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ABSTRACT 

Background: Alzheimer’s disease (AD) is a clinically and biologically heterogeneous 

disease. Understanding biological factors that underlie heterogeneity is important for patient 

care management, and development of personalised medicine. Using an unbiased approach 

we determined and validated atrophy subtypes in AD-dementia patients in three large 

independent samples. Taking these subtypes as a starting point we further tested whether 

these were present in prodromal stages of AD and could explain inter-individual differences 

in cognitive decline. 

 

Methods: We studied T1 weighted structural MRI from subjects with AD-dementia and 

prodromal AD from the Amsterdam Dementia Cohort and the Alzheimer’s Disease 

Neuroimaging Initiative. Atrophy subtypes were identified with nonnegative matrix 

factorization in three independent samples of subjects with dementia (a mono-scanner mono-

center sample (n=299), a multi-scanner mono-center sample (n=181) and a multi-scanner 

multi-center sample n=227). Subtypes were compared on clinical and biological 

characteristics. Next, prodromal AD subjects (n=603) were classified according to the best 

match of their atrophy pattern with one of the subtypes, and compared for clinical and 

biological characteristics, as well as trajectories of cognitive decline. 

 

Findings: In all dementia samples we identified four atrophy subtypes: a mild atrophy 

subtype, a parieto-occipital atrophy subtype, a medial-temporal predominant atrophy subtype 

and a diffuse cortical atrophy subtype. Subtypes showed distinct impairment in cognitive 

domains, as well as pathological characteristics in terms of CSF tau levels and amount of 

vascular lesions. When classifying subjects with prodromal AD into the atrophy subtypes, we 

observed similar subtype profiles as in the dementia stages. Importantly, atrophy subtype was 

predictive for the type of cognitive decline prodromal subjects showed. 

 

Interpretation: These findings show that clinical heterogeneity in AD can partly be 

explained by atrophy subtypes. These atrophy subtypes are already detectable in the 

prodromal stage, and can inform on expected trajectories of cognitive decline.  

 

Funding: EU/EFPIA Innovative Medicines Initiative Joint Undertaking and ZonMW.
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INTRODUCTION 

Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder. Patients differ in 

age of dementia onset, genetic risk factors, clinical presentation, and speed of cognitive 

decline over time1. Heterogeneity in clinical presentation and trajectories of cognitive decline 

can already be seen in the prodromal stage of AD, i.e. subjects with mild cognitive 

impairment (MCI) and biomarker evidence of Alzheimer’s pathology2. Prodromal AD 

subjects have a high likelihood of developing dementia, but show considerable variability in 

their rates of clinical progression3 and may differ in cognitive domains that will become 

affected. Understanding mechanisms underlying heterogeneity in cognitive symptoms and 

trajectories of decline is crucial to help clinicians in prognosis and an important step towards 

precision medicine in AD.  

 

Cognitive subtypes of AD-dementia have been observed in several independent patient 

cohorts and also in autosomal dominant AD, which suggests that clinical heterogeneity has a 

biological basis4,5. Post-mortem studies support the existence of biological heterogeneity by 

showing neuropathological subtypes, consisting of typical AD, limbic predominant and 

hippocampal sparing, which were associated with differences in antemortem clinical 

presentation6. Studying differences in brain atrophy patterns provides an in vivo opportunity 

to examine biological heterogeneity7. Imaging studies classifying subjects on a priori 

definitions of heterogeneity have identified atrophy subtypes in patients with AD-dementia 

that can explain some of the variability in clinical and cognitive characteristics, including a 

medial-temporal or typical AD atrophy variant with predominant memory dysfunction and a 

subtype with relative hippocampal sparing with young age of onset with more pronounced 

non-memory presentation8,9. Data-driven methods provide an unbiased approach to detect 

atrophy subtypes, and may be more informative for capturing heterogeneity in AD10–14. So 

far, data-driven imaging studies have examined atrophy subtypes in subjects with clinical AD-

type dementia, which may not accurately reflect underlying pathology and could therefore 

include subtypes trivially representing subjects with non-Alzheimer pathology10–14. 

 

Furthermore, it remains unclear when during disease development heterogeneity in atrophy 

patterns arises. If heterogeneity in atrophy patterns reflects true pathophysiological subtypes 

of AD, subtypes may already manifest in prodromal stage of the disease when cognitive 

dysfunction becomes apparent and brain atrophy diverges from normal aging15,16. We 
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hypothesize that atrophy subtypes as detected in AD-dementia subjects may already be 

present in prodromal AD, and will be associated with decline in specific cognitive domains.  

 

In the present study, we used a data-driven clustering approach to identify atrophy subtypes in 

patients with AD-type dementia and biomarker evidence of amyloid pathology, and 

subsequently tested for the presence of such subtypes in the prodromal stage of AD. First, we 

externally validated the identified subtypes in dementia patients by repeating analyses in three 

independent dementia patient samples: in a mono-center mono-scanner sample, a mono-center 

multi-scanner sample and a multi-center sample. We compared subjects of the different 

atrophy subtypes on clinical and cognitive characteristics. We further investigated the 

potential role of biological factors contributing to variability in atrophy patterns by comparing 

the subtypes on biomarkers (CSF markers of total tau (t-tau) and phosphorylated tau (p-tau) 

and white matter hyperintensities (WMH) on MRI) and Apolipoprotein E (APOE) e4 

genotype6,17,18. Second, we classified subjects with prodromal AD into these atrophy subtypes 

based on the best fit of their regional grey matter volumes to the identified subtypes. We 

examined whether the atrophy subtypes showed similar clinical and biomarker profiles in this 

earlier disease stage, and whether membership of an atrophy subtype was associated with 

longitudinal decline in different cognitive domains.   

 

 

MATERIALS AND METHODS 

 

Sample 

We included subjects from two large cohorts: the Amsterdam Dementia Cohort (ADC)19 and 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (www.adni-info.org). The ADC 

consists of subjects attending the memory clinic of the VU University Medical Centre 

Amsterdam. All subjects in this cohort underwent a routine dementia screening, usually 

including physical and neurological examination, extensive neuropsychological testing, 

APOE genotyping, brain MRI scanning and lumbar puncture (unless contra-indication or 

patient refusal). Baseline clinical diagnosis was established during a consensus meeting from 

a multidisciplinary team. The ADC study protocol was approved by the VU University 

Medical Centre institutional review board. All subjects gave written informed consent for 

their clinical data to be used for research purposes. Within ADNI, subjects were recruited 

http://www.adni-info.org/
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over 50 sites throughout the U.S. and Canada. Standard measures include physical and 

neurological examination, extensive neuropsychological evaluation, APOE genotyping, brain 

MRI, lumbar puncture and PET. We used data of baseline or screening visits from ADNI 

phase-1 and phase-2. This data was obtained from the ADNI database (adni.loni.usc.edu). The 

ADNI study was approved by the Institutional Review Boards of all of the participating 

institutions. All patients gave written informed consent. 

 

From these cohorts, subjects with a good quality 3D T1-weighted structural MRI were 

selected based on research criteria for AD-type dementia, i.e. having a clinical diagnosis of 

AD-type dementia and evidence for amyloid pathology in CSF or on amyloid PET (see 

supplementary methods), or prodromal AD, i.e. clinical diagnosis of MCI and evidence of 

amyloid pathology2. Patients with severe dementia (i.e., mini-mental state examination 

(MMSE) score < 16) were excluded. The majority of these subjects had data available on CSF 

biomarkers amyloid-beta 1-42 (Aβ1-42), t-tau and p-tau, as well as WMH and APOE genotype 

(see Table 1 and Supplementary Methods for details). APOE e4 genotype was dichotomized 

by the presence of at least 1 APOE e4 allele. 

 

Subjects with AD-dementia were divided into three samples to investigate influence of setting 

and scanner differences on cluster results: mono-center single-scanner (subjects from ADC 

scanned on single scanner; ADCs; n=299); mono-center multi-scanner (subjects from ADC 

scanned on either of two different scanners; ADCm; n=181); multi-center multi-scanner 

(ADNI; n=227). Subjects with prodromal AD from ADC (n=160) and ADNI (n=443) were 

grouped into one sample.  

 

Neuropsychological assessments 

In ADC and ADNI the neuropsychological assessment covered similar cognitive domains, 

although the cohorts differed in the tests used19,20. To aid comparability between cohorts, we 

combined test scores into four domains: memory, language, visuospatial, and 

attention/executive. We grouped the attention and executive domain, as ADNI has not enough 

tests available to split these domains. Details of the neuropsychological tests in each domain 

are presented in supplementary methods. The percentage of missing values in any 

neuropsychological test ranged from 1% to 41% in ADC and from 0 to 10% in ADNI 

(Supplementary Table 4). Before combining test scores into domains, missing values were 
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estimated through multiple imputation as implemented in SPSS (version 22; IBM) to obtain 

unbiased estimates of cognition. Age, sex, MMSE and education were included as predictors.  

 

MRI acquisition and processing 

For the ADC, anatomical 3D T1-weighted images were acquired as part of regular patient 

care on three different MRI 3T scanners using an 8-channel head coil. Subjects in the ADCs 

were all scanned on a single GE Signa scanner and subjects in the ADCm were scanned on 

either of two scanners: Toshiba Titan 3T or Philips Ingenuity PET/MRI. Details on 

acquisition parameters are provided in supplementary methods. In ADNI, 3D T1-weighted 

scans were performed on 1.5 (ADNI-1) or 3T (ADNI-2) scanners using previously described 

standardized protocol at each site21. 

 

Structural 3D T1 images were segmented into grey matter, white matter and cerebrospinal 

fluid using Statistical Parametric Mapping 12 (SPM12) software (Wellcome Trust Centre for 

Neuroimaging, University College London, UK) running in MATLAB 2011a (MathWorks 

Inc., Natick, MA, USA). The quality of all segmentations was visually inspected and five had 

to be excluded due to erroneous segmentation. In the native space grey matter segmentation of 

each subject, 1024 cortical and subcortical anatomical areas were defined using a brain 

parcellation that was generated by randomly subdividing the automated anatomical labelling 

atlas22 into equally-sized regions23. This atlas was warped from standard space to subject 

space using inverted parameters that were calculated by non-linear normalization of subject 

images to standard MNI space. For each region, grey matter volume was defined as the sum 

of grey matter estimates across the voxels multiplied by voxel volume, and all volumes were 

normalised by total grey matter volume.  

 

Cluster analysis 

To examine atrophy subtypes, we used Nonnegative Matrix Factorization (NMF) in R 

(version 3.3.1, NMF version 0.20.6)24, separately for each of the three dementia patient 

samples. NMF is a data-driven dual-clustering approach that identifies clusters of features (in 

our study atrophy patterns) and subjects at the same time (Fig. 1). Subjects are grouped into a 

subtype based on the best fit of their data on the identified atrophy clusters. As NMF is 

designed to focus on positive values, regional grey matter values were inverted to cluster 

regions of atrophy, rather than regions of more grey matter to facilitate interpretation. Further 
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details are described in the supplementary methods. We characterized each atrophy cluster 

based on the top 10% cluster-defining features (i.e., ROIs) in each sample. Correspondence of 

atrophy cluster solutions across samples was assessed with the Dice coefficient.  

 

Classification of prodromal AD subjects 

For each of the identified atrophy clusters, we made a cluster-signature by computing the 

average grey matter in the cluster-defining ROIs across all AD-dementia subjects classified 

into that subtype (Fig. 1). We then classified subjects with prodromal AD based on the lowest 

absolute minimal distance between their own regional grey matter values and each of the 

cluster-signatures. Prodromal AD subjects were next compared according to subtype 

classification on clinical, demographic and biomarker measures. Additionally, we examined 

whether prodromal AD subjects showed cognitive decline over time in subtype specific 

cognitive domains. To this end, baseline neuropsychological test scores of prodromal AD 

subjects were z-transformed and follow-up z-scores were determined relative to baseline in 

each sample. Per time point, the z-transformed scores were averaged across tests to obtain 

domain scores. In all samples, time to dementia was defined as the time between baseline visit 

and date of dementia diagnosis. 

 

Statistical analysis 

Subtypes were compared on demographic, clinical, neuropsychological, genetic and 

biomarker measures with ANOVA, Kruskal Wallis or chi-square tests when appropriate. We 

performed comparisons between subtypes for each sample separately, and pooled across 

samples. Prior to pooling, variables that were measured at different scales (i.e., level of 

education, CSF biomarkers, WMH) were z-transformed. For composite neuropsychological 

scores, results were pooled over imputed datasets using Rubins’s rules as implemented in the 

R package MICE25. Subtypes were compared on atrophy patterns using voxel-based 

morphometry (see Supplementary Methods). In prodromal AD subjects, we used a Cox 

proportional hazard model to assess differences in time to progression to dementia (dependent 

variable) for subjects classified in each subtype (predictor variable) using the survival 

package (version 2.41-3) in R. Linear mixed models were used to evaluate baseline cognition 

and decline over time in the cognitive domains of prodromal AD subjects classified in the 

subtypes using the lme4 package (version 1.1-12) in R. Time from baseline (years), subtype, 
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and their interaction were included as fixed effects. Subject intercepts and slopes were 

modelled as random effects. 

 

 

RESULTS 

 

Sample characteristics 

Characteristics of the three dementia patient samples are summarized in Table 1. On average, 

patients were 69 ± 8 years old, with the ADCs and ADCm subjects being approximately 10 

years younger than ADNI subjects (p < 0.001). There were no significant sex differences 

between the samples (overall p = 0.17). All patients had mild-to moderate AD-dementia, with 

an average MMSE of 22.4 (range 16-30). Subjects in ADNI had slightly higher MMSE scores 

than subjects in ADCs and ADCm (p < 0.001 for ADCs and p = 0.008 for ADCm).  

 

Subtype identification in AD-dementia subjects with NMF 

In each of the samples, four clusters showed an optimal fit of the data, with high stability of 

the cluster solutions (Supplementary Table 1) and explaining more variance in the data than 

random partitions (Supplementary Table 2).  

 

Figure 2 shows the top 10% cluster-defining ROIs (i.e. the ROIs that contribute the most to 

that cluster) for each of the four clusters for each subject sample. In each sample, subjects 

were grouped into subtypes based on the correspondence of their regional grey matter values 

to one of the four atrophy clusters (Supplementary Fig. 1). On average 34% (range 33%-37%) 

of subjects were classified as subtype 1 which showed a diffuse pattern of cluster defining 

features, amongst which the motor cortex. On average 28% (range 27%-30%) of subjects 

were classified as subtype 2, which showed parieto-occipital dominant cluster features. On 

average 19% (range 19%-19%) of subjects were classified in subtype 3, which showed 

temporal-dominant cluster features, also including the insula. The fourth subtype, including 

on average 18% (range 16%-21%) of subjects, showed most distinctly from the other 

subtypes involvement of the lateral and medial frontal lobes and lateral temporal cortex 

 

The Dice overlap of cluster defining features was reasonable to good for most of the atrophy 

clusters and samples (Supplementary Table 3). Cluster 4 showed the highest Dice overlap 
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across samples between the 100 top cluster-defining ROIs (mean 0.57, range 0.46 - 0.72), 

making this the most robust cluster. The lowest Dice overlap was seen for cluster 2 (mean 

0.32, range 0.29 - 0.33). For all clusters, overlap across samples increased when increasing 

the number of cluster-defining ROIs. Since the atrophy clusters showed similar features 

across samples, we pooled subjects of each subtype across samples for further analysis. 

 

Atrophy characterization of subtypes 

Compared to cognitively normal controls, all subtypes showed widespread atrophy patterns 

including the medial-temporal lobe, which is consistent with AD-type dementia (Fig. 3). 

Pairwise comparisons of atrophy patterns between subtypes revealed that the cluster-defining 

features largely represent areas in which subjects classified in these subtypes have most 

prominent atrophy, with the exception of subtype 1, which had relatively mild atrophy 

(Supplementary Fig. 2). The second subtype has most predominant parieto-occipital atrophy. 

The third subtype had most pronounced medial-temporal atrophy. The fourth subtype had 

diffuse cortical atrophy. 

 

Cognitive, genetic and biological characterization of atrophy subtypes 

We compared the AD-dementia atrophy subtypes on demographic, clinical, genetic and 

biomarker data (table 2). Subjects of the mild atrophy and parieto-occipital subtypes were 

younger compared to the other subtypes. Subjects of the medial-temporal subtype were the 

oldest and more often male. In terms of cognition, subjects of the mild atrophy subtype 

performed best on global cognition (highest MMSE) and in all cognitive domains. Subjects of 

the parieto-occipital subtype scored lowest on the MMSE and on visuospatial and 

executive/attention domains. Subjects of the medial-temporal subtype had low memory and 

language scores. Subjects of the diffuse cortical subtype had somewhat lower memory scores 

and average scores on the other domains. In terms of CSF biomarkers, the mild atrophy 

subtype had the highest t-tau and p-tau, followed by the parieto-occipital subtype. The medial-

temporal subtype had the lowest t-tau and p-tau. In terms of WMH, the medial-temporal 

subtype had the highest amount of WMH, and the parieto-occipital the lowest. The diffuse 

cortical subtype had intermediate levels of t-tau, p-tau and WMH. The subtypes showed 

similar distributions of APOE e4 genotype. The sample specific comparisons between 

subtypes are presented in supplementary tables 4 and 5. 
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Classification of prodromal AD subjects 

We further studied to what extent the atrophy subtypes are detectable in prodromal AD. 

Subjects with prodromal AD were classified as being one of the four AD-dementia atrophy 

subtypes, based on the best fit of their regional grey matter volumes to the AD cluster-

signatures. The majority of prodromal AD subjects were classified into the mild atrophy 

subtype (table 3). When comparing subtypes in prodromal AD, several subtype differences 

were found that showed a similar direction as observed in dementia subjects: the mild and 

parieto-occipital subtypes were younger than those in the medial-temporal and diffuse cortical 

subtypes. Furthermore, the medial-temporal subtype showed the lowest p-tau and t-tau levels 

in CSF and the highest amount of WMH.  

 

Atrophy subtypes predict which cognitive domain most prominently declines in 

prodromal AD 

At baseline, prodromal AD subjects in the medial-temporal and diffuse cortical subtypes had 

significantly lower scores in the language domain, compared to prodromal AD subjects in the 

mild atrophy subtype (Table 4). Prodromal AD subjects in the parieto-occipital subtype had 

significantly worse baseline scores in the executive/attention and visuospatial domains 

compared to subjects in the mild atrophy subtype. There were no significant baseline group 

differences in global cognition (MMSE) or in the memory domain.  

 

Prodromal AD subjects of the diffuse cortical subtype had a higher probability of progressing 

to dementia compared to prodromal subjects of the mild atrophy subtype (HR 1.50, p = 0.046) 

within a mean follow-up period of 2.6 ± 1.6 years (range 0.4-10.0) (Fig. 4). On average, all 

subtypes showed longitudinal decline in global cognition (MMSE) and in each of the 

cognitive domains (table 4). Prodromal AD subjects in the medial-temporal subtype showed 

steeper longitudinal decline on the MMSE and in the memory domain compared to subjects in 

the mild atrophy subtype, even though there were no significant differences at baseline. 

Prodromal AD subjects in the parieto-occipital atrophy subtype showed the most severe 

longitudinal decline on the executive/attention domain. 
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DISCUSSION 

 

In this study we robustly identified four atrophy subtypes in subjects with AD-dementia using 

an unbiased data-driven clustering approach. These subtypes were detected independently in 

three samples that differed in patient populations (e.g. memory clinic vs multi-center research 

cohort, geographical location) and imaging acquisition protocols (single scanner vs multiple 

scanners). Atrophy subtypes showed distinct clinical, neuropsychological and biomarker 

characteristics. Moreover, atrophy subtypes were already apparent in the prodromal stage of 

AD, and were associated with decline in subtype specific cognitive domains, differences that 

were less evident at baseline. Our results support that heterogeneity in AD has a biological 

basis. 

 

In line with previous studies, we found a medial-temporal dominant subtype with worst 

memory and language performance, a parieto-occipital subtype which was relatively young 

and had poor visuo-spatial and executive functioning and a diffuse cortical atrophy subtype, 

with intermediate cognitive scores4,10–14,18. A limitation of previous studies is that they were 

almost exclusively performed using data from ADNI, limiting the generalizability of their 

findings. In this study, we show that atrophy subtypes can be robustly identified in three 

independent patient samples, supporting the notion that these reflect true pathophysiological 

subtypes of AD. In line with this, we found distinct clinical and biomarker profiles between 

the atrophy subtypes. The medial-temporal subtype had the lowest CSF tau concentrations 

and highest amount of WMH, a sign commonly thought to reflect small vessel disease. This 

suggests that heterogeneity in atrophy patterns may in part reflect differences between AD-

dementia patients in terms of the presence of co-morbidities, an issue that becomes more 

relevant with advancing age26,27. WMH have previously been associated with differences in 

regional atrophy patterns28,29. The parieto-occipital cluster had relatively high CSF tau levels, 

which has also been reported in a previous study13. Although we did not find any significant 

differences in the proportion of APOE e4 carriers between the subtypes, there was a trend 

towards less APOE e4 carriers in the parieto-occipital subtype, which is in the expected 

direction of previous studies that found that a young age of onset and non-memory 

presentation are associated with the absence of APOE e418. It is likely that other genetic 

factors play a role in heterogeneity in atrophy patterns, as has been suggested by one study 
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which found differences in three AD associated single nucleotide polymorphisms between 

atrophy subtypes13. 

 

In addition to these three subtypes, we found a fourth subtype that was characterized by 

medial temporal and cortical atrophy compared to control subjects, but this atrophy was 

relatively mild compared to the other AD subtypes. One other study also identified a mild 

atrophy subtype, but that solution may have reflected disease stage or non-Alzheimer 

pathology as they included subjects with MCI without evidence of amyloid pathology in their 

clustering analyses10. Since we only included AD-type dementia subjects with biomarker 

evidence of underlying amyloid pathology, we minimized the possibility that subtypes reflect 

non-AD dementia, and we are able to say that this mild atrophy cluster is a true subtype of 

AD-dementia. Unexpectedly, this mild atrophy cluster showed the highest CSF p-tau and t-tau 

levels. CSF tau proteins and atrophy on MRI are both considered markers of 

neurodegeneration, which are sometimes used interchangeably3,30. Our results might suggest 

that atrophy and CSF t-tau or p-tau reflect different processes, and so caution is warranted 

when using CSF t-tau and p-tau in an exchangeable way as atrophy measures. Further 

research should aim at understanding how CSF tau concentrations are related to AD atrophy 

subtypes. 

 

A particularly innovative finding of our study is that we show that the different atrophy 

subtypes can already be detected in subjects with prodromal AD, and that these atrophy 

subtypes are associated with time to progression to dementia and the cognitive domains that 

will become most affected with progression of the disease. Prodromal AD subjects in the 

medial-temporal subtype performed poorly in the language domain at baseline. These subjects 

declined fastest in the memory domain over time, even though there was not yet a baseline 

difference in memory score. Both the language and memory domain were most prominently 

affected in AD-dementia patients of the medial-temporal subtype. Similarly, prodromal 

subjects classified in the parieto-occipital subtype performed poorest on visuospatial and 

attention/executive domain at baseline and declined fastest in the attention/executive domain. 

Both these domains were also the worst affected in subjects with AD-dementia of the parieto-

occipital subtype. These findings show that atrophy subtypes can be identified before the 

dementia stage, and are predictive for the clinical symptoms that arise at a later point in time. 

Recognizing this phenotypic variation in atrophy subtypes in subjects with prodromal AD 

could be used to improve patient care, as it provides a first step towards improving individual 
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prognosis. Our results may also be of consequence for clinical trials in subjects with 

prodromal AD. The existence of atrophy subtypes with different trajectories of cognitive 

decline may require subtype specific outcome measures tailored to the expected rate of 

decline in different cognitive domains. 

 

A potential limitation of our study is that we did not have pathological data available. 

However, we did have biomarker evidence of amyloid pathology, which provides strong in 

vivo evidence of underlying Alzheimer’s pathology. Moreover, it could be argued that our 

atrophy clusters represent differences in disease stage, rather than subtypes as we observed 

differences in MMSE scores. However, if that were the case then the subtype showing the 

lowest MMSE scores would be expected to show the most severe atrophy, as well as highest 

tau levels and worse performance in all cognitive domains. In contrast, our subtypes showed 

distinct demographics, biomarker profiles and cognitive symptoms, suggesting that these 

atrophy subtypes exist in parallel and do not reflect staging. In autopsy cases, which usually 

represent advanced disease stages, different regional patterns of neurofibrillary tangle deposits 

have also been identified, demonstrating the existence of heterogeneity separate from disease 

staging6. Future research in which both in vivo MRI and post-mortem data is available could 

examine how our atrophy subtypes differ in neuropathological characteristics.  

 

In conclusion, we have robustly identified four different atrophy subtypes amongst patients 

with AD-dementia using a data-driven clustering approach. These subtypes had distinct 

demographic, cognitive and biomarker profiles. Our results provide further evidence for the 

existence of heterogeneity in AD patients. Furthermore, we were able to classify subjects in 

the prodromal stage of AD into these subtypes, which were also associated with different 

trajectories of cognitive decline. Heterogeneity in atrophy patterns might reflect different 

pathophysiological processes, which warrants further investigation. Understanding the causes 

of this heterogeneity is an important step towards precision medicine for AD. In the 

meantime, our results may inform clinical trials in prodromal AD, where atrophy subtypes 

could be used for subject stratification to better establish treatment efficacy. 
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 ADCs 

(n=299) 

ADCm 

(n=181) 

ADNI 

(n=227) 

 measure n missing measure n missing measure n missing 

Demographics *       

Age (year) 67 ± 8 0 (0%) 66 ± 7 0 (0%) 74 ± 8 0 (0%) 

Sex, female  149 (50%) 0 (0%) 95 (52%) 0 (0%) 99 (44%) 0 (0%) 

Education (Verhage) 5.1 ± 1.2 1 (0%) 5.1 ± 1.2 0 (0%) - - 

Education (year) - - - - 15.5 ± 3.0 0 (0%) 

Global cognition       

MMSE 21.8 ± 3.3 0 0%) 22.3 ± 3.2 0 (0%) 23.3 ± 2.0 0 (0%) 

APOE genotype       

APOE e4 carrier 214 (73%) 6 (2%) 123 (69%) 2 (1%) 167 (75%) 3 (1%) 

CSF biomarkers †       

Aβ1-42 (ELISA) 465 ± 97 8 (3%) 532 ± 104 23 (13%) - - 

Aβ1-42 (immunoassay) -  -  130 ± 21 23 (10%) 

total tau (ELISA) 684 ± 398 10 (3%) 764 ± 398 23 (13%) - - 

total tau 

(immunoassay) 

- - -  131 ± 61 23 (10%) 

p-tau (ELISA) 87 ± 40 8 (3%) 88 ± 35 23 (13%) - - 

p-tau (immunoassay) - - -  59 ± 34 95 (42%) 

Imaging biomarkers ‡       

WMH visual rating 1.1 ± 0.8 3 (1%) 1.1 ± 0.8 2 (1%) - - 

WMH volume (in ml) - - - - 5.4 ± 8.0 0 (0%) 

Table 1: Clinical and biomarker characteristics per dementia patient sample 

Data are presented as count (%) or mean ± standard deviation. ADCs: Amsterdam Dementia Cohort single 

scanner; ADCm: Amsterdam Dementia Cohort multiple scanners; APOE: Apolipoprotein E; Aβ1-42: amyloid 

beta 1-42, p-tau: phosphorylated tau; MMSE: mini-mental state examination. 

* Education is presented according to the Verhage scale (1-7, resp low-high education) for ADCs/ADCm and in 

years of education for ADNI. †CSF biomarkers were measured in ADCs/ADCm using sandwich ELISAs (cut-

off Aβ1-42 < 640 ng/L, t-tau 375 ng/L, p-tau 52 ng/L) and in ADNI using immunoassays (cut-off Aβ1-42 < 192 

ng/L, t-tau 93 ng/L, p-tau 23 ng/L). ‡ WMH were measured in ADCs/ADCm using the visual Fazekas scale 

(range 0-3) and using automated software in ADNI (unit: ml).  
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 ST1 

(n=247) 

ST2 

(n=198) 

ST3 

(n=136) 

ST4 

(n=126) 

p-overall ST1 vs 

ST2 

ST1 vs 

ST3 

ST1 vs 

ST4 

ST2 vs 

ST3 

ST2 vs 

ST4 

ST3 vs 

ST4 

Demographics            

Age (yr) 67 ± 8 68 ± 9 73 ± 8 70 ± 8 < 0.001 0.93 < 0.001 0.01 < 0.001 0.06 0.07 

Sex, female 140 (57) 91 (46) 46 (34) 66 (52) < 0.001 0.03 < 0.001 0.50 0.04 0.31 0.004 

Education -0.05 ± 0.98 -0.06 ± 1.04 0.15 ± 1.00 0.03 ± 0.97 0.32       

Global cognition            

MMSE 22.9 ± 2.9 21.7 ± 3.1 22.4 ± 3.1 22.3 ± 2.8 < 0.001 < 0.001 0.12 0.03 0.03 0.18 0.51 

APOE genotype            

APOE e4 carrier 184 (74) 135 (68) 95 (70) 90 (71) 0.44       

CSF biomarkers            

Aβ1-42 0.03 ± 1.01 0.13 ± 0.98 -0.05 ± 0.99 -0.20 ± 0.99 0.05       

t-tau 0.16 ± 0.97 0.07 ± 1.09 -0.36 ± 0.83 -0.03 ± 0.97 < 0.001 0.16 < 0.001 0.09 < 0.001 0.63 0.001 

p-tau 0.16 ± 0.99 0.07 ± 1.08 -0.39 ± 0.85 0.001 ± 0.94 < 0.001 0.19 < 0.001 0.21 < 0.001 0.92 < 0.001 

MRI biomarkers 

WMH -0.07 ± 0.9 -0.22 ± 1.0 0.37 ± 1.1 0.08 ± 0.9 < 0.001 0.03 < 0.001 0.21 < 0.001 0.003 0.05 

Neuropsychology            

Memory  0.13 ± 0.80 -0.03 ± 0.71 -0.11 ± 0.70 -0.08 ± 0.72 0.008 0.03 0.003 0.01 0.34 0.54 0.78 

Language  0.16 ± 0.74 -0.12 ± 0.82 -0.12 ± 0.84 -0.01 ± 0.78 < 0.001 < 0.001 < 0.001 0.04 0.99 0.25 0.29 

Visuospatial 0.20 ± 0.60 -0.33 ± 0.90 0.06 ± 0.71 0.06 ± 0.64 < 0.001 < 0.001 0.09 0.09 < 0.001 < 0.001 0.99 

Executive/attention 0.21 ± 0.77 -0.20 ± 0.74 -0.05 ± 0.72 -0.04 ± 0.78 < 0.001 < 0.001 0.001 0.002 0.07 0.08 0.93 

Table 2: Clinical, biomarker and neuropsychological characteristic of dementia subtypes in pooled sample  

Data are presented as count (%) or mean ± standard deviation. p-values are based on chi-square or kruskall-wallis tests when appropriate. Normalized values are given for 

education, CSF biomarkers and MRI biomarkers. For neuropsychology, composite scores are presented. APOE: Apolipoprotein E; Aβ1-42: amyoid-beta 1-42; ST1: subtype 1 

(mild atrophy); CL2: subtype 2 (parieto-occipital atrophy); ST3: subtype 3 (medial-temporal dominant atrophy); ST4: subtype 4 (diffuse atrophy); CSF: cerebrospinal fluid; 

MMSE: mini-mental state examination; p-tau: phosphorylated tau; t-tau: total tau; WMH: white matter hyperintensities.  
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 ST1 

(n=329) 

ST2 

(n=155) 

ST3 

(n=68) 

ST4 

(n=51) 

p-overall ST1 vs 

ST2 

ST1 vs 

ST3 

ST1 vs 

ST4 

ST2 vs 

ST3 

ST2 vs 

ST4 

ST3 vs 

ST4 

Demographics            

Age (yr) 70 ± 8 73 ± 7 76 ± 6 74 ± 7 < 0.001 0.009 < 0.001 0.002 0.006 0.483 0.533 

Sex, female 142 (48%) 45 (38%) 18 (29%) 20 (44%) 0.003 0.05 < 0.001 0.3 0.09 0.9 0.1 

Education -0.04 ± 0.96 0.14 ± 1.01 -0.03 ± 1.15 -0.07 ± 1.02 0.625       

Global cognition            

MMSE 27.3 ± 2 27.5 ± 1.9 27.4 ± 1.8 27.3 ± 1.8 0.854       

APOE genotype            

APOE e4 carrier 218 (66%) 101 (65%) 38 (56%) 29 (57%) 0.137       

CSF biomarkers            

Aβ1-42 0.028 ± 1.02 -0.022 ± 0.98 -0.035 ± 1.15 -0.067 ± 0.71 0.894       

t-tau 0.004 ± 0.94 0.17 ± 1.22 -0.465 ± 0.64 0.053 ± 0.83 < 0.001 0.33 0.004 0.99 < 0.001 0.89 0.03 

p-tau -0.002 ± 1.03 0.145 ± 1.02 -0.276 ± 0.91 -0.05 ± 0.77 0.068       

MRI biomarkers            

WMH -0.06 ± 0.92 -0.038 ± 1.09 0.343 ± 1.16 0.028 ± 0.92 0.02 0.50 0.003 0.15 0.02 0.34 0.36 

Table 3: Classification of prodromal AD subjects  
Data are presented as count (%) or mean ± standard deviation. p-values are based on chi-square or kruskall-wallis tests when appropriate. Normalized values are given for 

education, CSF biomarkers and MRI biomarkers. APOE: Apolipoprotein E; Aβ1-42: amyoid-beta 1-42; ST1: subtype 1 (mild atrophy); ST2: subtype 2 (parieto-occipital 

atrophy); ST3: subtype 3 (medial-temporal dominant atrophy); ST4: subtype 4 (diffuse atrophy). CSF: cerebrospinal fluid; MMSE: mini-mental state examination; p-tau: 

phosphorylated tau; t-tau: total tau; WMH: white matter hyperintensities.
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Domain Measure Contrast Estimate Standard Error p-value 

MMSE 

Baseline score ST1 reference 27.467 0.113 0.000 

Difference at 

baseline 

ST1 vs ST2 -0.200 0.202 0.324 

ST1 vs ST3 0.196 0.272 0.471 

ST1 vs ST4 -0.429 0.305 0.159 

Annual change ST1 reference -0.877 0.074 0.000 

Difference in 

annual change 

ST1 vs ST2 -0.054 0.136 0.692 

ST1 vs ST3 -0.420 0.187 0.025 

ST1 vs ST4 -0.268 0.202 0.185 

Memory 

Baseline score ST1 reference 0.045 0.047 0.334 

Difference at 

baseline 

ST1 vs ST2 -0.013 0.083 0.880 

ST1 vs ST3 0.022 0.113 0.847 

ST1 vs ST4 -0.159 0.127 0.211 

Annual change ST1 reference -0.127 0.013 0.000 

Difference in 

annual change 

ST1 vs ST2 -0.029 0.024 0.221 

ST1 vs ST3 -0.076 0.033 0.022 

ST1 vs ST4 -0.008 0.036 0.822 

Language 

Baseline score ST1 reference 0.170 0.072 0.019 

Difference at 

baseline 

ST1 vs ST2 -0.166 0.130 0.201 

ST1 vs ST3 -0.341 0.173 0.049 

ST1 vs ST4 -0.421 0.195 0.031 

Annual change ST1 reference -0.227 0.033 0.000 

Difference in 

annual change 

ST1 vs ST2 0.002 0.060 0.971 

ST1 vs ST3 -0.131 0.082 0.111 

ST1 vs ST4 0.016 0.089 0.859 

Visuospatial 

Baseline score ST1 reference 0.199 0.061 0.001 

Difference at 

baseline 

ST1 vs ST2 -0.232 0.109 0.034 

ST1 vs ST3 -0.177 0.141 0.210 

ST1 vs ST4 -0.182 0.166 0.272 

Annual change ST1 reference -0.191 0.034 0.000 

Difference in 

annual change 

ST1 vs ST2 0.037 0.063 0.556 

ST1 vs ST3 0.011 0.083 0.894 

ST1 vs ST4 -0.047 0.092 0.608 

Executive / 

attention 

Baseline score ST1 reference 0.292 0.098 0.003 

Difference at 

baseline 

ST1 vs ST2 -0.429 0.172 0.013 

ST1 vs ST3 -0.398 0.231 0.086 

ST1 vs ST4 -0.402 0.262 0.125 

Annual change ST1 reference -0.242 0.038 0.000 

Difference in 

annual change 

ST1 vs ST2 -0.140 0.069 0.041 

ST1 vs ST3 -0.103 0.093 0.268 

ST1 vs ST4 -0.025 0.100 0.804 

 
Table 4: Baseline and longitudinal cognitive scores in prodromal AD subjects classified according to atrophy 

subtype. Estimates from linear mixed models. The mild atrophy cluster (cluster 1) was used as reference. ST1: 

subtype 1 (mild atrophy); ST2: subtype 2 (parieto-occipital atrophy); ST3: subtype 3 (medial-temporal dominant 

atrophy); ST4: subtype 4 (diffuse atrophy). 
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Figure 1: Non-negative matrix factorization in AD-dementia patients and classification of prodromal subjects. Grey matter segmentations were extracted from 

structural MRI and parcellated into 1024 equally sized ROIs, from which regional grey matter volumes were derived (for illustrative purposes only 8 ROIs are shown). In AD-

dementia patients, NMF, a dual-clustering approach, was used to identify clusters of features (in this case atrophy patterns) and subjects at the same time. The ROIs are 

clustered into distinct atrophy patterns, illustrated in the top right part of the figure. Each row represents an ROI and each column an atrophy cluster. The warmer the colour, 

the more that ROI contributes to the atrophy cluster. Subjects are grouped into subtypes based on the best fit of their ROI volumes to each of the atrophy clusters as can be 

seen in the middle of the figure. Here, each row represents one subject and the warmer the colour, the better the fit of that subjects’ ROI volumes to the ROI volumes of that 

atrophy cluster. For each of the atrophy clusters, we made a cluster-signature by computing the average volume in each of the top cluster-defining ROIs across all AD-

dementia subjects classified as that atrophy subtype. We classified prodromal AD subjects based on the lowest mean absolute minimal distance between their own ROI 

volumes and that of the cluster-signatures. AD: Alzheimer’s disease; CL: cluster; NMF: non-negative matrix factorization; ROI: region of interest. 



22 

 

 
Figure 2: Cluster features across samples. In each sample we visualized the top 10% most important cluster-defining features. The lower row represents the combined 

important cluster features across samples: color bars indicate whether features are amongst 100 most important in 1/3, 2/3 or 3/3 samples. ADCs: Amsterdam Dementia 

Cohort single scanner; ADCm: Amsterdam Dementia Cohort multiple scanners; ADNI: Alzheimer’s Disease Neuroimaging Initiative. Right hemisphere is displayed on the 

left side and vice versa.  
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Figure 3: Voxel-based morphometry comparison between atrophy subtypes and control subjects.  

Subjects in each subtype were compared to cognitively normal, amyloid negative subjects.  

Colour bar represents t-statistic. Data are presented at voxel-level pFWE < 0.05. Right hemisphere is displayed on the left side and vice versa. 
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Figure 4: Progression curves for time to dementia onset for subjects with prodromal AD classified in each of the four atrophy subtypes.   

Subtype 1: mild atrophy; subtype 2: parieto-occipital atrophy; subtype 3: medial-temporal atrophy; subtype 4: diffuse cortical atrophy.  

 

 


