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Abstract—Respiratory motion generates lung volume changes
during the breathing cycle. These affect the lung tissue density and
therefore influence both the attenuation effect and the radiotracer
concentration in PET imaging. To detect and correct for these
effects could improve the quantitative accuracy of lung PET
imaging. In this work we propose the use of Principal Component
Analysis (PCA) to detect respiratory-induced lung density changes
in the upper lung, where motion is expected to be minimal. The
method is firstly applied to simulation data, specifically generated
to simulate density changes only and no motion. Secondly, it is
applied on the upper lung bed position of 15 lung cancer patients
datasets. The total number of counts in time is also evaluated.
The results show that the PCA signal is highly correlated to the
respiratory trace obtained from an external device, and also to
the variation of total counts in time. As the bed positions taken
into account do not include moving organs, the results suggest that
PCA is successful in detecting respiratory-induced density changes
in the upper lung.

Index Terms—PET, PCA, lung density variations

I. INTRODUCTION

DURING the breathing cycle the lung density changes as a
consequence of the expansion and compression of the chest

volume. The changes in density affect the attenuation effect and
the observed radionuclide activity concentration in PET imaging,
therefore inducing respiratory-related changes in the acquired
data both in PET and CT [1].

Detection of the density variations in the lungs can therefore
be beneficial when aiming at analysing the respiratory-induced
effects on PET data, and furthermore when interested in per-
forming respiratory motion correction, where compensation for
density variations could improve the quantitative accuracy of the
imaging modality [2].

Principal Component Analysis (PCA) has been shown to
successfully detect respiratory motion from the PET raw data
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of the chest [3], where the biggest variations is given by the
internal motion of the organs. In this work we propose the use
of Principal Component Analysis to detect the density variations
caused by respiration in the data related to the upper part of
the lungs, where motion is minimal and the more significant
variation is expected to be caused by lung density changes.

II. METHODS

A. Simulations

Density changes will affect both PET tracer concentration
and attenuation, with opposite effect on the number of de-
tected counts. Furthermore, as shown in [4], these effects can
be estimated by registration between respiratory gates, as the
Jacobian determinant of the deformation field is related to local
volume changes. We use this here to construct realistic simulated
data that incorporate the density changes, by processing patient
respiratory gated PET/CT data.

We used one set of patient chest FDG-PET/CT data that was
acquired with Cine CT, on a GE Discovery STE scanner. The
acquisition was monitored with a Varian® Real-time Position
ManagementTM device (RPM), the PET and the CT data were
gated with displacement gating in 5 gates. The PET gate
corresponding to end-inhalation (g1) was reconstructed with
OSEM with attenuation correction performed using the CT gate
corresponding to the same breathing phase.

To estimate the local volume change of the lung between gates
we registered the CT gated images, as they offer a greater spatial
resolution compared to the corresponding PET. Non rigid regis-
tration was applied using the NiftyReg software [5], [6] between
the end-inhale state and the other 4 gates, and the deformation
fields and the related Jacobian determinants were obtained. In
order to simulate exclusively the impact of density changes in
the lungs on PET data, as opposed to the motion effects, a series
of simulated PET gated data was generated: the reconstructed
PET gate corresponding to end-inhalation g1 (smoothed with an
edge-preserving filter to decrease the noise) was multiplied by
the Jacobian determinants of the 4 deformation fields, producing
a new series of PET gates g2,J , g3,J , g4,J , g5,J . The same
processing was performed on the attenuation map of g1, to
generate the matching deformed attenuation maps for each gate.
The simulated PET gates were then forward projected using
STIR [7] and the generated sinograms were attenuated with
attenuation correction factors obtained from the corresponding
attenuation map, producing the series of sinograms s2,J , s3,J ,
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s4,J , s5,J . The simulated sinograms were spatially downsampled
(as in [3]) and the area related to the upper part of the lungs
was selected, by segmenting parts of the sinogram in the radial
direction and selecting only Lines of Response through the upper
planes, and used for the following analyses.

PCA was then applied to the series of sinograms sg,J , leading
to the expansion:

sg,J ≈ s̄J +

K∑
k=1

wkgpk (1)

where s̄J is the mean of the sinograms over the gates, pk are the
Principal Components (PCs) and wkg their weight factors. The
first PC, that is the one corresponding to the biggest variation
in the data, was examined together with its weight factor.

To analyse the effect of the attenuation on the forward
projections, since the attenuation factors vary between gates as
a consequence of the variation in lung density, the total number
of counts in each simulated gate was calculated, and the mean
value of a Region Of Interest (ROI) in the lung within the
sinogram was evaluated, both on sinograms with and without
the application of the matching attenuation.

B. Patient data

PCA was applied on patient PET data of the upper part of the
chest, in order to test whether a respiratory-like signal is gen-
erated from data related to areas with minimal physical motion.
The study was performed on 15 FDG oncology patient datasets
acquired in 3D listmode on a GE Discovery 690 PET/CT scanner
of 360s duration, monitored by the RPM device. The chosen
bed position per patient was corresponding to the upper part
of the lungs, which did not include the liver or the diaphragm
in the Field Of View (FOV). The listmode files were unlisted
into sinograms with a temporal resolution of 500ms for the
application of PCA, in order to reduce the sensitivity of the
method to the cardiac motion. The respiratory PC was selected
as in [3]. The PCA signal was subsequently compared to the
RPM via evaluation of the Pearson correlation.

In order to investigate more thoroughly the effect of
respiratory-induced lung density variations on the detected data
(similarly to the ROI and total counts analysis with simulation
data), the sum of the total number of counts in each tempo-
ral frame of the PET sinogram (after decay correction) was
evaluated. The signal given by the variation in detected counts
in time was then compared to the RPM signal. The number
of detected counts is expected to be directly related to the
changes in density of the lungs (and therefore to the changes in
attenuation) because the analysed bed positions did not include
moving organs such as the liver or the diaphragm, that when
present can move in and out of the FOV therefore affecting the
detected activity independently of density changes. Note that the
number of detected counts was also used in the method presented
in [8], where the count rate changes in 3D PET due to organs
moving with respect to the centre of the scanner.

III. RESULTS

A. Simulations

The first PC obtained from the application of PCA on the
series of simulated sinogram data is shown in Figure 1. On the
right-hand side the PC weight factor and the total number of
counts are displayed per gate. The diffused features of the PC
suggest that the variations detected by PCA are related to local
changes of the values in the sinogram, and the trend of weight
factor and counts along the gates shows that the effect detected
by PCA varies very similarly to the amount of counts during
respiration. In Figure 2 the coronal projections without and with
the application of the attenuation effect are displayed together
with the ROI selected in the upper part of the lung. The relative
difference between the mean in the ROI from the gates corre-
sponding to inhalation and exhalation is -3% and +0.5% on the
non attenuated and attenuated data respectively, demonstrating
that the changes in density throughout the respiratory cycle have
a significant effect on the detected data, and that the effect due
to attenuation dominates, at least for this simulation

Fig. 1: Coronal view of the first PC. Weight factor and change
in total number of counts for each gate.

Fig. 2: On the left, the coronal view of the projections of gate
1 without the application of the attenuation effect, on the right
the projections with the attenuation effect. In red the selected
ROI. Arbitrary grey scale is used in both images.

B. Patient data

The reconstructed image of a patient dataset is shown in
Figure 3. The diaphragm is not included in the FOV. and there
was no visible movement in the upper part of the lung.

Fig. 3: Example of NAC PET reconstructed image of one patient
(coronal projection). The FOV only includes the upper part of
the lungs.

In Figure 4 an example of the respiratory signal obtained with
PCA is shown together with the signal given by the total number
of counts in time and the external device respiratory signal.
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In Table I the mean values over all patients obtained by the
comparison with Pearson correlation of the RPM with the PC
signal and the total number of counts are shown.
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Fig. 4: Signals given by PCA, the sum of the counts and the
external device. High similarity between the 3 signals can be
observed.

TABLE I: Mean and standard deviation, minimum and maxi-
mum values obtained on the 15 patients for the Pearson cor-
relation between respiratory PC and RPM, and between total
number of counts and RPM.

mean max min

Corr PCA and RPM 0.76 ± 0.17 0.94 0.42

Corr counts and RPM 0.55 ± 0.15 0.79 0.23

IV. DISCUSSION

The results of the application of PCA on the simulations
proved that the algorithm is able to detect the respiratory-induced
density variations in the data, even if motion is not present.
Moreover, due to the associated change in attenuation effect,
the detected counts decrease with increasing density, as observed
both from the ROI and the total counts evaluation. This effect
is reproduced also in the trend of the first PC weight factor.

Furthermore, the application of PCA on patient data of the
upper chest (without moving organs in the FOV) generated res-
piratory signals highly correlated to the RPM signal. Moreover,
the total counts per time frame follow a similar trend. These
results suggest that the PCA is detecting respiratory-induced
density changes in the lung.

While for the upper lung bed positions the total count method
gives reasonable results, PCA produces a signal with much
higher fidelity to the RPM.

V. CONCLUSION

This work shows that the application of Principal Component
Analysis to PET data of the upper lung generates a signal
which constitutes a good representation of the respiratory signal,
obtained from an external device. Both the simulation and
the patient data did not include moving parts of the body,
therefore suggesting that the changes detected by PCA are
related to density variations. In conclusion, the PCA method
is independent of the bed position and gives good results when
either density or motion causes changes in the acquired PET
data. It is therefore a powerful tool for investigating PET lung
acquisitions.

Future work includes the application of the analysis exploiting
TOF information (i.e. using TOF sinograms for PCA), and the
investigation of the sign-determination problem related to the
PCA signal for these bed positions.
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