
Article
Impaired LXRa Phosphory
lation Attenuates
Progression of Fatty Liver Disease
Graphical Abstract
Highlights
d LXRaS196A induces liver steatosis and prevents cholesterol

accumulation

d LXRaS196A reduces progression to hepatic inflammation

and fibrosis

d LXRaS196A modulates hepatic chromatin acetylation

d LXRaS196A reveals unique dual LXRa phosphorylation and

diet-responsive genes
Becares et al., 2019, Cell Reports 26, 984–995
January 22, 2019 ª 2019 The Authors.
https://doi.org/10.1016/j.celrep.2018.12.094
Authors

Natalia Becares, Matthew C. Gage,

Maud Voisin, ..., Krista Rombouts,

Eckardt Treuter, Inés Pineda-Torra

Correspondence
i.torra@ucl.ac.uk

In Brief

Progression to inflammatory and fibrotic

steatohepatitis is poorly understood.

Becares et al. reveal that disrupting LXRa

phosphorylation attenuates these

processes by promoting a unique diet-

induced transcriptome that prevents

cholesterol accumulation and reduces

hepatic inflammation and fibrosis.

Mechanistically, phospho-deficient LXRa

promotes chromatin modifications and

alters protein-protein interactions in

differentially expressed genes.

mailto:i.torra@ucl.ac.uk
https://doi.org/10.1016/j.celrep.2018.12.094
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.12.094&domain=pdf


Cell Reports

Article
Impaired LXRa Phosphorylation Attenuates
Progression of Fatty Liver Disease
Natalia Becares,1 Matthew C. Gage,1 Maud Voisin,2 Elina Shrestha,2 Lucia Martin-Gutierrez,1 Ning Liang,3 Rikah Louie,1

Benoit Pourcet,1,9 Oscar M. Pello,1,10 Tu Vinh Luong,4 Saioa Goñi,2,11 Cesar Pichardo-Almarza,5 Hanne Røberg-Larsen,6
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SUMMARY

Non-alcoholic fatty liver disease (NAFLD) is a very
common indication for liver transplantation. How
fat-rich diets promote progression from fatty liver to
more damaging inflammatory and fibrotic stages is
poorly understood. Here, we show that disrupting
phosphorylation at Ser196 (S196A) in the liver X re-
ceptor alpha (LXRa, NR1H3) retards NAFLD progres-
sion in mice on a high-fat-high-cholesterol diet.
Mechanistically, this is explained by key histone acet-
ylation (H3K27) and transcriptional changes in pro-
fibrotic and pro-inflammatory genes. Furthermore,
S196A-LXRa expression reveals the regulation of
novel diet-specificLXRa-responsivegenes, including
the inductionofCes1f, implicated in thebreakdownof
hepatic lipids. This involves induced H3K27 acetyla-
tion and altered LXR and TBLR1 cofactor occupancy
at the Ces1f gene in S196A fatty livers. Overall,
impaired Ser196-LXRa phosphorylation acts as a
novel nutritional molecular sensor that profoundly
alters the hepatic H3K27 acetylome and transcrip-
tome during NAFLD progression placing LXRa phos-
phorylation as an alternative anti-inflammatory or
anti-fibrotic therapeutic target.
INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the major cause of

chronic liver disease in the Western world affecting up to 30%
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of the adult population (70%–80% of obese and diabetics) and

will become the main cause for liver transplantation by 2030 (Eu-

ropean Association for the Study of the Liver (EASL); European

Association for the Study of Diabetes (EASD); European Associ-

ation for the Study of Obesity (EASO) et al., 2016). NAFLD in-

volves conditions ranging from simple fatty liver accumulation

or steatosis (triglyceride and cholesterol accumulation without

significant alcohol consumption), steatosis accompanied by

inflammation with or without fibrosis (steatohepatitis or NASH),

progression to necrosis, cirrhosis, and hepatocellular carcinoma

promoting liver-related mortality (European Association for the

Study of the Liver (EASL); European Association for the Study

of Diabetes (EASD); European Association for the Study of

Obesity (EASO) et al., 2016). Steatosis alone is considered rela-

tively benign, but its transition to NASH represents a key step

into further liver damage, which without intervention can lead

to organ transplantation. Despite its clinical relevance, themech-

anisms underlying this transition are poorly understood. Indeed,

there are currently no approved pharmacological interventions

for NASH (Musso et al., 2012) and effective NAFLD therapies

are restricted to weight loss through lifestyle modifications

(Thoma et al., 2012). Therefore, identifying factors that modulate

the transition to NASH is crucial for the development of treat-

ments directly targeting NAFLD.

The Liver X receptors (LXRs) LXRa (Nr1h3) and LXRb (Nr1h2)

are key metabolic regulators. These lipid-activated transcrip-

tion factors heterodimerize with the Retinoid X receptor (RXR)

to control cholesterol and fatty acid homeostasis by regulating

the expression of multiple enzymes, transporters, and modula-

tors involved in these processes (Hong and Tontonoz, 2014). In

addition, LXRs modulate inflammatory and immune pathways

(Tall and Yvan-Charvet, 2015) and show anti-inflammatory

and anti-fibrotic activities in experimental models of acute liver
.
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Figure 1. LXRa-S196A Mice Develop

Enhanced Steatosis on a High-Cholesterol

Diet

(A) LXRa-Ser196 phosphorylation analyzed by

LXRa/b immunoprecipitation of liver homogenates

and immunoblotting with a phospho-S196-

LXRa-specific antibody. Global LXRa expression

was assessed. Expression of Hsp90 as input

loading control is shown.

(B) Hepatic non-esterified fatty acids (NEFAs) and

triglycerides (TGs) in mice fed an HFHC diet (n = 6/

group) normalized to liver protein levels.

(C) Kleiner’s scores for steatosis (0–3) of liver

sections (n R 5/group).

(D) Representative images of H&E-stained liver

sections frommice fed chow or HFHC diet. Arrows

point at examples of microvesicular steatosis.

Scale bar, 50 mM.

(E) Distribution of lipid droplets by area in H&E-

stained liver sections (n = 6/group). Area distribu-

tion was compared by chi-square test for trend

(p = 0.0003).

(F) Hepatic gene expression in mice fed an HFHC

diet (n = 6/group). Normalized data are shown

relative to WT, set as 1.

(G) De novo lipogenesis (DNL) index measured as

the ratio of 16:0 (Palmitate) and 18:2 n-6 (Linoleic)

content in liver (n = 6/group).

(H) Hepatic fatty acid levels (n = 6/group). Data are

means ± SEM. *p < 0.05, **p < 0.005 or ***p < 0.005

relative to WT.
disease (Beaven et al., 2011; Hamilton et al., 2016). Besides

ligand binding, LXR activity is regulated by post-translational

modifications (Becares et al., 2017). We and others previously

showed that LXRa is phosphorylated at Ser196 (Ser198 in the

human homolog) (Chen et al., 2006; Torra et al., 2008; Wu

et al., 2015) and that ligand-induced LXRa phosphorylation at

this site alters its activity in a gene-specific manner in macro-

phage cell lines overexpressing the receptor (Torra et al.,

2008; Wu et al., 2015). However, the physiological conse-

quences of LXRa phosphorylation, and, specifically, the impact

of disrupting LXRa phosphorylation on NAFLD progression,

remain unknown. Here, we report that global LXRa phosphory-

lation at Ser196 as a nutritional sensor that critically impacts

the transition to steatohepatitis in a dietary model of NAFLD.

This could open much-needed alternative therapeutic avenues
Cell R
for NAFLD aimed at targeting this post-

translational modification of LXRa.

RESULTS

LXRa-S196A Mice Exhibit
Enhanced Steatosis
As we previously identified in macro-

phages (Torra et al., 2008; Wu et al.,

2015), LXRa is phosphorylated at Ser196

(mouse) within a motif not present in

LXRb (Figure S1A), in both mouse (Fig-

ure 1A) and human liver (Figure S1B). To
understand the impact of LXRa phosphorylation in response to

a pathogenic diet, we generated a global knockin mouse car-

rying a homozygous serine-to-alanine mutation at Ser196

(S196A) that impairs its phosphorylation (Figures 1A and S1C–

S1E) but does not affect overall hepatic LXRa levels (Figure S1F).

On a chow diet, these mutant mice had no apparent dysmorphic

phenotype and displayed similar developmental growth to

matching wild-type (WT) mice (data not shown) and comparable

hepatic lipids or other metabolic parameters (Table S1).

We previously found that cholesterol induces LXRa phosphor-

ylation (Torra et al., 2008); thus, we hypothesized that LXRa

phospho-mutant animals respond differently to a high-fat-high-

cholesterol (HFHC) diet (Savard et al., 2013). Total body weight,

plasma insulin, and glucose levels were similar between S196A

and WT mice fed an HFHC diet (Table S2). By contrast, S196A
eports 26, 984–995, January 22, 2019 985



Table 1. LXRa Phosphorylation Alters Hepatic Fatty Acid Profiles

WT S196A p Value

C16:1, c9 5.28 ± 0.401 6.85 ± 0.297 0.017*

C18:1, c9 48.69 ± 2.983 62.10 ± 2.631 0.012*

C18:1, c11 2.29 ± 0.136 2.93 ± 0.128 0.011*

C18:2, n-6 10.37 ± 0.409 13.11 ± 0.850 0.024*

C18:3, n-6 0.49 ± 0.028 0.66 ± 0.063 0.054

C18:3, n-3 0.39 ± 0.031 0.47 ± 0.043 0.205

C20:1, n-9 0.38 ± 0.014 0.51 ± 0.021 0.001*

C20:2, n-6 0.12 ± 0.004 0.14 ± 0.004 0.037*

C20:3, n-6 0.53 ± 0.028 0.44 ± 0.024 0.048*

C20:4, n-6 3.95 ± 0.081 4.27 ± 0.049 0.011*

C20:5, n-3 0.15 ± 0.006 0.16 ± 0.013 0.559

C22:5, n-3 0.17 ± 0.009 0.17 ± 0.010 0.589

C22:6, n-3 3.15 ± 0.055 3.45 ± 0.128 0.078

Hepatic fatty acid quantification in WT and S196A mice (n = 6/group).

Data represent mean values of mg of fatty acid/g of liver tissue ± SEM.

Significant differences (p % 0.05) are noted by an asterisk (*).
mice displayed higher levels of hepatic, but not plasma, non-

esterified fatty acids (NEFAs) and triglycerides than WT mice

(Figures 1B and S1F). Indeed, enhanced micro and macrovesic-

ular hepatic steatosis, featuring more and larger lipid droplets,

were observed in S196A liver sections (Figures 1C–1E) concom-

itant to enhanced expression of lipid droplet genes (Figure S1G).

Additionally, increased steatosis was associated with enhanced

hepatic expression of the lipogenic transcription factor sterol

response element binding protein 1 (Srebp1c), and other known

LXR target genes involved in fatty acid synthesis (fatty acid syn-

thase, Fas) (Figure 1F). In contrast, other genes such as Cd36,

involved in fatty acid uptake were not affected. Given that

plasma NEFAs, triglycerides and insulin levels do not differ be-

tween genotypes (Figure S1F; Table S2), increased hepatic fat

accumulation in S196A mice likely results from enhanced de

novo lipogenesis (Figure 1G) as observed in other LXR models

(Schultz et al., 2000). Notably, S196A mice showed an increase

in the expression of stearoyl-CoA desaturase-1 (Scd1) (Fig-

ure 1F), which catalyzes the production of monounsaturated

fatty acids. This led us to investigate whether changes in LXRa

phosphorylation alter hepatic fatty acid composition, particularly

since the saturation status of fatty acids accumulating in the liver

during steatosis are thought to modulate the development of

fatty liver and its progression to steatohepatitis (Peverill et al.,

2014). Consistent with changes in gene expression, S196A livers

showed an increase in the total amount of saturated as well as

unsaturated fatty acids, specifically u9 and certain u6 fatty

acid species (Figure 1H; Table 1). Altogether, our findings

demonstrate that LXRa phosphorylation deficiency at S196 in-

duces hepatic steatosis and alters fatty acid profiles in response

to an HFHC diet.

Impaired LXRa Phosphorylation Attenuates Diet-
Induced Hepatic Inflammation and Fibrosis
Diet-induced hepatic steatosis generally precedes inflammation

and progression to fibrosis in experimental models (Sanyal,
986 Cell Reports 26, 984–995, January 22, 2019
2005). Strikingly, despite the increased steatosis, S196A mice

displayed less inflammation (Figure 2A) and significantly less

collagen deposition than their WT counterparts (Figure 2B).

This was associated with a significant decrease in the expres-

sion of several pro-inflammatory and pro-fibrotic mediators,

such as Oncostatin M (Osm), Chemokine (C-X-C motif) ligand 1

(Cxcl1), and Osteopontin (Spp1) and genes involved in collagen

synthesis (Col1a1 and Tgfb2) (Figure 2C). Only a subset of the

genes analyzed was affected by the S196A mutant (Figure 2C;

data not shown) highlighting the gene-specific effects themutant

receptor has on its targets. Interestingly, reduced levels of in-

flammatory and fibrotic genes in S196A mice were revealed

mostly upon exposure to the cholesterol-rich diet, while basal

expression levels on chow were largely unaffected (Figure 2D).

This likely reflects a modulatory role for LXRa phosphorylation

in diet-induced transcriptional responses.

Pathways known to be implicated in the pathogenesis of lipid-

induced liver damage, including apoptosis, lipid peroxidation,

and macrophage content, were similar between genotypes (Fig-

ures S2A–S2C). In addition to these, prolonged adaptive endo-

plasmic reticulum (ER) stress is a known adaptive mechanism

allowing cells to survive upon physiological changes requiring

altered rates of protein folding. Notably, ER stress not only

promotes steatosis, but also modulates hepatic fibrosis (Dara

et al., 2011). Expression of factors involved in the activation of

ER stress, such as the UPR target gene C/EBP homologous

protein (Chop) and the Activating Transcription Factor (Atf3)

or the spliced X-box-binding protein-1 (Xbp-1), was reduced in

S196A mice (Figure 2E), suggesting these animals could be pro-

tected from lipotoxicity through a reduction in ER stress. Overall,

these findings demonstrate that blocking LXRa-phosphorylation

at S196 attenuates lipid-induced hepatic inflammation and

fibrosis despite the observed enhanced steatosis by altering

the expression of key molecules in these pathways.

LXRa Phospho-Mutant Mice Are Protected from Dietary
Cholesterol Accumulation
Free cholesterol can act as a hepatotoxic agent (Marı́ et al., 2006)

that induces collagen deposition in hepatic fibrosis (Tomita et al.,

2014). In striking contrast to WT mice, S196A mice challenged

with an HFHC diet were protected from plasma and hepatic

cholesterol accumulation (Figure 3B). This was accompanied by

a 20% reduction in liver weight in S196A livers compared to WT

controls (Table S2), while hepatic bile acids remained unchanged

(Figures S2D and S2E). Thus, we next investigated expression of

genes involved in cholesterol metabolism pathways that could be

altered by the LXRa phospho-mutant, some of which are already

well-characterized targets of LXRa (Hong and Tontonoz, 2014).

Reduced hepatic and plasma cholesterol levels were associated

with decreased expression of cholesterol efflux transporter

Abcg1 (Figure3C), reflectingadampened response to thecholes-

terol-rich diet (Figure 3D). Notably, S196Amice showed a unique

response to the HFHC diet regarding the upregulation of Abcg5

(Figures 3C and 3D), a transporter mediating hepatobiliary

cholesterol secretion (Wu et al., 2004) and a well-characterized

target of LXRa (Hong and Tontonoz, 2014). No difference was

observed in the levels of genes involved in bile acid synthesis

(Cyp7a1, Figure 3C) or cholesterol intestinal absorption and



Figure 2. LXRa-S196A Alleviates Diet-

Induced Hepatic Inflammation and Fibrosis

(A) Kleiner’s scores for lobular inflammation (0–3)

from liver sections of mice (n = 6/group).

(B) Representative images of Picrosirius-Red-

stained liver sections (left). Scale bar, 100 mM.

Quantification of stained areas by ImageJ (n = 6/

group) (right). Values are the average of positively

stained area.

(C) Hepatic gene expression (n = 6/group).

Normalized data are shown relative toWT. Data are

means ± SEM. *p < 0.05, **p < 0.005 relative to WT.

(D) Hepatic gene expression inmice fed chow (n= 4/

group) or HFHC diet (n = 6/group). Normalized data

are shown relative toWTchowgroup. *p<0.05, **p<

0.005, ***p < 0.0005, relative to WT chow. Data are

means ± SEM. *p < 0.05, **p < 0.005 relative to WT.

(E) Hepatic gene expression (n = 6/group). Values

shown are normalized to cyclophilin and relative

to WT.
excretion (FigureS2F), an importantmeansbywhichLXRcontrols

cholesterol homeostasis (Hong and Tontonoz, 2014), nor in the

expression of other nuclear receptors regulating lipidmetabolism

(Figure S2G; data not shown). Thus, reduced cholesterol accu-

mulation in S196A mice is likely due to increased hepatobiliary

secretion of cholesterol. Moreover, in contrast to the strong

repression of the cholesterogenic transcription factor Srebp2

and its target gene Ldlr by dietary cholesterol inWTmice (Figures

3EandS2H), expressionof thesegeneswas largely unaffectedby

exposure to the diet in S196A mice, consistent with the un-

changed hepatic cholesterol levels in these animals when chal-

lenged with the HFHC diet (Figure 3A). Overall, these differences

in gene expression further reflect how the response to a choles-

terol-rich diet differs between genotypes.

Intracellular cholesterol accumulation activates the unfolded

protein response pathway in the ER (Devries-Seimon et al.,

2005), inhibiting protein transport to the Golgi to re-establish ER
Cell R
function (Kockx et al., 2012). One gene

linking cholesterol metabolism and ER

stress is Tm7sf2, which not only partici-

pates in cholesterol biosynthesis as a

3b-hydroxysterol D14-reductase but also

acts as an ER sensor by triggering anti-

inflammatory pathways (Bellezza et al.,

2013). Consistent with a decrease in he-

patic inflammation (Figure 2A), Tm7sf2

expression was enhanced in S196A mice

exposed to the diet, while other genes

involved in cholesterol biosynthesis were

largely unaffected (Figure S2I). This sug-

gests cholesterol modulation of ER stress

responses, rather than cholesterol biosyn-

thesis itself, is altered in S196A mice.

We next examined the levels of oxyster-

ols, oxidized cholesterol derivatives some

of which act as LXR ligands (Janowski

et al., 1996), as these metabolites have
been reported to be enhanced in NAFLD patients (Ikegami

et al., 2012). Interestingly, LXRa phospho-mutant mice showed

significantly reduced plasma levels of most oxysterols examined

(Figure 3F), consistent with the reduced signs of hepatic inflam-

mation and fibrosis (Figure 3C). Impaired oxysterol levels could

be explained by the induced Cyp7b1 expression (Figure 3C), an

enzyme involved in oxysterol catabolism (Uppal et al., 2007), in

S196Amice, while enzymes implicated in oxysterol synthesis re-

mained unaffected (data not shown). Overall, these findings sug-

gest that inhibition of LXRa phosphorylation acts as a molecular

sensor of dietary cholesterol in theprogression to steatohepatitis.

LXRa-S196A Reprograms Hepatic Gene Expression and
Uncovers a Diet-Induced LXRa Transcriptome
To better understand the impact on diet-induced responses by

the expression of the LXRa-S196Amutant and identify pathways

sensitive to LXRa phosphorylation, we assessed global gene
eports 26, 984–995, January 22, 2019 987



Figure 3. LXR Phosphorylation-Deficient Mice Show Reduced Cholesterol Levels in Response to an HFHC Diet

(A) Plasma total cholesterol levels in mice fed a chow (n = 4/group) or an HFHC diet (n R 5/group).

(B) Hepatic total cholesterol levels in mice fed a chow (n = 4/group) or HFHC diet (n = 6/group). Values shown are normalized to protein levels in tissue ho-

mogenates.

(C) Hepatic gene expression in mice fed an HFHC diet (n = 6/group). Normalized data are shown relative to WT.

(D and E) Abcg1 and Abcg5 (D) and Srebp2 and Ldlr (E) hepatic gene expression in mice fed chow (n = 4) or an HFHC diet (n = 6). Normalized data are shown

relative to WT chow group. Significance of comparisons between HFHC WT and S196A genotypes is shown in C).

(F) Quantification of free oxysterols in plasma of mice fed an HFHC diet (n = 6/group).

Data are means ± SEM. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005 relative to WT. ##p < 0.005, 4 versus 6 weeks.
expression differences betweenWT and phospho-mutant geno-

types by RNA sequencing (RNA-seq) analysis. Principal-compo-

nent analysis evidenced that transcriptomes of WT and S196A

mice are substantially different, especially under a cholesterol-

rich diet (Figure 4A). Transcriptomic analysis revealed 668 genes

whose hepatic expression is significantly altered in the mutant

mice fed an HFHC diet (Figures 4B, 4C, and S3). Remarkably,

there is minimal overlap between the genes modulated by

LXRa phosphorylation at S196A in chow and HFHC diets, further

reflecting on a genome-wide scale the distinct response exerted

by S196A mice to the metabolic challenges posed by a choles-

terol-rich diet. Pathway enrichment analysis confirmed our initial

findings and showed induction of genes in lipid metabolism (Fig-

ures 4D and 4E). Further interrogation of our datasets revealed

that, in addition to increased expression of enzymes involved

in fatty acid synthesis (Srebf1, Fas; Figure 1F), S196A expression
988 Cell Reports 26, 984–995, January 22, 2019
increased the hepatic levels of enzymes involved in fatty acid

elongation (Elovl3, Elovl5) and fatty acid oxidation, with a trend

toward increased levels of fatty acid desaturation enzyme

Fads1 (Figure 4F). These changes likely contribute to the distinct

hepatic fatty acid profile of S196Amice (Figure 1H). Interestingly,

expression of most of these enzymes is severely repressed by

the HFHC diet (Figure S4A) further highlighting the modulatory

role exerted by LXRa-S196A. Also corroborating previous ana-

lyses, the phospho-mutant mice showed a robust decrease in

the levels of wound healing and fibrotic mediators, including

several collagen genes and enzymes responsible for collagen

stabilization (Figures 4D and 4G). Importantly, gene expression

changes in response to an HFHC diet were substantially different

inWT and S196Amice (Figures S4B–S4D), further indicating that

impaired phosphorylation of LXRa-S196 alters the susceptibility

to diet-induced hepatic injury by inducing a distinct hepatic



Figure 4. Changes in LXRa Phosphorylation

Reprogram Hepatic Gene Expression

(A) Principal-component (PC) analysis plot

showing RNA-seq samples analyzed by diet and

genotype.

(B) Venn diagram of genes regulated by

LXRaS196A compared to LXRaWT (±1.3-fold, p <

0.05) in the indicated diets. Numbers of upregu-

lated and downregulated genes are depicted in

green and red, respectively.

(C) Volcano plot of log2 ratio versus p value of

differentially expressed genes comparing S196A

and WT livers exposed to an HFHC (n = 3/group).

Blue line indicates adjusted p value of 0.04 (Wald

test for logistic regression).

(D) GSEA analysis showing enriched pathways in

S196A livers with p < 0.5 (100 permutations)

derived from HALLMARK gene sets.

(E) Heatmaps of hepatic RNA-seq raw gene counts

(n = 3/genotype) for fatty acid and triglyceride

metabolism.

(F) Fold change of hepatic RNA-seq gene counts

in S196A compared to WT mice fed an HFHC diet

(n = 3/genotype).

(G and H) Hepatic gene expression by qPCR of top

(G) upregulated and (H) downregulated genes from

the RNA-seq analysis on experimentally indepen-

dent WT and S196A livers (n = 6/genotype).

(I) Hepatic gene expression from WT and S196A

mice treated with vehicle or 50 mg/kg T0901317

(n = 4/group).

Data are normalized to cyclophilin and shown

relative to WT vehicle set as 1. Significance was

determined using single variance ANOVA followed

by Student’s t test. Normalized data are shown

relative to WT as mean ± SEM. *p < 0.05, **p <

0.005 or ***p < 0.005
transcriptome. Moreover, expression of a subset of genes

involved in extracellular matrix remodeling and tissue regenera-

tion shown to distinguish between low-risk to mild and high-risk/

severe NAFLD among pre-symptomatic patients (Moylan et al.,

2014) was remarkably different between genotypes (Figure 4H).

This suggests that changes in LXRa phosphorylation could

alter pre-clinical NAFLD progression and emphasizes a role for

Ser196-LXRa phosphorylation in the regulation of these remod-

eling pathways.

Genes showing the strongest difference in expressionbetween

WT and S196A genotypes were confirmed in a separate set of

mice (Figures 4I and 4J). Notably, the majority of these genes

were modulated by LXRa phosphorylation only in a cholesterol-

rich environment (Figures S4E and S4F) and have not been previ-
Cell R
ously reported to be regulated by LXR.

One such gene, Ces1f, is a member of

the carboxylesterase1 family that hydroly-

ses cholesterol esters and triglycerides

and controls hepatic lipid mobilization

(Quiroga et al., 2012; Zhao et al., 2005).

Despite previous studies showing Ces1f

is not regulated by LXR ligands (Jones

et al., 2013), we now clearly demonstrate
Ces1f is highly sensitive to LXRa phosphorylation, preferentially

in the context of an HFHC diet (Figures 4I, S4G, and S4H). To

further demonstrate the lack of Ces1f regulation by the LXR

ligand, we treated WT and S196A mice with the LXR synthetic

agonistT0901317andassessedchanges in hepatic geneexpres-

sion.While both genotypes clearly exhibited responses as exem-

plified by the increased expression of the traditional target genes

Srebp-1c or Fas (Figure 4I) and hepatic triglycerides (Figure 6C),

no differenceswere observed in the expression ofCes1fbetween

ligand-treated WT and S196A mice. Moreover, expression of

phosphorylation-sensitive genes, such as Abcg5, did not mirror

that seen in HFHC-diet-fed animals, further confirming that the

effects of S196A mutation in the hepatic transcriptome of

HFHC-fed animals are specific to the dietary environment.
eports 26, 984–995, January 22, 2019 989



Figure 5. LXRa Phosphorylation at S196

Affects Global H3K27 Acetylation and LXR

and TBLR1 Occupancy in the Ces1f Gene

(A) Volcano plot comparing differences in gene

expression and H3K27Ac enriched sites shows

log2 ratio versus –log10 p value of differentially ex-

pressed genes in S196A versus WT livers exposed

to HFHC (n = 3). Colors show changes in H3K27Ac

enrichment, and dot size depicts the p value.

(B) Boxplot showing the distribution of signal

changes of altered H3K27Ac sites (p < 0.05) an-

notated to the upregulated (red), downregulated

(blue), and unchanged (gray) genes in S196A

versus WT livers by RNA-seq analysis.

(C) Heatmaps of H3K27Ac ChIP-seq counts (n = 3/

genotype) for Ces family genes. Location, fold

change (FC), p value, and false discovery rate

(FDR) value are indicated for each peak.

(D) H3K27Ac ChIP-seq read alignment tracks in

WT and S196A livers for Ces family gene cluster.

The arrow marks location of identified DR4.
Altogether, these data highlight the relevance of LXRa phos-

phorylation in revealing LXR target genes and inmodulating tran-

scriptional responses to dietary cholesterol.

Identification of l LXR Binding Sites in Dual LXRa
Phosphorylation and Diet-Sensitive Genes
We next investigated whether variation in the hepatic transcrip-

tome observed in the S196A mice coincided with changes in

chromatin modifications by chromatin immunoprecipitation

sequencing (ChIP-seq) analysis. We specifically interrogated

histone 3 lysine-27 acetylation (H3K27ac), a known marker for

active regulatory elements in promoters and enhancers

(Creyghton et al., 2010) previously shown to be modulated by

a fat-rich diet (Siersbæk et al., 2017). Remarkably, differences

in H3K27 acetylation between WT and S196A identified in a

different set of animals strongly overlapped with changes in

gene expression (Figures 5A and 5B). Indeed, most of the

H3K27 acetylation observed at genes up- and downregulated

by LXRaS196A was enhanced and reduced, respectively (Fig-

ures S5A–S5C). Collectively, these findings support the idea

that the LXRa phospho-mutant affects gene expression partly

through chromatin modifications.

To better understand the mechanism behind the differential

gene regulation resulting from LXRaS196A expression, we next

examined whether changes at LXRa phosphorylation at S196

affect LXR occupancy at selected genes in the context of a
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cholesterol-rich diet. We chose Ces1f as

an example of a phosphorylation-sensi-

tive target gene since its expression is

strongly induced in S196A livers on an

HFHC diet and its locus shows significant

H3K27Ac enrichment (Figures 5A, 5C,

and 5D). In silico analysis of the Ces1f

gene locus showing enhanced H3K27ac

enrichment identified a degenerated

DR4 sequence (AGGTCTatttAGTTCA),

resembling the consensus binding site
or LXRE (Boergesen et al., 2012). This site was preferentially

bound by LXR, but not its heterodimer partner RXR, in HFHC-

fed S196A livers (Figure 6A). This was associated with increased

RNA Polymerase II (Pol II) and phosho-Ser2 Pol II (pSer-Pol II)

occupancy indicative of an enhanced transcriptional initiation

and elongation, respectively, at the Ces1f locus (Figure 6C). In

contrast, occupancy by both LXR and RXR to the well-estab-

lished LXRE in Srebp-1c gene was induced (Figure 6B), as was

Pol II and pSer-Pol II (Figure 6C). This shows impaired LXRaS196

phosphorylation allows the transcriptional activation of a gene

containing degenerated DR4 sequences without affecting RXR

occupancy.

This LXR binding sequence was revealed by homology to pre-

viously reported LXREs identified in response to LXR ligands in

the context of a chow diet (Boergesen et al., 2012), as these

are the only global LXR occupancy analyses available. However,

ligand-induced responses may not necessarily phenocopy

nuclear receptor and transcription factor binding patterns in

response to a cholesterol-rich diet. Indeed, and in contrast to

diet-fed animals (Figure 6A), WT and S196A female mice treated

with T0901317 did not elicit differences in hepatic LXR occu-

pancy at Srebp-1c LXRE and Ces1f DR4 sequences (Figure 6D).

Moreover, pSer196-LXRa occupancy in chow and HFHC-fed

livers of WT mice was reduced upon diet in the Srebp-1c LXRE

region (Figure 6E), and a similar pattern was observed for global

LXR occupancy (Figure 6F). Occupancy of the phospho-LXRa on



Figure 6. Identification of LXR Binding Sites

in LXRa Phosphorylation/Diet-Sensitive

Genes

(A and B) LXR, RXR, and TBLR1 occupancy at

Ces1f newly identified DR4 (A) and Srebp-1c LXRE

(B) sequences or a region within a gene desert

(Neg S) in livers of WT and S196A mice fed an

HFHC for 6 weeks (n R 3/group).

(C) RNA Pol II and pSer2-Pol II occupancy at Ces1f

and Srebp-1c transcription start site (TSS) in livers

of WT and S196A mice fed an HFHC diet (n R 3).

(D) LXR occupancy at Srebp-1c LXRE, Ces1f DR4,

and non-specific negative sequences in livers of

WT and S196A mice treated with T0901317 (+T)

(n = 3/group).

(E and F) pSer196-LXRa (E) and LXR occupancy (F)

at Srebp1c LXRE, Ces1f putative DR4 and non-

specific negative sequences in livers of WT mice

fed a chow or HFHC diet for 6 weeks (n = 3/group).

Results are normalized to input values. For (A)–(C),

results are normalized to input values and shown

relative to WT, set as 1. Data represent means ±

SEM. *p < 0.05, **p < 0.005 determined by Stu-

dent’s t test.
the Ces1f DR4 sequence was very low (Figure 6D), reinforcing

the idea that binding of LXRa on this region is enhanced prefer-

entially by the phospho-mutant version of the receptor.

Molecular modeling studies suggest that phosphorylation of

LXRa at S198 (murine S196) induces a structural change in the

hinge region of the receptor (Torra et al., 2008; Wu et al., 2015).

Previously, we showed that, upon LXR ligand activation, phos-

phorylation affects the transcriptional activity of LXRa by modu-

lating the binding of the NCoR corepressor to phospho-sensitive

genes (Torra et al., 2008).Wewere unable to detect differences in

NCoR occupancy in mice exposed to the HFHC diet (data not

shown), suggesting responses to cholesterol in vivo involve other

transcriptional playerswhose interactionwith LXRa is sensitive to

its phosphorylation status. One such factor is TBLR1, which par-

ticipates in nuclear receptor cofactor exchange (Perissi et al.,

2004) andmodulates LXR target gene expression in hepatic cells

(Jakobsson et al., 2009). TBLR1 was found to preferentially bind

to LXRa-S196A (Figures S6A and S6B) and, consistently, its

occupancy at the Ces1f DR4 sequences was significantly

enhanced in S196A livers exposed to the HFHC diet (Figures

6A and 6B) suggesting this is an important component facilitating

the transcription of this gene by the LXRa phospho-mutant in the
Cell R
context of a cholesterol-rich diet. Collec-

tively, these data indicate that disrupting

LXRa phosphorylation at Ser196 affects

diet-induced responses in liver and re-

veals LXR target genes partly through dif-

ferential occupancy of LXR and TBLR1.

DISCUSSION

Despite its clinical relevance, the transi-

tion between relatively benign fatty liver

steatosis to inflammatory and fibrotic
steatohepatitis remains poorly understood. The role of LXRa in

promoting fatty acid and triglyceride accumulation is well estab-

lished and has proved a major obstacle in the development of

LXR ligands as therapeutics against metabolic and cardiovascu-

lar disorders (Hong and Tontonoz, 2014). Additionally, the hepat-

ic anti-fibrotic and anti-inflammatory actions of LXRs in animal

models of advanced fibrosis shed light into additional pathways

these receptors modulate toward advanced steatohepatitis

(Beaven et al., 2011; Wouters et al., 2010). Based on the idea

of the beneficial effects of reversing hepatic lipid accumulation,

pharmacological antagonism of LXRs has been proposed as

an effective therapy against NAFLD. For instance, a liver-selec-

tive LXR inverse agonist SR9238was shown to suppress hepatic

fatty acid synthesis and lipid accumulation leading to alleviated

hepatic inflammation and fibrosis in an obese rodent model (Grif-

fett et al., 2013, 2015). However, it remained to be defined how

LXR affects the transition to early fibrotic inflammatory stages

of NAFLD in the context of an established fatty liver, which is

more clinically relevant. Previous studies focused their efforts

at examining changes in LXRa expression and reported induced

levels of LXRa present in steatotic, inflammatory, and fibrotic

livers (Ahn et al., 2014; Lima-Cabello et al., 2011). These could,
eports 26, 984–995, January 22, 2019 991



however, represent an adaptive or a maladaptive or pathogenic

response to the ongoing cellular and molecular changes. Others

studies, however, have shown that LXRa is the only nuclear

receptor whose expression is unaffected during progression to

steatohepatitis (Aguilar-Olivos et al., 2015). These contradictions

highlight the need for further studies investigating how LXRs

affect this chronic liver disease. We now propose that changes

in LXRa phosphorylation play a crucial role in these transitional

stages of NAFLD.

Posttranslational modifications are a powerful means by

which the activity and function of nuclear receptors can be

altered. However, despite the key importance of certain nuclear

receptors in maintaining metabolic homeostasis, our under-

standing of how these modifications impact on metabolic dis-

eases is scarce (Becares et al., 2017). Notably, the physiological

consequences of LXRa phosphorylation, sumoylation, and acet-

ylation have only been studied in vitro or non-specifically in

animal models by pharmacologically or genetically altering the

enzymes enhancing or inhibiting these modifications (Becares

et al., 2017). To directly address the impact of LXRa phosphory-

lation on NAFLD progression, we have now generated a mouse

model harboring an S196A mutation that disrupts LXRa phos-

phorylation at Ser196.

We report that disrupting Ser196-LXRa phosphorylation af-

fects hepatic diet-induced responses by attenuating progres-

sion to steatohepatitis despite promoting lipid accumulation

(Figure 6). Importantly, LXRa phosphorylation at this residue dic-

tates transcriptional responses to an HFHC diet that promotes

early stages of NAFLD. Supporting our previous data in macro-

phages (Gage et al., 2018; Torra et al., 2008), we now show

the S196A-LXRamutation affects hepatic transcriptional regula-

tion in a gene-dependent manner, rather than conferring an over-

all gain or loss of function. Despite abundant triglyceride and

NEFA accumulation, consistent with an increased de novo lipo-

genesis gene program (Figures 1 and S1), S196A mice exhibit

significantly less hepatic inflammation and fibrosis than WT ani-

mals (Figure 2). This protective phenotype is associated with a

dramatic reduction in hepatic and plasma cholesterol (Figure 3)

and a robust repression of numerous pro-inflammatory and

pro-fibrotic mediators, including eleven collagen species, Lysyl

oxidase (LOX), and lysyl oxidase-like proteins (LOXLs) critical

for collagen stabilization through irreversible crosslinking (Kanta,

2016; Liu et al., 2016) (Figures 2 and 4).

Impaired LXRa phosphorylation uncovers diet-specific and

phosphorylation-sensitive genes, i.e., genes responsive to

changes in LXRa phosphorylation, primarily in the context of a

cholesterol-rich diet (Figures 4 andS4). Additionally, these genes

have not been reported to be traditional ligand-modulated LXR

targets suggesting the regulation of these identified genes

does not simply phenocopy ligand-induced LXR activation. For

instance, previous and our own studies failed to show Ces1f

regulation by LXR ligands (Jones et al., 2013), whereas we now

demonstrate Ces1f is highly sensitive to LXRa phosphorylation

in early steatohepatitis (Figures 4I, S4G, and S4H). Ces1 has

been recently shown to be protective from liver inflammation

and injury (Xu et al., 2016), and its hepatic deficiency strongly in-

creases susceptibility to cholesterol-driven liver injury (Li et al.,

2017). However, the specific contribution by the carboxylester-
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ase 1 family member Ces1f in NAFLD progression has not

been addressed. In addition to Ces1f, other Ces1 members

(Ces1b, Ces1c, Ces1d, Ces1e) are differentially regulated by

the LXRa phospho-mutant, most of which are also only revealed

to be sensitive to LXRa phosphorylation in a cholesterol-rich

environment (Figure S4G). Interestingly, the form previously

shown to be induced by LXR synthetic ligands in liver, Ces2c

(Jones et al., 2013), does not vary in S196A mice regardless of

the diet (Figures S4G and S4H), further indicating that LXRa

phosphorylation-sensitive genes in response to diet are not

necessarily regulated by LXR ligands and vice versa.

The diet-sensitive-induced expression of Ces1f by the LXRa

phosphorylation mutant associated with differential binding of

LXR and TBLR1 to binding sequences in this gene. Our tran-

scriptomic analysis showed that TBLR1 is regulated neither by

changes in LXRa phosphorylation nor by exposure to the choles-

terol-rich diet. Interestingly, TBLR1 activity itself is subject to

regulation by posttranslational modifications (Perissi et al.,

2008). This further supports that changes in posttranslational

modifications are a quick, reversible, and targeted way to regu-

late the transcriptional machinery. It is likely that a combination

of interactions in addition to TBLR1 explain the overall pheno-

type observed. Future proteomic analysis of cofactor complexes

affected by expression of the phosphorylation mutant in NAFLD

livers will be needed to dissect these interactions in detail and

their impact in disease progression. This is, however, beyond

the scope of our current investigation.

It is important to note that hepatic LXR occupancy at gene reg-

ulatory sites has never been explored in a cholesterol-rich diet

setting before but, rather, in the context of a chow diet (Boerge-

sen et al., 2012; Heinz et al., 2010). Future work will be needed to

establish genome-wide binding patterns of LXR and possibly

other nuclear receptors important in the regulation of hepatic

metabolism in the context of this pro-fibrotic diet. Interestingly,

recent studies have established that altered metabolic states

promote chromatin modifications both in animal models fed

fat-rich diets and in obese and diabetic individuals (Leung

et al., 2014, 2016; Yuan et al., 2014). Some of these modifica-

tions are thought to affect chromatin accessibility and are

considered to act as a ‘‘metabolic imprint’’ that is able to alter

metabolic disease risk, such as diabetes and NAFLD. However,

it was recently shown that transcriptional changes in response to

a fat-rich diet that induces obesity are not associated with chro-

matin accessibility measured as DNase sensitivity and rather

occur at pre-established regulatory regions that show differential

enrichment of H3K27Ac (Siersbæk et al., 2017). Our findings

show that HFHC diet-induced changes in hepatic gene expres-

sion in S196A mice are associated with altered H3K27Ac levels,

suggesting that the LXRa phosphorylation mutant takes advan-

tage of the altered chromatin landscape to modulate dietary

transcriptional responses. We have previously shown that

cholesterol induces LXRa phosphorylation at S196 in vitro (Torra

et al., 2008) and in vivo, in macrophages present in atheroscle-

rotic mice on a fat-rich diet and in livers exposed to an HFHC

diet (Torra et al., 2008; data not shown). Additional future inves-

tigations beyond the scope of this study will be needed to further

dissect the signal(s) that promotes hepatic LXRa phosphoryla-

tion at this site in animals exposed to different diets.



Overall, LXRa phosphorylation at Ser196 acts as a molecular

sensor in response to nutritional challenges thus promoting a

unique diet-induced transcriptome that modulatesmetabolic, in-

flammatory, and fibrotic responses key in NAFLD progression.

Understanding how this and other posttranslational modifica-

tions of LXRs are modulated and their impact on liver physiology

could open alternative therapeutic avenues for NAFLD.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-LXR alpha Abcam Cat#ab41902; Clone: PPZ0412;

RRID: AB_776094

Rabbit polyclonal anti-LXRa/b Laboratory of Knut R. Steffensen

Pehkonen et al., 2012

N/A

Rabbit polyclonal anti-pSer196 LXRa Torra et al., 2008 N/A

Rabbit polyclonal anti-HSP90a/b Santa Cruz Cat#sc-7947; RRID: AB_2121235

Rabbit monoclonal anti-LDLR [EP1553Y] Abcam Cat#ab52818; RRID: AB_881213

Mouse monoclonal anti-a-Tubulin Sigma Aldrich Cat#T5168; RRID: AB_477579

Goat anti-Rabbit Immunoglobulins/HRP Dako Cat#P0448; RRID: AB_2617138

Sheep anti-Mouse IgG - HRP GE Healthcare Cat#NA931; RRID: AB_772210

Rabbit monoclonal anti-TBLR1 Abcam Cat#ab190796

Rabbit polyclonal anti-RXRa Santa Cruz Cat#sc-553; RRID: AB_2184874

Rabbit polyclonal anti-Pol II Santa Cruz Cat#sc-9001; RRID: AB_2268548

Rabbit polyclonal anti-RNA polymerase II CTD repeat

YSPTSPS (phospho S2)

Abcam Cat#ab5095; RRID: AB_304749

Rabbit polyclonal anti-Histone H3 (acetyl K27) Abcam Cat#ab4729; RRID: AB_2118291

Rabbit Immunoglobulin G Sigma Aldrich Cat#I5006; RRID: AB_1163659

Rat monoclonal anti-F4/80 Abcam Cat#ab6640; RRID: AB_1140040

Biological Samples

Healthy human liver tissue University College London-RFH

Biobank

REC reference 11/WA/0077

Chemicals, Peptides, and Recombinant Proteins

T 0901317 Santa Cruz CAS 293754-55-9

Supelco 37 Component FAME Mix Sigma Aldrich Cat#CRM47885

Bradford Reagent Sigma Aldrich Cat#B6916

T-PER Tissue Protein Extraction Reagent Thermo Fisher Scientific Cat#78510

DSG (disuccinimidyl glutarate) Thermo Fisher Scientific Cat#20593; CAS 79642-50-5

RNase A/T1 Thermo Fisher Scientific Cat#EN0551

Proteinase K Thermo Fisher Scientific Cat#26160

RNAlater Sigma Aldrich Cat#R0901; CAS 7783-20-2

TRIzol Reagent Thermo Fisher Scientific Cat#15596026

Critical Commercial Assays

High Fat-High Cholesterol diet TestDiet Limited Cat#58R7

Teklad chow diet (18% protein) Harlan Laboratories Cat#2018

LabAssay Cholesterol Wako Diagnostics Cat#294-65801

LabAssay Triglyceride Wako Diagnostics Cat#290-63701

Free Fatty Acid Assay Kit Abcam Cat#ab65341

Rat/Mouse Insulin ELISA Millipore Cat#EZRMI-13K

Mouse Total Bile Acids Assay Kit Crystal Chem Cat#80470

JumpStart Taq DNA Polymerase Sigma Aldrich Cat#D9307

PerfeCTa SYBR Green FastMix Low ROX Quantabio Cat#95071

qScript cDNA Synthesis Kit Quantabio Cat#95047

RT2 Profiler PCR Array Mouse Cytokines & Chemokines QIAGEN Cat#PAMM-150Z

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RT2 Profiler PCR Array Mouse Lipoprotein Signaling &

Cholesterol Metabolism

QIAGEN Cat#PAMM-080Z

Stranded mRNA-Seq Kit Kapa Biosystems Cat#KK8421

Crosslink IP Kit Pierce Cat#26147

Anti-FLAG M2 Magnetic Beads Sigma Aldrich Cat#M8823; RRID: AB_2637089

TUNEL Apoptosis Detection Kit - DAB R&D Systems Cat#4810-30-K

TBARS Assay Kit Cayman Chemicals Cat#10009055

ThruPLEX DNA-seq Kit Takara Bio Cat#R400523

QIAquick PCR Purification Kit QIAGEN Cat#28104

Deposited Data

Chow livers RNA-Seq raw and analyzed data This paper GEO: GSE96650

HFHC livers RNA-Seq raw and analyzed data This paper GEO: GSE95359

ChIP-Seq data This paper GEO: GSE114104

Experimental Models: Cell Lines

Human: HEK293T-VO,LXRa,S198A Torra et al., 2008 N/A

Experimental Models: Organisms/Strains

Mouse: WT and S196A This paper N/A

Oligonucleotides

S196A genotyping primers: wild-type forward: GGTGTC

CCCAAGGGTGTCCT, reverse: AAGCATGACCTGCACA

CAAG, mutant forward: GGTGTCCCCAAGGGTGTCCG

This paper N/A

Primers for qPCR, see Table S3 This paper N/A

Primers for ChIP-qPCR analysis, see Table S4 This paper N/A

ChIP-qPCR negative sequence primers Active Motif Cat#71011

Recombinant DNA

Plasmid: LZRSpBMN-GFP, LZRSpBMN-GFP/LXRa,

LZRSpBMN-GFP/S198A

Torra et al., 2008 N/A

Mouse vector: S196Afl/fl This paper N/A

Software and Algorithms

DESeq2 Anders and Huber, 2010 https://www.huber.embl.de/users/anders/

DESeq/RRID: SCR_015687

Gene Set Enrichment Analysis (GSEA) Subramanian et al., 2005 http://software.broadinstitute.org/gsea/

datasets.jspRRID: SCR_003199

g:profiler Reimand et al., 2016 https://biit.cs.ut.ee/gprofiler/

MultiExperiment Viewer (MeV) Howe et al., 2011 mev.tm4.org/ RRID: SCR_001915

Heatmapper Babicki et al., 2016 http://www2.heatmapper.ca/expression/

Venn Diagrams BEG tool Laboratory of Yves Van de Peer http://bioinformatics.psb.ugent.be/

webtools/Venn/

ImageJ National Institutes of Health https://imagej.nih.gov/ij/ RID: SCR_003070

Eli (Easy Lipids) v1.0 This paper http://www.ucl.ac.uk/muse/software

NHR-scan Sandelin and Wasserman, 2005 http://www.cisreg.ca/cgi-bin/NHR-scan/

nhr_scan.cgi

Integrative Genome Viewer Robinson et al., 2011 https://www.broadinstitute.org/igv/

RRID:SCR_011793
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Inés

Pineda-Torra (i.torra@ucl.ac.uk).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Generation of S196A transgenic animal models
The S196A floxed (S196Afl/fl) mouse line was generated by Ozgene Pty Ltd (Bentley WA, Australia). The genomic sequence for the

murine LXRa (Nr1h3) gene was obtained from the Ensembl Mouse Genome Server (http://www.ensembl.org//useast.ensembl.org/

Mus_musculus/?redirectsrc=//www.ensembl.org%2FMus_musculus%2F), Ensembl gene ID: ENSMUSG00000002108. Themutant

fragment, located on Exon 5, contains a serine-to-alanine mutation at Ser196 introduced by site-directed mutagenesis. The point

mutant exon was delivered into an intronic site inside the targeting vector, placed in opposite orientation and thus without coding

capacity (Figure S1A). The targeting construct was electroporated into the Bruce4 C57BL/6 ES cell line. Homologous recombinant

ES cell clones were identified by Southern hybridization and injected into BALB/cJ blastocysts. Male chimeric mice were obtained

and crossed to C57BL/6J females to establish heterozygous germline offsprings on a pure C57BL/6 background. The germline mice

were crossed to a FLP Recombinase mouse line (Takeuchi et al., 2002) to remove the FRT flanked selectable marker cassette (Flp’d

mice). Flp’d mice were then crossed with a transgenic C57BL/6 mouse strain carrying a Cre recombinase under the PGK-1 promoter

(Koentgen et al., 2010), resulting in the inversion and insertion of the lox-flanked mutated (loxP) vector exon 5 region in the sense

orientation, and deletion of the wild-type (WT) sequence in most adult cell lineages (S196A mice) while WT matching controls carry

the WT sequence in the sense orientation (Figure S1D). Mice were genotyped by PCR analysis of ear biopsies (Figures S1D and S1E)

using the Jumpstart Taq DNA Polymerase (Sigma Aldrich).

Animal husbandry
Animals were housed together in groups andmaintained in a pathogen-free animal facility in a 12-h light-dark cycle in a temperature-

controlled room (21.1 ± 1.1�C), with ad libitum access to water and food. Ten-week old female mice were used for all animal studies.

All procedures were carried under the UK’s Home Office Animals (Scientific Procedures) Act 1986 and in accordance with the

National Institutes of Health guidelines and the NYU Institutional Animal Care and Use Committee.

Culture of transfected HEK293T cells
HEK293T cells were obtained from the ATCC and maintained in Dulbecco’s modified Eagle’s medium with 10% Fetal Bovine Serum

(FBS) and 20 mg/ml gentamicin. Recombinant retroviruses were produced by transfecting LZRSpBMN-GFP, LZRSpBMN-GFP/

LXRa, or LZRSpBMN-GFP/S198A into 293GP cells (Yee et al., 1994). Cells infected with either the retroviral vector devoid of an

LXRa sequence (VO [vector only]), the FLAG-taggedWT LXRa (LXRa), or phosphor mutant S198A (S198A) were sorted for green fluo-

rescent protein expression by fluorescence-activated cell sorting. These cell lines are from human female origin and represented a

pool of multiple LXRa-expressing clones.

Human liver tissue
Frozen liver biopsies from adult males with colon carcinoma undergoing lobectomies were obtained from the UCL-RFH Biobank

(approved by UCL–Royal Free Hospital BioBank Ethical Review Committee, 11/WA/0077). Study was approved by the local ethical

board (NRES Rec Reference NC2015.020.). Each participant gave written informed consent. Storage of samples complied with the

requirements of the Data Protection Act of 1998 and the Human Tissue Act of 2004.

METHOD DETAILS

Diet and drug studies and tissue collection
Ten-week old WT and S196A female mice were fed ad libitum a High Fat-High Cholesterol (HFHC) diet (17,2% Cocoa Butter, 2,8%

Soybean Oil, 1,25%Cholesterol, 0,5%Sodium Cholate; AIN-76A/Clinton Diet #4, Test Diet Limited, UK) or a chow diet (18%Protein,

6.2% Fat, 0% Cholesterol; Harlan Laboratories) for 6 or 12 weeks. For ligand activation studies, WT and S196A female mice were

administered by oral gavage 50 mg/kg/day of T0901317 (Santa Cruz Biotechnology) in 0.5% methylcellulose or vehicle alone for

four days.

Mice were fasted overnight prior to sacrifice. Blood was collected by cardiac puncture and plasma was aliquoted and frozen at -

80�C. Tissue was dissected, weighted and frozen at - 80�C or placed in RNAlater (Sigma Aldrich).

Plasma and liver lipids
Frozen livers (50 mg) were homogenized in 250 mM sucrose, 2 mM EDTA, 10 mM Tris buffer using ceramic beads in a Minilys Tissue

Homogenizer (Bertin Corp.). Triglycerides and Cholesterol were extracted with Isopropanol or Chloroform:Methanol (1:1) solutions,

respectively. Non Esterified Free Fatty Acids (NEFAs) were extracted by incubating liver homogenates with 1%Triton-100X and chlo-

roform solution. Plasma and hepatic total cholesterol, triglyceride levels (Wako Diagnostics), and NEFAs (Abcam) were determined

by colorimetric enzymatic assay kits as per the manufacturer’s recommendations. Hepatic lipid content was normalized to protein

concentration, quantified using the Bradford Protein Assay. To this end, liver homogenates were diluted in water and incubated with

Bradford Reagent (Sigma Aldrich) for 30 minutes at room temperature. Absorbance was measured at 595 nm in Microplate Reader.
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Plasma glucose and insulin
Blood glucose measurements (Accu-Chek, Roche Diagnostics) were taken from tail blood samples after overnight fasting. Plasma

insulin concentration was measured using a rat/mouse Insulin Enzyme-Linked ImmunoSorbent Assay (ELISA) kit (Millipore), which

contained a 96-well plate pre-coated with a pre-titered amount of monoclonal mouse anti-rat insulin antibodies. Quantification of

immobilized antibody-enzyme conjugates was performed by monitoring horseradish peroxidase activities in the presence of the

substrate 3,30,5,50-tetramethylbenzidine; which was measured spectrophotometrically by the increased absorbency at 450 nm,

corrected from the absorbency at 590 nm. Amount of captured insulin was derived by interpolation from a reference curve generated

in the same assay with reference standards of known concentrations of rat insulin (Millipore).

Hepatic fatty acid profiles
Liver fatty acid content fromWT and S196A mice fed a HFHC diet were assayed by gas liquid chromatography with flame ionization

detection by AS Vitas (Oslo, Norway). Internal standard triheptadecanoin was added and fatty acids were methylated into methyl

esters (FAMEs) withMeOHHCl and extractedwith hexane. Analyseswere performed on an Agilent 7890AGC and a 7683B automatic

liquid sampler and flame ionization detection (Agilent Technologies, USA). Separations were obtained using a SP-2380 column. Fatty

acid content was calculated based on the area percentage of peaks and response factors relative to 18:0. An external standard con-

taining known amounts of relevant FAMEs (Supelco 37 component FAME Mix) was included in each run to correct for differences in

fatty acid response factors. Results were normalized to protein content. The ratio of 16:0 to 18:2 n-6 was used to calculate a de novo

lipogenesis index (Chong et al., 2008). The total saturated fatty acid content was calculated as the sum of 12:0, 14:0, 15:0, 16:0, 17:0,

18:0, 20:0 and 22:0. The total unsaturated fatty acid content was calculated as the sumofu9 (16:1 c9, 18:1 c9, 20:1 n-9),u6 (18:2 n-6,

18:3 n-6, 20:2 n-6, 20:3 n-6, 20:4 n-6) and u3 (18:3 n-3, 20:5 n-3, 22:5 n-3, 22:6 n-3) fatty acids.

Hepatic bile acid quantification
50mg of frozen livers were homogenized in 75%ethyl alcohol (VWR) using a Dounce homogenizer and homogenates were incubated

at 50�C for 2 hours. Tubes were then centrifuged for 10min. at 6000 x g, 4�C and supernatant was transferred onto a clean tube. Total

bile acid concentration in supernatants was quantified using the Mouse Total Bile Acids kit (Crystal Chem.), as per manufacturer’s

instructions. Hepatic bile acids were normalized to total protein concentration, quantified using the Bradford Protein Assay.

Oxysterol LC-MS analysis
Protein was precipitated from plasma with 480 pM of 24R/S hydroxycholesterol-d7 (24R/S-d7), 25-hydroxycholesterol-d6 (25-d6),

27-hydroxycholesterol-d6 (27-d6), 22R-hydroxycholesterol-d7 (22R-d7) and 1214 pM 24-25-epoxycholesterol-d6 (2425e-d6) as

internal standards (Avanti Polar Lipids, Alabaster, AL, USA). Sample clean-up was conducted offline, using solid phase extraction

(SPE, SilactSPE C18 100 mg, Teknolab, Ski, Norway) and dried at 30�C, re-dissolved in 2-propanol and derived (Roberg-Larsen

et al., 2014). Samples and calibration solutions were analyzed using an Ultimate 3000 UHPLC connected to an Advantage QqQ

(both Thermo Fisher, Waltham, MA, USA) equipped with an Automatic filtration and filter back-flush SPE add-on (Roberg-Larsen

et al., 2017). Injection volume was 100 mL and oxysterols were retained on-line on a Hotsep Kromasil C18 100 Å 1 mm ID x 5 mm

SPE. Loading mobile phase was 0.1% formic acid (FA, Sigma Aldrich, St. Louis, MI, USA) in type 1 water with a flow rate of

100 mL/min. Loading time was 2 minutes to remove excess derivatization reagent. The valve was automatically controlled by Chro-

meleon software. Separation of the oxysterols was achieved on an ACE 3 C18 1 mm ID x 100 mm column using a gradient. Mobile

phase A andBwas 0.1%FA in type 1water and 0.1%FA inMeOH, respectively and flow rate was 75 mL/min. Gradient started at 70%

B and increased to 80% B in 10 minutes, followed by an increase to 95% B in 1 minute and was hold at 95% for 10 minutes. Column

temperature was 30�C. Total analysis time per sample (including injection and column reconditioning) was 27 minutes.

Faecal cholesterol quantification
Dried faeces were weighed (40 mg) and grounded with a mortar and pestle. Powdered faeces were then resuspended in Phosphate

Buffer Saline and solution was mixed with 5 mL of a Chloroform:Methanol (1:1) solution (VWR). Tubes were left to incubate for

10 minutes at room temperature while shaking, and were then centrifuged (3000 x g, 10 min, room temperature). Supernatants

were transferred onto fresh tubes and were allowed to evaporate to dryness by placing the open tube at 65�C. Dried cholesterol rem-

nants were then resuspended with 200 mL of isopranol + 10% Triton-100X solution (Fisher Bioreagents). Total cholesterol levels were

determined using a colorimetric kit (Wako Chemicals).

Gene expression analysis
Total RNA from was extracted with TRIzol Reagent (Invitrogen). Sample concentration and purity was determined using a NanoDrop

1000 Spectrophotometer and cDNA was synthesized using the qScript cDNA Synthesis Kit (Quanta). Specific genes were amplified

and quantified by quantitative PCR (qPCR), using the PerfeCTa SYBR Green FastMix (Quanta) on an MX3000p system (Agilent).

Primer sequences are available on Supplemental table S3. The relative amount of mRNAs was calculated using the comparative

Ct method and normalized to the expression of cyclophilin (Pourcet et al., 2016). Mouse Cytokines & Chemokines and Lipoprotein

Signaling & Cholesterol Metabolism RT2 Profiler PCR Arrays were performed per the manufacturer’s instructions (QIAGEN). Briefly,
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cDNA was synthesized using an RT2 HT first strand kit (QIAGEN), and qPCR analysis was performed using RT2 SYBR Green ROX

qPCR Mastermix (QIAGEN). The relative amount of mRNAs was calculated using the comparative Ct method and normalized to an

average of five housekeeping genes.

RNA sequencing studies
Total RNAwas extracted using TRIzol (Life technologies) and cDNA libraries were prepared using the StrandedmRNA-Seq Kit (Kapa

Biosystems). Briefly, poly-A tailed RNA was purified using paramagnetic oligo-dT beads from 200 nanograms of total RNA, with a

RNA Integrity Number above 7.5 as determined by the Agilent Bioanalyzer. The purified RNA was chemically fragmented and

cDNA was synthesized using random primers (Kapa Biosystems). Adaptor-ligated DNA library was amplified with 12 cycles of

PCR and library fragment was estimated using the Agilent TapeStation 2200.Library concentration was determined using the Qubit

DNA HS assay (Life Technologies). Libraries were sequenced on an Illumina NextSeq 500, NCS v2.1.2 (Illumina) with a 43bp paired

end protocol. Basecalling was done using standard Illumina parameters (RTA 2.4.11). Sequencing and pipeline analysis was per-

formed by UCL Genomics (London, UK). Reads were demulitplexed using Illumina’s bcl2fastq v2.17 and aligned using STAR

v2.5.0b to the mouse GRCm38/mm10 reference sequence. Transcript abundance was estimated using Illumina’s RnaReadCounter

tool and differential expression analysis performed with DESeq2, which uses the Benjamin-Hochberg method for multiple testing

correction (Anders and Huber, 2010). Pathway enrichment analysis was performed with the Gene Set Enrichment Analysis (GSEA)

software’s pre-ranked module (Subramanian et al., 2005) and g:profiler (Reimand et al., 2016). Top regulated genes were confirmed

by qPCR on a separate set of liver samples from HFHC-fed mice. Heatmaps were created using raw gene count values with the

MultiExperiment Viewer (MeV) software (Howe et al., 2011). Clustered heatmaps of normalized gene counts were created with Heat-

mapper Expression tool (Babicki et al., 2016) and Venn diagrams using a BGE tool.

Western Blotting
Whole liver samples were homogenized with T-PER lysis buffer (78510, Thermo Fisher Scientific) supplemented with protease and

phosphatase inhibitors. Total cellular protein lysates (30mg) were loaded onto a 10%SDS-PAGE gel, electrophoresed and transferred

onto a PVDF membrane. For immunoprecipitations studies, single cell suspensions from livers were immunoprecipitated with anti-

bodies that specifically recognize human (LXRa, ab41902 Abcam) or murine (LXRa/b) (Pehkonen et al., 2012) receptors previously

crosslinked to a column with Protein A/G Agarose following the manufacturer’s protocol (Pierce). Phospho-Ser196 specific rabbit

polyclonal antibody (Torra et al., 2008), mouse a-LXRamonoclonal antibody (ab41902, Abcam), a-Hsp90 polyclonal (sc-7947, Santa

Cruz), a-LDLR monoclonal (Abcam, ab52818) and anti-a-Tubulin monoclonal antibody (Sigma Aldrich, T5168) were used for immu-

noblotting. Anti-rabbit (PO448, Dako) or anti-mouse (NA931VS, GE Healthcare) horseradish-peroxidase-tagged antibodies were

used for secondary binding and chemiluminescence (ECL 2 Western Blotting Substrate, Pierce) was used to visualize proteins.

For co-immunoprecipitation studies, HEK293T-LXRa, HEK-S198A or HEK293T-Vo cells expressing FLAG-tagged receptors as in

(Torra et al., 2008) were lysed and crude nuclear pellets were obtained. Supernatants containing nuclear proteinswere incubatedwith

FLAG antibody-conjugated agarose beads (Sigma Aldrich). Bead-associated proteins associated were eluted in TBS and immuno-

blotted with a-TBLR1 (ab190796, Abcam) or a-LXRa (ab41902, Abcam) antibodies.

Histopathological analysis
Formalin-fixed, paraffin-embedded mouse livers were cut and stained with hematoxylin and eosin (H&E) or Picrosirius Red (Abcam)

dyes. Liver histology was blindly scored by an independent histopathologist based on three semiquantitative items: steatosis (0–3),

lobular inflammation (0–3) and hepatocellular ballooning (0–2) (not shown) (Liang et al., 2014). Stained sections were scanned with

NanoZoomer Digital slide scanner (Hamamatsu) and quantification of Picrosirius red-stained areas was performed using ImageJ on

three independent areas per section. Data is represented as the average positively-stained percent of area of interest.

Hepatic macrophage content was assessed by quantification of F4/80 positively-stained areas (ab6640, Abcam).

Lipid droplet identification
Identification and quantification of lipid droplets were made with the help of Eli (Easy Lipids) v1.0, an in-house software developed

between the Multiscale Cardiovascular Engineering (MUSE) and Dr Pineda-Torra’s groups at UCL. This software uses a method

based on the Hough Transform (Duda and Hart, 1972) for the identification of the droplets estimating the centers and radii of

each of them. A final report is generated with the dimensions of the droplets (i.e., diameter and area) including a histogram describing

the frequency of lipid vacuoles within specified diameter ranges.

TUNEL staining
Apoptosis was detected in situ using a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay as per the

manufacturer’s instructions (R&D Systems). Paraffin-embedded liver tissue sections were incubated with a specific TdT enzyme

that incorporates biotin on exposed nucleotides after DNA fragmentation. Biotin labeling was later achieved using Streptavidin-

Fluorescein and sections were imaged using the Axio Imager.A1 Digital Microscope (Zeiss). Four different areas per slide were

photographed at a magnification of 200X and intensity of staining was quantified by ImageJ.
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Lipid peroxidation quantification
Thiobarbituric Acid Reactive Substances (TBARS) were measured in about 25 mg of frozen liver as per manufacturer’s instructions

(Cayman Chemicals). Briefly, lipid peroxidation was quantified by the reaction of Malondialdehyde (MDA), a product of lipid perox-

idation, with thiobarbituric acid (TBA) to form a colorimetric (532 nm) product, proportional to the MDA present in the sample. Levels

of MDA were normalized to total protein levels, quantified by the Bradford Assay.

LXRa proteomic analysis
HEK293T cells expressing vector only (Vo), FLAG-hLXRa or FLAG-hLXRa-S198A (Shrestha et al., 2016) were treated with 1 mM

T0901317 for 8 hours. Cells were lysed in hypotonic buffer (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, pH 7.9) and FLAG-LXRa

was immunoprecipitated from the nuclear extracts using agarose beads conjugated to FLAG antibody (Sigma). The beads were

then incubated in 50 mL of TBS with 0.5 mg/ml FLAG peptide (Sigma F3165) and the proteins in the supernatant were precipitated

with TCA overnight. The TCA precipitate was processed and then subjected to analysis by Multidimensional Protein Identification

Technology and LTQ and LTQ orbitrap mass spectrometry (Shrestha et al., 2016).

Screening of potential LXREs
Screening for potential DR4 sequences was performed using the available web-based software NHR Scan (http://www.cisreg.ca/

cgi-bin/NHR-scan/nhr_scan.cgi) (Sandelin and Wasserman, 2005), which predicts potential nuclear hormone receptor binding sites

on a given genomic sequence. Input sequences (gene body or sequences 30 kb upstream of transcription start site) were obtained

from UCSC Genome Browser database and submitted under FASTA format. Plausible DR4 sequences were then chosen based on

similarity to a published consensus sequence for the murine LXRE (Boergesen et al., 2012).

ChIP-qPCR and ChIP-sequencing
Fresh mouse livers (n = 3/genotype) were crosslinked with 2 mM disuccinimidyl glutarate (DSG) for 30 min, followed by 1% formal-

dehyde for 10min at room temperature. The reactionwas stoppedwith glycine at a final concentration of 0.125M for 5min. Single cell

suspension were obtained by grinding liver pieces through a 70 mM cell strainer, and nuclei were isolated by incubating cell prepa-

rations for 10 minutes at 4�C with the following lysis buffers: Buffer 1 (50 mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10%

glycerol, 0.5%NP-40 and 0.25% Triton X-100), Buffer 2 (10mM Tris-HCl, pH 8.0, 200mMNaCl, 1 mMEDTA and 0.5 mMEGTA), and

Buffer 3 (10mM Tris-HCl, pH 8.0, 100mMNaCl, 1 mMEDTA, 0.5 mMEGTA, 0.1%Na-deoxycholate, and 0.5%N-Lauroylsarcosine).

Pellets resuspended in 300 mL of lysis buffer 3 were sonicated for 40 cycles (30 s ON/OFF) in the UCD-300 Bioruptor (Diagenode), to

generate DNA-fragment sizes of 0.2–0.5 kb. The following antibodies were used for immunoprecipitations: RXRa (sc-553, Santa

Cruz), Pol II (sc-9001, Santa Cruz), Pol II-S2P (ab5095, Abcam), pS196-LXRa (Torra et al., 2008) LXR (Pehkonen et al., 2012) and

control rabbit IgG (I5006, Sigma Aldrich). Following RNase A (Thermo Fisher Scientific) and proteinase K (Thermo Fisher Scientific)

treatment, immunoprecipitated DNA was purified using the QIAquick PCR purification kit (QIAGEN) and analyzed by quantitative

real-time PCR (primer sequences are listed in Table S3) and relative occupancies were normalized to input DNA (fold difference =

2 –Ct-sample-Ct-input). To control for non-specific binding, a 82 base pair fragment in a gene desert in chromosome 6 (ActiveMotif)

was used. Triplicate samples for ChIP-seq were sonicated in Diagenode Pico sonicator and immunoprecipitated with H3K27Ac

(ab4729, Abcam). For library preparation, 2 ng of immunoprecipitated DNAwas processed using ThruPLEX� DNA-seq Kit (Rubicon)

according to manufacturer’s protocols, and 50SE reads were obtained in the Illumina HiSeq 2000 (Illumina). Sequencing files (fastq

files), provided by the Bioinformatics and Expression Analysis (BEA) core facility (Karolinska Institutet), and raw data from published

ChIP-seq data (GSE35262) were aligned to the NCBI37/mm9 version of themouse reference genome, using Bowtie (Fan et al., 2016).

The sequencing tags were then read and imported to the HOMER (Hypergeometric Optimization of Motif EnRichment, http://homer.

ucsd.edu/homer) package. Peakswere identified usingHOMERwith default settings, and peak overlapwas calculated bymerging all

individual peak files for every experiment. and peak heights were normalized to the total number of uniquely mapped reads and

displayed in Integrative Genomics Viewer (Robinson et al., 2011) as the number of tags per 10 million tags.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using Prism (GraphPad) and Microsoft Excel. Unless otherwise states, data is presented as

mean ± SEM. For multiple comparisons, significance was assessed by single variance ANOVA followed by Student’s t test. The

F-statistic (dfbetween = 3, dfwithin = 15) and the P value for the significant main effect are shown. Differences were considered sig-

nificant at p < 0.05 by a two-tailed Student t test. For distribution of liver lipid droplets, areas were compared by chi-square for trend.

Statistical details, significance and n values can be found in the figure legends.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for gene expression RNaseq (chow and HFHC diet) and H3K27Ac ChIPSeq data reported in this paper are

GEO: GSE96650 (chow), GEO: GSE95359 (HFHC), and GEO: GSE114104 (ChIPSeq).

A trial of Eli v1.0 is currently available upon request on the MUSE website at UCL (http://www.ucl.ac.uk/muse/software).
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