided into time segments for further processing;

3) Feature extraction: A wide range of features that are able to capture the

main characteristics of behaviours are extracted from the segmented data as the

inputs of classifiers;

4) Pattern recognition: In the training stage, the recognition classifiers for

classification are constructed and the parameters of the model are learned from

training sets. In the classification stage, the trained classifiers are used to recognise

different behaviours. The details of the machine learning algorithms used for

behaviour recognition will be described as well.

4.3.1 Sensing

As previous research (Kunze and Lukowicz, 2008; Pei et al., 2013; Zhang et al.,

2010) has already proved, among the sensors in a smartphone, measurements from

the inertial sensors are capable of taking the leading roles in motion recognition.

The accelerometer and gyroscope signals are able to capture the main character

of kinematic motions indirectly by measuring the specific force and angular rate.

Motion can also be inferred from estimating the magnetic features. Magnetome-

ters sense the intensity of ambient magnetic fields, enabling changes in heading

to be detected when there are little magnetic disturbance due to environments.

A barometer, short for a barometric altimeter, measures the ambient air pres-

sure, from which the changes in height can be derived (Groves, 2013b). Although

GNSS can provide position and velocity measurements, it is less useful in sensing

the differences between different pedestrian behaviours. Moreover, the provided

position and velocity information from GNSS are not always reliable as they relies

on good GNSS reception conditions. Previous research (Guinness, 2015) trying

to obtain velocity information from GNSS has been proved to be unsuccessful

due to its large noise in velocity measurements. For instance, more than 17%

of the static data has a speed measurement larger than 2 km/hour. For these

reasons, GNSS will not be considered for behaviour recognition. In summary, in

this study, accelerometers, gyroscopes, magnetometers and a barometer, found in

most smartphones, are used for behavioural recognition.

The accelerometers, gyroscopes and magnetometers all have three orthogonal
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Figure 4.4: The definition of the sensor axes on smartphone

sensitive axes, referred to as the x-axis, y-axis and z-axis respectively. The direc-

tion of each axis on smartphone is expressed in Figure 4.4. The measurements of

accelerometers and magnetometers are made along the sensitive axes, while the

measurements of gyroscopes are made about three axes.

4.3.2 Preprocessing

Prior to feature extraction, the raw sensor samples have to be divided into small

segments over time in order to generate features. The selection of an appropri-

ate window length is important, and different durations can be set for it. At a

given sampling frequency at 100 Hz, a 400 sample window is trade-off between

behaviour recognition accuracy and latency. A further discussion of the choice

of window length will be covered in Section 4.4.2.2. It is shown that a window

length of four seconds was an effective and sufficient value for single-epoch be-

haviour recognition, neither too short to fully describe the performed context, nor

too long to avoid mixing multiple contexts in a single window. A 4s sliding win-

dow with a 50% overlap between consecutive windows is used for training data.

The overlapped processing of signals over time is applied because it captures the

missing information between successive windows and includes them in the spec-

trum calculation. With 50% overlapping, each sample has to be processed in two

windows without imbalance. (e.g. A 60% overlapping will result in some sam-

ples processed twice and some processed three times.) An illustration of the 50%

sliding window approach is shown in Figure 4.5.

However, the recognition performance may be affected by orientation changes

if the model is trained only for a specific orientation (Shoaib et al., 2014; Sun

et al., 2010). In order to minimise such effects, the magnitudes of the sensors are

calculated from the outputs of three axes, x, y and z, thus

magnitude =
√
x2 + y2 + z2. (4.1)
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Figure 4.5: The sliding windows of accelerometer measurements

After calculating the magnitudes, the existence of a sequence with a non-zero

mean can hide important information in the frequency domain, so the means of

the magnitudes are removed from each segment prior to computing the frequency-

domain features.

The main error sources of the sensors are the bias and noise. The effect of the

bias can be largely reduced by removing the mean of the magnitude from sensor

measurements. The noise causes about 5% errors on measurements (Kos et al.,

2016), so its influence on the extracted features is very small.

4.3.3 Feature extraction and selection

Once the data pre-processing is completed, features need to be extracted from the

segmented data to be used for training and classification. A good set of feature

measurements can often provide accurate and comprehensive descriptions of pat-

terns from which the differences between context categories are easily discerned.

In this study, both time-domain and frequency-domain features are extracted for

behavioural recognition.

Time domain features describe temporal variations of motions during the

sliding window. The time domain features selected include range, variance, skew-

ness and kurtosis extracted from all sensors. The effectivenesses of these features

for behaviour classification have been shown in different studies (He et al., 2012;

Saeedi et al., 2014; Shoaib et al., 2014). Moreover, zero-crossing rate (ZCR) is

also extracted from the accelerometer signals after extracting the mean values,

which is used to differentiate different periods of human activity changing with

the time. They are expressed as follows and summarized in Table 4.1:

range = max{x} −min{x} (4.2)
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σ =
√
E{(x− µ)2} =

√√√√ 1

N

N∑
n=1

(xn − x̄)2 (4.3)

skewness =
E{(x− µ)3}

σ3
=

1

Nσ3

N∑
n=1

(xn − x̄)3 (4.4)

kurtosis =
E{(x− µ)4}

σ4
=

1

Nσ4

N∑
n=1

(xn − x̄)4 (4.5)

ZCR =
1

N − 1

N−1∑
n=1

I{(xn − x̄)(xn+1 − x̄) < 0} (4.6)

where σ indicates the variance, N is the number of samples over the window, µ is

the mean, xn represents the n-th epoch of data in the window and the indicator

function I(.) is 1 if its argument is true and 0 otherwise.

Table 4.1: Behavioural features in the time-domain

Expression Human-Vehicle Human Classifier Vehicle Classifier

F1 rangeacc
√ √ √

F2 rangegyro
√ √ √

F3 rangemagn
√ √ √

F4 rangebaro
√ √ √

F5 σacc
√ √ √

F6 σgyro
√ √ √

F7 σmagn
√ √ √

F8 σbaro
√ √ √

F9 skewnessacc
√ √ √

F10 skewnessgyro
√ √ √

F11 skewnessmagn
√ √ √

F12 skewnessbaro
√ √ √

F13 kurtosisacc
√ √ √

F14 kurtosisgyro
√ √ √

F15 kurtosismagn
√ √ √

F16 kurtosisbaro
√ √ √

F17 ZCRacc

√

Frequency-domain features describe the periodic characteristics of motions
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during the sample window. In frequency-domain analysis, peaks are centered on

different frequency values for different behaviours after a FFT. For this reason,

features in the frequency spectrum can reveal significant information on motion

periods and vibration frequency. In the human-vehicle classifier and human ac-

tivity classifier, the frequency of the largest spectrum peak and related peak mag-

nitude of accelerometers and gyroscopes, are extracted to capture the differences

between motorised and non-motorised behaviours, and the main temporal period-

icity of different human activities. Specifically, according to Groves et al. (2013b,

2014), the land vehicles always exhibit one or more peaks between 20 Hz and 40

Hz due to vibration and small peaks below 10 Hz when the vehicle is not moving.

Thus all frequency domain features of the vehicle classifier are estimated in the

following sub-bands instead of the whole spectrum: 0-10 Hz, 10-20 Hz, 20-30 Hz,

30-40 Hz, 40-50 Hz.

The Power Spectral Density (PSD) of signals shows the strength of the signal

power distributed in the frequency spectrum, thus the PSD of accelerometers is

adopted in the vehicle motion classifier to distinguish different vehicle motions

with diverse vibrations. For finite time series xn sampled at a discrete time interval

of ∆t for a total measurement period T = N∆t, the PSD is defined by

Sxx(ω) =
(∆t)2

T

∣∣∣∣∣
N∑
n=1

xne
−iωn

∣∣∣∣∣
2

. (4.7)

Table 4.2: Behavioural features in the frequency-domain (sub-bands refer to 0-10 Hz,
10-20 Hz, 20-30 Hz, 30-40 Hz and 40-50 Hz)

Expression
Human-

Vehicle

Human

Classifier

Vehicle

Classifier

F18 Peak magnitudeacc
√ √

F19 Peak magnitudegyro
√ √

F20 Frequency index of F18
√ √

F21 Frequency index of F19
√ √

F22-F26 Peak magnitudeacc in sub-bands
√

F27-F31 Peak magnitudegyro in sub-bands
√

F32-F36 PSDacc in sub-bands
√

However, some of the extracted features may be redundant, introducing noise
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and irrelevant information. This can cause a deterioration of the classification

performance. Feature selection techniques are therefore implemented in order to

identify the most relevant features for distinguishing different activities. To ex-

plore the best combination of features, the Sequential Forward Floating Selection

(SFFS) algorithm (Pudil et al., 1994) is used in this study. The advantage of the

SFFS algorithm is that it can identify the best features according to their classi-

fication accuracy by using an arbitrary classifier. It is time-efficient in selecting

features from large-scale feature sets. The SFFS algorithm aims to identify the

feature subset that minimise the misclassified samples over all feasible subsets to

obtain better classification performance.

The SFFS procedures are presented in Figure 4.6. The SFFS algorithm ini-

tializes with an empty set and consists of two main procedures: a new feature

is added into the current feature subset if better classification performance is

achieved. A conditional exclusion is then applied to the new feature subset, from

which the least significant feature is determined. If the least significant feature is

the last one added, the algorithm goes back to select a new feature. Otherwise

the least significant feature is excluded and moved back to the available feature

subsets and conditional exclusion is continued. This cycle is repeated until meet-

ing the terminal conditions where there is no further improvement of classification

performance or the maximum number of iterations has been reached. The advan-

tage of this method is that the discarded features can be selected again in the

inclusion and exclusion procedures.

4.3.4 Classification algorithms

Supervised classification methods learn a model of relationships between the target

values and the corresponding input feature vectors consisting of training samples

and then utilize this model to predict target values for the test data (Bishop,

2006). Note that in the algorithms described in this section, it is assumed that

there are L possible behavioural categories C = {Ck | k = 1, 2, · · · , L}. Given a

training dataset X = {xi,j | i = 1, 2, · · · , N ; j = 1, 2, · · · ,M}, each feature vector

xi = {xi,1, xi,2, · · · , xi,M} is assigned to a target value yi ∈ C. M is the number

of features and N is the number of the training samples in the dataset.

Although there are plenty of supervised classification algorithms that have

been developed, only decision tree and relevance vector machine (RVM) are in-

troduced in detail in this section as they are the main algorithms used in the

behaviour recognition framework. The reason why they are selected is explained

in Section 4.4.2.1.
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Figure 4.6: Sequential forward floating selection block diagram

4.3.4.1 Decision tree

A decision tree is a method that performs a recursive binary partitioning of the

feature space to reach a decision. Given training samples and the corresponding

class labels, the dataset is split into branch-like segments such that samples with

the same labels are grouped together. A decision tree is described in Figure 4.7.

The root is the starting point of the tree while the nodes in the figure without

outgoing lines are the terminals representing different decisions. The samples are

classified while navigating from the root down to the terminals. Along the path,

the internal nodes split the data into two or more segments according to decision

criteria based on features until all samples at a node belong to the same class.

Let the training dataset at node m be represented by Q. For each split at

the node m, one feature value xi,j and a threshold θm are required to partition

the data into two subsets:

Qleft(θm) = {(X, y) ∈ Q|xi,j 6 θm}

Qright(θm) = {(X, y) ∈ Q|xi,j > θm} .
(4.8)
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Figure 4.7: Sketch of a decision tree

The impurity degree at node m is computed from an impurity function H(.)

to evaluate the homogeneity of the labels within the subsets after splitting. It

measures how well the samples with different labels are separated at each split.

G(Q, θm) =
nleft
Nm

H(Qleft(θm)) +
nright
Nm

H(Qright(θm)) (4.9)

where Nm is the number of the samples at node m, and nleft and nright indicate

the number of samples splitted into the left and right branches, respectively. To

choose the threshold that best splits the samples at each step, the values of θ for

each node that minimise the impurity are selected.

θ∗ = arg min
θ
G(Q, θ) (4.10)

The splitting process is then repeated for each of the child nodes and the

recursion continues until the maximum number of tree branches is reached, or

Nm = 1. Note that the choice of an impurity function depends on the task being

solved. In this study, information gain that is based on the concept of entropy from

information theory (Duda et al., 2012) is used for its computational simplicity:

H(Q) = −
∑
k

pmk log2 pmk (4.11)

where pmk is the proportion of samples Q belonging to category Ck at node m.

Amongst the supervised machine learning methods, the decision tree has

various advantages. The model is simple and clearly explained by Boolean logic.



78 CHAPTER 4.

Also, a large amount of data can be trained and tested within a reasonable time.

However, the training process of decision tree methods cannot guarantee to return

the globally optimal tree. Moreover, once some classes dominate the training

dataset, the trained decision tree structure may be biased towards the majority

class, resulting in poor prediction accuracy of the samples actually belonging to

the minority class.

4.3.4.2 Relevance vector machine

Fundamentally, a RVM is a binary classifier (y ∈ {0, 1}) under a Bayesian proba-

bilistic framework (Bishop, 2006). The relationship of the input vectors and their

real-valued predictions t(xi) is modelled by a linearly weighted function

t(xi; w) =
N∑
i=1

wiφ(xi) = wTφ(xi) (4.12)

where w denotes the weights of samples and φ(xi) is a nonlinear basis function.

The input data samples xi are classified according to the sign of t(xi). To infer

the function t(xi), we need to define the basis function and then to estimate the

weights from the training dataset. In here, the radial basis kernel function is used

with σ as the free parameter, so that:

Φij = φT(xi)φ(xj) = exp

(
−‖xi − xj‖2

2σ2

)
. (4.13)

A Bayesian probabilistic framework is then applied by introducing a posterior

distribution over the weights. According to Bayes’ rule, the posterior probability

of w is

p(w|y,α) =
p(y|w,α)p(w|α)

p(y|α)
(4.14)

where y = (y1, y2, · · · , yN)T, αi is the parameter used to approximate the distribu-

tion of wi in Equation 4.15, and α = (α1, α2, · · · , αM)T. p(y|α) is the likelihood

of the target values given the training dataset.

In order to obtain the values of w, a maximum-likelihood estimation will

generally lead to severe overfitting (Tipping, 2001). To avoid it, RVM assumes a

zero-mean Gaussian distribution N (0, α−1i ) over the weights, thus the conditional

prior probability p(w|α) in Equation 4.14 can be expressed as

p(w|α) =
M∏
i=1

√
αi√
2π

exp(−αiw
2
i

2
). (4.15)
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Because y ∈ {0, 1} is a binary variable, the probability p(y|w,α) can be

therefore described by a Bernoulli distribution:

p(y|w,α) =
N∏
i=1

[g(t(xi; w))]yi [1− g(t(xi; w))]1−yi (4.16)

where g(y) = 1/(1 + e−y) is the logistic sigmoid link function. Equation 4.14

with the probability densities given by Equation 4.15 and 4.16 cannot be solved

analytically. Therefore, a numerical method, the Laplacian approximation for

Equation 4.14, is used to find the maximum a posterior (MAP) weights w∗ based

on the training dataset by maximizing,

ln p(w|y,α) = ln{p(y|w,α)p(w|α)} − ln p(y|α)

=
N∑
i=1

[yi ln ti + (1− yi) ln(1− ti)]−
1

2
wTAw + const

(4.17)

where A = diag(αi). By computing the maximum value of Equation 4.17 with

respect to α and y, the mean w∗ and covariance ∆ of the given Laplacian ap-

proximation are obtained:

w∗ = B∆ΦTy

∆ = (ΦTBΦ + A)
−1 (4.18)

where B = diag(β1, β2, · · · , βN) is a diagonal matrix with βi = g(yi)[1 − g(yi)].

After obtaining w∗, the parameters α are iteratively updated using

αnewi =
1− αoldi ∆ii

µ2
i

(4.19)

where µi is the i-th posterior mean of the estimated weight wi
∗ and ∆ii is the i-th

diagonal element of the covariance matrix defined in Equation 4.18. The procedure

is repeated until the values of α converge to fixed values or the maximum number

of iterations is reached.

In order to tackle multiclass situations using the RVM method, two possible

strategies could be used (Bishop, 2006). The first one is the “one-against-all”

strategy. L binary classifiers will be created for an L-class classification and each

classifier is trained to separate one class from the others. The second strategy

is “one-versus-one”. There are L(L − 1)/2 binary RVM classifiers created to

separate every two classes. In this study, the first method is adopted as it is more
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computational efficient.

It is worth to note the difference between RVM and SVM here. Please refer

to Section 5.5.2 for the details of SVM. RVM has an identical functional form

to SVM under the Bayesian framework. RVM offers some advantages over SVM

for this classification task. First, RVM makes an Gaussian assumption on the

prior distribution over the weights that typically results in much sparser solutions

than SVM while maintaining accuracy at the same time. Second, RVM does not

require any regularizations during the training, nor does it require kernel function

to be positive defined like SVM. Third, SVM is not a probabilistic model while

RVM provides probabilistic predictions directly. Although SVM can provide prob-

abilistic outputs after Platt scaling (Platt et al., 1999), it is more computationally

expensive.

4.4 Experiments and performance analysis

The proposed behaviour recognition model is evaluated in this section, including

the description of dataset collection and the assessment of classification perfor-

mance in aspects of algorithm comparison, window length, sensor combination

and feature selection.

4.4.1 Datasets

Behavioural data was collected from several individuals and different vehicles us-

ing a Samsung Galaxy S4 smartphone. This comprised both human and land

vehicle behaviours. About 30 minutes of data was collected for each behaviour.

The behavioural motions were recorded using the 3-axis accelerometers, 3-axis

gyroscopes, 3-axis magnetometers and the barometer of the smartphone. In the

data collection, a higher sampling rate provides more samples in each window but

more processing is needed. By balancing the amount of data required per window

and the power consumption, the accelerometers, gyroscopes and magnetometers

were sampled at 100 Hz while the barometer was set at its maximum sampling

rate, 6.25 Hz.

For the human activity dataset, eight participants, including both females and

males of age range 23 to 35, were enrolled to record daily human activities, com-

prising stationary (including standing and sitting still), walking, running, climb-

ing stairs and descending stairs. During each data collection, the smartphone

was placed in the front pockets of the trousers and no instructions were given

about its orientation. To avoid mixing multiple behaviours in a single window,

the participants were allowed to conduct only one behaviour in each round of data
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collection, so the label can be assigned with the corresponding behaviour of the

collected data. All participants were asked to perform each activity as flexibly

as usual without any restrictions. The collection of the activity data has been

approved by the UCL Research Ethics Committee (Project number: 10689/001).

For the vehicle motion datasets, data were collected separately on buses, elec-

tric trains (underground) and diesel trains. Data were collected in both dynamic

and stationary (with the engine on) scenarios. During the collection, the smart-

phone was placed on a table/seat within the vehicle where noise conditions were

typical.

4.4.2 Results and discussion

4.4.2.1 Comparisons with different algorithms

To determine the most suitable algorithm for each classifier, a wide range of com-

mon supervised machine learning algorithms were compared. In addition to the

DT and RVM described in Section 4.3.4, an artificial neural network (ANN),

Bayesian network (BN), k-Nearest Neighbours (kNN), Näıve Bayes (NB) algo-

rithm and support vector machine (SVM) were assessed. The ANN, BN, kNN,

NB and SVM algorithms are described in Bishop (2006) and their capabilities for

sensing behavioural contexts have been discussed in Guinness (2015).

To carry out the evaluations for the comparison, a 6-fold cross-validation

strategy was applied to train and test each of the three classifiers in the framework

individually. Using this method, the database is randomly divided it into 6 equally

sized folders. Each time, 5 folds are used as training sets while the remaining one

is used as a test set. This procedure is repeated 6 times to ensure that all the

samples are used equally in testing, while maintaining independence of training

and testing data for model learning.

After each folder is tested, the algorithms are evaluated based on statistical

metrics. Two commonly used measures are precision and recall: precision P is the

number of results correctly attributed to the class divided by the total number

attributed to that class, recall R is the number of results correctly attributed to

the class divided by the number that truly belong to that class. In this research,

the overall accuracy of the classification results is evaluated using F1 score, the

harmonic mean of precision and recall, defined in Equation 4.22.

P =
Tp

Tp + Fp
(4.20)
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R =
Tp

Tp + Fn
(4.21)

F1 = 2 · P ·R
P +R

(4.22)

In the equations, Tp indicates the number of true positives or correctly classified

results, Fn is the number of false negatives and Fp is the number of false positives.

Table 4.3: Classification accuracy (F1 score) of different algorithms in each classifier
(%)

Algorithm Human-Vehicle Human Activities Vehicle Motions

ANN 97.4 96.4 88.2

BN 90.2 94.4 85.6

DT 98.9 91.4 87.6

kNN 93.1 95.7 81.4

NB 89.4 91.7 80.3

RVM 96.4 97.6 91.0

SVM 97.9 98.3 92.0

The performance of different supervised machine learning techniques in three

classification tasks is presented in Table 4.3. Note that each result listed in the

table is the best one achieved using that algorithm by tuning the parameters.

Among them, ANN was implemented by using Matlab Neural Pattern Recognition

Toolbox. 70% of the dataset are used for training the neural network, 15% are

used for validation and 15% are used for testing. The structure of the neural

network is a two-layer network, with a sigmoid function in the hidden layer and

a softmax function in the output layer. The number of hidden neurons is 10 and

the number of output neurons is equal to the number of categories.

For the human-vehicle classifier, the decision tree shows better performances

than the others, achieving an F1 score of nearly 99%. Compared with the random

forest algorithm that is an ensemble of decision trees, the decision tree is more

simply structured and computational efficient for both training and testing in a

binary classification task. The decision tree is therefore selected for the human-

vehicle classifier.

The classification results of the human and vehicle classifiers suggest that

RVM and SVM are both excellent candidates, with SVM performing slightly bet-

ter than RVM. However, the outputs of RVM are probabilities, while those of
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the SVM are Boolean, so the RVM provides an indication of the uncertainty of

the classification decision, which is useful for context-adaptive navigation. An-

other benefit is that the probabilistic determination is more flexible to deal with

behaviours conducted in an abnormal pattern to avoid misclassification. The

probabilistic outputs of the abnormal behavioural pattern might be low for all

categories, this behaviour can thus be classified into “unknown” behaviour in a

practical application. Therefore, the RVM is chosen for both the human activity

and vehicle motion classifiers.

4.4.2.2 Choice of window length

To determine the optimal window length for feature extraction, different values

ranging from 1s to 5s were evaluated. A longer window length than 5s would

either cause more severe behaviour detection delay or increase the risk that mul-

tiple behaviours may appear in a single window. The classification accuracies

in Table 4.4 were obtained by using the chosen machine learning algorithms for

each classifier and the same parameters within each algorithm. Results suggest

that the 4s and 5s window length have better classification performances than

the others. Among them, the shorter window would have quicker response in the

behaviour recognition application, the 4s window length is thus compromised for

behavioural feature extraction.

Table 4.4: Comparison of classification accuracy (%) of each classifier according to
different window lengths

Length Human-Vehicle Human Activities Vehicle Motions

1s 98.9 93.3 86.9

2s 98.9 95.1 90.0

3s 98.9 96.7 90.8

4s 98.9 97.6 91.0

5s 99.0 96.9 91.9

4.4.2.3 Optimum sensor combinations

To better characterise the performance of behaviour recognition, the contribution

of the sensors and sensor combinations are identified in this study. The ideal set of

sensors is the one that is able to make a decision with good inter-class separations

and minimum class overlaps. In the investigation, accelerometers, gyroscopes,

magnetometers and a barometer data are used to find the combination of sensors
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giving the best classification performance. All extracted features and the selected

machine learning algorithms are applied in each classifier.

Figure 4.8 shows the classification accuracies achieved with different com-

binations of sensors. The accelerometers and gyroscopes contribute the most

information in classification as they capture the motions and device orientation

changes. Their combination achieved better performances than using each type of

sensor alone. Magnetometers can improve the classification slightly by providing

additional information. By integrating the barometer, the classification accuracy

can be increased when there are altitude changes in behaviours, such as climbing

and descending stairs. On the contrary, for vehicle motions that do not involve

significant height changes, the integration of the barometer has no discernible im-

provement on the classification performance. Therefore the results imply that, in

general, the classifiers produce better classification as more sensors are used by

adding more complementary information.

Human-Vehicle Classifier Human Activity Classifier Vechicle Motion Classifier
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Figure 4.8: Classification performances with different sensor combinations

4.4.2.4 Performance of feature selection

The analysis in Section 4.4.2.1 and 4.4.2.2 were conducted based on all features

in order to select the optimal machine learning algorithms and window length

for behaviour recognition. The SFFS algorithm initializes with a feature empty
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set and terminates until including all features. The details of feature selection

procedures have been introduced in Section 4.3.3. The SFFS algorithm was then

implemented for behavioural recognition, by using the same dataset and the same

corresponding machine learning algorithms for each classifier that have been cho-

sen in Section 4.4.2.1.

Figure 4.9 to 4.11 show the average classification accuracy of the three classi-

fiers as a function of the number of features selected by SFFS. The shadow areas

in the figures indicate the standard deviation using cross validation. The results

show that the classification performance of each classifier can be slightly improved

from 98.9% (20 features, human-vehicle classifier), 97.6% (21 features, human ac-

tivity classifier) and 91.0% (31 features, vehicle motion classifier) to 99.3% (4

features), 97.9% (13 features) and 91.5% (27 features) respectively. After feature

selection, the corresponding dimensions of features for each classifier are reduced

at the same time. The selected features for each classifier are listed in Table 4.5.

Figure 4.9: Classification performance of human-vehicle classifier using different num-
ber of features that are selected by SFFS

4.4.2.5 Performance of overall classification

To evaluate the performance of the overall recognition system with three classi-

fiers working together, the whole dataset was divided into two parts: 200 samples

of each category in the dataset were randomly selected as test samples; the oth-
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Figure 4.10: Classification performance of human activity classifier using different
number of features that are selected by SFFS

Figure 4.11: Classification performance of vehicle motion classifier using different
number of features that are selected by SFFS

ers (about 700 samples for each category) were used as training samples. The

behaviour recognition results of this approach are shown in the confusion matrix,

presented in Table 4.6. A confusion matrix is a classification result table with

each row representing the true class and each column representing the predicted

class output from the classification algorithms.
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Table 4.5: The behavioural features selected by SFFS algorithm (the features are pre-
sented as their indexes as in Table 4.1 and 4.2)

Selected Features

Human-Vehicle Classifier F5, F6, F11, F15

Human Activity Classifier F1-F6, F9, F10, F13, F17, F19-F21

Vehicle Motion Classifier F1-F15, F22-F25, F27, F28, F30-F33, F35, F36

The results show that the system achieves an overall F1 score of 95.1%,

demonstrating that this approach can distinguish most of the behaviours. It

can be observed from Table 4.6 that the misclassification rate between human

activities and vehicle motions is less than 1% due to the hierarchical classifica-

tion scheme. However, some categories are more difficult to detect. For example,

many moving bus samples are misclassified as other vehicle motions due to similar

patterns of road-induced and engine vibrations.

Table 4.6: Confusion matrix for overall behaviour recognition algorithm

Actual
Predicted

S W R U D SV MET MDT MBS

S 91 0 1 0 0 0 0 0 0

W 0 94 0 1 1 0 0 0 0

R 0 0 91 0 0 0 0 0 0

U 0 1 1 88 2 0 0 0 0

D 0 2 0 2 71 0 0 0 0

SV 2 0 0 0 0 109 2 0 0

MET 0 0 0 0 0 3 118 2 1

MDT 0 0 1 0 0 0 0 109 3

MBS 0 0 1 0 0 3 3 9 106

*Note that: S=stationary human activities, W=walking, R=running,
U=climbing stairs, D=descending stairs, SV=stationary vehicles with the
engine on, MET=moving electric trains, MDT=moving diesel trains,
MBS=moving buses

4.5 Behaviour connectivity

One way of reducing incorrect behaviour determination is to consider the likeli-

hood of behaviour connectivity. Connectivity describes the temporal relationship
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between the current behaviour category and the previous ones. If a direct transi-

tion between two categories can occur, they are connected; otherwise, they are not

(Groves et al., 2013b). For example, stationary vehicle and pedestrian behaviour

can be connected directly, whereas moving vehicle behaviour is not because a

vehicle must normally stop to enable a person to get in or out.

4.5.1 Time-domain filtering

Behavioural connectivity is represented in a probabilistic way. Comparing with

Boolean results, there are two advantages. First, a Boolean implementation may

occasionally result in the decisions being stuck on incorrect context categories

following a faulty selection. This can occur when the correct context category is

not directly connected to the incorrectly selected category and the other categories

are poor matches to the measurement data. Expressing them in probability is a

more flexible way to both increase the directly connected category and minimise

the unlikely one. Second, a probabilistic scheme permits transitions between

context categories that are rare, but not impossible.

To represent the time-domain relationships, the likelihoods of connections

between behaviours are listed in Table 4.7, where the permitted direct connections

in reality are set to 0.9 and the unlikely connections are set to 0.1.

Table 4.7: Behavioural connection matrix (C)

Now

Prev
H V E D B

H 0.9 0.9 0.1 0.1 0.1

V 0.9 0.9 0.9 0.9 0.9

E 0.1 0.9 0.9 0.1 0.1

D 0.1 0.9 0.1 0.9 0.1

B 0.1 0.9 0.1 0.1 0.9

*Note that: H=human activities, V=stationary vehicles with the engine on,
E=moving electric trains, D=moving diesel trains, B=moving buses

As the behaviours during two successive epochs are not independent, a

straight smoothing method is first applied. As in Equation 4.23, the smoothed es-

timates are obtained by combining the normalised outputs from the classification

algorithms at epoch k and the estimates at epoch k − 1 using filter gain α.

x̂−k = α · zk + (1− α) · x̂k−1 (4.23)
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where x̂−k and x̂k−1 are, respectively, the estimates of behaviours at epoch k before

connectivity updating and estimates at epoch k − 1. x̂k = {x̂k,i} where the i-th

component of the vector represents the probability of the i-th behaviour in Table

4.7 at epoch k. zk is the detected probability of behaviours at epoch k across the

detection algorithms. α=0.5 is used here, which indicates the measurements at

epoch k and the estimates at epoch k − 1 are weighted equally.

Then the relationships between estimates are constructed based on a linear

assumption by a transfer matrix Ωk, as defined in Equation 4.24.

x̂−k = Ωk · x̂k−1 (4.24)

The transfer matrix is a quantitative representation to describe the response

of estimate at epoch k to the previous one. However, connectivity implies that

some transitions are more likely than others, thus the transfer matrix should be

re-estimated using the connectivity constraints, as follows.

x̂+
k = (Ωk ◦C) · x̂k−1 (4.25)

In Equation 4.25, notation ◦ denotes matrix element-wise multiplication, sat-

isfying (Ω ◦C)i,j = Ωi,jCi,j. Note that in most practical cases, the dimensions of

vector x̂−k and x̂k−1 are larger than one, thus Equation 4.24 becomes an under-

determined equation. To obtain the transfer matrix, the minimum (Euclidean)

norm of the transfer matrix constraint is imposed as it has been proved to be

effectively control the propagation to the perturbations in the estimates (Hansen,

1994; Rump, 2012). To calculate the matrix, a Moore-Penrose pseudoinverse

(Ben-Israel and Greville, 2003) of vector x̂k−1 is applied:

Ωk = x̂−k · (x̂k−1)
† (4.26)

In Equation 4.26, superscript † refers to the operator of pseudoinverse (right

inverse in this case), which satisfies the relationship defined in Equation 4.27. The

calculation procedures are introduced in Golub and Kahan (1965).

x̂k−1 · (x̂k−1)† = I (4.27)

The final step is to re-scale the likelihood of each category to obtain a prob-
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ability using

x̂k,i =
x̂+k,i∑
I

x̂+k,i
(4.28)

where x̂k,i is the probability of behaviour i at epoch k.

A full implementation of behaviour connectivity is summarised in Figure 4.12.
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Figure 4.12: Block diagram of behaviour connectivity

4.5.2 Performance assessment

To test the performance of the proposed connectivity method, a piece of continu-

ous underground train data was collected on a London underground train (District

line) for about 5 minutes, with the vehicle operating and stopping at the stations.

The underground train is a type of electric train.

A comparison of context recognition results with and without connectivity

has been shown in Figure 4.13. Among the outputs from the RVM, 39 samples

are misclassified. After the connectivity mechanism, 35 of the samples that were

misclassified as moving diesel trains or buses have all been corrected to the right

ones, showing that the connectivity constraint is able to reduce the number of

incorrect context selections and improve the performance of behavioural detection.

Comparing with the reference ground truth, it can also be seen that there were
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one to two-second delays after the behaviour changed, either with or without

connectivity. Thus the connectivity is not helpful to attenuate the response delay.

Figure 4.13: Performance of behaviour detection using connectivity

4.6 Chapter summary

In this chapter, a behaviour recognition framework is developed, which enables

detection of both human activities and land vehicle motions. The recognition

system consists of three classifiers, organised in a hierarchy: human-vehicle clas-

sifier, human activity classifier and vehicle motion classifier. Different features

and machine learning algorithms can be selected for each classifier. Features in

both the time-domain and frequency-domain have been extracted from the mea-

surements of accelerometers, gyroscopes, magnetometers and the barometer on

a smartphone. Then by comparing the classification performances with other

machine learning algorithms, decision tree algorithm has been chosen for human-

vehicle classifier while the RVM algorithm for human activity and vehicle motion

classifiers. Results showed that feature selection can slightly improve the clas-

sification performance of each sub-classifier, with the corresponding dimension

of input features decreased. The recognition system can distinguish most of the

behaviours with an average F1 score over 95%.

The concepts and processes of behaviour connectivity have also been inves-

tigated. By exploiting time dependent relationship between successive epochs,

connectivity was able to correct most misclassified vehicular samples, further im-

proving the accuracy of behaviour recognition.



Chapter 5

Indoor/Outdoor Detection

Environmental context affects the types of radio frequency signals available. As

indoor and outdoor navigation rely on quite distinct positioning techniques, indoor

and outdoor detection becomes a basic and important problem for a context

adaptive navigation system. In this chapter, the method of indoor and outdoor

detection using GNSS signals has been investigated.

This chapter begins by presenting the environment categorization in Section

5.1. Based on the categorization, the overall detection scheme is then presented in

Section 5.2, with accounting for why GNSS signals are selected for environment

detection. The collection of environment datasets for both indoor/outdoor de-

tection and open-sky/urban classification are then described in Section 5.3. New

features from GNSS signals are extracted as described in Section 5.4 and used in

a hidden Markov model to infer different environment types (indoor, intermedi-

ate or outdoor). In Section 5.5, the construction of the hidden Markov model is

presented in detail. Two approaches of approximating the emission probabilities

within the HMM are considered in this section. The emission probabilities are

either obtained by fitting the empirical distributions to the dataset or construct-

ing the models from machine learning algorithm. At the end of this chapter, the

indoor/outdoor detection performances using these two approaches are compared

and assessed. Some of the work presented here has been published in Gao and

Groves (2018).

5.1 Environment categorization

A good environment categorization for navigation is expected to provide an indica-

tion of the positioning techniques applicable for determining position. Generally,

the environmental context may be divided into several different broad classes: on

land, on water, underwater, air and space (Groves et al., 2013b). As the smart-
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phone is used as the sensing device in this study, it is not applicable to be used

for positioning purposes underwater, in the air or in space. Therefore, here the

range of environmental contexts is limited to scenarios on land because a common

mobile user spends most of their time in daily life on land.

The environment categorization is proposed based on the spatial distribution

in Table 5.1, with the characteristics of GNSS signals and positioning accuracy of

standalone GNSS described.

Table 5.1: Categorization of environments based on GNSS reception

Category Characteristics Accuracy

Indoor
Deep indoor No GNSS reception N/A

Shallow indoor Some GNSS reception Tens of meters

Intermediate Poor GNSS reception ∼ 30m

Outdoor
Urban Some disruption to GNSS typically >10m

Open-sky Good GNSS reception <5m

For land navigation, locating whether the user is indoor or outdoor is a basic

but prerequisite task because indoor and outdoor positioning depend on inher-

ently different techniques. For example, in an outdoor environment, GNSS or

its enhancements when necessary performs well while Wi-Fi positioning or Blue-

tooth low energy positioning are better options when staying inside a building.

Note that in reality, some connection areas between indoor and outdoor envi-

ronments exist, rendering such scenarios hard to be classified as either indoor or

outdoor. Thus, the intermediate environment category, where a client is adjacent

to a building or in a partially enclosed environment, is included as one of the

categories. In an intermediate environment, indoor positioning techniques (e.g.

Wi-Fi and Bluetooth) can still work well, while direct LOS GNSS reception can

be limited. Typical examples of partially enclosed environments are shown in

Figure 5.1, where the top side is covered but at least one surrounding side of the

area is open. In a practical contextual navigation application, the “intermediate”

environment category can serve as a bridge between indoor and outdoor categories

to smooth the transition between the two. This reduces the likelihood that an

indoor or outdoor environment is reported incorrectly, resulting in the selection

of an unsuitable positioning technology.

Outdoor environments are further divided into open-sky and urban categories
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Figure 5.1: Examples of intermediate environments

Figure 5.2: Example: GNSS positioning errors in Regent’s Park, London

based on the characteristics of GNSS reception. As GNSS uses line-of-sight ranges

between the navigation satellites and receivers to derive position solutions, its sig-

nals are subject to severe degradation in the presence of reflection and multipath.

In an open-sky environment, a conventional GNSS positioning technique is able

to provide a positioning accuracy within 5 metres on a smartphone. Figure 5.2

shows an example in Regent’s Park, an open-sky area in London. However, in

urban areas, some line-of-sight signals would be blocked by tall buildings or walls,

and some signals might be received via the reflecting surfaces. In such scenarios,

the localization accuracy degrades dramatically. This is demonstrated in Figure

5.3, where in a dense urban area in central London, the horizontal errors can be as

high as 80 metres. So such deteriorated solution should not be used for navigation

directly in applications and should be enhanced or altered by other techniques.
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Figure 5.3: Example: GNSS positioning errors in the City of London, London

For an indoor environment, many navigation techniques (e.g. Wi-Fi posi-

tioning, PDR and map matching) have better performance than GNSS and they

are not greatly affected by whether the environment is deep or shallow indoors.

Therefore, detailed indoor classification will not significantly bring any benefit to

a navigation system, so it will not be discussed further in this thesis.

5.2 Overall environment detection scheme

Different smartphone sensors whose outputs vary with features of the environ-

ment can be potentially used as detectors and each sensor used for environment

detection has its advantages and drawbacks respectively. A cellular module de-

tects cellular signal strengths from a cellular network, but at the same time the

signals strongly depend on the proximity of cellular base stations in the network.

A Wi-Fi module can receive signals broadcast from access points. However, tests

(Groves et al., 2013b, 2014) have found that the assumption, the number of ac-

cess points are larger and strength of signals are stronger indoors, does not always

stand. As a result, it was not sufficient to distinguish indoor environments from

outdoor environments directly using Wi-Fi signals.

A GNSS module supporting both GPS and GLONASS constellations is now

deployed in most current smartphones. GNSS signals are used for environment

detection is this study for two reasons. First, among smartphone sensors, the avail-

ability and quality of satellite signals tend to be less affected by factors other than

the environment type. For example, Wi-Fi, Bluetooth and cellular signals strongly

rely on the allocation density of the base stations. Their signal strengths also de-

pend on the distance away from the stations, whereas GNSS signal strengths

are roughly constant across the Earth’s surface. Second, the globally distributed
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Figure 5.4: Workflow of the environmental context detection algorithm

properties of GPS and GLONASS ensure that we can infer environments from

the availability and strength of GNSS signals anywhere on Earth (Kaplan and

Hegarty, 2006). The full development of Galileo and Beidou System in the future

will further enhance the detection performance. Currently, the main drawback

of GNSS is its high-power consumption when constantly updated (Radu et al.,

2014). As the research advances, other sensors could be added into the context

determination framework to improve upon the environment detection using the

GNSS module. In addition, the new generation of GNSS chips (e.g. the Broad-

com BCM47755 deployed in Xiaomi 8 smartphone (Broadcom Inc., 2018)) can

consume less power but achieves higher accuracy than the previous ones.

Based on the categorization proposed in Section 5.1, different environmental

contexts will be detected using GNSS signals in two phases. As shown in Figure

5.4, the features extracted based on the availability and strength of GNSS signals

will first be used to classify the environment as indoor, intermediate or outdoor.

This phase of environment detection will be discussed in the following part of

this chapter. The further classification of outdoor environments into urban and

open-sky areas will be investigated in Chapter 6.
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5.3 Environment data collection

GNSS measurements, comprising GPS and GLONASS data, were collected at 1 Hz

using a Google Pixel smartphone (2016 version) running an Android data logging

application. Through Android Location API, time tags in Coordinated Univer-

sal Time (UTC), satellite information, the conventional GNSS position solutions

(in latitude, longitude and altitude) and GPS pseudorange measurements when

available can all be logged in files for processing. The satellite information include

constellation type, satellite ID which is pseudorandom noise (PRN) number for

most constellations (except it is orbital slot number or frequency channel number

plus 100 for GLONASS), the C/N0 measurements, the elevation and azimuth of

the satellite.

The dataset covers different kinds of scenarios in indoor, intermediate, urban

and open-sky environments. The indoor data was collected at different indoor

sites, covering deep indoor, inner room, office with window and by the window

scenarios. Some of the sites are illustrated in Figure 5.5. The whole indoor dataset

was split into two parts: one part of sites for training the model and one part for

testing.

(a) (b) (c)

Figure 5.5: Selected indoor data collection sites

The data for the intermediate category was collected at north, middle and

south side of the portico of UCL’s Wilkins building as location P1, P2 and P3

shown in Figure 5.6. Outdoor data collection was performed using the same

device, including four sites in urban areas and four sites in open-sky environments.

They are illustrated with the points in Figure 5.7 and Figure 5.8.

For the intermediate and outdoor sites, the data was logged statically for

about 10 minutes and two rounds of data collection were performed. The time

between two rounds of data collection was longer than one hour, so they can be

considered to be independent of each other due to the satellite motions between the

two rounds. The first round of data is used for training and tuning the parameters
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Figure 5.6: Intermediate environment data collection sites on the portico of UCL’s
Wilkins building

Figure 5.7: Urban data collection sites in the City of London (Google
TM

Earth)
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(a) Regent’s Park (b) Hyde Park

Figure 5.8: Open-sky data collection sites in London (Google
TM

Earth)

of the context detection algorithms; while the second round of data is used for

testing the model. As true reference positions of outdoor sites are required for

detailed outdoor environment classification, they were established using models

on Google Earth to identify landmarks and a tape measure to measure the relative

position of the user from those identified landmarks.

5.4 Features on availability and strength of

GNSS signals

In an indoor and intermediate environment, where the GNSS signals are obscured

by walls or ceilings, most GNSS signals are attenuated by the structure of the

building and/or received by NLOS paths, rendering them weaker or very limited

LOS receptions in such environments compared with outdoor environment. Thus

features based on the availability and strength of GNSS signals are considered

and will be implemented for indoor and outdoor detection.

A set of GNSS measurements was collected using the smartphone over the

transition from an outdoor to an indoor environment. The person holding the

smartphone walked from an outdoor to an indoor environment at about the 30th

second, as shown in Figure 5.9. Figure 5.10 and Figure 5.11 demonstrate the

differences in availability and strength of GNSS signals, respectively, in the in-

door and outdoor environments. In Figure 5.10, the number of satellites received

decreased gradually after moving indoors, as more satellite signals were blocked

by the building. C/N0, expressed in decibel-Hertz (dB-Hz), is a good indicator of

signal strength in the absence of significant interference and adopted as a standard
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Figure 5.9: Photos taken during the experiment when the person stepped from out-
door to indoor environment
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Figure 5.10: Number of satellites received by the smartphone during outdoor-indoor
transition

output of GNSS receivers. C/N0 refers to the ratio of the carrier power and the

noise power per unit bandwidth. Compared with signal-to-noise ratio (SNR), it

is independent on the noise bandwidth values adopted by the receivers. Thus the

C/N0 output is a more straightforward metrics to compare the signal strengths

across different devices. Figure 5.11 shows the C/N0 values of three selected satel-

lites. A drop of about 5 dB-Hz was observed when the person was nearing the

building, following by a sharp decrease when they entered. It was also noted that

most of the satellite signals indoors were weaker than 20 dB-Hz and the satellite

PRN 83 lost track after about 90s.
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Figure 5.11: Selected C/N0 values of the selected satellite signals during outdoor-
indoor transition

Figure 5.12: C/N0 measurement distributions under different environments (indoor
data were collected at the site shown in Figure 5.5(b); intermediate data
were collected at P1 in Figure 5.6; urban data were collected at P1 in
Figure 5.7; open-sky data were collected at P1 in Figure 5.8(a)).
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Figure 5.12 presents frequency histograms showing the distributions of C/N0

measurements over 500s from different environmental categories for illustration.

A number of trends may be identified from the histograms. As expected, the

average received C/N0 is lower in indoor environments than in urban and open-sky

environments, and the value for the intermediate environment is between indoors

and outdoors. The peak between 30 and 40 dB-Hz in the indoor histogram shows

some direct LOS signals and strong reflected signals are available indoors. In

outdoor environments, a signal with a higher C/N0 is more likely to be LOS

than NLOS (Wang et al., 2015). In urban areas, more NLOS signals are received

due to the reflection from the surface of buildings, therefore the average C/N0

is normally lower in urban than open-sky areas. By comparing the GNSS C/N0

distributions, it can also be seen that the proportions of signals weaker than 25

dB-Hz vary between different environment types. Most of the signals received in

an indoor environment are weaker than 25 dB-Hz while increasing proportions of

signals stronger than 25 dB-Hz are observed from intermediate to urban and open

sky environments.

To evaluate the availability and strength of GNSS signals in different envi-

ronment contexts, the number of satellites received and the total measured C/N0,

summed across all the satellites received at each epoch, were considered. Note

that as the average number of satellites received indoor is normally less than those

received outdoor, the summed C/N0 is considered instead of the average value.

These two metrics are shown in Figure 5.13, based on the same set of data shown

in Figure 5.12. It can be observed that the number of satellites received in the

intermediate environment was similar to that in the open-sky environment, while

the number of satellites received in the urban and indoor environments were also

similar to each other. In Figure 5.13, although open-sky and indoor environments

can be clearly distinguished from others based on C/N0 measurements, it is hard

to tell the differences between intermediate and urban environments based on the

same measurements. In summary, these two metrics are clearly unreliable and

cannot be used for indoor and outdoor recognition.

As a larger percentage of “weak” signals (less than 25 dB-Hz) have been

received indoors than outdoors, to enlarge the differences in the classification

features between environments, these signals are deducted from the observations.

Thus, two new features, numCNR25 and sumCNR25, are proposed, which are
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Figure 5.13: The availability and signal strength of all satellites received under differ-
ent scenarios

defined by

numCNR25 =
∑
i

H(CNRi)

sumCNR25 =
∑
i

CNRi ·H(CNRi)
(5.1)

where CNRi indicates the C/N0 value of the i-th satellite received at the current

epoch and the function H(·) is defined as:

H(x) =

1, if x > 25 dB-Hz

0, otherwise
(5.2)
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Figure 5.14: Extracted features under different scenarios

Comparing the features plotted in Figure 5.14 with the ones in Figure 5.13,

indoor, intermediate and outdoor (urban + open-sky) environments are not over-

lapped anymore and can be more clearly distinguished, which shows the effec-

tiveness of the proposed features. Based on the whole environment dataset we

collected, it is worth noting that sumCNR25 is typically less than 100 dB-Hz in-

doors and greater than 200 dB-Hz outdoors. For the observations between 100

and 200 dB-Hz, their specific environment types need to be distinguished using

more information, such as measurements from other sensors or the measurements

from multiple epochs.
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5.5 Hidden Markov model

A hidden Markov model is a time-sequential pattern recognition algorithm, which

assumes a Markov process (Bishop, 2006) with the states (indoor, intermediate

or outdoor environment in this study). The Markov process predicts the future

states of a process relying only on the present state, not on the sequence of events

that preceded it, so it is capable of modelling the process of a device moving

from one environment to another according to observations. Within an HMM,

the probabilities that the system is in each of three states are estimated, so that

the navigation system knows the certainty of the decision. In general, an HMM

comprises five elements as follows:

1) The state space S that consists of three hidden states: indoor, intermediate

and outdoor, which are denoted as S1, S2 and S3 respectively. At each epoch k,

hidden states satisfy the condition

3∑
i=1

P (xk = Si) = 1 (5.3)

where xk refers to the environmental context at that epoch.

2) The set of observations at each epoch k, zk = {z1,k, z2,k, · · · , z`,k, · · · , zm,k},
where z`,k is the `-th observation at epoch k and m is the number of features.

3) The matrix of state transition probabilities A = {Aji}. Each element of

the state transition probabilities matrix, Aji, defines the probability that a state

Si at the immediately prior epoch transitioning to another state Sj at the current

epoch.

4) The matrix of emission probabilities B = {Bi(k)} that defines the condi-

tional distributions P (zk | Si) of the observations from a specific state.

5) An initial state probability distribution Π = {πi} that defines the proba-

bility that the system is in each state Si at the first epoch.

x1 x2 xk... xk+1

z1 z2 zk zk+1Observations

States

Transition probability

Emission probability

Figure 5.15: Overview of first-order hidden Markov model



106 CHAPTER 5.

In this study, we use the first-order HMM, which assumes the current en-

vironmental context is only affected by the immediate previous context. Figure

5.15 is an illustration of a first-order hidden Markov model. Given the sequence

of the observations, the most likely sequence of the contexts can be inferred using

the Viterbi algorithm (Bishop, 2006; Viterbi, 1967), from which the probabilities

of each context at each epoch are estimated. The probabilities of the model are

determined as follows.

� Initial probability

As there is no prior information about the initial state, we have to make a

judgement based on the available initial observations. Clearly, the indoor and out-

door contexts occur much more frequently than the intermediate context. How-

ever, if there is insufficient information to correctly determine the context, it is

better to select the intermediate context than to incorrectly select the indoor or

outdoor context. The initial probabilities were therefore set as follows:

P (x1 = S1) = P (x1 = S3) = 0.4

P (x1 = S2) = 0.2
(5.4)

� Transition probability

Since the sample interval here is 1s, when a user was previously indoors, the

current state is highly likely to be indoor and might be intermediate, but is not

likely to be outdoor. This is because the user rarely moves directly from indoors

to a fully outdoor GNSS reception environment, noticing that GNSS signals ex-

hibit transitional effects immediately outside buildings as shown in Figure 5.11.

However, when the user is at the intermediate state, he/she can move directly

to either of the other states. Based on these assumptions and with reference to

the parameters applied in IODetector (Li et al., 2014), the values of transition

probability are as listed in Table 5.2. Note that the values are selected in order to

obtain an experimental balance between responsiveness to change and vulnerabil-

ity to noise. There is no intention here to model realistic transition probabilities

as this would result in the context determination algorithms taking a long time

to respond to changes.

� Emission probability

The emission probabilities describe the probability distribution of the obser-

vations for each of the three states (indoor, intermediate and outdoor). Two ways
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Table 5.2: Transition probabilities of HMM

k + 1

k
Indoor Intermediate Outdoor

Indoor 2/3 1/3 0

Intermediate 1/3 1/3 1/3

Outdoor 0 1/3 2/3

of setting the emission probabilities from the training dataset are considered in

this study, namely empirical approach and machine learning based approach. The

empirical approach is more straightforward where the emission probabilities are

directly obtained from fitting results to the training dataset. For different test

samples, the emission probabilities will keep constant in the empirical approach.

In the machine learning based approach, a classification model is first constructed

based on the training dataset, then it will give different emission probabilities

according to the input test samples while the classification model remains un-

changed. The details of two approaches will be investigated in Section 5.5.1 and

Section 5.5.2 respectively.

5.5.1 Empirical approach

In the empirical approach, the emission probabilities of each hidden state are

obtained by fitting the observations (features of each environment) according to

the training dataset described in the previous section. The observations are then

modelled as Gaussian distributions, whose means and variances are fitted to the

training part of the dataset collected at different indoor, intermediate and outdoor

sites. Note that as both numCNR25 and sumCNR25 distributions for the outdoor

data are bimodal, using a single Gaussian distribution is obviously unrealistic,

therefore the emission probabilities are modelled by a mixture of two Gaussian

distributions. As shown in Figure 5.16(f), two Gaussian distributions are jointed

at the cumulated probability value of around 0.5, so two equal weights are set to

each distribution.

The fitting results are depicted from Figure 5.16(a) to Figure 5.16(f) cor-

respondingly. Table 5.3 shows the emission probabilities of each environment to

each feature, where the Gaussian distributions are denoted by N(µ, σ2) with mean

µ and variance σ2. From the table, it is found that the variances of the outdoor

environment are larger than the indoor and intermediate ones, which indicate the
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outdoor samples have more sparser distributions. Since the outdoor environments

can range from very deep urban, medium urban to open-sky areas, this findings

are consistent with practical scenarios.

Table 5.3: Emission probability of the empirical approach

numCNR25 sumCNR25(dB-Hz)

Indoor N(3.02, 1.4) N(88.95, 1025.37)

Intermediate N(4.58, 1.26) N(142.55, 625)

Outdoor
N(7.77, 3.25) N(242.08, 2697.4)

N(17.33, 4.58) N(607.35, 5218.4)

5.5.2 SVM based approach

The SVM is a supervised classification algorithm derived from statistical learning

theory and kernel based methods (Bishop, 2006; Vapnik, 1995). The significant

property of the support vector machine is that it does not depend on any prior

probabilities and can offer accurate results with small training samples in nonlin-

ear classification and regression.

5.5.2.1 SVM for classification

Given the training samples {z1, z2, · · · , zN} with corresponding target labels

(yi ∈ {0, 1}), the SVM can construct the classification hyperplane in the high-

dimensional feature space that maximizes the margin between two classes and

minimizes the error. As shown in Figure 5.17, the training samples with dis-

tinct labels are separated on each side of the hyperplane. At the same time, the

distances of the hyperplane to the nearest training data points of any classes is

maximized. This distance is called the optimal margin and those samples on the

margin are called support vectors.

For a nonlinear classification problem, samples are spread out by being

mapped from the original space into a higher dimensional space via the nonlinear

similarity function Φ(·), also called the kernel function, making the hyperplane

easier to be defined in the new projected space. To reduce the computational load,

a kernel function κ is defined to substitute the dot products of the transformed

vectors.

κ(zi, zj) = Φ(zi)
TΦ(zj) (5.5)
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Figure 5.16: Empirical fitting results of emission probabilities
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Maximum 
margin

      Class 1
      Class 2

Feature A

Feature B

Figure 5.17: Classification of a non-linearly separable case by SVM (the solid points
are support vectors)

Then the hyperplane can be found by solving a constrained optimisation problem:

arg min
w,ξ

J (w, ξ) = arg min
w,ξ

(
1

2
‖w‖2 + β

N∑
i=1

ξi) (5.6)

subject to the conditions:

(wTΦ(zi) + b)yi ≥ 1− ξi
ξi ≥ 0, i = 1, 2, · · · , N

(5.7)

where the hyperplane is defined by the parameters of w and b as wTΦ(zi)+b = 0,

ξi is the slack variable to tolerate the effect of misclassification of training data.

β is a positive regularization hyper-parameter, determining the trade-off between

the training error and the margin size. The above optimisation problem can be

solved by the use of Lagrange multipliers, as shown in Equation 5.8:

L (w, b, ξ,α, r) = J (w, ξ)−
N∑
i=1

αi(yi(w
TΦ(zi) + b)− 1 + ξi)−

N∑
i=1

riξi (5.8)

with αi, ri ∈ R being the Lagrange multipliers. Note that the training samples are

support vectors if and only if the corresponding multipliers are non-zeros. To find

the solutions of the above Lagrange function L, we calculate the optimal values

of w, b and ξi whose partial derivations of L are zeros, then the problem becomes
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to find the equivalent optimisation solution:

arg max
α

[
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjκ(zi, zj)

]
s.t. αi ≥ 0, i = 1, 2, · · · , N
N∑
i=1

αiyi = 0

(5.9)

Finally, a decision boundary is constructed to classify the dataset into two

classes, so that the category of test sample can be determined from the distance

between the test sample zk and the hyperplane:

f(zk) =
N∑
i=1

αiyiκ(zk, zi) + b. (5.10)

The Gaussian kernel with scaling parameter 59.95 and regularization parame-

ter β 1.29 are used for the SVM. The values of the hyper-parameters are estimated

using grid search with cross-validation. The details of tuning parameters can be

found in Appendix A.

5.5.2.2 Probabilistic SVM

Based on the output from the SVM, Platt et al. (1999) further proposed an

approach to obtain the classification probability by fitting the SVM output with

a sigmoid function:

P (yk = +1 | zk) =
1

1 + exp(Af(zk) +B)
(5.11)

The parameters A and B of Equation 5.11 are estimated using maximum

likelihood estimation from the training data and their corresponding target values.

It is worth noting that the training set can be but does not have to be the same

set as used for training the SVM (Valstar and Pantic, 2007).

To extend the binary classifier for environment classification situations with

three categories, three binary classifiers can be trained. Each one is created to

separate every two environment categories. Using Platt’s method for each SVM we

get, these pairwise probabilities are combined into posterior probabilities following
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Figure 5.18: Classification performances of different feature combinations

(Price et al., 1995)

P (Si | zk) = 1/

[
L∑

j=1,j 6=i

P (Si or Sj | zk)
P (Si | zk, yk = Si or Sj)

− (L− 2)

]
(5.12)

where Si denotes the environment context and there are L = 3 environmental

contexts in this research. As
∑L

i=1 P (Si | zk) = 1 does not hold anymore, the

obtained P (Si | zk) must be normalized.

5.5.2.3 Input feature selection

To select the optimal feature combinations for the input of the SVM, the SFFS

algorithm introduced in Section 4.3.3 is used here. Four features are considered

for feature selection: numCNR25, sumCNR25, the number of received satellites

(denoted as num) and the total signal strength across all received satellites (de-

noted as sum). The classification performance with different numbers of selected

features is shown in Figure 5.18. The results suggest that the SVM classifier can

achieve the best classification accuracy when applying three features: sumCNR25,

num and sum. In Section 5.6, the SVM-HMM approach with either two features

(numCNR25 and sumCNR25) or three features (sumCNR25, num and sum) will

be both applied for performance comparison.



5.6. EXPERIMENTS AND DISCUSSION 113

5.6 Experiments and discussion

The indoor-outdoor detection ability of the empirical HMM and SVM-HMM ap-

proaches are tested and compared in this section. The details of the classification

results of the two algorithms under different representative scenarios are presented

in Section 5.6.1. Then the overall detection performances of the two proposed

methods are compared in Section 5.6.2.

5.6.1 Performances under different scenarios

Five different locations were chosen from the test database to examine the detec-

tion performances of proposed methods under different GNSS reception conditions

– deep indoor (indoor), shallow indoor (indoor), intermediate, urban (outdoor),

open-sky (outdoor). The respective classification results for these environments

are depicted and compared in Figure 5.19. The probabilistic outputs in the figures

are provided from the SVM-HMM approach with three features as input.

In the case of the open-sky and deep indoor environments, both the empirical

HMM and SVM-HMM approaches have given very accurate detection results as all

samples of these scenarios are successfully detected with almost 100% probability.

The shallow indoor scenario is a little challenging for both methods as more

LOS signals and some strong reflected signals can be received through the window.

It can be observed from Figure 5.19(b) that most samples are classified to indoor

correctly but with some intermediate detections occasionally appearing among

them. Meanwhile, from the probabilistic output, it can be seen that the detection

results are much less certain than the deep urban and open-sky scenarios. A

similar behaviour is observed for urban data, which can be explained by the fact

that some signals are blocked by the tall buildings nearby and NLOS signals are

also received. By comparing the classification results, the SVM-HMM approach

with three input features provides more correct predictions than the other two

methods under these two scenarios.

Three approaches show similar detection accuracy under the intermediate

environment. Compared with other GNSS reception conditions, more signals are

blocked by the roof and side walls in such environment, but some NLOS signals

can still be received from the side without a wall. This makes the recognition

of the intermediate environment more challenging. The decision certainty is thus

lower than the other scenarios, and some measurements are classified as either

indoor or outdoor.
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Figure 5.19: Static experimental results of the indoor-outdoor detection algorithm

(deep and shallow indoor data were collected at the sites shown in Figure 5.5(a) and
(b), respectively; intermediate data were collected at P3 in Figure 5.6; urban data were
collected at P2 in Figure 5.7; open-sky data were collected at P3 in Figure 5.8)
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5.6.2 Overall classification performance

To compare the overall indoor/outdoor detection ability, both empirical HMM and

the SVM-HMM approach are examined using the full test dataset that has been

described in Section 5.3. The performances of the proposed methods are presented

in the form of confusion matrices. The confusion matrices of the two methods

using two input features are shown in Table 5.4 and Table 5.5 respectively. The

performance of the SVM-HMM approach with three features is presented in Table

5.6.

Table 5.4: Confusion matrix of empirical HMM approach

Predicted

Actual indoor intermediate outdoor

indoor 2070 113 0

intermediate 307 1305 217

outdoor
urban 3 389 1716

open-sky 0 0 2709

Table 5.5: Confusion matrix of the SVM-HMM approach with two input features

Predicted

Actual indoor intermediate outdoor

indoor 1942 1 240

intermediate 217 1240 372

outdoor
urban 3 239 1866

open-sky 0 0 2709

Since the numbers of the samples belonging to each category in the test

dataset are not balanced, some classification metrics, such as precision and accu-

racy, may be influenced by the performance of the dominant category. Considering

this point, the metric recall is applied for each environment to evaluate the frac-

tion of the environment instances that have been correctly retrieved over the total

amount of the environment instances. Its detailed definition has been introduced

in Section 4.4.2.1.

Comparing the correctly classified samples in the confusion matrices, the

SVM-HMM approach with three input features shows better classification perfor-
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Table 5.6: Confusion matrix of the SVM-HMM approach with three input features

Predicted

Actual indoor intermediate outdoor

indoor 2168 15 0

intermediate 35 1513 281

outdoor
urban 155 33 1920

open-sky 0 0 2709

mance than the other two. Using two features, the SVM-HMM approach and the

empirical approach perform the same level of accuracy. By using three features

selected by SFFS, the classification recall of the SVM-HMM approach is improved

to 99.3%, 82.7% and 96.1% for indoor, intermediate and outdoor environment re-

spectively. Their classification recalls for different environments are summarized

in Table 5.7. The confusion matrices further suggest that some environments are

more difficult to detect than others. Most indoor and all open-sky environment

samples can be correctly classified. On the contrary, the intermediate type be-

comes the hardest to detect due to its similar signal properties to the shallow

indoor and dense urban scenarios.

In the independent research, Niedre (2017) applied different supervised ma-

chine learning algorithms using GNSS measurements for indoor/outdoor detec-

tion. Their classification performances were tested by using the same environmen-

tal test dataset as the one in this study. The details of the corresponding confusion

matrices are presented in Appendix B.2. The supervised machine learning algo-

rithms investigated in that study include kNN, Näıve Bayes, Random forest and

SVM. Their respective classification recalls are calculated and compared with the

proposed methods in this study, as presented in Table 5.7.

The SVM-HMM with three input features and random forest algorithm pro-

vide better indoor and outdoor classification than the others. Random forests are

constructed by a multitude of decision tree algorithms at training time and output

the major class from the classifiers (Breiman, 2001). Comparing with the deci-

sion tree algorithm, random forest method is more resistance to overfitting. From

the results presented in the table, the SVM-HMM method with three features

performs slightly better than the random forest algorithm. Thus another advan-

tage of the SVM-HMM approach is its probabilistic outputs. Although the kNN

and Näıve Bayes method have good intermediate detection performances, they
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are at the cost of relatively lower outdoor detection. A lot of open-sky samples

are misclassified as intermediate environment in their confusion matrices. Based

on the fact that different classifiers are good at detecting different environments,

the ensemble method (Dietterich, 2000) may be applied to train and combine

the classification results from multiple independent classifiers for better overall

performance.

Table 5.7: The classification recall of different indoor-outdoor detection methods (%)

Method indoor intermediate outdoor

Empirical HMM 94.8 71.4 91.9

SVM-HMM with
two features

89.0 67.8 95.0

SVM-HMM with
three features

99.3 82.7 96.1

kNN 93.2 96.7 83.9

Näıve Bayes 92.3 96.3 82.6

Random forest 97.0 85.4 95.8

SVM 99.8 73.5 81.5

5.7 Chapter summary

This chapter investigates the indoor/outdoor detection using GNSS measurements

on the smartphone. A hidden Markov model is implemented to infer the environ-

ment from GNSS measurements over multiple epochs. Two ways of estimating

the emission probabilities of a hidden Markov model have been considered in this

chapter, the empirical fitting approach and the SVM learning approach.

An environment GNSS database was collected in different indoor, interme-

diate and outdoor (urban and open-sky) scenarios in London, and divided into

training and test datasets that are independent from each other. The training

dataset was used to construct the classification model while the test part was

to test the detection performances. Evaluation and comparison between two

proposed methods were conducted. The best performance of the SVM-HMM

approach is achieved with three selected features (sumCNR25, num and sum),

giving 99.3%, 82.7% and 96.1% classification recall for indoor, intermediate and

outdoor environment respectively, whereas the corresponding values for the em-

pirical HMM approach are 94.8%, 71.4% and 91.9%. By comparing with the
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classification results in other research, the average classification performance of

the combination of SVM and HMM approach with the three input features also

outperformed several supervised machine learning methods.



Chapter 6

Open-sky and Urban

Environment Classification

Following the environment detection framework in Section 5.2, once the outdoor

scenarios have been distinguished, the environment will be further classified as

open-sky or urban areas.

In an open-sky environment, with no major obstacles between the receiver

and the satellites, there are enough direct LOS signals for a good GNSS positioning

solution. However, in urban environments, where the sky view is obscured by

the surrounding objects, only a limited number of satellites are directly visible,

incurring degraded GNSS positioning performance. Thus open-sky and urban

environments are under distinct GNSS reception conditions and should adopt

different navigation techniques accordingly.

This chapter investigates the classification of open-sky and urban environ-

ment using GNSS measurements when both of their edges are not clearly defined.

It is organized as follows. The importance of why open-sky and urban areas have

to be distinguished for a context adaptive navigation system is firstly identified

in Section 6.1. To tackle the issue, a pseudorange based feature is considered and

calculated from Android raw GPS measurements. The extraction processes are

introduced in Section 6.2. To provide a continuous measure from open-sky envi-

ronment to dense urban areas, a fuzzy inference system is applied and described in

Section 6.3. In Section 6.4, its classification performance is then examined using

the environmental test dataset described in Section 5.3.

6.1 Importance of open-sky/urban classification

GNSS positioning is the most accurate navigation technique that smartphone

users rely on in outdoor environments. However, different GNSS reception condi-
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tions in open-sky and urban areas result in distinct positioning performances. The

GNSS positioning solution is derived from the ranges between the satellites and

receivers that are assumed to be direct line-of-sight. In an open-sky environment,

sufficient LOS signals can be received to obtain a positioning precision within 5

metres on a smartphone.

In urban areas, the travelled paths of satellite signals are influenced by the

surrounding building or vehicles, making GNSS positioning subject to severe

degradation due to the presence of signal blockage, reflection and diffraction.

Their details have been introduced in Section 2.1.1. For any GNSS receiver, its

positioning accuracy is mainly determined by two factors, the accuracy of the

ranging measurements and the geometric configuration of the available satellites.

The signal blockage by tall buildings will cause either insufficient received satel-

lites for positioning or poor satellite geometry. In urban areas, LOS signals across

the street are much likely to be blocked than the ones along the direction of the

street (Groves, 2011). As a result, the signal geometry, and hence the positioning

accuracy will be much better along the street than across the street. Due to signal

reflection and diffraction by tall buildings, both NLOS reception and multipath in-

terference of GNSS signals can contaminate the pseudorange measurements. They

are the main sources that degrade GNSS positioning in an urban canyon (Misra

and Enge, 2010). The NLOS signal is received via reflected path, so its pseudo-

range error is equal to the difference between the received NLOS path and the

blocked LOS path. Thus the NLOS reception imposes positive biases on ranging

measurements, which are typically tens of meters. When the signals are received

via both LOS and NLOS paths, multipath reduces the positioning performance by

distorting the correlation peak in the correlation process within the receiver. The

pseudorange measurement error due to multipath interference can be up to half

of a code chip (e.g. GPS C/A code chip is about 150 metres) when the received

LOS and NLOS are of the the same amplitude.

The poor positioning solutions in urban environments are not qualified for a

reliable navigation application and should therefore be identified. With the open-

sky and urban environment distinguished, different methods reported in Section

2.1.3 can be implemented to detect and mitigate the effect of NLOS reception

and multipath interference. Different sensors or positioning techniques may be

selected to integrate, augment or substitute GNSS to improve positioning accuracy

according to the specific requirements. The rapid urbanization in many countries

boosts the increasing demands of location based services in urban areas. Many
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Figure 6.1: Block diagram of the urban/open-sky classification algorithm

applications would benefit from more accurate navigation performance in cities,

such as vehicle lane detection for autonomous driving, location-based advertising,

and guidance for the visually impaired people.

Figure 6.1 overviews the procedures of the open-sky/urban classification.

When an outdoor environment is recognized from the indoor/outdoor detection

algorithm described in Chapter 5, the open-sky and urban categories will be fur-

ther distinguished by exploiting the pseudorange residuals that are estimated from

more than four GPS raw measurements (since raw measurements from other con-

stellations are not available on the experiment smartphone). For completeness,

the outdoor scenario is categorised as an urban environment if an insufficient num-

ber of satellites are received to calculate residuals. As a clear boundary between

open-sky and urban areas is difficult to define, a fuzzy classification method is

therefore considered.

6.2 Feature derived from raw GPS measure-

ments

At the Google I/O conference in May 2016, Google announced that raw GNSS

measurements can be accessed from the Android ‘Nougat’ operating system
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(Cameron, 2016). This means pseudorange, Doppler and carrier-phase measure-

ments can be obtained through the Android application programming interface

(API) from a phone or tablet with the compatible GNSS receiver chip. Moreover,

it also provides the opportunity to derive new features from these raw measure-

ments and to extend the indoor/outdoor environmental context determination to

more detailed classes.

The smartphone used for environment detection is a Google Pixel smartphone

(the 2016 version), which is the first generation of smartphone that supports

raw GNSS measurements. Although it can receive satellite signals from GPS,

GLONASS, BeiDou and Galileo constellations, the Qualcomm GNSS receiver chip

in the Pixel smartphone only support raw GPS measurement outputs. That is why

the feature described in this section is derived only from raw GPS measurements,

not raw GNSS measurements. A list of raw measurements that can be accessed

from the Pixel smartphone are summarized in Table 6.1.

6.2.1 Calculation of pseudorange

For smartphone, the pseudorange is not directly available from its GNSS receiver.

The receiver actually determines pseudorange by measuring the time delay applied

to a replica of the satellite ranging code that is synchronized with the incoming

satellite signal. Thus pseudorange is also perturbed by both the satellite and

receiver clock errors (δtsc and δtac) and is equal to the difference between the arrival

and transmission time multiplied by the speed of light c (Groves, 2013b). Thus,

ρ̃sa = ras + (δtac − δtsc)c

= (t̃ssa,a − t̃sst,a)c
(6.1)

where ras is the true range between the satellite s and the antenna a; t̃sst,a is the

time of signal transmission and t̃ssa,a is the time of signal arrival; the subscript c

means clock.

Equation 6.2 shows the derivation of the signal transmission and arrival times

from different raw GNSS measurements in Table 6.1. As summarized in Figure

6.2, with these information obtained through the Android API, the pseudorange

can thereby be obtained.

t̃sst,a =ReceiverSvTimeNanos [ns]

t̃ssa,a =(TimeNanos+TimeOffsetNanos)− (FullBiasNanos+BiasNanos)

− weekNumberNs [ns]

(6.2)
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Table 6.1: Key raw measurements that can be accessed from Android API (van Digge-
len and Khider, 2018)

Method Explanation

Class: GnssClock

TimeNanos GNSS receiver hardware clock value

FullBiasNanos Difference between receiver clock and true
GPS time since January 6, 1980

BiasNanos Sub-nanosecond part of above number

DriftNanosPerSecond Receiver clock’s drift

DriftUncertaintyNanos

PerSecond
Uncertainty of above value

HardwareClockDiscontinuity

Count
Count of hardware clock discontinuities

Class: GnssMeasurement

TimeOffsetNanos Time offsets if measurements are asyn-
chronous

State Sync state (Code lock, bit sync, frame sync,
etc.)

ReceiverSvTimeNanos Received satellite time, at the measurement
time

ReceiverSvTime

UncertaintyNanos
Error estimate of above value

PseudorangeRateMeters

PerSecond
Pseudorange rate (-k*Doppler where k is a
constant)

PseudorangeRateUncertainty

MetersPerSecond
Error estimate of above value

AccumulateDeltaRangeMeters Accumulated delta range (carrier phase)

AccumulateDeltaRange

UncertaintyMeters
Error estimate of above value

AccumulateDeltaRangeState Valid, cycle slip or loss-of-lock/reset
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where

weekNumberNs = 604800 ∗ 109 ∗ floor(−FullBiasNanos

604800 ∗ 109
) [ns] (6.3)

The operation floor in Equation 6.3 returns the nearest integer less than or equal

to the given number. 604800 ∗ 109 is the number of nanoseconds in every GPS

week. The above relationship is valid for GPS when the time of week is fully

decoded from navigation messages. For other constellations, the time in a week in

Equation 6.3 and system time offsets in Equation 6.2 may be different, but this is

beyond the scope of this study. The generation of pseudoranges from the Android

interfaces has been summarized in Figure 6.2.

Pseudorange

Time received

GnssClock

getTimeNanos()

Time transmitted

GnssClock

getBiasNanos()

GnssClock

getFullBiasNanos()

GnssMeasurement

getTimeOffsetNanos()

GnssMeasurement

getReceivedSvTimeNanos()

Figure 6.2: The generation of pseudorange from the Android GNSS APIs in Table 6.1

6.2.2 Derivation of pseudorange residuals

Besides the pseudorange that is derived from the GNSS receiver measurements,

it can also be estimated from position and clock offset solution (Groves, 2013b),

given by

ρ̂sa = r̂as + δρ̂ac(t̂
s
sa,a)

=
∣∣CI

e(t̂
s
st,a)r̂

e
es(t̂

s
st,a)− r̂eea(t̂

s
sa,a)

∣∣+ δρ̂ac(t̂
s
sa,a)

(6.4)

where r̂as is the estimated range between antenna a and satellite s, which can be

calculated from the estimated satellite positions r̂ees, obtained from the ephemeris,

and the estimated antenna position solution r̂eea. CI
e is the transformation matrix

from an ECEF (Earth-centered earth-fixed) frame to an ECI (Earth-centered

inertial) frame, synchronized at the time of signal arrival. ρ̂ac is the estimate

of the receiver clock offset, and t̂sst,a and t̂ssa,a are the estimated times of signal
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transmission and arrival.

The difference between measured pseudorange and estimated range to the

satellite using GNSS measurements is called the pseudorange residual. NLOS

signals may cause errors in the position solution, which would potentially result

in larger residuals for both the direct LOS and NLOS measurements. In theory,

the larger of the sum of squared pseudorange residuals, the more likely the received

signals contain NLOS signals. Therefore, the feature zPRR used for classification

is expressed as the sum of squared pseudorange residuals divided by the degrees

of freedom:

zPRR = (
N∑
i=1

|ρ̃sa − ρ̂sa|i
2)/(N − 4) (6.5)

where N is the number of satellites received at the current epoch and i denotes

the i-th satellite signal. It is worth mentioning that since the computation of

pseudorange residuals is based on the calculation of the receiver’s position, they

can only be calculated when at least five satellites received. Otherwise, there

are not enough satellite signals for positioning or not enough redundancy for

calculating pseudorange residuals. In most urban environments, the receiver can

always get the positioning result regardless of its accuracy. However, in practice,

the user may not get a positioning solution at the few seconds of a cold start as it

takes time for the smartphone receiver to acquire and track the satellite signals.

Therefore for these situations if the environment is detected as an outdoor category

but there are not sufficient received satellites for positioning, this environment will

be classified into urban areas.

6.3 Design of fuzzy inference system

Most data classification methods follow Boolean logic, a sample either belongs

to a class or it does not. It is applicable for typical classification tasks where

the exact and complete description of each category is available. For example,

walking is a kind of pedestrian motions. Potato does not belong to the fruit class.

However, in real situations, some decisions are made based on vague or imprecise

information. For example, the temperature is 20◦C and the humidity is 60%, so

the weather would feel comfortable for most people. Although the feeling is based

on the exact values of temperature and humidity, the boundary between different

feelings (such as cold, comfortable and warm) are indistinct, thus this decision

process does not follow the Boolean logic. The classification of urban and open-

sky environment is a similar case as the boundary between these two contexts
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is not clearly defined. The deterministic data classification method applied for

indoor/outdoor detection may not be the best option for this problem.

Fuzzy logic, proposed by Zadeh (1965), uses fuzzy set theory to describe

the degree of belongingness of a sample to a class. Fuzzy sets were proposed in

contrast to classical sets. In the classical set theory, an element is either a member

of the set or not. But instead of providing an absolute yes or no, fuzzy sets allow

elements to be partially in a set with a matter of degree. In other words, fuzzy

set theory deals with the similarity of an element to a class.

The fuzzy inference system (FIS) approaches the degree of belongingness

from input variables through a mechanism which is characterized by membership

functions and fuzzy rules. In a fuzzy inference system, each element is given a

degree of membership in a set. This membership value can range from 0 (not

an element of the set) to 1 (a member of the set). A membership function then

describes the relationship between the values of an element and its degree of

membership in the relevant set. Fuzzy rules are a set of if-then statements that

describe how the FIS should make a decision from the input memberships. Thus,

the rules enable the degree of output membership to be determined from the input

memberships.

It is worth specifying the difference between membership values and probabil-

ities where memberships are commonly misunderstood to be probabilities. From

the mathematical perspective, one requirement of probabilities is that they must

add together to one, or the integral of their densities must be one. But this does

not hold in general with memberships. Membership values can be determined from

the probability densities, but there are other methods as well that have nothing

to do with frequencies or probabilities. Semantically, probability statements are

about the likelihoods of outcomes: an event either occurs or does not. But in

fuzzy set theory, one cannot declare arbitrarily whether an event occurred or not.

Instead, the theory introduces the membership values to describe the “extent” to

which an event occurred.

A general fuzzy inference system is presented in Figure 6.3. The numerical

values of input variables are transformed into the equivalent membership values of

the corresponding fuzzy sets via membership functions. Then they will be taken

through the fuzzy inference process following the fuzzy rules. Once the output

fuzzy sets have been inferred, they will be aggregated into a single output fuzzy

set and finally resolved into an output value evaluating the degree of the input

instance belonging to the category.
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Figure 6.3: Overview of the fuzzy inference system

To implement a fuzzy inference system for the open-sky/urban classification

problem, the input and output of the system are first introduced in Section 6.3.1.

Next the membership functions and fuzzy rules are determined in Section 6.3.2

and Section 6.3.3, respectively. Then Section 6.3.4 describes how these elements

are aggregated to obtain the output that evaluates the urban density degrees of

the outdoor environments.

6.3.1 Input and output of FIS

In urban areas, the satellite signals are subject to blockage, NLOS reception and

multipath interference. Moreover, the smartphone GNSS antenna uses linear

polarization, making it especially susceptible to multipath interference and more

difficult to detect NLOS reception from the signal strength (Wang et al., 2015).

This can affect the pseudorange and C/N0 measurements, causing deterioration

in positioning accuracy. To represent the difference between urban and open-

sky environments in terms of pseudorange and C/N0 measurements, the relevant

extracted features sumCNR25 and zPRR that have been introduced in Section 5.4

and Section 6.2 are therefore applied as input variables of fuzzy inference system

for environment prediction. Although the number of received satellites may be

affected due to signal blockage by the buildings in urban areas, the calculation of

the feature sumCNR25 has implicitly included this information. Thus the feature

on the number of received satellites is not considered as one of the inputs to reduce

the complexity of the fuzzy inference system without influencing the classification

performance.

In order to describe the continuous urban density degrees from deep urban to

open-sky environment quantitatively, an urban index (UI) is therefore defined as

the output of the fuzzy inference system and computed from output memberships.
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Figure 6.4: The shape of different membership functions

The range of UI is between zero and one. A higher rating value of UI indicates a

denser degree of urban environment. So if the UI is 1, this indicates it is within

a dense urban environment; on the contrary, a zero value of UI suggests a fully

open environment.

6.3.2 Membership functions

Once the input and output variables of the FIS have been identified, the next step

is to determine the membership functions. A membership function of the fuzzy

set is a curve that defines how each point in the input/output space is mapped

to the degree of membership between 0 and 1. A single membership function can

only define one fuzzy set. Usually, to describe the degree of the input sample,

more than one membership functions are used to relate a single input variable to

different fuzzy sets.

The only condition a membership function must satisfy is that it must vary

between 0 and 1. In theory, the shape of membership function can be any arbitrary

curve. For simplicity and efficiency, there are five common shapes of membership

function used in practice: triangle, trapezoidal, Gaussian, Generized Bell and

Sigmoidal membership function. Their shapes are described in Figure 6.4.

The input and output membership functions are shown in Figure 6.5. There

are three different fuzzy sets to describe different degrees of each input variable:

low, medium and high. Since sigmoidal membership functions are symmetric and
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open to either left or right, they are used to model the input variables for the

low and high fuzzy sets. Then the triangle membership functions are used to

describe the inputs between low and high regions. For the output membership

functions, five triangles with ranging from zero to one and overlapping between

sets, were used to describe every combination of input fuzzy sets and provide

gradual outputs from open to dense urban environments. The parameters and

architectures for the membership functions were tuned and optimized based on

the outdoor training dataset.

6.3.3 Fuzzy rules

To describe the relationship between the inputs and the output, a set of if-then

rule statements form the fuzzy logic mechanism which indicates how to project

input variables onto output space. A basic fuzzy if-then rule follows the form:

If x is A, then y is B.

A and B are fuzzy sets and defined by their respective membership functions. The

first if-part of the rule is called the antecedent where x is the input variable. The

then-part is called the consequent and y is the output variable. The antecedent

is an interpretation that returns the input membership, whereas the consequent

is an assignment that assigns the entire fuzzy set B to the output variable y. The

series of rules use the input membership values as weighting factors to determine

their influence on the fuzzy output sets.

A set of fuzzy rules are established for open-sky/urban classification as shown

in Table 6.2. Since there are two input variables, the logical operator “and” is

used to connect two if-statements. In fuzzy logic operations, the statement “A1

and A2” is calculated as the minimum value of membership functions A1 and A2,

from which the membership function of the output set can be determined. The

rules are developed based on the basic knowledge of signal qualities in different

environments. For example, if signals are strong with small pseudorange residuals,

the environment must have excellent GNSS reception, so it can be presumed to

be an open-sky environment.

6.3.4 Aggregation

Once membership functions and fuzzy rules are defined, an inference procedure is

applied to derive the UI. Each of the fuzzy rules generates its individual output

fuzzy set via the input and output membership functions. Then these output fuzzy

sets are combined into a single fuzzy set, from which the UI can be calculated.
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(b) zPRR membership functions
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(c) Output membership functions

Figure 6.5: Membership functions used in fuzzy inference system
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Table 6.2: Fuzzy rules used in fuzzy inference system

R1: if sumCNR25 is HIGH and zPRR is HIGH then UI is MED

R2: if sumCNR25 is HIGH and zPRR is MED then UI is SMALL

R3: if sumCNR25 is HIGH and zPRR is LOW then UI is VERY SMALL

R4: if sumCNR25 is MED and zPRR is HIGH then UI is LARGE

R5: if sumCNR25 is MED and zPRR is MED then UI is MED

R6: if sumCNR25 is MED and zPRR is LOW then UI is SMALL

R7: if sumCNR25 is LOW and zPRR is HIGH then UI is VERY LARGE

R8: if sumCNR25 is LOW and zPRR is MED then UI is LARGE

R9: if sumCNR25 is LOW and zPRR is LOW then UI is MED

Urban Index
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Figure 6.6: Determination of UI using the centroid method

In this research, the centroid method is used to combine the output fuzzy

sets and obtain the urban index, which returns the center of area under the curve

as presented in Figure 6.6. It is calculated as

zcoa =

∫
z
µ(z) · zdz∫
z
µ(z)

(6.6)

where zcoa represents the centroid of the final output area and µ(z) is the mem-

bership of each output set at the value z.

To better illustrate how a fuzzy inference system gets the UI value from

inputs, the inference procedure of a sample with 450 dB-Hz sumCNR25 and 400

m2 zPRR is demonstrated in Figure 6.7. An urban index of 0.358 is finally

obtained in this example.

Shown in Figure 6.8 are the outputs of the tuned fuzzy inference system ver-

sus the horizontal positioning errors of conventional GNSS based on the outdoor

training data described in Section 5.3. Almost all urban samples have higher UIs



6.3. DESIGN OF FUZZY INFERENCE SYSTEM 133

Figure 6.7: Example of a fuzzy inference system for open-sky/urban classification (the
top of yellow area indicates the value of the input membership, the blue
area indicates the degree of output membership)

(H = high, L = low, M = medium, S = small, LA = large, VL = very large, VS = very
small)

than the open-sky samples that are clustered on the left bottom of the figure.

The results demonstrate that the outdoor environmental contexts can generally

be distinguished from each other. Based on these results, a threshold value of UI

as 0.45, shown by the dashed line in the figure, was set with training samples with

a UI smaller than threshold classified as an open-sky environment while samples

with a UI larger than 0.45 are classified as an urban environment. From the fig-

ure, it is also interesting to mention that the positioning solutions with UI values

smaller than the threshold value will always have horizontal position errors within
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4.5 metres.
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Figure 6.8: Data classification of training data using fuzzy inference system

6.4 Experiment and results

To further verify the fuzzy inference system, the outdoor test data described in

Section 5.3 were processed by that system. The corresponding UI value versus

horizontal position error is presented in Figure 6.9. The results show that all ur-

ban samples and most open-sky samples are correctly classified by the proposed

system while about 0.6% (17 out of 2709) of open-sky environment data are mis-

classified. As a result, the reliability of the proposed fuzzy inference system has

been demonstrated. The 17 misclassified samples are from different locations in

Regent’s Park and Hyde Park. Their urban indices are larger than expectation,

partially because some of the satellite signals were blocked or reflected by the

pass-by pedestrians. Note that when using this system for an actual application,

depending on the requirements, the navigation system could be supplied with the

urban indices instead of binary classification results.

6.5 Chapter summary

In this chapter, the further classification of outdoor context into urban and open-

sky environments using GNSS measurements is investigated. To distinguish their

differences in GNSS signal qualities, the feature based on the pseudorange resid-
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Figure 6.9: Test results of outdoor environment data classification

uals are calculated and derived from raw GPS measurements that are accessed

through the Android APIs. Since the boundary between urban and open-sky ar-

eas is not clearly defined, a fuzzy inference system has been implemented. In the

model, membership functions and fuzzy logic rules are designed, with an urban

index as the output estimating the density level of the outdoor environment. The

experiment by the outdoor test database has shown that the proposed fuzzy in-

ference system can achieve a 99.4% classification accuracy of open-sky and urban

environments.



Chapter 7

Context Association

Behaviours and environments reveal different aspects of navigation contexts, what

the users are currently doing and where they are. Although behavioural and

environmental contexts are detected separately in the previous three chapters,

they are not completely independent from each other in reality. For example, all

road vehicles are associated with driving, but parking is generally off road. A

bus typically travels more slowly and stops more in cities than on the motorway.

Certain behaviours are therefore associated with certain environments (Groves

et al., 2013b). Such context information can be used to estimate the likelihood of

the detected behaviour and environment combinations, and reduce the chances of

the context determination algorithms selecting an incorrect context.

Building upon the independent context detection results from each subsys-

tem, behavioural and environmental context association is investigated in this

chapter. First, the framework of context association is presented in Section 7.1,

showing how behaviour information can be used to assist within the process of

environment detection. Then two ways of context association are proposed, which

will be described in Section 7.2 and Section 7.3 respectively. Finally, the proposed

context association methods are examined on both pedestrian and vehicle under

different scenarios in Section 7.4.

7.1 Architecture of context association

Intuitively, context association may be considered in two ways, either improving

behaviour detection from environment information, or vice versa. Although most

previous research that have been reviewed in Chapter 3 (Chen et al., 2015; Liu

et al., 2015a; Lu and Fu, 2009; Pei et al., 2013) focused on enhancing behaviour

classification performance from environment information, this study concentrates

on investigating how environment detection can be improved with the aid of be-
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Figure 7.1: Flowchart of context determination with association

haviour recognition. There are two main reasons. First, for a navigation system,

the environmental context can provide more indication of the signals and posi-

tioning techniques applicable for context adaptive navigation. Second, a spatial

context association would not bring any benefit for better behaviour predictions

from environment information, since all behaviour categories considered in this

study may appear in every environment.

Figure 7.1 presents a complete context determination process for a context

adaptive navigation system, with the context association procedures shown as

dash lines. Each step of environment detection can be estimated by exploiting the

results of behaviour recognition. As shown in Table 7.1, the detected behaviours

with accompanying probabilities in the framework may be considered from two

different aspects, namely whether the user is static or dynamic and whether the

user equipment is on a pedestrian or on a vehicle. Based on the static/dynamic

status, the transition relationship between environments can be updated according

to the detected behaviour. This will be considered in Section 7.2. At the same

time, based on the subject of the sensed behaviours (whether it is on a pedestrian

or on a vehicle), different features and classification models can be applied for
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Table 7.1: Overview of behaviour categories

Pedestrian Vehicle

stationary
stationary vehicles

(engine on)
Static

walking moving buses

running moving diesel trains Dynamic

ascending stairs moving electric trains

descending stairs

environment detection. Then the parameters of the hidden Markov model are

adjusted as well. This part will be described in detail in Section 7.3.

7.2 Environment update for static behaviours

In indoor/outdoor environment detection in Chapter 5, the time-domain relation-

ship between environments are represented by the transition probabilities of the

hidden Markov model, which indicate the likelihoods of one state transiting to an-

other state. The transition matrix A0 given by Table 5.2 is proposed for general

cases without considering the behaviours of the users. In reality, a stationary user

will stay in the same environment, making it impossible to transit from one to

another. This inspires us to update the transition probability with the probability

of conducting a static behaviour from behaviour recognition results as shown in

Figure 7.2. It is expressed in Equation 7.1.

A = pstat · I + (1− pstat) ·A0 (7.1)

where I is the identity matrix and pstat denotes the detected probability of being

stationary for both a pedestrian and vehicle.

The updated transition probabilities are linear combinations of the identity

matrix, representing no change in environment and the parameters proposed for

general situations, according to the probability of static behaviour. If the user is

stationary (pstat = 1), the transition matrix will be equal to the identity matrix,

indicating an unchanged environment; if the user is detected to be moving (pstat =

0), the transition probabilities for the general case will be used in the HMM.

7.3 Pedestrian/vehicle association

According to the detected subject from behaviour recognition, whether it is a

pedestrian or a vehicle, different environment classification models using GNSS
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Figure 7.2: Overview of behaviour-aided HMM

measurements can be applied for pedestrians and vehicles respectively. This sec-

tion describes a new indoor/outdoor environment detection model for vehicles.

GNSS measurements on pedestrians and vehicles are first analysed and compared,

explaining why different models should be implemented. Then the corresponding

changes of the categorization, features and the HMM parameters for vehicles are

proposed in this section.

7.3.1 Pedestrian and vehicle GNSS measurement charac-

teristics

When a smartphone is put inside a vehicle, the GNSS signals are received by

passing through the vehicles’ metal shell and windows, which makes the signal

strengths different inside a vehicle from on a pedestrian. Figure 7.3 shows the

normalized distributions of GNSS C/N0 inside a vehicle and on a pedestrian under

indoor scenarios. They were both collected statically for about 10 minutes at

London Paddington train station. The two collection sites were about 1m away

from each other, so they can be treated as equivalent indoor scenarios. The

pedestrian data was collected about two minutes after collecting the vehicle one.

Since the two sets of data were not collected at the same time, the positions of the

satellites changed during the short time interval. Thus the C/N0 distributions of

all satellites are plotted to show different GNSS receptions rather that the C/N0

values of individual satellites. It can be seen that the average C/N0 value of the

vehicle data is about 5 to 10 dB-Hz weaker than the corresponding pedestrian

one, as a result of attenuation by the vehicle’s shell. Therefore, for environment

detection based on the signal strength, different environment classification models

should be implemented for vehicles and pedestrians.
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Figure 7.3: Comparison of vehicle and pedestrian indoor data (both data were col-
lected at London Paddington train station, the vehicle data was collected
inside a Heathrow Express train and the pedestrian one was collected by
the train about 1m away from the inside point)

7.3.2 Categorization and features for vehicular model

The main difference between the vehicle and pedestrian categories is the interme-

diate environment. The occurrence time of intermediate scenarios is quite short

for vehicles, so this environment category is ignored when the subject is identified

as a vehicle. Typical examples of indoor/outdoor environment categories for both

pedestrians and vehicles are shown in Figure 7.4.

Three environmental features proposed in Section 5.5.2.3 have been proven

to be effective in indoor/outdoor classification for a pedestrian. So here we also

consider the application of similar metrics for vehicular environment classifica-

tion. Meanwhile, because of the attenuation of signal strength inside vehicles, the
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(a). Indoor, pedestrian (c). Outdoor, pedestrian(b). Intermediate, pedestrian

(d). Indoor, vehicle (e). Outdoor, vehicle

Figure 7.4: Examples of different pedestrian and vehicle environment categories

feature sumCNR25 shall be re-estimated to find suitable C/N0 cut-off thresholds

optimized for vehicles. Therefore features with different cut-off thresholds were

tested using a 5-fold cross-validation strategy of the vehicle dataset described in

Section 7.4.1 in order to determine which one gave the best performance. The

three input features to the SVM are the total C/N0 values summed across the

satellite signals above different thresholds with 5 dB-Hz intervals, along with the

total number of received satellites and total signal strength of the GNSS signals.

The classification performance obtained with different thresholds is shown in Ta-

ble 7.2. The feature, total C/N0 values summed across the satellite signals above

30 dB-Hz, shows better performances than others and is thus selected for vehicle

based environment classification. It is denoted as sumCNR30.

A summary of the features used in SVM for both pedestrian and vehicle

based environment classification is presented in Table 7.3.

7.3.3 Modified HMM for vehicle

The initial, transition and emission probabilities of the hidden Markov model in

Chapter 5 are proposed for pedestrian situations with three categories, thus the

corresponding modifications should be made for vehicular environment classifica-

tion due to the change in the categorization.
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Table 7.2: Classification performance with respect to different thresholds

Threshold Accuracy

20 dB-Hz 80.6%

25 dB-Hz 80.3%

30 dB-Hz 82.4%

35 dB-Hz 80.6%

Table 7.3: A summary of features for environment classification

Pedestrian Vehicle

Total number of satellites received

Total measured C/N0 values

sumCNR25 sumCNR30

The corresponding initial and transition probabilities are adjusted for vehicle

situations in Equation 7.2 and Table 7.4 respectively, where S1 and S3 indicate

indoor and outdoor environments.

P (x1 = S1) = P (x1 = S3) = 0.5 (7.2)

The emission probabilities can still be obtained from the probabilistic classi-

fication results of a binary SVM classifier as in Equation 5.11.

7.4 Experiments and result analysis

In this section, different application scenarios were used to test the performance

of the proposed context detection system. Firstly, the collection of the training

dataset on different vehicles in both indoor and outdoor environments is described

in Section 7.4.1. In Section 7.4.2 and Section 7.4.3, the environment classification

performances of the pedestrian and vehicle experiments under different kinds of

Table 7.4: Transition probabilities of HMM

current

previous
Indoor (S1) Outdoor (S3)

Indoor 2/3 1/3

Outdoor 1/3 2/3
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scenarios are examined and compared with other methods.

7.4.1 Vehicular environment training dataset

The environment dataset was collected using a Google Pixel smartphone running

on an Android GNSS data logging application. Both GPS and GLONASS data

was logged at 1 Hz. GNSS measurements, comprising time tags, PRN of the

satellites, the C/N0 measurements, satellite azimuths and elevations can all be

logged in files for processing.

To construct the vehicular classification models, the training data was col-

lected on different vehicles. While the data collection, the smartphone was put

statically on the table or on the seat inside vehicles. Table 7.5 summaries the

details of each data collection in both indoor and outdoor environments.

Table 7.5: Description of vehicular environment training dataset

Location Subject Environment Duration Note

Bus 188 route (from
Russell square to Wa-
terloo station)

Bus Outdoor 20 mins Collected in
June 2017

Bus 14 route (from
Chenies street to
Green Park)

Bus Outdoor 20 mins Collected in
June 2017

Train route from Lon-
don to Swansea

Train Outdoor 20 mins Collected in
June 2017

London Paddington
train station

Train Indoor 20 mins Collected in
July 2017

London Victoria
train station

Train Indoor 20 mins Collected in
July 2017

7.4.2 Kinematic pedestrian experiments

To test the environment detection ability under different GNSS reception con-

ditions, the proposed environment detection methods were examined under four

different scenarios. Each scenario was conducted for 20 minutes. They are shown

in Figure 7.5. Among two outdoor scenarios, Scenario One is an open-sky park

while Scenario Two is a typical traditional European area with narrow streets and

buildings packed close together. It is important to note that all the data collec-

tions in this section were conducted in January 2018. Thus the time between the

training dataset described in Section 5.3 and the test data collection was longer

than half a year, allowing the satellite positions to change significantly. Therefore,
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all the collected test data are independent of the training dataset. During the data

collection, the experimenter was allowed to hold the smartphone and behave as

normal within the experimental area, such as walking, running, waiting for traffic,

and standing to take photos. At the same time, besides GNSS measurements, the

sensor measurements from accelerometers, gyroscopes, magnetometers and the

barometer were also recorded for behaviour recognition.

(a) Scenario One (outdoor) (b) Scenario Two (outdoor)

(c) Scenario Three (intermediate) (d) Scenario Four (indoor)

Figure 7.5: Selected data collection sites for kinematic pedestrian experiments

The empirical approach and SVM based approach of the indoor/outdoor en-

vironment detection were described in Section 5.5.1 and Section 5.5.2 respectively.

As its emission probabilities of the empirical approach were modelled by a mixture

of Gaussian distributions based on the fitting database, it is named as GMM-HMM
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(Gaussian Mixture Model based HMM) here for short. The other approach was

named as SVM-HMM here. To assess the performance, the classification results of

GMM-HMM, SVM alone, SVM-HMM with and without association (whether us-

ing the association strategy proposed in Section 7.2) are presented and compared

in Table 7.6.

Comparing SVM alone results with the ones smoothed by the HMM, it can

be seen that a substantial improvement in detecting indoor and outdoor envi-

ronments is achieved. This shows that the consideration of the time-sequential

relationships between environments can improve context detection. Comparing

SVM-HMM classification results with and without association shows that the

adjustment of transition probabilities with the stationary probability does not al-

ways improve the environment detection, depending on the situation. When the

estimation of the previous epoch is correct, the adjustment is helpful; otherwise, it

is not. For the indoor and outdoor classification tasks, the proposed SVM-HMM

with association method all perform better than GMM-HMM method. Some

contexts are more difficult to be distinguished than others. The classification

performance of Scenario Three is poor for all approaches, showing again the in-

termediate context is far more difficult to distinguish than indoor and outdoor

context. One possible reason is that the awning of made of conventional glass

that is transparent to GNSS signals. This makes the environment closer to an

outdoor environment.

7.4.3 Vehicle experiment

To assess and compare the performance of different approaches on a vehicle, a

practical test was conducted on a bus. The bus travelled along South Colonnade

Street in the Canary Wharf district of London and stopped at the bus station

under the bridge for about 20 seconds, as shown in Figure 7.6. This route was

designed to incorporate both indoor and outdoor environments, as well as moving

and stationary vehicle motions.

Both behavioural and environmental context detection results are shown in

Figure 7.7. The behaviours are independently detected from the framework in

Chapter 4. From Figure 7.7(a), the behavioural detection outputs, most of the

samples were correctly detected with behavioural connectivity, showing that con-

nectivity can improve the performance of behaviour recognition. The selection of

a 4s window length for feature selection resulted in about 3s delay in the behaviour

recognition, as a balance between accuracy and latency.

From the performance of environment detection, it can be observed that



146 CHAPTER 7.

Table 7.6: Classification results of pedestrian experiments

(a) Scenario One, an open-sky outdoor environment

(Regent’s Park, collected on 22/01/2018)

Indoor Intermediate Outdoor Accuracy (%)

GMM-HMM 0 6 1194 99.50

SVM 6 0 1194 99.50

SVM-HMM without
association

4 2 1194 99.50

SVM-HMM with as-
sociation

0 0 1200 100

(b) Scenario Two, an urban outdoor environment

(Central London near Bank and Monument stations, collected on 12/01/2018)

Indoor Intermediate Outdoor Accuracy (%)

GMM-HMM 29 177 994 82.83

SVM 0 153 1047 87.25

SVM-HMM without
association

0 39 1161 96.75

SVM-HMM with as-
sociation

0 42 1158 96.50

(c) Scenario Three, an intermediate environment

(under the awning of Victoria station, collected on 13/01/2018)

Indoor Intermediate Outdoor Accuracy (%)

GMM-HMM 5 315 880 26.25

SVM 15 191 994 15.94

SVM-HMM without
association

0 181 1019 15.08

SVM-HMM with as-
sociation

0 239 961 19.92

(d) Scenario Four, an indoor environment

(inside UCL Chadwick building, collected on 13/01/2018)

Indoor Intermediate Outdoor Accuracy (%)

GMM-HMM 1194 6 0 99.50

SVM 979 221 0 91.58

SVM-HMM without
association

1180 20 0 98.33

SVM-HMM with as-
sociation

1200 0 0 100
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Figure 7.6: An aerial view of the bus route (satellite image from Google
TM

Earth)

the behaviour-aided SVM determination and SVM-HMM methods are able to

recognise most indoor and outdoor contexts on the bus, while the GMM-HMM

approach failed to detect most outdoor samples especially when the bus travelled

into the outdoor environment from indoors. The SVM-HMM method with vehicle

features gives slightly better classification accuracy than the one with pedestrian

features. This proves that using association to adopt different (vehicle/pedestrian)

models in environment detection according to the recognised behaviour can im-

prove the performance of environment detection in a vehicle. Meanwhile, it is also

observed that the combination of HMM and SVM performs slightly better than

the SVM method alone, suggesting the time-domain information can enhance

the environment detection. The optimization of HMM transition probabilities by

considering the status of the behaviours may further improve the environment

detection accuracy, thus the SVM-HMM method considering all associations give

the best detection performances among the listed approaches.

7.5 Chapter summary

As environments and behaviours are not completely independent in reality, this

chapter investigates context association by exploiting the results from behaviour

recognition to improve the indoor/outdoor classification accuracy. The context

association has been considered in two ways to optimize the environment classifi-

cation model. On one hand, the transition probabilities of HMM can be updated

according to the likelihoods of the recognized behaviour being static. On the other

hand, different classification models can be implemented depending on whether
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(a) Behaviour detection results

(b) Environment detection results (the above figure shows the probabilistic outputs of the SVM-
HMM approach with association)

Figure 7.7: Performance of vehicle context determination

(Note: B = moving buses, T = moving diesel trains, U = moving electric trains, V =
stationary vehicles with the engine on, H = human activities)
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the user is on a pedestrian or in a vehicle. To construct the environment detec-

tion model for vehicles, the corresponding categorization, features and the HMM

parameters have been proposed in this chapter. Practical experiments under dif-

ferent scenarios showed that the proposed method is able to distinguish most

indoor and outdoor contexts with over 95% accuracy for pedestrians and over

90% accuracy for vehicles.



Chapter 8

Context-Adaptive Navigation

This study has so far focused on investigating context determination using smart-

phone sensors. To further apply it for navigation applications, this chapter demon-

strates a tentative context adaptive navigation system by a practical experiment.

It should be noted that the aim of this chapter is to assess the impact of con-

text determination on positioning performance, rather than developing a complete

navigation system.

The experiment was conducted on a pedestrian inside UCL across indoor and

outdoor environments. The overview of the experiment is presented in Figure

8.1. In this demonstration, the environment detection algorithms developed in

Chapter 5 will be applied to detect indoor and outdoor contexts. Pedestrian dead

reckoning using step detection and conventional GNSS are then combined based

on the determined environment in context adaptive navigation for seamless indoor

and outdoor positioning.

In this chapter, the details of the PDR algorithm are first presented in Section

8.1, including step detection, step length estimation and the navigation-solution

update. The experimental trajectory and data collection are described in Section

8.2. Then, Section 8.3 presents the results of context detection and a comparison

of positioning performances using different techniques.

8.1 Pedestrian dead reckoning

The basis of dead reckoning was introduced in Section 2.1.4. Here, pedestrian dead

reckoning refers to the step detection approach. For MEMS sensors mounted on

the user’s body or in a handheld device, PDR using step detection gives signif-

icantly better performance than conventional inertial navigation (Mather et al.,

2006). It is able to operate in indoor and urban areas where coverage of GNSS

and some other radio navigation systems is poor. Thus, the PDR algorithm is
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Figure 8.1: Overview of the context adaptive navigation demonstration

implemented for context adaptive navigation when an indoor environment is de-

tected.

A complete PDR implementation comprises three phases: step detection,

step length estimation and navigation-solution update. This section introduces

them in turn.

8.1.1 Step detection

The purpose of step detection is to separate consecutive steps and identify the

time when a step takes place for step length estimation. Since the step detection is

the primary stage in a PDR implementation, either false or missed step detections

can strongly affect the estimated travelled distance.

In the PDR algorithm, the accelerometer signal is generally exploited to de-

termine the presence of steps over time. While walking, the specific force sig-

nal provided by the accelerometer shows a periodic pattern whose principal fre-

quency depends on the movement. Steps may be detected from the peaks in the

accelerometer signals based on the assumption that local maxima correlate to

footfalls (Judd, 1997).

First, the magnitude of the accelerometer measurements is calculated to en-

able the step detection to operate independently of the device orientation. Then,

a bandpass filter is performed for the specific force magnitude, in order to filter
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Figure 8.2: Step detection from the accelerometer signals

out the noise and obtain a zero-mean signal. A 4th order Butterworth filter is

implemented with bandpass frequency of 0.75 Hz to 2.75 Hz (Kasebzadeh et al.,

2016). The setting of the bandpass frequencies is critical to capture the principal

frequency produced by the step. Their values are determined based on the lower

and upper limits of the frequency of a typical walking step.

Some small jitters might be produced during walking, thus the incurred local

maximum values may not necessarily indicate the boundary of the step. To min-

imise the false peak detection, a threshold of 0.25 m/s2 is defined for the filtered

signal value. Only when the filtered signal exceeds the defined threshold, a step

is considered to be detected. Among all sets of accelerations that are larger than

the threshold, before the signal again drops below the threshold, the one with the

highest value is recognised as the step. This threshold value was obtained by tun-

ing the parameters to match the step counts of the collected walking data. Figure

8.2 demonstrates an example of step detection from the accelerometer signals.

8.1.2 Step length estimation

The length of a step varies with many factors, such as walking speed, the slope of

the terrain and the walking patterns of different individuals. Different methods

have been developed to estimate the step length for the PDR implementation.

The step length estimation algorithm used in this study is based on Leppakoski

et al. (2002), assuming the step length is linearly correlated with step frequency
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and accelerometer measurements. It was reported that an accuracy of about 3%

of distance travelled may be obtained by using this approach (Leppakoski et al.,

2002). In this method, the step length, ∆r, is modelled as follows:

∆r = c0 +
c1
τ

+ c2σ
2
f (8.1)

where τ is the time interval between two steps, σ2
f is the variance of the specific

force measurements. c0, c1 and c2 are the model coefficients.

In order to estimate these model coefficients, accelerometer measurements

while walking were collected. Participants are required to walk along a straight

line whose distance has been measured. This needs to be repeated for several

times with different walking speeds and patterns (fast, medium and slow). The

average step length of each round is then calculated by dividing the total walking

distance by the step count. The average step interval is obtained by dividing the

total time of each round with the step count.

The three parameters in Equation 8.1 were determined from the walking data

by least-square fitting. The fitting results are shown in Figure 8.3. Finally, the

estimated step length is expressed as:

∆r = 0.2844 +
0.2231

τ
+ 0.0426σ2

f (in metre). (8.2)

8.1.3 Navigation-solution update

To determine the directions of each step, headings are obtained directly from

the smartphone orientation sensor outputs via Android interface. The orienta-

tion sensor is a software-defined sensor, which computes the orientation angles

from the smartphone magnetometer, accelerometer and gyroscope measurements.

The azimuth, pitch and roll are defined as the angles between the axes of smart-

phone coordinate (as in Figure 4.4) and the axes of local NED (north-east-down)

coordinate. For orientation sensor, its north points to the magnetic north.

Starting from a known position, the navigation solution can be updated by

adding up the successive position displacements. For the i-th detected step with

step length ∆ri at a heading of ψi clockwise from North, the eastward walking

displacement ∆xi is

∆xi = ∆ri cosψi. (8.3)
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Figure 8.3: The fitting results of step length model

Similarly, the northward displacement is

∆yi = ∆ri sinψi. (8.4)

After n steps, the user’s position with respect to the initial position [x0, y0]

can be updated by

xn = x0 +
n∑
i=0

∆ri cosψi

yn = y0 +
n∑
i=0

∆ri sinψi.

(8.5)

8.2 Experiment setting

In order to demonstrate context adaptive navigation, an experiment was con-

ducted on a pedestrian across indoor and outdoor environments inside UCL main

campus. The experiment trajectory is presented in Figure 8.4. The total distance

of the trajectory is 76.4 metres. The first and last part of the trajectory are both

in indoor scenarios and connected via an outdoor court that is surrounded by

buildings. As shown in Figure 8.5, pink notes were marked on the ground every

5 metres along the route and at each corner position. Their reference positions in

latitude and longitude were obtained by measuring the distances and directions
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start

end

Figure 8.4: The experiment trajectory for context-adaptive navigation (background
image from Google Map on August 2018)

to the nearby landmarks and then labelling on Google map.

During the experiment, the person holding the smartphone walked following

the planned route and stood for about 30 seconds in the middle of the trajectory.

Time epochs, orientation outputs and sensor measurements from the accelerom-

eters, gyroscopes, magnetometers, the barometer and GNSS modules were all

collected on the smartphone for context determination and comparison of posi-

tioning solutions. At the same time, another person took a video to record the

whole experiment. The video is used in post-processing to get both the true con-

texts for evaluation and the time when the experimenter walked across the marked

notes. From these recorded times and by further assuming that the experimenter

walked at a constant speed between two marks, the reference position at each time

epoch can be thereby calculated for comparing the positioning performances.

8.3 Experiment results and assessment

8.3.1 Environment detection results

The results of environment detection using the SVM-HMM approach are presented

in Figure 8.6. By comparing with the ground truth, most of the environment

determination are consistent with the actual environments. Some false detection
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Mark

Mark

Figure 8.5: The marked notes along the trajectory

samples appeared when the user just walked outside but adjacent to the building,

as almost half of the sky was still blocked by the building. This also implies that

the conventional GNSS may not provide a good enough positioning performance

due to the limited availability or poor DOP.

8.3.2 Comparison of different positioning approaches

The positioning results of using PDR alone and GNSS alone are presented on

the map in Figure 8.7. The conventional GNSS positioning results are obtained

based on GPS and GLONASS constellations. The estimated walking distance

from the PDR algorithm is 82.27 meters, thus the estimation accuracy is 7.7%.

However, the poor smartphone orientation is the main reason that degrades the

PDR positioning accuracy. It can be seen from the figure that the measured

direction significantly differs from the true one after the turns. The accumulated

errors finally result in the PDR positioning error larger than 40 metres.

The context adaptive navigation results are presented in Figure 8.8. In con-

text adaptive navigation, the GNSS navigation solution is implemented for the

detected outdoor environments and the PDR algorithm is switched to when the in-

door environment is detected where the coverage of the GNSS signals is poor. For

the intermediate environment, if GNSS positioning is not available, the navigation
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Figure 8.6: The results of environment detection for the context-adaptive navigation
experiment

Figure 8.7: The positioning solutions of conventional GNSS and PDR

system will only adopt the PDR solution; otherwise, the positioning solution will

be updated as the average of both.

The positioning availability of three approaches is summarised in Table 8.1.

Both PDR and context adaptive navigation can provide positioning services across

indoor and outdoor environments. Compared with them, conventional GNSS can-
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Figure 8.8: The positioning solution of context adaptive navigation

not provide positioning solution in some of the indoor scenarios. The horizontal

positioning errors using different approaches are presented and compared in Fig-

ure 8.9. Even though the GNSS is available in some of the indoor environments,

the positioning accuracy is relatively low where the errors are typically larger

than 15 metres. Since the outdoor scenarios are surrounded by buildings on four

sides, the positioning accuracy of conventional GNSS is about 10 metres on a

smartphone. Although pedestrian dead reckoning is able to offer navigation solu-

tions in different environments, its positioning errors accumulate with the time.

By combining these two methods via the detected contexts, the context adaptive

navigation gives better positioning accuracy than each individual across indoor

and outdoor environments.

This experiment demonstrates a simple context adaptive navigation because

this study mainly focuses on the context determination. For a practical naviga-

tion application, further effort is needed to build an integrated system with the

context determination used to select and weight the measurements from different

positioning techniques.



8.4. CHAPTER SUMMARY 159

Table 8.1: The comparison of positioning availability using different approaches

Method Availability Percentage

PDR 92/92 100%

GNSS 77/92 83.7%

Context adaptive
navigation

92/92 100%

8.4 Chapter summary

This chapter demonstrates context adaptive navigation on pedestrian across in-

door and outdoor scenarios. Pedestrian dead reckoning using step detection and

conventional GNSS are automatically switched by the navigation system accord-

ing to the detected environments. The experiment results suggested that the con-

text adaptive approach showed better navigation performance than the individual

navigation systems, in terms of both the positioning availability and accuracy.
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Chapter 9

Conclusions

This study establishes a reliable context determination method for a context adap-

tive navigation system that is able to determine both behaviours and environments

as a whole using smartphone sensors. The conclusions of this research are pre-

sented in Section 9.1. Five topics that are related to navigation context determi-

nation have been investigated in this study, comprising optimisation of behaviour

detection for navigation, environment detection for context adaptive navigation,

context connectivity between epochs, context association and a demonstration of

context-adaptive navigation. Specific research questions and the corresponding

conclusions are described under each topic. References within the thesis are given

where appropriate. Future research recommendations and potential applications

of this study are discussed in Section 9.2.

9.1 Conclusions of this study

9.1.1 Optimisation of behaviour detection for navigation

Among different behaviours, which behavioural contexts should be con-

sidered for context adaptive navigation on smartphone? How can

a behaviour detection framework be designed specifically for context-

adaptive navigation to effectively recognise different behavioural con-

texts? How can the framework be extended to add more new behaviours

if necessary?

Among the broad categorization proposed in Groves et al. (2013b), different

behaviours in human activity and land vehicles have been considered in the con-

text determination framework. This is due to they are the navigation contexts

that are most relevant to smartphone applications in daily scenarios. For human

activity class, some typical pedestrian behaviours have been considered in this

research, comprising being stationary, walking, running, ascending and descend-
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ing stairs. In terms of land vehicle motions, the categories covered in this study

include being stationary with the engine on, moving buses, moving diesel trains

and moving electric trains, which can be distinguishable from either velocity and

acceleration profiles or their vibration patterns.

In order to detect both human activities and vehicle motions in this study,

a hierarchical detection scheme has been proposed in Chapter 4 for behaviour

recognition to proceed from a course-grained classification towards fine-grained

classification. Three classifiers consist in the behaviour detection framework: the

human-vehicle classifier, the human activity classifier and the vehicle motion clas-

sifier, which are organized into a hierarchy as illustrated in Figure 4.2. A human-

vehicle classifier first distinguishes between human activities and vehicle motions.

When the vehicle motions are recognised, the detection system proceeds to the

vehicle motion classifier for classifying different vehicle motions. Otherwise, it

proceeds to the human activity classifier.

To effectively extend the proposed framework when new behaviours are

added, a flexible solution has been proposed in Figure 4.3 where the top-level

classifier is to distinguish which broad class the behaviour belongs to and the

bottom-level classifiers are responsible to recognise the category within each broad

class. When adding a new category, it will only increase the computation com-

plexity of the bottom-level classifier but not affect the complexity of the top-level

classifier and other bottom-level classifiers.

What are the most suitable classification algorithms to recognise dif-

ferent behavioural contexts?

To estimate the behaviour classification ability of different algorithms, a wide

range of supervised machine learning algorithms have been estimated and com-

pared in Section 4.4.2.1. A 6-fold cross-validation strategy was applied to carry

out the evaluation. For the human-vehicle classifier, the decision tree achieved

better classification performance than the others. The classification results of

the human and vehicle classifier suggested that RVM and SVM achieved higher

classification accuracies than others. Considering the context-adaptive navigation

can benefit from the probabilistic outputs, the RVM has been selected for both

the human activity and vehicle motion classifier. At the same time, it was found

that some context categories were more difficult to be detected than others. In

Section 4.4.2.2, the further estimation showed that the 4s sliding window is the

optimal length for feature extraction, as a balance between classification accuracy

and response delay.
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Which sensors on the smartphone, to which degree, can contribute to

behaviour detection?

To answer this question, the classification accuracies achieved with differ-

ent individual sensors (i.e. accelerometers, gyroscopes, magnetometers and the

barometer) and their combinations have been estimated and compared. The re-

sults suggested that the best classification performances were given by using all

of these four sensors. This conclusion might vary depending on the detailed be-

haviour categories covered in different classification tasks. Among them, the ac-

celerometers and gyroscopes contribute the most information in classification and

their combination achieved better performances than using each type of sensor

alone. Magnetometers can improve the classification accuracy slightly by pro-

viding additional information on magnetic field. The barometer can improve the

behaviour detection only when there are discernible height changes in behaviours,

such as ascending and descending stairs.

What are the optimal feature combinations as the inputs of the classi-

fication algorithms?

In Section 4.3.3, the extracted features in both time and frequency domain

have been filtered by the feature selection algorithms to identify the optimal fea-

ture combinations. The feature selection results showed that the best classifica-

tion performances of human-vehicle, human-activity and vehicle-motion classifiers

were achieved with the 4, 13 and 27 selected features respectively. Again, the de-

tailed selected features may vary with the specific classification task. The results

also suggested that not all features guarantee better recognition performance for

a classification task, as some of them contain noise and irrelevant information.

9.1.2 Environment detection for navigation

For a context adaptive navigation application, what is the suitable en-

vironment categorization that can be reliably identifiable and provide

useful indications on the availability and quality of navigation signals?

In Chapter 5, the environment categorization of indoor, intermediate, urban

and open-sky is proposed to indicate the navigation techniques applicable for po-

sitioning according to different environments. First, for land navigation, indoor

and outdoor positioning inherently depend on different sensor signals for different

techniques. Second, in pedestrian scenarios, there is intermediate environment

category, defined as where a client is adjacent to a building or in a partially en-

closed environment. The indoor positioning techniques can still work well in such
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environment while direct LOS GNSS reception can be limited. Third, the outdoor

environments have been further divided into open-sky and urban categories. In

an open-sky environment, there are enough direct LOS signals for a good conven-

tional GNSS positioning solution. In urban areas, where only a limited number

of satellites are directly visible due to the surrounding objects, the conventional

GNSS positioning performance was found to degrade to tens of metres.

Among the smartphone sensors, what are the pros and cons of these

sensors? Which sensors shall be used for reliable environment classi-

fication?

Among all sensors embedded in the smartphone, light intensity sensor, mag-

netometers, the cellular module, Wi-Fi module and GNSS module are the options

to be potentially used for environment detection.

The cellular and Wi-Fi modules are now supported by almost all smart-

phones and their signals have widely coverage in outdoor and indoor areas respec-

tively. The indoor/outdoor environment could be estimated from the number and

strength of the received cellular and Wi-Fi signals. However, their signal strengths

are not stable across different places, depending on the deployment density, trans-

mitting power and the distance from the base stations/access points. Although

the implementation of light sensors and magnetometers can take measurements

relying on themselves, the measured light intensity and the intensity of local mag-

netic fields are both prone to be easily influenced by many other factors besides

the indoor/outdoor environments.

The GNSS signals have been considered and proven to offer a reliable en-

vironment detection by the tests on both pedestrian and vehicle. The current

GNSS module on smartphone supports to receive satellite signals from at least

GPS and GLONASS constellations. The comparatively stable signal strength on

land and global distribution of GNSS signals make them a better option for envi-

ronment detection. Moreover, the full development of Galileo and BeiDou System

by the year 2020 (expected) should improve the reliability of environment detec-

tion. The drawback of GNSS module is the relative high power consumption when

constantly updated. But this point does not affect the reliability of the detection

performance.

Based on the selected sensors, what are the features that can show

the differences of environments and what is the classification model

to distinguish the basic indoor and outdoor environment? How is the

performance?
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To select the optimal environmental features for indoor/outdoor detection,

a set of GNSS measurements were collected at different kinds of environment

scenarios. Based on different characteristic of the measurements indoors and out-

doors, it was found in Chapter 5 that three features, signal strength of the signals

above a threshold value, the number and total received GNSS signal strength, can

identify the differences between indoor and outdoor environments. The further

evaluation results in Section 5.4 and 7.3 suggested that the threshold value is 25

dB-Hz for pedestrian scenarios and 30 dB-Hz for vehicle scenarios.

In terms of the classification model, two modelling options have been con-

sidered to infer indoor and outdoor environment in Section 5.5. In the empirical

approach, the relationship between the features and environments is directly ob-

tained from fitting results to the training dataset. In the SVM-HMM approach,

the relationship is built from the supervised machine learning model that is con-

structed from the training dataset. The evaluation and comparison between these

two approaches have indicated that both approaches are capable of detecting

most indoor and outdoor environments, with the average classification recall of

the SVM-HMM approach outperformed the empirical approach.

How can the classification of different outdoor environments bring ben-

efit for better navigation performance? If the features extracted for

indoor/outdoor detection are not enough for this task, which available

information may be useful? What is the suitable approach to address

this classification tack and how should the classification results be ex-

pressed quantitatively?

The tests in Chapter 5 have demonstrated that open-sky and urban areas

are under different GNSS reception conditions although they are both outdoor

environments. It was found that a positioning precision within 5 metres could be

achieved on a smartphone in open-sky environment, while it degraded to tens of

metres in the urban canyon due to signal blockage, reflection and diffraction. By

identifying the urban environments, the positioning accuracy can be improved by

mitigating the effect of NLOS reception and multipath interference and applying

different positioning techniques to augment or substitute conventional GNSS.

The pseudorange residuals have been found to be able to provide additional

information to identify the differences of satellite signals between open-sky and ur-

ban environments. With the compatible GNSS chips supporting raw measurement

outputs, the ranging measurements of the received satellites have been calculated

from the information accessed through the Android APIs. Upon that, the feature



166 CHAPTER 9.

on pseudorange residuals was then derived and implemented for open-sky/urban

classification with the signal strength feature.

In Chapter 6, when classifying the open-sky and urban environments, the

classical classification method that follow Boolean logic was found to be not fit

for this task. The main reason is that the complete definition of open-sky and

urban category, especially their boundaries, cannot be exactly described. To

address the problem, the fuzzy inference system that uses fuzzy logic to describe

the degree of belongingness has been constructed for this classification task. The

classification results showed that the fuzzy inference system can achieve sufficient

accuracy, correctly distinguishing most open-sky and urban samples. In terms of

the ouput of the fuzzy inference system, it is defined as the urban index to describe

the continuous urban density degrees from deep urban to open-sky environment.

The test results also suggested that the urban index was highly related with the

conventional GNSS positioning performance.

9.1.3 Context connectivity between epochs

How can time-domain information be used to improve the reliability of

behaviour recognition?

In reality, some behaviours can be directly connected (e.g. walking and run-

ning) while some connections are unlikely to happen (e.g. from a moving bus to

a moving train). To fully exploit this connectivity relationship, a time-domain

filter has been developed in Chapter 4 with the connectivity relationship express-

ing in probability. An vehicle experiment on the London underground train was

then designed to assess the performance of the proposed filter. The behaviour

recognition results have shown that the filter can effectively reduce the number of

incorrect context selections by incorporating connectivity information.

How can time-domain information be used to improve the reliability of

environment detection?

In Chapter 5, a hidden Markov model has been implemented within envi-

ronment detection to model the process of a user moving from one environment

to another according to observations. In the hidden Markov model, the time-

sequential relationship between environments over consecutive epochs is described

by transition probabilities while the relationship between environments and fea-

ture observations is modelled by the emission probabilities. The classification

results on pedestrian showed that the average classification recall was improved

by using a HMM to filter classification results. By further comparing with the
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environment detection results in other research (in Appendix) using the same test

dataset, the combination of HMM and SVM outperformed the average classifi-

cation recalls of using supervised machine learning algorithms alone. Another

experiment conducted on vehicle in Chapter 7 also confirmed that the hidden

Markov model can effectively improve the reliability of environment detection.

9.1.4 Context association

If the behaviours and environments are not independent in reality, how

can they be associated? How can context association be used to reduce

the chances of the context determination algorithms selecting an in-

correct context?

The purpose of context association is to improve the reliability of context

determination. It may be used in two ways, by either improving behaviour de-

tection from environment information, or the reverse. As all behaviour categories

covered in this study can appear in every environment, improving the reliability

of environment detection with the aid of behaviour information was focused in

Chapter 7.

It was found that the behaviour information could be exploited in two dif-

ferent ways for enhancing context determination. First, the environments can

be better predicted according to whether the behaviour is static or not. Sec-

ond, different features and classification models can be implemented depending

on whether the user is on a pedestrian or on a vehicle. The analysis of the ex-

periments under different scenarios have confirmed that each of the association

methods can effectively reduce the number of incorrect environment detection and

improve the reliability of environmental context determination.

9.1.5 Demonstration of context-adaptive navigation

How can context determination be implemented for context adaptive

navigation? What improvements can context adaptations bring for a

navigation system?

The contribution of context adaptations has been demonstrated in Chap-

ter 9 by a tentative experiment conducted on pedestrian across both indoor and

outdoor environments. The navigation system selected different positioning tech-

niques according to the detected environmental contexts. In the detected indoor

environments, the PDR algorithm was applied; while in the outdoor environment,

GNSS positioning results were implemented. By comparing the positioning per-

formances using PDR alone, GNSS alone and context adaptive navigation, it is
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shown that using the detected environments to select appropriate navigation tech-

niques can improve both the availability and accuracy of positioning solutions.

9.2 Recommendations

Based on the research investigated in this thesis, future work could carry on

for better context determination and positioning performance. They have been

addressed in Section 9.2.1 and 9.2.2 respectively.

9.2.1 Further research

The following research arising from the limitations of the work in this thesis could

be extended or improved in the future.

1. Implement deep learning for behaviour detection. Chapter 4 demonstrated

the behaviour recognition by using some typical supervised machine learning

algorithms. The structure of these algorithms are simple and explicit, and

the input features have to be manually extracted. However, as the amount

of data increases, the performance of these learning algorithms, like SVM

and decision trees, does not improve a lot. They tend to plateau after a

certain training point (LeCun et al., 2015). On the contrary, the deep learn-

ing method is able to learn from dense and complex hierarchical networks

that transform the raw data (e.g. image, voice, text and sensor signal) into

inferences/predictions. The structure of a generic deep learning architecture

is presented in Figure 9.1. Moreover, it can learn feature representations di-

rectly from raw data rather than relying on domain-specific features. Deep

learning approaches have shown better generalization ability than shallow

methods and widely applied on many classification tasks, such as computer

vision, speech recognition, natural language processing and bioinformatics

(Ciregan et al., 2012; Krizhevsky et al., 2012). With the high-performance

CPU and GPU deployed within a smartphone, the heavy computation load

of deep learning could be handled. This would promote the deep learning

approach to achieve better classification performance for behaviour recogni-

tion on smartphone.

2. Use multiple sensors for more robust environment detection. Chapter 5

and Chapter 6 have focused on environment detection using GNSS signals.

However, the use sometimes prefers to switch off the GNSS module, and the

GNSS based approach may provide misleading results before a cold start has

completed. Further improvement can be considered by integrating other sen-
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Figure 9.1: A typical deep neural network structure

sors for environment detection. As proposed in Li et al. (2014) and Groves

et al. (2013b), light sensor, magnetometers, cellular and Wi-Fi signals could

all be potentially useful for environment detection. Their pros and cons

have been discussed in Chapter 3. Although individually, they cannot pro-

vide a reliable environment prediction, their integration along with GNSS

signals may further improve the reliability of environment detection and of-

fer a backup system when the GNSS module of the smartphone is switched

off by the user. In terms of the detection framework, the factorial hidden

Markov model or LSTM (Long Short-Term Memory) network are the po-

tential options that can be considered to extend the current framework and

to combine sensor measurements or individual prediction for determining

environments.

3. Enhance context determination by location-dependent connectivity. For

temporal connectivity, a time-domain filter has been developed for behaviour

recognition in Chapter 4 where the connection parameters are fixed. Besides

temporal relationship, the spatial information can be considered for connec-

tivity as well. In reality, the likelihood of one behaviour transiting to another

depend on locations (Groves et al., 2013b). For example, the connection with

stationary or moving trains is more likely to happen in the train station.

By exploiting this spatial information, the reliability of context determi-

nation should be further enhanced. The location-dependent connectivity

relationship could be estimated from GIS data and the uploaded behaviour

and location information via crowdsourcing. Similar enhancement can be

applied for environment detection as well.
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9.2.2 Application of context detection on navigation sys-

tem

In this thesis, context determination has been investigated to build the basis for

context adaptive navigation. The following work could be conducted for ubiqui-

tous positioning and better positioning accuracy across different contexts.

1. Use detected contexts to improve the operation of the orientation sensors.

Currently, the orientation of a smartphone is determined from the magne-

tometers and accelerometers according to the Android interface (Google,

2018a). However, their accuracy is poor, as demonstrated by the experi-

ment conducted in Chapter 8. The poor accuracy not only strongly limits

the positioning performance of the PDR algorithm, but also affects the rel-

evant applications relying on orientation outputs. For instance, the wrong

orientation output might lead the digital map user to wrong places. For a

higher accuracy, the horizontal and vertical plane can be determined from

the accelerometer measurements only when a static context is detected. The

orientation measurements can be fixed in different ways according to differ-

ent behaviours. In addition, an extended Kalman filter may be designed for

faster convergence after the smartphone orientations change.

2. Implement of turning detection and map matching to improve PDR algo-

rithm. Due to the systematic errors of the consumer-grade inertial sensors

on a smartphone, the measured heading angles are prone to drift especially

after turning. To minimise such effect, one way is to develop an algorithm

for reliable orientation measurements as mentioned above. Another way

can be considered by implementing environment constraints. A person can-

not walk through walls. Turning typically takes place at the intersection

points on a map. Once a turning behaviour is detected by the context de-

termination algorithm, the turning location can be matched to the nearest

intersection points. Therefore the positioning errors of the PDR algorithm

can be mitigated.

3. Implement of open-sky/urban classification for intelligent urban positioning.

Different urban positioning techniques have been developed for better po-

sitioning performance under different urban scenarios. For example, it was

found that GNSS shadow matching performs better in highly dense urban

scenarios while the 3DMA ranging approach performs much better in less

dense urban scenarios (Adjrad and Groves, 2017b). By integrating them via
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urban index output from open-sky/urban classification algorithm, a better

positioning solution could be obtained.

4. Apply context determination results for information inference. The context

might be predicted from a large scale of context determination results. For

example, if an indoor-outdoor transition is detected, “door” or “entry” can

be labelled on the map. If the environment detection results do not cor-

respond to the map information, this region of the map may need to be

updated. If some specific behaviours are always appearing around/inside a

place, the purpose of this place might be inferred, such as a train station

and a gym.
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P. (2003). Ambulatory system for human motion analysis using a kinematic sen-

sor: monitoring of daily physical activity in the elderly. Biomedical Engineering,

IEEE Transactions on, 50(6):711–723.

Niedre, I. (2017). Environmental context classification using GNSS measurements

from a smartphone. Master’s thesis, University College London.

Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry. In Computer

Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004

IEEE Computer Society Conference on, volume 1, pages I–I. IEEE.

Nur, K., Feng, S., Ling, C., and Ochieng, W. (2012). Application of the improved

FOCUSS for arrival time estimation (IFATE) algorithm to WLAN high accu-

racy positioning services. In Ubiquitous Positioning, Indoor Navigation, and

Location Based Service (UPINLBS), 2012, pages 1–8. IEEE.

Nyan, M., Tay, F. E., Tan, A., and Seah, K. (2006). Distinguishing fall activities

from normal activities by angular rate characteristics and high-speed camera

characterization. Medical Engineering and Physics, 28(8):842–849.

Park, C., Shin, S., Hong, H., and Park, J. (2001). Adaptive step length estimation

with awareness of sensor equipped location for PNS. In Proc. ION GNSS 2007),

pages 1845–1850.

Parviainen, J., Bojja, J., Collin, J., Leppänen, J., and Eronen, A. (2014). Adaptive

activity and environment recognition for mobile phones. Sensors, 14(11):20753–

20778.

Pasku, V., De Angelis, A., De Angelis, G., Arumugam, D. D., Dionigi, M., Car-



182 BIBLIOGRAPHY

bone, P., Moschitta, A., and Ricketts, D. S. (2017). Magnetic field-based posi-

tioning systems. IEEE Communications Surveys & Tutorials, 19(3):2003–2017.

Pasku, V., De Angelis, A., Dionigi, M., De Angelis, G., Moschitta, A., and Car-

bone, P. (2016). A positioning system based on low-frequency magnetic fields.

IEEE Transactions on Industrial Electronics, 63(4):2457–2468.

Pei, L., Chen, R., Liu, J., Kuusniemi, H., Chen, Y., and Tenhunen, T. (2011).

Using motion-awareness for the 3D indoor personal navigation on a smartphone.

In Proc. ION GNSS 2011, page 2906.

Pei, L., Guinness, R., Chen, R., Liu, J., Kuusniemi, H., Chen, Y., Chen, L.,

and Kaistinen, J. (2013). Human behavior cognition using smartphone sensors.

Sensors, 13(2):1402–1424.

Platt, J. et al. (1999). Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods. Advances in large margin classifiers,

10(3):61–74.

Price, D., Knerr, S., Personnaz, L., and Dreyfus, G. (1995). Pairwise neural

network classifiers with probabilistic outputs. In Advances in neural information

processing systems, pages 1109–1116.
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Appendix A

Hyper-parameter Optimization of

SVM Classifier for Environment

Detection

The optimal parameters are searched by a log-scale rough grid search as shown

in Figure A.1 and a finer grid search as shown in Figure A.2 followed by. It has

been found that optimal hyper-parameters are Gaussian kernel scaling parameter

59.95 and regularization parameter (β) 1.29, with classification accuracy 85.4%.

Figure A.1: Rough grid search of SVM hyper-parameters
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Figure A.2: Fine grid search of SVM hyper-parameters



Appendix B

Confusion Matrices for

Environment Detection

B.1 Confusion matrices of environment detec-

tion in this study

Table B.1: GMM-HMM for environment detection

Predicted

Actual Indoor Intermediate Urban Open-sky

Indoor 2070 113 0 0

Intermediate 307 1305 217 0

Urban 3 389 1716 0

Open-sky 0 0 17 2692

Table B.2: SVM-HMM for environment detection with two features

Predicted

Actual Indoor Intermediate Urban Open-sky

Indoor 1940 1 240 0

Intermediate 217 1240 372 0

Urban 3 239 1866 0

Open-sky 0 0 0 2709
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Table B.3: SVM-HMM for environment detection with three features

Predicted

Actual Indoor Intermediate Urban Open-sky

Indoor 2168 15 0 0

Intermediate 35 1513 281 0

Urban 155 33 1920 0

Open-sky 0 0 0 2709

B.2 Confusion matrices of different supervised

machine learning algorithms

Table B.4 to Table B.7 are the environment detection results achieved in Niedre

(2017).

Table B.4: Environment detection by random forest

Predicted

Actual Indoor Intermediate Urban Open-sky

Indoor 2117 59 7 0

Intermediate 267 1562 0 0

Urban 66 52 1990 0

Open-sky 0 3 79 2627

Table B.5: Environment detection by SVM

Predicted

Actual Indoor Intermediate Urban Open-sky

Indoor 2179 4 0 0

Intermediate 485 1344 0 0

Urban 177 35 1896 0

Open-sky 0 80 597 2032
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Table B.6: Environment detection by Näıve Bayes

Predicted

Actual Indoor Intermediate Urban Open-sky

Indoor 2014 169 0 0

Intermediate 67 1762 0 0

Urban 8 178 1922 0

Open-sky 0 653 0 2056

Table B.7: Environment detection by kNN

Predicted

Actual Indoor Intermediate Urban Open-sky

Indoor 2034 149 0 0

Intermediate 81 1768 0 0

Urban 8 125 1975 0

Open-sky 0 630 11 2068
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