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Davide Gualdi ,1‹ Héctor Gil-Marı́n ,2,3 Marc Manera,4,5 Benjamin Joachimi1 and
Ofer Lahav1

1Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
2Institut Lagrange de Paris (ILP), Sorbonne Université, 98 bis Boulevard Arago, 75014 Paris, France
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ABSTRACT
We present a novel method to compress galaxy clustering three-point statistics and apply
it to redshift space galaxy bispectrum monopole measurements from BOSS DR12 CMASS
data considering a k-space range of 0.03 − 0.12 h/Mpc. The method consists in binning
together bispectra evaluated at sets of wavenumbers forming closed triangles with similar
geometrical properties: the area, the cosine of the largest angle, and the ratio between the
cosines of the remaining two angles. This enables us to increase the number of bispec-
trum measurements, for example by a factor of 23 over the standard binning (from 116
to 2734 triangles used), which is otherwise limited by the number of mock catalogues
available to estimate the covariance matrix needed to derive parameter constraints. The
68 per cent credible intervals for the inferred parameters (b1, b2, f, σ 8) are thus reduced
by (−39 per cent,−49 per cent,−29 per cent,−22 per cent), respectively. We find very good
agreement with the posteriors recently obtained by alternative maximal compression methods.
This new method does not require the a-priori computation of the data vector covariance
matrix and has the potential to be directly applicable to other three-point statistics (e.g. galaxy
clustering, weak gravitational lensing, 21-cm emission line) measured from future surveys
such as DESI, Euclid, PFS, and SKA.

Key words: methods: analytical – methods: data analysis – methods: statistical – cosmology:
cosmological parameters – cosmology: large-scale structure of Universe.

1 IN T RO D U C T I O N

Three-point (3pt) statistics will be indispensable to fully exploit the
large data sets from current and forthcoming cosmological surveys.
Their most recent applications to galaxy clustering data sets have
been on BOSS for both the bispectrum (Gil-Marı́n et al. 2017) while
(Slepian et al. 2017a) used the 3pt correlation function. Slepian
et al. (2017b) also measured baryonic acoustic oscillations (BAO)
using the 3pt correlation function and Pearson & Samushia (2018)
detected them using the bispectrum. Moreover a new interferometric
basis has also been developed by (Child et al. 2018) to highlight
the BAO signal in the bispectrum. For the 21-cm emission line, 3pt
statistics have been investigated by Hoffmann et al. (2018).

Weak-lensing 3pt statistics in Fourier and real space have also
been explored (Takada & Jain 2004; Schneider, Kilbinger & Lom-
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bardi 2005; Joachimi, Shi & Schneider 2009; Kayo & Takada 2013;
Kayo, Takada & Jain 2013; including early applications to data
(Kilbinger & Schneider 2005; Fu et al. 2014).

As shown also recently by Yankelevich & Porciani (2018), con-
sidering the bispectrum together with the power spectrum signifi-
cantly improves the constraints on cosmological parameters, even if
using only the bispectrum monopole severely limits these improve-
ments. In order to include higher multipoles, from the data analysis
side, data-vector compression becomes essential.

In previous work, we introduced two compression methods for
the redshift space galaxy bispectrum in Gualdi et al. (2018a), Paper
I hereafter, and tested them on bispectrum monopole measurements
from BOSS DR12 data in Gualdi et al. (2018b), Paper II hereafter.
Both methods are variations of the method presented in Heavens,
Jimenez & Lahav (2000) and named MOPED, which achieves max-
imal compression of the original data vector by extending to the
multiple parameters case the Karhunen–Loève algorithm first intro-
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duced in Tegmark, Taylor & Heavens (1997). The two techniques
require an approximate analytic expression for the data vector co-
variance matrix. These methods compress the original data vector
to a new one with dimension corresponding to the number of model
parameters constrained, hence the name ‘maximal’ compression.
Since in Paper II we have shown that the two methods produce
very similar results, for the sake of clarity in this work we com-
pare the new method to just one of them. In particular, we use
the method consisting in running a Markov Chain Monte Carlo
sampling (MCMC) on the compressed data vector, labelling these
results ‘maximal compression’.

Here, we present a new compression method which consists in
averaging bispectra triangle configurations of wavenumbers that
have similar geometrical properties. In order to derive parameter
constraints, we again use MCMC sampling on the compressed data
vector. We label the method geometrical compression (MC-GC).

In particular, we define new bins in terms of the triangle configura-
tions area and functions of the internal angles. The area parametrizes
the physical scales information encoded in the two power spectra
products present in the bispectrum analytic expression. At the same
time, the angles are the variables on which depends the value of
the second-order perturbation theory kernel. This can be seen in
fig. 2 of (Gil-Marı́n et al. 2017) where the oscillating pattern in the
bispectrum repeats itself because the angles are the same, even if
the sizes of k1,k2,k3 increase. Therefore, using these parameters to
compress the bispectrum proves to be much more optimal than sim-
ply using larger bins defined in terms of the triangle configuration
sides.

In Section 2, the data set and the galaxy mocks used together
with the settings of our analysis are described. In Section 3, we
present the analytical model used for the considered data vector.
Section 4 introduces the transformation through which we com-
press the original data vector. Section 5 describes how to optimally
choose the number of bins for the new parameters characterizing
the compressed data vector. In Section 6, we compare the MC-GC
results with the ones from standard MCMC and one of the two
alternative maximal compression techniques, described in Paper II.
In Section 7, we conclude and discuss potential future extensions.

2 DATA , M O C K S , A N D A NA LY S I S

The power spectrum monopole, quadrupole, and bispectrum
monopole have been measured from the DR12 CMASS sample
(0.43 ≤ z ≤ 0.70) of the Baryon Oscillation Spectroscopic Survey
(BOSS, Dawson et al. 2013) which is part of the Sloan Digital Sky
Survey III (Eisenstein et al. 2011). For more details, see Gil-Marı́n
et al. (2017) and Alam et al. (2017).

The covariance matrix used to estimate the cosmological param-
eters of interest via standard MCMC on the full data vector has been
numerically estimated using 1400 of the 2048 galaxy catalogues of
the MultiDark Patchy BOSS DR12 mocks by Kitaura et al. (2016).
We only use 700 when the compressed data vector is used in order
to consistently compare the new method presented here with the re-
sults obtained in Paper II. The underlying cosmology used to realize
these mocks is: ��(z = 0) = 0.692885, �m(z = 0) = 0.307115,
�b(z = 0) = 0.048, σ 8 = 0.8288, ns = 0.96, h0 = 0.6777.

We fix the bin size for the power spectrum monopole and
quadrupole to �k = 0.01h/Mpc. We estimated the bispectrum
monopole from both data and mocks using different multiples of
the fundamental frequency defined as k3

f = (2π)3

Vs
, where Vs is the

survey volume. Vs has been set to the mocks case value, which was
the one of a cubic box volume Vs = L3

b = (3500 Mpc/h)3.
For the bispectrum, we considered the bin sizes �k6,5,2 =

6, 5, 2 × kf respectively, corresponding to 116 and 2734 trian-
gles used between 0.02 < ki [h/Mpc] < 0.12. The largest bin size
�k6 corresponds to the one used in the standard BOSS analysis
performed by Gil-Marı́n et al. (2017).

For the same reason, we use the same range of scales:
kmin = 0.03 h/Mpc and kmax = 0.09 h/Mpc for both power spec-
trum monopole and quadrupole, kmin = 0.02 h/Mpc and kmax =
0.12 h/Mpc for the bispectrum monopole.

The fiducial cosmology chosen for the analysis corresponds to
a flat �CDM model similar to the one reported in Planck Collab-
oration et al. (2016) and recently in Planck Collaboration et al.
(2018). In particular, we set �m(z = 0) = 0.31, �b(z = 0) = 0.049,
As = 2.21 × 10−9, ns = 0.9624, h0 = 0.6711. As in Paper II, in
order to compute the numerical derivatives of the data vector with
respect to the model parameters, we fixed the fiducial value of the
bias model parameters, the growth rate, and the amplitude of dark
matter oscillations to the ones obtained by running a preliminary
low-resolution MCMC (b1 = 2.5478, b2 = 1.2127, f = 0.7202, σ 8 =
0.4722).

Since for the range of scales considered (quasi-linear regime), the
Fingers-of-God parameters for both power spectrum and bispectrum
were compatible with zero, σ FoG

Bk
and σ FoG

Pk
have been set to zero.

In Paper II, we tested that the choice of fiducial parameters used to
compute the analytical covariance matrix and the derivatives of the
mean of the data vector does not significantly influence the results
of the compression.

3 DATA V EC TO R

We use the estimators described in Gil-Marı́n et al. (2015) and Gil-
Marı́n et al. (2017) to measure the power spectrum monopole and
quadrupole together with the bispectrum monopole from the data
and the galaxy catalogues. In this work, we constrain the model
parameters using the joint data vector obtained by combining the
power spectrum monopole and quadrupole with the bispectrum
monopole.

Almost all the two-point (2pt) statistics signal is contained in the
first two multipoles of the redshift space galaxy power spectrum,
the monopole and the quadrupole (� = 0, 2). These can be found by
integrating the galaxy power spectrum:

P(�)
g (k) = 2� + 1

2

∫ +1

−1
dμ P(s)

g (k, μ) L� (μ) , (1)

where L�(μ) is the �-order Legendre polynomial and P(s)
g (k, μ) is

the redshift space galaxy power spectrum defined in Paper II and
originally in the appendix of Gil-Marı́n et al. (2014).

We adopt the effective model presented in Gil-Marı́n et al. (2014)
for the redshift space galaxy bispectrum. This consists in the mod-
ification of the redshift space distortion kernels derived from per-
turbations theory (see the appendix of the paper above for the full
expressions).

The monopole of the bispectrum is obtained by averaging all the
possible orientations of a triangle configuration with respect to the
line of sight. It can therefore be computed through the integration
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of the two angular coordinates:

B(0)
g (k1, k2, k3) = 1

4

∫ 1
−1 dμ1

∫ 1
−1 dμ2 B(s)

g (k1, k2, k3)

= 1

4π

∫ 1
−1 dμ1

∫ 2π
0 dφ B(s)

g (k1, k2, k3) , (2)

where μi is the angle between the ki vector and the line of sight.
The angle φ is defined as μ2 ≡ μ1x12 −

√
1 − μ2

1

√
1 − x2

12 cos φ,
where x12 is the cosine of the angle between k1 and k2. More details
are given in the appendix of Paper II.

4 N E W T R I A N G L E G E O M E T R I C A L
PARA M ETR IZATION

We want to regroup the bispectrum data vector elements in bins
defined by different parameters describing the triangle configura-
tions. The idea underlying this procedure is that similar triangular
shapes will result in similar sensitivity to the cosmological parame-
ters. This is because the perturbation kernels depend, in particular,
on the cosine of the angles between the sides of the triangle.

Given the three triangle sides (k1, k2, k3) normally characterizing
an element of the redshift space galaxy bispectrum monopole data
vector, we define three new variables. The first is the square root
of the area of the triangle, which we label ℵ (”aleph”). It can be
computed using Heron’s formula:

A =
√

s(s − k1)(s − k2)(s − k3) =⇒ ℵ ≡
√

A, (3)

where s = 1
2 (k1 + k2 + k3) is the semiperimeter of the triangle. The

ℵ parameter keeps track of the physical scales probed by the triangle
configuration. Therefore, ℵ is a variable that encodes the informa-
tion the two linear power spectra present in the bispectrum tree-level
expression (see Paper I or II appendixes for the explicit expression).

The second variable which we use to characterize a triangle is the
cosine of the largest angle,1 � = cos ψmax (pronounced ‘daleth’).
This choice allows one to describe whether the triangle is acute or
obtuse. If cos (π /3) = 1/2 >�> 0, the triangle is acute. In this case,
either the three sides are all approximately the same or two of them
are larger than a third one. If −1 < � < 0, the triangle is obtuse.
The triangle could then have either a side much larger than the
other two (the one opposite to ψmax) or two sides of similar length
with a third smaller one. In order to distinguish between the pair
of possibilities described above, as a third variable we consider the
ratio between the cosines of the intermediate and smallest angles,
ג = cos ψ int/cos ψmin (pronounced ‘gimel’). All the cosines can be
computed using the cosine rule for a triangle

k2
l = k2

m + k2
n − 2kmkn cos ψmn, (4)

where cos ψmn is the angle between the triangle sides km and kn.
The variables �, ג encode the geometrical information strongly
affecting the value of the second-order perturbation theory ker-
nel present in the bispectrum expression. These variables allow
to regroup together triangle configurations returning similar ker-
nel values because of the similar geometrical properties. Therefore,
each triangle configuration can be described as a function of the
three variables (ℵ, �, (ג and the same is true for each bispectrum
monopole data vector element

B(0)
g (k1, k2, k3) =⇒ B(0)

g (ℵ,�, (ג . (5)

1In this case, we mean the ‘interior’ angle of the triangles, which differs
from the angles between k-vectors used in the perturbation theory kernels
by a factor of π , since the sum of k-vectors must be equal to zero.

The vice-versa relation is also valid, each set (ℵ, �, (ג corresponds
to a triangle configuration described by a choice of the three sides
(k1, k2, k3). The compression consists in using large-enough bins
for the new variables (ℵ, �, (ג so that the bispectra of triangles
with similar geometrical properties contribute to the same new data
vector element. Once the coordinate conversion has been done for
all the triangle configurations, the binning for the new coordinates
can be defined by finding the minimum and maximum values for
the new parameters (ℵ, �, .(ג Given a choice for the number of
bins for each new coordinate (nℵ, n�, nג), the potential dimension
of the new data vector is nℵ × n� × nג. However, as is the case
when using the three sides (k1, k2, k3) to describe the triangle,
several combinations of (ℵ, �, (ג actually do not satisfy the triangle
inequalities, and therefore no triplet (k1, k2, k3) will contribute to
that particular bin. Moreover even if a particular combination of (ℵ,
�, k(ג does represent a triangle configuration, it is not certain that
the triangle bin defined by (ℵ, �, k(ג will contain modes since the
original number of triangles in (k1, k2, k3) coordinates was finite.
The new data-vector g is obtained by averaging over all the bispectra
in the non-empty triangle sets defined by different combinations of
the coordinates (ℵ, �, :(ג

gk(ℵ,�, k(ג = 1

N tr.
i

N tr.
i∑

j : (k1,k2,k3)j ∈(ℵ,�,ג)k

B(0)
g (k1, k2, k3)j , (6)

where each new data vector element has been normalized by divid-
ing by the number of triangles belonging to the same set defined by
a particular combination of (ℵ, �, ,k(ג N tr.

k .

5 N U M B E R O F B I N S : O P T I M A L C H O I C E

For the construction of the new data vector, it is necessary to define
how many bins will be used to divide the range of each parameter.
In order to optimize the choice of these three numbers, (nℵ, n�,
nג), we suggest the following procedure. The idea is to ‘sample’ the
sensitivity of the new data vector to the considered model parameters
for the different choices of (nℵ, n�, nג). The most straightforward
way to do so is to consider the derivatives of the data vector model
with respect to the parameters. These can be computed assuming a
fiducial cosmology which, in our case, was described in Section 2.

In order to transform the derivatives of the standard bispectrum
monopole data vector into the derivatives of the new one, it is
sufficient to apply the same algorithm used to convert the bispectrum
into g given in equation (6), because the transformation is linear.
At this point, we have a list of g,i = ∂ g/∂θi for all the elements
of the model parameter vector θ . The target is to combine these
vectors into a unique number expressing the sensitivity of the new
data vector g for a certain choice of (nℵ, n�, nג). We call Ng the
dimension of the new data vector g and Nθ the number of model
parameters. Ng is of course a function of the number of bins of the
new coordinates, Ng(nℵ, n�, nג). For each of the model parameters
θ i and for a particular choice of the number of bins (nℵ, n�, nג)j ,
we derive a single number defined as

Sij ≡
Ng (nℵ,n�,nג)j∑

k=1

1

N tr.
k

∣∣∣∣∂gk

∂θi

∣∣∣∣ . (7)

Sij is a proxy for the sensitivity of the new data vector g defined for
a particular choice of number of bins (nℵ, n�, nג)j with respect to
variations of the model parameter θ i. Notice that each term of the
sum, before being added, is normalized by the number of triangles
regrouped in the new bin defined by a set of coordinates (ℵ, �, .k(ג
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The next step consists of combining these proxies for all the
model parameters. This in order to obtain a single number describing
the overall sensitivity of g for a determinate choice of (nℵ, n�, nג)j.
We then normalize each ith Sij dividing by the maximum value of
Sij for all the possible (nℵ, n�, nג)j combinations

sij ≡ Sij

max
[
Sij

]
∀j

, (8)

so that for all θ i then 0 < sij ≤ 1. Finally, all the Nθ sij for each
(nℵ, n�, nג)j combination can be merged into a unique number by
doing

s̄j ≡
Nθ∑
i=1

sij . (9)

We consider s̄j as the proxy encoding the overall sensitivity to the
model parameters of the new data vector g, defined by a particu-
lar choice of the triplet (nℵ, n�, nג)j. Since we may want to limit
the dimension of g in the algorithm, we include a condition setting
s̄j = 0 when Ng(nℵ, n�, nג)j ≥ Nmax

g . The standard BOSS analysis
bispectrum data vector, limited to the range of scales that we con-
sider, has 116 triangles (�k6 binning case defined in Section 2). We
use the measurements done for the �k2 binning case corresponding
to 2734 triangles for the bispectrum monopole.

We consider two cases, Nmax
g = 117 and Nmax

g = 196, compress-
ing the original bispectrum monopole by a factor of ∼23 and ∼14,
respectively. The Nmax

g = 196 is used to study the difference be-
tween MC-GC and the standard MCMC on the full data vector
given by the �k5 binning of the triangle sides.

For Nmax
g = 117, s̄j has been computed for all the (nℵ, n�, nג)j

combinations with 1 ≤ nℵ, n�, nג ≤ 25. With these settings, we
obtained the highest value for s̄j in the case of (nℵ = 10, n� =
9, nג = 19) corresponding to a dimension Ng(10, 9, 19) = 115. For
Nmax

g = 196, s̄j has been computed for all the (nℵ, n�, nג)j combi-
nations with 5 ≤ nℵ, n�, nג ≤ 30. With these settings, we obtained
the highest value for s̄j in the case of (nℵ = 22, n� = 10, nג = 16)
corresponding to a dimension Ng(22, 10, 16) = 194. Fig. 1 shows
the variation of s̄j as function of each number of bins for the
Nmax

g = 117 case, keeping the others fixed to the optimal value.
In the last two columns of Table 1 and Table 2, we show that the
difference between the mean of the 1D posterior distributions ob-
tained for the two cases Nmax

g = 117 and Nmax
g = 196 is small and

that improvement on parameter constraints are similar.

6 C O M P R ESSION PERFORMANCE

We can compare the results obtained via MC-GC (�k2 case) in
terms of 1D and 2D the posterior distributions obtained via the
standard MCMC sampling (�k6 and �k5 cases) and maximal com-
pression (�k2 case). The comparison is shown in Fig. 2. Even if it
does not need to analytically model the covariance matrix in order
to compress the data vector, MC-GC produces a posterior distri-
bution very close to the one given by the maximal compression
method. The agreement is remarkable, especially considering that
these compression methods are fairly independent of each other
(they have in common only the use of the data vector derivatives).
The precise values of the 1D 68 per cent confidence intervals and
of the means of the distribution are reported in Tables 1 and 2.

It is important to notice the difference between the MCMC with
116, 195 triangles and the MC-GC results using 115 and 194 com-
binations of the original 2734 triangles, respectively. It is clear from
both Table 2 and Fig. 2 that when the same number of data vector

Figure 1. Variation of the parameter s̄j in the Nmax
g = 117 case, used to

choose the number of bins for the new parameters, and of the number of
elements of the new data vector Ng as a function of (nℵ, n�, nג). nmin.

ℵ,�,ג

is a normalization on the x-axis used to show the same number of different
configurations, obtained by varying one of the bins numbers (nℵ, n�, nג)
while keeping the other fixed to the optimal value, on both left and right
sides of the optimal set (nℵ, n�, nג)opt.. In particular, for the case shown, we
used (nmin.

ℵ = 3, nmin.
�

= 2, nmin.
ג

= 12). The horizontal red line shows the
imposed upper limit to the number of new data vector elements, Nmax.

g . The
vertical black line indicates the chosen set of (nℵ, n�, nג) for which sj was
the highest for Ng < Nmax.

g .

Table 1. Best-fit parameters. Mean values of the posterior distributions and
68% credible intervals for the MCMC sampling on the full data vector, the
‘maximal’ and the MC-GC compression methods. The largest k-binning
�k6, the size used in the BOSS analysis, corresponds to the lowest number
of triangles (116). For it, we show the best-fit parameters obtained via
MCMC sampling using the full data vector. For the thinnest binning �k2,
corresponding to the highest number of triangles (2734), we compare the
three compression methods. The results shown for the MC-GC method are
relative to the cases with Nmax.

g = 196 (orange) and Nmax.
g = 117 (yellow).

The observed shift in the mean values as a function of the number of
considered triangles is due to the strong degeneracy present between the
model parameters which gets partially lifted when, due to the compression,
more triangle configurations are considered.

�k6 �k2

MCMC Max. Comp. MC-GC

b1 2.41 ± 0.22 2.33 ± 0.14 2.25 ± 0.15 2.22 ± 0.14

b2 1.00 ± 0.40 0.72 ± 0.22 0.64 ± 0.25 0.68 ± 0.21

f 0.69 ± 0.08 0.63 ± 0.06 0.64 ± 0.06 0.65 ± 0.06

σ 8 0.50 ± 0.04 0.53 ± 0.03 0.52 ± 0.04 0.53 ± 0.03

elements are considered, MC-GC produces much tighter constraints
since it is able to exploit the constraining power of the original 2734
triangles.

The observed shift between MCMC results using 116 triangles
and MC-GC/maximal compression using 2734 triangles is due to the
strong degeneracy between the model parameters which is partially
lifted when more triangle configurations are used in the data-vector.
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Geometrical compression L33

Table 2. Improvement in parameter constraints showing the relative change
of the 68% credible intervals for the �k2 k-binning case with respect to the
�k6 and �k5 (green) cases. For the MC-GC method, we show two cases,
for Nmax.

g = 196 (orange) and Nmax.
g = 117 (yellow). MC-GC obtains very

similar improvements, in terms of tighter parameter constraints, to the ones
obtained via maximal compression. Notice the substantial difference in
parameter constraint improvements between the standard MCMC case using
195 triangles and the MC-GC case recombining 2734 triangles into 194 new
data vector elements.

�θmc
�k6

�θ comp. − �θmc
�k6

�θmc
�k6

[%]

MCMC MCMC Max. Comp. MC-GC
Ntr = 116 Ntr = 195 Nel. = 4 Ng = 115 Ng = 194

�b1 0.22 −23.9 −37.1 −30.5 −38.8

�b2 0.40 −34.9 −46.1 −39.3 −48.6

�f 0.08 −18.5 −27.8 −24.4 −29.1

�σ 8 0.04 −12.9 −22.8 −16.6 −22.0

〈�θ − �θmc
�k6

�θmc
�k6

[%]
〉

-22.5 -33.5 -27.7 -34.1

Figure 2. Compression performance: 2-D 68 per cent and 95 per cent cred-
ible regions are shown, respectively, for the �k6 standard MCMC sampling
(MCMC in grey, 116 triangles), �k2 maximal compression (MCMC on the
compressed data vector in blue, obtained using the maximal compression
method presented in Gualdi et al. (2018a) on the original 2734 triangles)
and �k2 geometrical compression (MC-GC in yellow, 2734 triangles) cases.
The MC-GC case shown is obtained by imposing that the dimension of
the compressed data vector satisfies Nmax.

g = 116. The agreement between
maximal compression and MC-GC posterior distributions is remarkable.
Without the need of an analytical modelling of the covariance matrix, MC-
GC recovers very close posterior distributions to the ones derived using the
maximal compression method. The observed shift between MCMC results
using 116 triangles and MC-GC/maximal compression using 2734 trian-
gles is due to the strong degeneracy between the model parameters which
is partially lifted when more triangle configurations are used. In particu-
lar, the shift happens along the degeneration direction of b1, b2 and f with
σ 8 and as described in Gualdi et al. (2018b) and it may have a statistical
origin.

In terms of time and computing resources, MC-GC is equivalent
to standard MCMC sampling and maximal compression method
(details given in Paper II).

7 C O N C L U S I O N S

The new compression method presented in this work consists in
binning together bispectra evaluated at sets of wavenumbers form-
ing closed triangles with similar geometrical properties: the area,
the cosine of the largest angle, and the ratio between the cosines of
the remaining two angles.

The advantage of the geometrical compression (MC-GC) tech-
nique, with respect to maximal compression methods, introduced
in Gualdi et al. (2018a) and applied to BOSS data in Gualdi et al.
(2018b), is that it does not require an analytical modelling of the co-
variance matrix. This is due to the fact that MC-GC is based on the
similarities between the geometrical properties of different triangle
configurations and not on their bispectrum values covariance. In
terms of resources and computing time required, these are approxi-
mately the same as for the maximal compression method (see Paper
II for details), i.e. the time taken by the geometrical compression
step is negligible. The MC-GC compression is not ‘maximal’ as
the ones presented in Gualdi et al. (2018a). We compressed using
MC-GC the bispectrum of 2734 triangle configurations into data
vectors up to ∼23 times shorter.

By compressing the data vector using the geometrical
compression before running the MCMC sampling, we im-
proved BOSS constraints, reducing the 68 per cent credi-
ble intervals for the inferred parameters (b1, b2, f, σ 8) by
(−39 per cent, −49 per cent, −29 per cent, −22 per cent), respec-
tively.

Future work will include the development of extensions of the
MC-GC method to higher order statistics, like the trispectrum and
tetraspectrum, always using geometrical properties of the k-vectors’
configurations. Moreover, we are interested in applying MC-GC
to weak-lensing and 21-cm emission line 3pt statistics. Given its
immediate and straightforward applicability, we hope that MC-GC
will become a standard procedure for future data sets to study the
bispectra and 3pt functions of the cosmological fields of interest.
Another interesting point would be to study whether it is possible
to efficiently compress 3pt statistics using different geometrical
properties of the triangle configurations than the ones used here.

AC K N OW L E D G E M E N T S

DG is supported by the Perren and the IMPACT studentships.
HGM is supported by Labex ILP (reference ANR-10-LABX-63)
part of the Idex SUPER, and received financial state aid managed
by the Agence Nationale de la Recherche, as part of the programme
Investissements d’avenir under the reference ANR-11-IDEX-0004-
02.e. MM. acknowledges funding from STFC Consolidated Grants
RG84196 and RG70655 LEAG/506 and has received funding
from the European Union’s Horizon 2020 research and innovation
programme under Marie Skłodowska-Curie grant agreement No
6655919. O.L. acknowledges support from a European Research
Council Advanced Grant FP7/291329. C (Kernighan 1988) and
PYTHON 2.7 (Rossum 1995) have been used together with many
packages like IPYTHON (Perez & Granger 2007), Numpy (van der
Walt, Colbert & Varoquaux 2011), Scipy (Jones et al. 2001) and
Matplotlib (Hunter 2007). The corner plots have been realized
using PYGTC developed by Bocquet & Carter (2016)

MNRASL 484, L29–L34 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article-abstract/484/1/L29/5270735 by U
niversity C

ollege London user on 06 February 2019



L34 D. Gualdi et al

RE F EREN C ES

Alam S. et al., 2017, MNRAS, 470, 2617
Bocquet S., Carter F. W., 2016, J. Open Source Softw., 1
Child H. L., Takada M., Nishimichi T., Sunayama T., Slepian Z., Habib S.,

Heitmann K., 2018, Phys. Rev. D, 98, 123521
Dawson K. S. et al., 2013, AJ, 145, 10
Eisenstein D. J. et al., 2011, AJ, 142, 72
Fu L. et al., 2014, MNRAS, 441, 2725
Gil-Marı́n H., Noreña J., Verde L., Percival W. J., Wagner C., Manera M.,

Schneider D. P., 2015, MNRAS, 451, 539
Gil-Marı́n H., Percival W. J., Verde L., Brownstein J. R., Chuang C.-H.,

Kitaura F.-S., Rodrı́guez-Torres S. A., Olmstead M. D., 2017, MNRAS,
465, 1757

Gil-Marı́n H., Wagner C., Noreña J., Verde L., Percival W., 2014, J. Cosmol.
Astropart. Phys., 12, 029

Gualdi D., Gil-Marı́n H., Schuhmann R. L., Manera M., Joachimi B., Lahav
O., 2018b, MNRAS

Gualdi D., Manera M., Joachimi B., Lahav O., 2018a, MNRAS, 476, 4045
Heavens A. F., Jimenez R., Lahav O., 2000, MNRAS, 317, 965
Hoffmann K., Mao Y., Mo H., Wandelt B. D., 2018, preprint (arXiv:1802.0

2578)
Hunter J. D., 2007, Comput. Sci. Engg., 9, 90
Joachimi B., Shi X., Schneider P., 2009, A&A, 508, 1193

Jones E., Oliphant T., Peterson P. et al., 2001, SciPy: Open source scientific
tools for, http://www.scipy.org/

Kayo I., Takada M., 2013, preprint (arXiv:1306.4684)
Kayo I., Takada M., Jain B., 2013, MNRAS, 429, 344
Kernighan B. W., 1988, The C Programming Language. 2nd edn. Prentice

Hall Professional Technical Reference
Kilbinger M., Schneider P., 2005, A&A, 442, 69
Kitaura F.-S. et al., 2016, MNRAS, 456, 4156
Pearson D. W., Samushia L., 2018, MNRAS, 478, 4500
Perez F., Granger B. E., 2007, Comput. Sci. Eng., 9, 21
Planck Collaboration et al., 2016, A&A, 594, A13
Planck Collaboration et al., 2018, preprint (arXiv:1807.06209)
Rossum G., 1995, Technical report, Python Reference Manual. Amsterdam,

The Netherlands
Schneider P., Kilbinger M., Lombardi M., 2005, A&A, 431, 9
Slepian Z. et al., 2017a, MNRAS, 468, 1070
Slepian Z. et al., 2017b, MNRAS, 469, 1738
Takada M., Jain B., 2004, MNRAS, 348, 897
Tegmark M., Taylor A. N., Heavens A. F., 1997, ApJ, 480, 22
van der Walt S., Colbert S. C., Varoquaux G., 2011, CoRR, 13, 22
Yankelevich V., Porciani C., 2018, preprint (arXiv:1807.07076)

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRASL 484, L29–L34 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article-abstract/484/1/L29/5270735 by U
niversity C

ollege London user on 06 February 2019

http://dx.doi.org/10.1093/mnras/stx721
http://dx.doi.org/10.21105/joss.00046
http://dx.doi.org/10.1103/PhysRevD.98.123521
http://dx.doi.org/10.1088/0004-6256/145/1/10
http://dx.doi.org/10.1088/0004-6256/142/3/72
http://dx.doi.org/10.1093/mnras/stu754
http://dx.doi.org/10.1093/mnras/stv961
http://dx.doi.org/10.1093/mnras/stw2679
http://dx.doi.org/10.1088/1475-7516/2014/12/029
http://dx.doi.org/10.1046/j.1365-8711.2000.03692.x
http://arxiv.org/abs/1802.02578
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1051/0004-6361/200912906
http://www.scipy.org/
http://arxiv.org/abs/1306.4684
http://dx.doi.org/10.1093/mnras/sts340
http://dx.doi.org/10.1051/0004-6361:20053531
http://dx.doi.org/10.1093/mnras/stv2826
http://dx.doi.org/10.1093/mnras/sty1266
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1807.06209
http://dx.doi.org/10.1051/0004-6361:20034217
http://dx.doi.org/10.1093/mnras/stw3234
http://dx.doi.org/10.1093/mnras/stx488
http://dx.doi.org/10.1111/j.1365-2966.2004.07410.x
http://dx.doi.org/10.1086/303939
http://arxiv.org/abs/1807.07076

