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Abstract  

Background: Neuroanatomical pattern classification using support vector machines 

(SVMs) has shown promising results in classifying Multiple Sclerosis (MS) patients 

based on individual structural magnetic resonance images (MRI). 

Objectives: To determine whether pattern classification using SVMs facilitates 

predicting conversion to clinically definite multiple sclerosis (CDMS) from clinically 

isolated syndrome (CIS). 

Methods: We used baseline MRI data from 364 patients with CIS, randomised to 

interferon beta-1b or placebo. Non-linear SVMs and cross-validation were applied to 

predict converters/non-converters (175/189) at two years follow-up based on clinical and 

demographic data, lesion-specific quantitative geometric features and grey-matter-to-

whole-brain volume ratios. Furthermore, SVMs were applied to subgroups of n=73 

converters/non-converters based on cortical grey matter segmentations. 

Results:   Highest prediction accuracies of 70.4% (p=8e-5) were reached with a 

combination of geometric (image-based) and demographic/clinical features. Cortical grey 

matter was informative for the placebo group (acc.: 64.6%, p=0.002) but not for the 

interferon group. Classification based on demographic/clinical covariates only resulted in 

an accuracy of 56% (p=0.05). Overall, lesion geometry was more informative in the 

interferon group, EDSS and sex were more important for the placebo cohort.  

Conclusions:  Alongside standard demographic and clinical measures, both lesion 

geometry and grey matter based information can aid prediction of conversion to CDMS. 
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Introduction 

The advance of non-invasive imaging techniques, such as magnetic resonance imaging 

(MRI), has made a large impact on the study of Multiple Sclerosis (MS). Measures of 

abnormalities derived from structural MRI are useful in the context of early diagnosis, 

treatment planning and monitoring of disease progression. To date, however, MRI data is 

mainly used in a qualitative way to assess the dissemination of MS lesions in space and 

time.  

The most common quantitative measure is lesion load, i.e. the total lesion volume. 

Previous work on using lesion load for classification has been inconclusive(Aban et al. 

2008), (Zivadinov et al. 2005; MacKay Altman et al. 2012). Other studies have shown 

that conventional MRI measures have rather low predictive value and are therefore poor 

indicators for determining the clinical outcomes in MS(Lovblad et al. 2010). Existing 

quantitative methods that are used for the analysis of MS lesions are to a large extent 

inapt to fully reflect the given data. These methods include i) comparing lesion 

probability masks cross-sectionally or longitudinally(Filli et al. 2012; Locatelli et al. 

2004) which makes it difficult to associate lesion locations with certain covariates of 

interest, ii) massive univariate methods such as voxel-based lesion-symptom 

mapping(Bates et al. 2003) which are ill-suited for the binary nature of lesion data and 

cannot account for the underlying spatial structure, and iii) smoothing of lesion masks by 

means of Gaussian kernels(Wei et al. 2004), which does not entirely eliminate the non-

Gaussian nature of the data(Ge et al. 2014) and requires an arbitrary choice of smoothing 

parameter. 
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One of the reasons for the limited impact of the findings on clinical practice is that 

neuroimaging studies have typically reported population differences between groups. For 

neuroimaging to be useful in a clinical setting, however, inferences have to be made at 

the level of the individual rather than the group. One analytical method that allows such 

inference is multivariate pattern classification based on support vector machines (SVMs) 

which are sensitive to spatially distributed and subtle effects in the brain that would be 

otherwise undetectable using traditional methods which focus on gross differences at 

group level (for a review on SVMs applied to neurological conditions see(Orru et al. 

2012)). 

To date, no reliable method exists to predict who will, and will not, develop MS amongst 

those with CIS. To the best of our knowledge only one study has applied pattern 

classification to MRI data(Wottschel et al. 2015) in an effort to rectify this fact. The 

authors showed that a linear SVM correctly predicted CDMS in 71% of patients at 1 year, 

and in 68% at 3 years of follow-up based on different combinations of lesional and 

clinical features. 

Our present study aims to determine whether multivariate neuroanatomical pattern 

classification facilitates predicting conversion to CDMS in individuals with a CIS based 

on structural MRI features and clinical characteristics in a two-year follow-up. Unlike 

previous work(Wottschel et al. 2015), we employed kernel-based SVMs in a non-linear 

classification scheme using a large number of quantitative features in a large population 

of 175 converters and 189 non-converters. Most importantly, in addition to traditional 

demographic, clinical and lesional measures, we included aspects of lesion geometry 

derived from Minkowski functionals(Legland et al. 2011). These functionals provide 
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quantitative measures that are closely related to standard geometric quantities such as 

volume, surface area and width. We demonstrate how predictive performance of non-

linear SVM can be improved by using detailed geometric lesion information as well as 

grey matter (GM) volume.  

Furthermore, we used linear SVM to investigate whether SVMs can differentiate CIS 

from CDMS based on cortical grey matter network characteristics Data (Wottschel et al. 

2015). 
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Methods 

Data and the BENEFIT study 

This is a post-hoc analysis of MRI and clinical data from the BENEFIT study(Kappos et 

al. 2006; Barkhof et al. 2007). Briefly, BENEFIT was a double-blind, placebo-controlled, 

randomized, parallel-group, multicenter (total of 98 centers), phase 3 study that evaluated 

the safety, tolerability and efficacy of interferon beta-1b (Betaferon/ Betaseron; Bayer 

HealthCare Pharmaceuticals Inc) in patients with a monofocal or multifocal presentation 

of the disease, a first demyelinating event suggestive of MS and at least two clinically 

silent lesions on a T2-weighted brain magnetic resonance (MRI) scan. Within 60 days of 

the onset of the first clinical event, and after providing written informed consent, patients 

(n=468, aged 18-45 years) were randomly assigned, in a 5:3 ratio, to interferon beta-1b 

250 μg (n=292) or placebo (n=176) subcutaneously every other day for 2 years or until 

CDMS was diagnosed by use of the modified Poser criteria(Bakshi et al. 2005). Patients 

were then eligible to enter the follow-up phase with open-label interferon beta-1b(Kappos 

et al. 2007). During this double-blind phase, visits were scheduled for collection of 

Expanded Disability Status Scale (EDSS), MRI, and other efficacy data and for safety 

data at months 3, 6, 9, 12, 18, and 24. 

To be included in the present study, T1-weighted images with sufficient image quality 

acquired on 1.5T scanners together with their corresponding lesion masks, as well as 

clinical data at two year follow-up, had to be available. We employed subsets of placebo 

patients and interferon beta-1b patients who either converted to CDMS (conv+) or did not 
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convert (conv-) (see Table 1). Definition of the outcome measure was based on the 

double blind phase.  

Classification based on lesion-specific geometric measures 

For this approach, we considered a classification and prediction model using kernel-based 

(radial basis functions) support vector machines. As input to the classifier we used 

detailed geometric features of individual lesions derived from the available MRI data 

(T2-, T1-, Gd-lesions). 

First, the binary lesion masks were used to identify individual lesions. Minkowski 

functionals(Legland et al. 2011) were then used to extract and quantify the geometry of 

each lesion. In standard 3D Euclidean space, Minkowski functionals are directly related 

to the geometric quantities volume, surface area, mean breadth and the Euler-Poincare 

(EP) characteristic(Arns et al. 2001; Lang et al. 2001). More details on the computation 

of geometric features as well as feature reduction and additional preprocessing steps (see 

also Figure 2) can be found in the supplementary materials.  

 

Classification based on linear SVMs using cortical grey matter 

segmentations 

For linear pattern classification analysis, we used LIBSVM, a library for SVMs 

(http://www.csie.ntu.edu.tw/-cjlin/libsvm), running under Matlab 7.1 (MathWorks, 

USA). Two-dimensional T1-weighted images (Placebo: n=44 converters, 25 non-

converters; IFN-b: n=49 converters, 49 non-converters) with sufficient image quality 

aquired on three different 1.5T scanners were interpolated to an isotropic resolution of 1 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=272508&_issn=10538119&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.csie.ntu.edu.tw%252F-cjlin%252Flibsvm
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mm3,(Richert et al. 2006). Images were processed using FMRIBs software libray FSL for 

coregistration, segmentation (FAST), lesion filling, and interpolation (FLIRT). 

Interpolated images were visually checked, and then normalized, segmented and 

modulated using Statistical Parametric Mapping software (SPM8; Wellcome Department 

of Imaging Neurosciences, University College London) and Voxel- Based Morphometry 

(VBM8) toolbox (http://dbm.neuro.uni- jena.de/vbm8/) and DARTEL.  

- FIGURE 1 ABOUT HERE  

Figure 1. Preprocessing pipeline. 

- FIGURE 2 ABOUT HERE  

Figure 2: Preprocessing pipeline for geometry-based lesion measures and subsequent 

classification with nonlinear SVMs. 

For the grey matter classification task, the total number of dimensions was determined by 

the number of voxels within the cortical GM mask. To implement a linear SVM, a kernel 

matrix was created from the images based on correlation, i.e. the similarity between each 

pair of subjects. 

Predictive performance was evaluated using leave-one-out cross-validation; details are 

given in the supplementary materials.  
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Results 

The demographic and clinical characteristics of patients are summarised in Table 1. 

- TABLE 1 ABOUT HERE 

Table 1: Baseline clinical and MRI statistics of subjects used for a) non-linear SVM 

analysis (T1-Gd data set), and b) linear SVM analysis (cortical grey matter maps). 

Abbreviations: T treated, NT not treated, SD standard deviation, IQR interquartile 

range, EDSS expanded disability status scale, bs baseline, y1 year1, GMV global grey 

matter volume, PGMVC percentage grey matter volume change, TCDMS time to CDMS 

(in days). 

 

Classification based on feature combinations 

A summary of prediction accuracies of kernel SVMs trained on different combinations of 

input features is given in Table 2. All values are based on nonlinear SVMs using an RBF 

kernel. Parameters were optimised through grid search.  

One way of estimating the importance of different features is to visualise the 

corresponding SVM weights. Since it is not possible to obtain an analytic expression for 

the weights and thus separate them in the nonlinear case, any illustration has to rely on 

weights based on linear SVMs. Even in the linear case the plots are meant purely as a 

qualitative way of visualising the importance of input variables relative to one another. 

No quantitative assessments should be drawn directly from the magnitude of individual 

weights. 
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In general, we found that our trained classifiers were more likely to distinguish correctly 

between converters and non-converters in the INF-b treated cohort compared to the 

placebo treated group.  

The simplest model (M1) utilised demographic (sex, age) and clinical (EDSS score) 

covariates only (accuracy: 56%, p=0.05). Including grey matter-to-whole-brain volume 

ratios (M3) increased prediction accuracy by a few per cent in the INF-b but not in the 

placebo group.  

Model M2 included “traditional” measures such as lesion count and total lesion load (i.e. 

total lesion volume). These were combined with the grey matter volume feature in M4. 

Figure 3 shows the relative magnitude of SVM weights (again, resulting from training a 

linear SVM) for each input feature with classification accuracy equal to 57.6% (p=0.07).  

M6 was solely based on whole-brain summary measures of lesion-based geometry and 

performed on a similar level as using demographic/clinical features only. Combining the 

two kinds of input information and adding grey matter volume (M7) lead to a significant 

improvement of classification accuracy, reaching 64.6% (p=0.0017) for the INF-b group. 

Model M8 represented the largest possible feature set by splitting the summary measures 

of lesion geometry into 13 ROIs, plus including all other available covariates. Classifier 

performance was markedly reduced, most likely due to large amounts of redundant or 

irrelevant (i.e. equal to zero) input features. Dimensionality reduction via PCA space was 

only partly able to ameliorate this issue. 

In M9 half of the summary statistics were excluded in order to lower the level of 

redundancy in the data. Only total, mean and standard deviation measures were retained 
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in the feature set which resulted in a prediction accuracy of 70.4% (p=8e-5). Note that 

splitting the same features by ROIs again reduced overall performance (cf. M10).  

Figure 4 displays SVM weights for M9 of the corresponding linear classifier. The root 

mean square values (RMS, or quadratic means) of SVM weights shown in Figure 5 

(accuracy: 60.5% , p=0.019) allow for a comparison between different kinds of features 

and their variability.  

 

- TABLE 2 ABOUT HERE  

 

Table 2: Prediction accuracy of optimised kernel SVM based on different combinations 

of input features; including 95% confidence intervals and corresponding p-values. 

* Summaries include total, mean, median, minimum, maximum and standard deviation 

(SD) of lesion volume, surface area and mean breadth, respectively. Measures are based 

on T1-Gd MRI data. ** Total, mean and SD of volume, surface area and mean breadth 

(excluding median, minimum, maximum measures), and EP.  

Abbreviations: DC -demographic and clinical covariates, EDSS - expanded disability 

status scale, EP - Euler-Poincare characteristic, GEO-brain - whole-brain summaries of 

geometric measures, GM - grey matter, ROI - region of interest. 

 

For reference, training a kernel SVM with input features as specified in model M9 on T2 

weighted lesion data resulted in a prediction accuracy of about 60% (p<0.002); and 

similarly for T1 weighted black-hole lesion data of about 64% (p<0.0008) correctly 

classified subjects. We also combined feature sets based on different imaging modalities, 

at the cost of increasing redundancy, which gave an accuracy of about 63% (p<0.01). 
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Note that for the combined-modality model the size of available data was reduced by 

roughly 20% as not all imaging modalities were available for all subjects. 

- FIGURE 3 ABOUT HERE 

Figure 3: M4. Individual weights from a linear SVM trained on features including 

demographic and clinical covariates, grey matter volume, lesion count and total lesion 

load; based on T1-Gd MRI data of IFN-b treated patients (converters: 50, non-converters: 

49). Positive (negative) weights indicate that a larger feature value will drive prediction 

towards conversion (non-conversion). For sex, being female (male) corresponds to the 

positive (negative) axis. Weights are scaled relatively to the largest individual weight, 

which is set equal to one.  

- FIGURE 4 ABOUT HERE 

Figure 4: M9. Individual weights from a linear SVM trained on demographic, clinical, 

grey matter volume and geometry based features derived from T1-Gd MRI data of IFN-b 

treated patients (converters: 50, non-converters: 49). Positive (negative) weights indicate 

that a larger feature value will drive prediction towards conversion (non-conversion). For 

sex, being female (male) corresponds to the positive (negative) axis. Weights are scaled 

relatively to the largest individual weight, which is set equal to one.  

Abbreviations: EDSS - expanded disability status scale, EPC - Euler-Poincare 

characteristic, GM - grey matter, SD – standard deviation. 

 

 



 14 

- FIGURE 5 ABOUT HERE 

Figure 5: M9. Root mean squares summaries of the weights in Fig. 4 indicating the 

relative importance of different kinds of input features during classification.  

 

Classification based on cortical grey matter segmentations 

The average accuracy from the 500 bootstraps was 71.2%, which means that, on average, 

SVMs correctly predicted CDMS in 71.2% of placebo-treated individuals, with a 

sensitivity of 64% (converters correctly identified) and specificity of 78.3% (non-

converters correctly identified). The accuracy range of the 500 bootstraps was 54-84% 

with a 95% confidence interval (CI) of 70.7-71.6%. Middle and medial frontal, superior 

and middle temporal, anterior and posterior cingulate, middle temporal, fusiform, middle 

occipital, and insular regions contributed most to the classification accuracy as shown 

here for the matched placebo groups (Figure 6).  

- FIGURE 6 ABOUT HERE 

Figure 6: Weight vector maps showing the most discriminating brain regions between 

placebo groups for the matched placebo groups (top 10 %; accuracy 66%). (A, B) 

Regions that contributed most to classification accuracy in the matched placebo groups 

are shown in red, in axial, coronal and sagittal views (z = [-28, -18, -8, 2, 10, 22, 31]). (C) 

Projection of each subject onto the weight vector; with positive patterns (blue circles) 

discriminating for conv+, and negative patterns (red crosses) discriminating for conv-

CDMS could not be predicted based on cortical segmentations of the treated patients 

(total accuracy 48%; sens.: 42.9%, spec.: 53.1; p=0.6) 
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Discussion 

Our study aims to determine whether multivariate neuroanatomical pattern classification 

facilitates predicting conversion to CDMS in individuals with a CIS based on structural 

MRI features and clinical characteristics in a two-year follow-up. We used geometric 

measures of individual lesions computed from MRI data in combination with clinical 

information from patients with CIS to predict conversion to CDMS. We included a large 

set of quantitative measures on individual lesions to perform classification into one of 

two groups, converters and non-converters, based on SVMs. In addition to providing an 

accurate classifier, we aimed to determine which types of features are most important for 

successful classification.  

In the IFN-b group the best performance was achieved with non-linear classification and 

model M9 utilizing demographic and clinical covariates, grey matter volume, lesion 

count as well as total, mean and standard deviation measures of lesion geometrics.  In the 

placebo group linear classification using cortical grey matter segmentations yielded the 

highest accuracy. It should be noted that using prediction accuracies directly for model 

comparison is not suitable, since differences could arise by chance. The focus should 

therefore lie on models that reached statistically significant accuracies.  

The classification accuracies were only moderate (not exceeding 70%) which limits the 

applicability of the model for predicting the onset of disease in the brain scans of CIS 

patients. In general, this application is challenging for classification, as the differences 

observed in CIS are likely to be much more subtle then those observed in established MS. 

Not all CIS patients develop MS, and in those who do, disability is highly 

variable(Fisniku et al. 2008).  
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Furthermore, it cannot be excluded that some of the patients in the non-converter group 

may still develop MS in the long-term(Wottschel et al. 2015). Our results, however, are 

consistent with other studies on prediction of disease onset in MS(Wottschel et al. 2015) 

and Alzheimer’s disease(Young et al. 2013) which reported similar classification 

accuracies. 

 

Classification based on feature combinations 

Consistent with the results from earlier studies(Wottschel et al. 2015),55, the demographic 

attributes age and sex as well as the EDSS score carry a considerable amount of 

information about the disease and its progression (see Fig 5). When considering the full 

set of all geometric measures, each summarised in a ROI specific value (M10 in Table 2), 

a large number of these features will contain similar or even redundant information. 

Consider, for example, the case of a patient having only one lesion, which, in the case of 

CIS patients, is not uncommon.  

Apart from the fact that the measures over 12 out of 13 ROIs will be zero, summary 

statistics such as mean and maximum lesion volume will be identical. Thus, feature 

selection or feature reduction becomes a necessity when optimising the classification 

procedure. A PCA transformation of input features reduces some of this redundancy and, 

in principle, SVMs can cope with a certain level of inter-dependency between features. 

Nevertheless, classification outcomes are still likely to be affected by a lack of distinct 

information across the feature set. Therefore in this study, a partition of geometric 

features according to different brain regions turned out to be useful only to some extent. 
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However, it should be noted that thisparticular data set is not well suited to splitting into 

ROIs because most CIS patients have relatively few or even only one lesion.a  

Ideally, as classification outcome varies depending on the combination of features used 

as input, one would like to find the most informative subset among all available features. 

This is hindered by the fact that an exhaustive combinatorial search across all features is 

computationally infeasible; and it would lead to overfitting by selecting a feature set that 

is specifically suited for the available data set but is unlikely to generalise well to new 

data. As a way out we considered pre-specified subsets of possible feature combinations 

as presented in Table 2.  

Principally, the examination of weights of individual features for the support vectors 

across different models can help inform which kinds of features are driving the 

classification procedure. A comparison of the magnitude of SVM weights provides a 

qualitative assessment of relative importance of different input features. With regard to 

our set of geometry-based features, a comparison across different (linear) classifier 

weights indicated that the EP characteristic is often more significant than a simple lesion 

count. Among clinical and demographic covariates, age seemed to be the single best 

predictor with younger patients showing a higher probability to convert to CDMS (cf. 

negative weight on age in Figures 3 and 4). 

                                                 
a With other data sets that comprise of larger numbers of lesions per patients, we found that the 

segmentation into white matter track regions can substantially increase prediction accuracies compared to 

those feature sets that rely on whole brain summaries only.  
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When comparing placebo and IFN-b groups, lesion geometry played a bigger role in the 

classifier for the IFN-b group. EDSS and sex were more important for the placebo cohort, 

less so for the IFN-b group. Both features carried predominantly positive weights in all 

SVM models, indicating that higher EDSS at baseline as well as being female are 

predictors for conversion. Additionally, we found that the grey matter-to-whole-brain 

volume ratio in most cases was more informative than either EDSS or sex.  

Active plaques typically are associated with Gd- enhancement on MRI and most likely 

represent the pathological substrate of the attacks in MS(Filippi et al. 2012; Popescu et al. 

2013). Therefore, we concentrated here on T1-Gd imaging data. However, a comparison 

of weights from SVMs trained on T2 or T1 black hole MRI data showed very small 

variation, especially with respect to the sign of individual weights, across different 

modalities within each cohort (placebo or IFN-b), and much larger differences between 

the two cohorts.  

Classification based on cortical grey matter segmentations 

Using cortical grey matter segmentations, we show that linear SVMs moderately 

predicted individual conversion/non-conversion to CDMS in 71.2% of placebo-treated 

CIS patients. Although not exceptionally high, it is worth noting that the accuracy 

represents the average of 78% specificity and 64% sensitivity. The latter of which might 

be explained by the possibility that some of the CDMS patients categorized as converters 

do not show cortical pathology. Notably, patients experiencing a rapid transformation 

within 1 year show cortical atrophy in contrast to patients with slower disease 
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progression (Perez-Miralles et al. 2013). We cannot exclude that those converters who 

were wrongly classified as non-converters are patients with a slower disease progression. 

In a 2-year follow-up the non-converters are likely to still develop CDMS, some of them 

maybe even shortly after the last follow-up. Structural grey matter changes, i.e. both, 

cortical lesions and grey matter atrophy are considered as promising characteristics to 

track the conversion from CIS to CDMS 20, (Calabrese et al. 2010), (Tintore et al. 2008), 

(Kelly et al. 1993).  

Some studies, however, failed to find a significant cortical atrophy in CIS compared to 

NC(Dalton et al. 2004; Ceccarelli et al. 2008; Ramasamy et al. 2009) while others have 

observed a significant cortical atrophy only in CIS(Bergsland et al. 2012)  having a 

dissemination in space (DIS) of the lesions or only in selected brain regions, such as the 

hippocampus and the deep grey matter(Sastre-Garriga et al. 2005).  Multivariate analysis 

of cortical thickness in patients with CIS who convert early to MS identified atrophy of 

superior frontal gyrus, thalamus, putamen and cerebellum as independent predictors of 

conversion to MS20. CIS with atrophy of such areas had a double risk of conversion.  

These heterogeneous and partly contradictory findings may be explained e.g. by the 

clinical and paraclinical heterogeneity of patients with CIS, who may have quite different 

WM lesion load, and, in some cases, will never develop definite MS(Calabrese et al. 

2011). 

Previously, it was shown that regional GM atrophy is relevant in patients with CIS who 

convert early to MS(Calabrese et al. 2011; Raz et al. 2010), but about 20 % of CIS 

patients do not convert to MS after two decades (Fisniku et al. 2008). An accuracy of 

70% in our linear SVM analysis reveals that cortical GM patterns played a role for 
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discrimination of converters and non-converters in the placebo-treated patients. In 

contrast, converters and non-converters could not be discriminated in the IFN-b groups. 

In our study, group labeling was based on conversion/non-conversion to CDMS at two 

year follow-up. However, at follow-up, parts of those patients which would have been 

expected to convert under placebo changed to non-converters or better “responders” 

under therapy. The latter might explain why we could not discriminate the treated group 

accurately using linear SVM. 

Limitations  

Our study further supports the idea that structural neuroimaging can inform prediction of 

CDMS. There are some limitations, however, that should be taken into account. 

A crucial prerequisite for reliable image classification at the single-case level is the 

identification of morphometric criteria for distinguishing individuals. Beyond the impact 

of key demographic, clinical and lesion-associated MRI parameters on the 'natural risk' of 

CDMS(Polman et al. 2008), subclinical structural damage in the brain (i.e. changes in the 

normal-appearing brain tissue) might also occur early in disease. However, its functional 

consequences in CIS patients might be negligible(Kappos et al. 2007). Recently, mapping 

brain regions with diagnostic information using a “searchlight approach” and leave-one-

out cross-validation to identify neuroanatomical patterns relevant for individual 

classification of patients and controls has been performed successfully in relapsing-

remitting MS(Weygandt et al. 2011). Hotspots of MS associated tissue alterations highly 

informative about the clinical status have been identified in different normal-appearing 
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areas of the brain. We infer from these results, that the approach could be promising also 

for classification and prognosis of patients with CIS.  

The smaller sample size of the non-converters in the SVM analysis using GM 

segmentations may have limited the converters vs non-converters classification accuracy, 

and thus the findings may have been influenced by the heterogeneity of the non-

converters subgroup. To account for this, we controlled for the potential effects of 

covariates, such as age, gender, and scanner. 

Generally, it is unclear whether supervised MRI-based pattern recognition can achieve 

the level of sensitivity and specificity needed in order to be integrated into clinical 

applications. In the future, feature selection methods and the use of an independent test 

data set may further increase classification accuracy. Furthermore, the shift from single 

predictive models to ensembles of classifiers may produce more generalizable diagnostic 

biomarkers by averaging the diagnostic decisions of numerous predictive 

models(Koutsouleris et al. 2010). Additionally, it will be interesting to investigate 

whether other para-clinical markers e.g. synthesis of oligoclonal bands(Tintore et al. 

2008) and genetic factors(Kelly et al. 1993) can improve SVM-based classification 

accuracy. 

 

Conclusions 

The main potential of SVM-based classification is that it might be useful for predicting 

the clinical transition to MS at the individual level. Automatic pattern classification 

methods have been considered to promote a potentially accessible and objective way to 
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improve clinical decision making, and may present a measure of the risk of developing 

MSs in individuals with CIS if sufficiently accurate. 

We demonstrated that MRI data of MS lesions contain more information about the 

disease than is currently utilized in clinical assessments. Both lesion geometry and grey 

matter based information can aid prediction of conversion to CDMS. Inclusion of other 

lesional or degenerative MRI features may in the future further improve classification 

accuracy. 
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Legends 

Figure 1. Preprocessing pipeline. 

Figure 2: Preprocessing pipeline for geometry-based lesion measures and subsequent 

classification with nonlinear SVMs. 

Figure 3: M4. Individual weights from a linear SVM trained on features including 

demographic and clinical covariates, grey matter volume, lesion count and total lesion 

load; based on T1-Gd MRI data of IFN-b treated patients (converters: 50, non-converters: 

49). Positive (negative) weights indicate that a larger feature value will drive prediction 

towards conversion (non-conversion). For sex, being female (male) corresponds to the 

positive (negative) axis. Weights are scaled relatively to the largest individual weight, 

which is set equal to one.  

Figure 4: M9. Individual weights from a linear SVM trained on demographic, clinical, 

grey matter volume and geometry based features derived from T1-Gd MRI data of IFN-b 

treated patients (converters: 50, non-converters: 49). Positive (negative) weights indicate 

that a larger feature value will drive prediction towards conversion (non-conversion). For 

sex, being female (male) corresponds to the positive (negative) axis. Weights are scaled 

relatively to the largest individual weight, which is set equal to one.  

Abbreviations: EDSS - expanded disability status scale, EPC - Euler-Poincare 

characteristic, GM - grey matter, SD – standard deviation 

Figure 5: M9. Root mean squares summaries of the weights in Fig. 4 indicating the 

relative importance of different kinds of input features during classification.  
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Figure 6: Weight vector maps showing the most discriminating brain regions between 

placebo groups for the matched placebo groups (top 10 %; accuracy 66%). (A, B) 

Regions that contributed most to classification accuracy in the matched placebo groups 

are shown in red, in axial, coronal and sagittal views (z = (-28, -18, -8, 2, 10, 22, 31)). (C) 

Projection of each subject onto the weight vector; with positive patterns (blue circles) 

discriminating for conv+, and negative patterns (red crosses) discriminating for conv- 

CDMS could not be predicted based on cortical segmentations of the treated patients 

(total accuracy 48%; sens.: 42.9%, spec.: 53.1; p=0.6). 

 

 

 


