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ABSTRACT
We present three tiers of Bayesian consistency tests for the general case of correlated data
sets. Building on duplicates of the model parameters assigned to each data set, these tests
range from Bayesian evidence ratios as a global summary statistic, to posterior distributions
of model parameter differences, to consistency tests in the data domain derived from posterior
predictive distributions. For each test, we motivate meaningful threshold criteria for the internal
consistency of data sets. Without loss of generality we focus on mutually exclusive, correlated
subsets of the same data set in this work. As an application, we revisit the consistency analysis
of the two-point weak-lensing shear correlation functions measured from KiDS-450 data. We
split this data set according to large versus small angular scales, tomographic redshift bin
combinations, and estimator type. We do not find any evidence for significant internal tension
in the KiDS-450 data, with significances below 3 σ in all cases. Software and data used in this
analysis can be found at http://kids.strw.leidenuniv.nl/sciencedata.php.

Key words: gravitational lensing: weak – methods: data analysis – statistical – cosmology:
cosmological parameters – observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

The key objective in any kind of data analysis is to find a model
which describes the data the best and with the fewest assumptions
following Occam’s razor. Once such a model has been established
there are typically two more questions arising:

(i) Is the data set self-consistent (under the given model)?
(ii) Is the data set consistent with another data set (under the

given model)?

Without loss of generality, we will address both questions in the
context of parameter inference from cosmological probes.

The current cosmological concordance model is rooted in General
Relativity including at least a cosmological constant (�) and the
yet-to-be directly detected cold dark matter (CDM). The success
and acceptance of the �CDM model lies in its ability to explain
a wide range of cosmological observables such as the fluctuation
spectrum of the cosmic microwave background (CMB) radiation,
distance measurements with supernovae of type Ia, the clustering
of galaxies and the gravitational lensing of the cosmic large-scale
structure with just a handful of parameters.

� E-mail: fabian.koehlinger@ipmu.jp (FK); b.joachimi@ucl.ac.uk (BJ)

However, there currently exist discrepancies between parameters
inferred from different cosmological probes leading us back to the
two questions posed at the beginning. The statistically most signif-
icant example for such a discrepancy is that the Hubble constant
inferred from CMB measurements of the Planck satellite (Planck
Collaboration XIII 2016, VI 2018) disagree with the value derived
from local measurements (Riess et al. 2016, 2018) by 3.4 σ–3.6 σ .
Moreover, the cosmological parameters controlling the scaling of
the weak-lensing signal amplitude measured from the cosmic large-
scale structure show further inconsistencies with Planck CMB
measurements (Planck Collaboration XIII 2016) ranging from 1.7σ

for the Dark Energy Survey (DES, DES Collaboration 2017) to
2.3 σ–3.2 σ for the Kilo-Degree Survey (KiDS, Hildebrandt et al.
2017; Köhlinger et al. 2017).

In the current era of precision cosmology driven by increasingly
larger surveys with lower and lower statistical errors, it is thus
paramount to identify the sources for these discrepancies as either
arising from residual systematics in the cosmological probe(s),
insufficient modelling of observables and nuisances, or new physics.
Hence, methods and tests to assess the self-consistency of a data
set and to assess the consistency between different cosmological
probes become evermore important. For the latter case various
approaches have been proposed in the literature mainly assessing the
consistency of Planck with respect to other statistically independent
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cosmological probes (see for example Charnock, Battye & Moss
2017, and references therein for a summary of such methods; see
also Lin & Ishak 2017a,b; Adhikari & Huterer 2018; Raveri & Hu
2018 for recent developments).

The self-consistency of the Planck measurements, for example
the consistency of the low and high multipole measurements was as-
sessed in Planck Collaboration LI (2017) based on a cross-validation
approach and found discrepancies at � 2.2 σ . Moreover, Efstathiou
& Lemos (2018) recently presented a consistency check of the
weak-lensing correlation function measurements from 450 sq deg of
KiDS imaging data (KiDS-450 henceforth, Hildebrandt et al. 2017)
based on the same cross-validation approach. They found significant
tension at �3 σ when for example the correlation function measure-
ments were split into mutually exclusive subsets containing different
combinations of the redshift distributions of the source galaxies. A
caveat of the cross-validation approach is that the data set under con-
sideration is typically split into two independent parts and using only
one of the two, the other part is predicted. This approach necessarily
neglects all intrinsic correlations between the (two) parts of the
split.

In contrast to this approach in this paper, we develop three tiers
of consistency tests for the most general case of correlated data sets
that take all correlations between the data sets fully into account.
This is achieved by basing the tests on duplicated model parameters
for each data set. The test statistics then include Bayesian evidence
ratios as a global summary statistic, posterior probability density
functions (PDFs or PDF henceforth) of model parameter differences
and consistency tests in the data domain derived from posterior
predictive distributions. With these tests at hand we will revise
the self-consistency of the KiDS-450 analysis split into various
mutually exclusive subsets serving at the same time as a test case and
example of a correlated data set. This gives us ample opportunity
to contrast and critically discuss the advantages and disadvantages
of each approach to consistency.

The paper is structured as follows: in Section 2, we present the
methodology for the three tiers of consistency tests. In Section 3, we
provide a pedagogical guide to our approach through an analytically
tractable toy model, further supported by an extensive sensitivity
analysis of the proposed consistency tests in a realistic setting in
Appendix A. The KiDS-450 cosmic shear data and its likelihood are
briefly described in Section 4. Finally, we apply our consistency tests
to the KiDS-450 data and also compare this approach to the cross-
validation approach of Efstathiou & Lemos (2018) in Section 5
before concluding in Section 6.

2 ME T H O D O L O G Y

In the following, we will develop three tiers of consistency tests.
First, we use the Bayes factor as a global summary statistic for
consistency/tension. The Bayes factor alone does not provide us
with a diagnostic of where discrepancies may be present in the data,
and it may fail to flag issues that only affect a subset of the full data
set. Therefore, we add two additional diagnostics: one in parameter
space based on duplicates of the model parameters, and one in the
vector space spanned by the original data, which we refer to as the
data domain.

2.1 First tier: Bayes factor

The guiding principle for the consistency test in this section is
the question: ‘How much more probable is it that the full data set
was generated from the same model system than if each individual

(sub)data set were generated from an independent set of model
parameters?’. Addressing that quantitatively by making use of
Bayesian evidences as proposed by Marshall, Rajguru & Slosar
(2006) yields a conservative test to quantify the consistency between
measurements of cosmological parameters from uncorrelated data
sets.

The Bayesian evidence, Z, is simply the normalization factor
occurring in the calculation of a posterior PDF (and often neglected
when only parameter inference is of interest). For an N-dimensional
data vector d, parameters p, and a model (or hypothesis) H, it gives
the average of the likelihood times the prior PDF/probability over
the M-dimensional parameter space:

Z = Pr(d | H) =
∫

dM p Pr(d | p, H) Pr( p | H), (1)

where Pr(d | p, H) is the likelihood of producing the data given the
parameters of the model H and Pr( p | H) is the prior for a given set
of parameters of the model H. In that sense, the Bayesian evidence
has Occam’s razor built in: a model that requires more parameters
has a lower evidence than a more compact model, unless the more
complex model describes the data significantly better. Therefore,
comparing evidence ratios presents a meaningful way of selecting
one model (or hypothesis) over the other. That also implies that the
evidence increases with increasing goodness of fit for a given model
and decreases for more complicated models for a given goodness
of fit, where ‘complicated’ may imply additional parameters and/or
a larger prior volume. In the case of comparing and quantifying
dis-/concordance of data sets, we are less interested in comparing
different (nested) models to each other but rather in comparing the
probabilities of the two statements:

(i) H0 : ‘there exists one common set of parameters that describes
all data sets’ and

(ii) H1 : ‘there exist more than one set of parameters that each
describe one data set’.

Hence, we write down their probability ratio as:

Pr(H0 | d)

Pr(H1 | d)
= Pr(d | H0)

Pr(d | H1)

Pr(H0)

Pr(H1)
. (2)

In the case that there is no a priori reason to prefer one model over
the other, which we assume throughout the remainder of the text,
the probability ratio reduces to comparing the evidence ratio, also
referred to as the Bayes factor,

R01 = Pr(d | H0)

Pr(d | H1)
= Pr(d | H0)∏

i Pr(d i | H1)
, (3)

where the full data vector has been split into subsets, dτ =
{dτ

a , dτ
b, . . .}. It is important to realize that the right-hand-side of

equation (3) holds only if the data sets d i are independent of
each other. This is not necessarily the case if we want to quantify
the consistency of measurements from the same data set (e.g.
different splits of the data, and different estimators). In that case
we indeed need to evaluate the first expression of equation (3), i.e.
we require the cross-covariance between the data sets d i and need
to keep i independent sets of parameters while evaluating the joint
likelihood.

Generally, a Bayes factor of R01 < 1 in this test is an indicator for
tension between the data sets. For a more detailed interpretation of
the evidence ratio we use its common logarithm and the quantitative
scale by Jeffreys (1961).

In this work, we consider only a single split of a data set, i.e.
dτ = {dτ

a , dτ
b}. Each of the two subsets, da and db, gets assigned
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its own copy of the full parameter set, p.1 Then, for case H1, the
joint posterior and the evidence of the duplicate parameter sets is
inferred from the full data set in order to calculate the Bayes factor,
R01, with respect to the evidence of the fiducial single parameter set
of case H0, i.e.

R01 = Pr(d | H0)

Pr({dτ
a , dτ

b} | H1)
. (4)

In practice, we evaluate the nominator and denominator of equa-
tion (4) while estimating the best-fitting parameters, p, by means
of a customized likelihood evaluation code (see Section 4.1).

2.2 Second tier: differences of parameter duplicates

The joint posterior of the duplicated parameter sets used to evaluate
the denominator of equation (4) also provides us with another
valuable diagnostic: we can now derive posterior PDFs of the
differences between the two instances of the same parameter and
identify cases where these difference distributions are inconsistent
with zero and hence reveal potential biases in the posteriors. This
constitutes the second tier of consistency tests.

We quantify tension for this tier by determining how unlikely it
is to end up in a region with lower posterior probability density than
the origin, since the origin marks the point of perfect agreement
between the subsets in the space of parameter differences. In
this work, we restrict ourselves to the marginal posterior of the
three most interesting and constraining parameters. The approach
is implemented as follows: we apply kernel density estimation
with a Gaussian kernel (Scott 1992) to the Markov Chain Monte
Carlo (MCMC) sample to obtain a functional form of the posterior.
The posterior density at the origin is evaluated and the fraction of
MCMC samples with lower density values calculated. The lower
this fraction the more extreme is the location of the origin relative
to the region of high posterior density, thus indicating tension
with the expectation of zero parameter difference for a given
split.

We propose to cast the tension estimate into the popular formula-
tion of ‘mσ ’, which is linked to the probability mass cm within the
range [−m σ, m σ ] of a one-dimensional Gaussian, i.e. cm = 0.683
for m = 1, cm = 0.954 for m = 2, and etc. The aforementioned
fraction is then identified with 1 − cm.

2.3 Third tier: predictive distributions

The evidence ratio test outlined above is compressing a lot of
information into a single number and only answers the question
of whether the data sets are in tension. Moreover, if the model is a
bad description of the data in the first place, the Bayes factor will
not flag this either. If tension is detected, using this test gives us
only very limited information about its origin.

Therefore, we propose as a third complementary diagnostic tool,
predictions of the data vector from previously inferred posteriors
of the model parameters. Traditionally, this is achieved via the
posterior predictive distribution (PPD henceforth). It is the sampling
distribution for new data d̂ given the existing data d under the model

1Note that this is the most conservative choice. It may be useful to also
consider only duplicating a subset of the parameter set, e.g. creating copies
of the cosmological parameters while keeping a single set of nuisance
parameters. We leave the study of such applications to future work.

Figure 1. Sketch illustrating the definition of significance criteria for
tension between data and model predictions. Top: PPD case. The cm region
is defined as the support of the PPD where its density is higher than the
density at the position of the data. The hatched area, given by IPPD = 1
− cm, is used to derive the tension significance. Bottom: TPD case. The
fraction of the TPD probability mass lying in the support of the cm region of
the data distribution (ITPD, hatched area) is calculated. If this fraction drops
below 1 − cm, the distributions are in tension by mσ .

Hα , i.e. one averages the likelihood of the new data over the posterior
of the parameters p:

Pr(d̂ | d, Hα) =
∫

dMpα Pr(d̂ | pα, Hα) Pr( pα | d, Hα). (5)

To test for tension in the data, one should check if the actual data
vector d is incompatible with being a sample drawn from the PPD.
For that several (summary) statistics are possible (e.g. Gelman et al.
2013). For example, the properties of the PPD can be characterized
via an ensemble of synthetic data vectors d̂ drawn from it. Feeney
et al. (2018) quantify tension by calculating the ratio of the PPD
probability density at the data and the PPD mode. Instead, we
employ again the mσ formalism: one determines the probability
mass in the region where the probability density of the PPD is
higher than the value at the data. The complement, IPPD, of this
region is then identified with 1 − cm, as is illustrated in the top
panel of Fig. 1.

The PPD will in general inherit a non-Gaussian shape from the
posterior and therefore not be analytic and typically be available
in the form of a Monte Carlo sample. Its dimension is that of the
original data vector and thus of order 100 or more in many cases
of interest. This makes a consistency test via the PPD, as outlined
above, impractical. Instead, we introduce a novel approach that
we will demonstrate to have very similar performance, and that
keeps consistency tests in high-dimensional spaces tractable if the
likelihood is Gaussian.

To this end, we define a predicted data vector, dpre, which is
uniquely determined as a model prediction for a given set of
parameter values, p. Thus, we can use dpre to rephrase the PPD
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of equation (5) as

Pr(d̂ | d, Hα) =
∫

dN dpre Pr(d̂ | dpre, Hα) Pr(dpre | d, Hα). (6)

If the likelihood is Gaussian, the first probability on the right-hand
side is given by

ln Pr(d̂ | dpre, Hα) = −1

2
(d̂ − dpre)τC−1(d̂ − dpre) + const. , (7)

whereC is the covariance matrix of the data. The second probability
in the integral of equation (6) is simply a translation of the posterior
into the data domain, i.e. in practice, one calculates a model
prediction for every Monte Carlo sample in parameter space. We
shall refer to this probability as the translated posterior distribution,
or TPD. It quantifies the spread of possible model predictions given
the uncertainty on the model parameters.

The TPD and the ‘data distribution’ of equation (7) are special
cases of the PPD. The former results if there is zero measurement
error, i.e. Pr(d̂ | dpre, Hα) → δD(d̂ − dpre) in equation (6), where δD

is the Dirac delta distribution. The latter results if the model is
perfect, i.e. it has zero uncertainty and recovers each data point
exactly, and thus Pr(dpre | d, Hα) → δD(dpre − d). We propose to
use a comparison between the TPD and the data distribution in
equation (7) as a consistency check. If the predictions of the actual
model and a perfect model agree within the uncertainties of the
inferred model and the measurement error, we have a consistent
data set (under that model).

The quantitative analysis now amounts to a comparison of two
distributions of which one (equation 7) is widely assumed to be
a multivariate Gaussian and therefore known analytically. This
is readily extended to high dimensions, as detailed below. We
follow Charnock et al. (2017) in quantifying tension between the
distributions by integrating the TPD over the iso-contours of a given
significance level of the data distribution:

ITPD =
∫

Vdata

dN x PrTPD(x) with (8)

Vdata =
{

x
∣∣∣ ∫

Vdata

dN x Prdata(x) = cm

}
, (9)

where PrTPD denotes the TPD, and Prdata the data distribution. The
integral in equation (9) is understood to be over the subvolume(s)
of the data domain in which Prdata(x) attains its highest values. This
definition of tension reproduces the intuitive expectation in the case
of a low-dimensional Gaussian distribution in that it measures the
shift of the mean of the Gaussian in units of its standard deviation
(see Fig. 4 below for an illustration).

Charnock et al. (2017) propose to call the two distributions to
be in tension by mσ if ITPD = 0 beyond the mσ -level. In contrast
to that, we increase this threshold from zero to ITPD = 1 − cm.
This has the major advantage that the definition of tension becomes
independent of the number of samples drawn in practice from the
TPD. This significance criterion is illustrated in the bottom panel
of Fig. 1.

In practice, we evaluate the integral ITPD in equation (8) by
calculating the quantity

χ2 = (ddata − dTPD)τ C−1 (ddata − dTPD), (10)

between the data vector, ddata, and each TPD vector, dTPD, de-
rived from the typically of order 104 MCMC samples. We then
read off limits, χ2

lim, from the chi-squared distribution with N
degrees of freedom which correspond to the mσ levels of the N-

dimensional (Gaussian) data distribution. The values of χ2
lim define

a surface within which a fraction cm of the probability mass of
the data distribution is contained. Note that we will use the same
approach on the real data as it is assumed to follow a Gaussian
likelihood.

In practice, we obtain the TPD by translating every Monte
Carlo sample in parameter space (e.g. as readily available from the
calculations for the first two tiers of consistency checks described in
Sections 2.1 and 2.2) back into the data domain. For the significance
calculation we then determine the fraction of TPD samples for
which the value of χ2 according to equation (10) is below χ2

lim. We
calculate this integral for mσ levels in the range 0 ≤ m ≤ 10 with a
step size of δm = 0.01.

Predictive distributions are often used in a cross-validation
approach, i.e. a model posterior is inferred from one subset of
the full data vector, and a predicted data vector derived for the
other subset. We will perform analyses following this philosophy
in Section 5.3, but for the majority of this paper will use the
full data vector d to infer the posterior and then predict replicas
of d via the predictive distributions. This has the advantage of
keeping the analysis symmetric, while in cross-validation mode, the
choice of subset used for the model inference may lead to different
conclusions.

Since we have two types of posterior, one for the standard,
‘joint’ inference and one for the duplicate parameter set, the
‘split’ analysis, we can also construct two corresponding types of
predictive distributions. A tension between the joint and split TPDs
suggests an unaccounted for systematic effect that affects one subset
significantly more than the other. This comparison constitutes our
second TPD-based consistency estimator. In practice, we calculate
the difference

	TPD
j,sa/b

= dTPD
joint − dTPD

splita/b
(11)

and assign a significance for the tension between the joint and split
TPDs by fitting 	TPD

j,sa/b
to zero and quantifying its deviation from zero

by comparison to a chi-squared distribution. For this, we also need
to calculate an inverse covariance matrix of the 	TPD

j,sa/b
estimator,

which is non-trivial due to the expected strong correlations between
the joint and split TPDs. The details of this calculation can be found
in Appendix B.

We emphasize once more that the estimator defined in equa-
tion (11) quantifies an unaccounted systematic effect affecting one
subset more than the other. In contrast but quite complementary to
that, the first TPD-based estimator defined in equations (8) and (10)
quantifies a tension between the split TPDs and the data distribution.
It is thus indicative of trends in the data (systematic or physical)
not captured by the model that affect both subsets in a similar
manner, and therefore cannot be absorbed through the flexibility of
the duplicated parameters.

Further intuition on the workings of the proposed consistency
tests can be gained from the sensitivity analysis of mock weak-
lensing data provided in Appendix A. In the following Section 3,
we provide an analytically tractable worked example of all three
tiers. Readers interested in real data should skip ahead to Section 4
and following.

3 A WO RKED EXAMPLE

To guide the intuition of the reader for the three tiers of consistency
tests introduced in the previous sections, we present in this section
analytically tractable toy models. For example, in Fig. 2 we consider
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3130 F. Köhlinger et al.

Figure 2. Sketch of a simple toy model consisting of N independent data
points (red) drawn from a normal distribution with width σ . The data can
be modelled with a constant line with a free amplitude p (black line).
If the data set is split into two subsets (of equal size), we allow each
subset to be modelled with shifted amplitudes pa = q σ and pb = −q σ ,
respectively.

N independent data points, d, drawn from a Gaussian with variance
σ 2 which can be described by a simple model: a constant line
with a free amplitude p as the single parameter. The corresponding
likelihood function can be written as

Pr0(d|p) = 1

(2πσ 2)
N
2

exp

(
−1

2
|d − m|2σ−2

)
, (12)

where the model is given by m = (

N︷ ︸︸ ︷
p, . . . , p)τ . Moreover, we

assume a Gaussian prior on the amplitude p with width 	 and
without loss of generality centred on zero:

Pr0(p) = 1√
2π	

exp

(
− p2

2	2

)
. (13)

When splitting the data into two subsets, i.e. dτ = {dτ
a , dτ

b}, the
corresponding likelihood function and prior become:

Pr1(d|[pa, pb]) = 1

(2πσ 2)
N
2

exp

(
−1

2
|d − ms|2σ−2

)
, (14)

with ms = (pa, . . . , pa︸ ︷︷ ︸
S

, pb, . . . , pb︸ ︷︷ ︸
N−S

)τ for S and N − S elements in

da and db, respectively. The corresponding prior becomes then:

Pr1(pa, pb) = 1

2π	2
exp

(
−p2

a + p2
b

2	2

)
. (15)

Based on these definitions, we can calculate analytically the statis-
tics of the three tiers of consistency checks as introduced in the
previous Sections 2.1–2.3. For the first tier, the Bayes factor, we
write down the evidences for the ‘joint’ data case with subscript ‘0’
and the ‘split’ data case with subscript ‘1’:

Z0 =
∫

dp Pr0(d|p) Pr0(p)

= (2π)−
N
2 σ−(N−1)(N	2 + σ 2)−

1
2

× exp

{
−1

2

[
1

σ 2

N∑
i=1

d2
i − 	2

σ 2(N	2 + σ 2)

×
(

N∑
i=1

di

)2
⎤
⎦
⎫⎬
⎭ and (16)

Z1 =
∫

dpa

∫
dpb Pr1(d|[pa, pb]) Pr1(pa, pb) (17)

=
∫

dpa Pr1(da|pa) Pr1(pa)
∫

dpb Pr1(db|pb) Pr1(pb) (18)

= (2π)−
N
2 σ−(S−1)(S	2 + σ 2)−

1
2 σ−(N−S−1)

× [(N − S)	2 + σ 2]−
1
2

× exp

⎧⎨
⎩−1

2

⎡
⎣ 1

σ 2

N∑
i=1

d2
i − 	2

σ 2(S	2 + σ 2)

(
S∑

i=1

di

)2

− 	2

σ 2[(N − S)	2 + σ 2]

(
N∑

i=S+1

di

)2
⎤
⎦
⎫⎬
⎭ . (19)

The Bayes factor, R01 = Z0/Z1, then becomes

R01 =
√

σ (S	2 + σ 2)[(N − S)	2 + σ 2]

(N	2 + σ 2)

× exp

⎧⎪⎨
⎪⎩− 	2

2σ 2

⎡
⎢⎣
(∑N

i=1 di

)2

N	2 + σ 2
+
(∑S

i=1 di

)2

S	2 + σ 2

+
(∑N

i=S+1 di

)2

(N − S)	2 + σ 2

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (21)

In order to keep the equations for this tier and all others more concise
and tractable, we consider now the following specific example case:
the data are split into two equally sized samples (i.e. S = N − S =
N/2) with

〈di〉 =
⎧⎨
⎩

pa = qσ , i ≤ S

pb = −qσ , S < i ≤ N

⎫⎬
⎭ , (22)

i.e. we allow the model to be shifted by ±q units of the standard
deviation σ around the truth at zero (see also Fig. 2). Moreover, we
assume that the width of the prior is much larger than the standard
deviation of the data, i.e. 	/σ � 1. Then, we can calculate the
expectation value of the (natural logarithm of the) Bayes factor as
given in equation (21) as a function of the parameters q, N, 	, and
σ :

〈ln R01〉 ≈ ln

(
	

σ

√
N

2

)
− 1 + q2

2
. (23)

We note that the first term on the right-hand side of this equation
depends explicitly on the width of the prior, 	, and we compare
different prior widths in Fig. 3(a).
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Figure 3. Using the toy model set-up depicted in Fig. 2, i.e. S = N
− S = N/2 = 5, σ = 0.1, and hence 	/σ � 1 for 	 = {1., 10.},
we derive analytically tractable results for the three tiers of consistency
tests as functions of the model shift parameter q: (a) the Bayes factor
(equation 23). Note that this estimator is the only one strongly depending on
the prior width, 	. We interpret the Bayes factor here in terms of Jeffreys’
scale and the statements should be read as ‘barely worth mentioning’,
‘substantial’, etc. evidence for H1 : ‘there exist two separate parameter
sets that each describe one subset of the data’; (b) the relative error of the
parameter difference PDF (equation 34); (c) significances for the TPD-based
consistency estimator (derived from equation 51). To highlight the impact
of a proper propagation of all correlations, we compare the fiducial case of
including ‘all correlations’ (i.e. data subsets and parameters; solid blue line)
to the naı̈ve case of ‘no correlations’ (dashed black line) and ‘parameter
correlations’ only (dotted grey line).

For the second tier, we derive an expression for the differences
between the posterior PDFs of the duplicate parameters and the error
on it. First, we use Bayes’ theorem and equations (12) and (13) to
calculate the following proportionality for the posterior:

Pr(p|d) ∝ exp

[
−1

2

(
−|d − m|2

σ 2
+ p2

	2

)]
(24)

= exp

{
−1

2

[
1

σ 2

∑
i

d2
i + p2

(
N

σ 2
+ 1

	2

)

− 2p

σ 2

∑
i

di

]}
. (25)

Similarly, we find for the posterior PDF of the split sample
containing two copies of the parameters, pa and pb:

Pr([pa, pb]|d) ∝ Pr(pa|d) Pr(pb|d) (26)

= exp

{
−1

2

[
1

σ 2

S∑
i=1

(di − pa)2 + p2
a

	2

+ 1

σ 2

N∑
i=S+1

(di − pb)2 + p2
b

	2

]}
, (27)

Introducing now the new variables p̄ = (pa + pb)/2 and 	p ≡ pb

− pa lets us rewrite pa/b = p̄ ± 	p/2 and hence equation (26)
becomes:

Pr(p̄,	p|d) ∝ exp

{
−1

2

[
1

σ 2

N∑
i=1

d2
i +
(
p̄2 + 	p2

4

)(
N

σ 2
+ 1

	2

)

− 2p̄

σ 2

N∑
i=1

di+ 	p

σ 2

(
S∑

i=1

di −
N∑

i=S+1

di

)]}
(28)

Marginalizing over p̄, we obtain the posterior of the difference in
the split parameter,

Pr(	p|d) =
∫

dp̄ Pr(p̄, 	p|d) (29)

∝ exp

{
−1

2

[
1

4

(
N

σ 2
+ 1

	2

)]
[
	p−

(
N∑

i=S+1

di −
S∑

i=1

di

)
2

σ 2

1(
N

σ 2 + 1
	2

)
]2
⎫⎬
⎭ (30)

≡ exp

[
−1

2

(
	p − 	p̂

σ	p̂

)2
]

. (31)

Comparing the exponents of equations (30) and (31), we find the
following expressions for the mean and variance:

	p̂ = 2
N

(∑N

i=S+1 di −∑S

i=1 di

)(
1 + σ 2

N	2

)−1
and (32)

σ 2
	p̂ = 4σ 2

N

(
1 + σ 2

N	2

)−1
. (33)

Assuming now again the previous toy model case, i.e. 	/σ � 1, S
= N − S = N/2 and pa = qσ and pb = −qσ , we can evaluate the
expectation value for the relative error of the parameter differences,
i.e.〈∣∣∣∣∣ 	̂p

σ	p

∣∣∣∣∣
〉

= q
√

N (34)

since
(

1 + σ 2

N	2

)−1
≈ 1 for 	/σ � 1 and 〈∑N

i=S+1 di〉 = −(N −
S)qσ and 〈∑S

i=1 di〉 = Sqσ . We show this estimator as a function
of q in Fig. 3, where we also compare it to the estimators of the
other tiers.

Finally, we derive an analytic expression for the tension es-
timator in the third tier of consistency tests (cf. equation 11)
in this toy model set-up. From the model vector for the joint
sample, m = (p, . . . , p︸ ︷︷ ︸

N

)τ , and the one for the split sample, ms =

(pa, . . . , pa︸ ︷︷ ︸
S

, pb, . . . pb︸ ︷︷ ︸
N−S

)τ , we can define the difference model vector
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as 	m = mj − ms. It is then straightforward to write down an
expression for the χ2 based on which we will finally assign
significances for tension:

χ2 =
N∑

i=1

	m2
i

σ 2
	m

. (35)

Assuming now again our simplified toy model set-up, 	m be-
comes:

	mi =
{

p − pa , i ≤ S

p − pb , S < i ≤ N

}
=
{−q σ

q σ

}
. (36)

If we assumed no correlation between the two TPDs, then

σ 2
	m =
{

σ 2
p + σ 2

pa
, i ≤ S

σ 2
p + σ 2

pb
, S < i ≤ N

}
≈
{

σ 2

N
+ σ 2

S

σ 2

N
+ σ 2

N−S

}
=3

σ 2

N
, (37)

using 	/σ � 1 to arrive at the second equality and S = N − S =
N/2 to arrive at the rightmost equality. This would yield:

χ2 = 1

3
N2q2. (38)

However, this expression for the χ2 is overly simplistic since for the
calculation of σ 2

	m we do need to take into account the correlations
between the parameter sets and finally also between the predicted
model vectors of the subsamples. We start with the former by
employing a Fisher matrix approach similar to what is done in
the real data case (see Appendix B).

First we write down a combined parameter vector p =
(p, pa, pb)τ and, labelling its components in that order with 1, 2,
and 3, we can define the Fisher matrix as:

(F)μν =
N∑

i=1

∂mi

∂pμ

σ−2 ∂mi

∂pν

(39)

= σ−2

⎛
⎜⎝

N S N − S

S S 0

N − S 0 N − S

⎞
⎟⎠. (40)

Evaluating this expression now for S = N − S = N/2 yields

F = N

σ 2

⎛
⎜⎝

1 1
2

1
2

1
2

1
2 0

1
2 0 1

2

⎞
⎟⎠ . (41)

We immediately realize that detF = 0, i.e. joint and split parameter
sets are fully correlated, but F−1 is needed for the propagation
of the parameter correlations. Hence, we diagonalize F and use a
pseudo-inverse to define the correlation matrix:

C ≡ F+ = σ 2

N
V

⎛
⎜⎝

2
3 0 0

0 2 0

0 0 0

⎞
⎟⎠Vτ = σ 2

9N

⎛
⎜⎝

4 2 2

2 10 8

2 −5 10

⎞
⎟⎠, (42)

with

V =

⎛
⎜⎜⎜⎝
√

2
3 0 −

√
1
3√

1
6 −

√
1
2

√
1
3√

1
6

√
1
2

√
1
3

⎞
⎟⎟⎟⎠. (43)

Then, we can write:

σ 2
	m =

{
C11 + C22 − 2 C12 , i ≤ S

C11 + C33 − 2 C13 , S < i ≤ N

}
= 10

9

σ 2

N
. (44)

Plugging this expression now into equation (35) yields

χ2 = 9

10
N2 q2. (45)

This approach, however, still neglects correlations between the
TPD data vectors and to account for that we need to generalize
equation (35) to:

χ2 =
N∑

i=1

N∑
j=1

	mi[Cov
−1(	m)]i,j	mj. (46)

The covariance elements that belong to 	m within a subset can
be adopted from equation (44), while elements across the split are
determined from equation (42) as follows:

Cov[	m(≤ S); 	m(> S)] = Cov(p, p) + Cov(pa, pb)

−Cov(p, pa) − Cov(p, pb) (47)

= −8

9

σ 2

N
. (48)

From that expression, we derive that

Cov(	m) = σ 2

9N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 . . . 10 −8 . . . −8

...
. . .

...
...

. . .
...

10 . . . 10 −8 . . . −8

−8 . . . −8 10 . . . 10

...
. . .

...
...

. . .
...

−8 . . . −8 10 . . . 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (49)

Using now again S = N − S = N/2, we can calculate the pseudo-
inverse of that matrix as:

Cov+(	m) = 2

Nσ 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 . . . 5 4 . . . 4

...
. . .

...
...

. . .
...

5 . . . 5 4 . . . 4

4 . . . 4 5 . . . 5

...
. . .

...
...

. . .
...

4 . . . 4 5 . . . 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(50)

Evaluating then equation (46) with that expression for the inverse
covariance matrix, we finally find:

χ2 = N q2. (51)

We can then directly assign significances to the χ2 values following
a standard procedure when fitting to zero. The rank of the covariance
in equation (49) is 2, which is hence the number of degrees of
freedom that should be used to evaluate the goodness-of-fit with
equation (51). Analogously, we can expect in a realistic scenario
that the degrees of freedom will be of order twice the number
of model parameters. In practice, we determine the number of
significant eigenvalues of the covariance via principal component
analysis (PCA, Appendix B). We show the significances derived
from equations (38), (45), and (51) in Fig. 3(c) to demonstrate
the effect of correlations with respect to the significances derived
from the naı̈ve equation (38): accounting for the correlations
introduced by correlated parameter sets (dotted grey line) increases
the significances for tension with respect to the naı̈ve case (dashed
black line). However, accounting for both parameter correlations
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and the correlated data subsamples dilutes the sensitivity of this
estimator significantly (solid blue line). In the other panels of Fig. 3,
we compare this estimator also to the other two tiers for the same toy
model set-up, i.e. equations (23) and (34) in particular. This shows
that the sensitivity of the Bayes factor is impaired with respect to the
other estimators due to its explicit dependence on the prior width,
	. Altering it increases or decreases the significance of the Bayes
factor while it leaves the other estimators unaffected.

Lastly, we apply the TPD-based goodness-of-fit estimator (equa-
tions 8–10) to a more complex toy case that allows us to additionally
assess the sensitivity of our significance tests, as well as the impact
of noise and correlations. For this we set-up, an N-dimensional mock
data vector, dfid, drawn from a multivariate Gaussian distribution
centred on zero and with an N × N covariance matrix, C, with
entries

Cij = r |i−j |s2, (52)

where 0 ≤ r < 1. For r = 0, this yields independent data with
variance s2, while r > 0 introduces non-trivial correlations. Mock
TPDs are created by drawing samples of N-dimensional data vectors
dTPD from a multivariate Gaussian distribution centred on zero and
with covariance

CTPD
ij = r |i−j |t2, (53)

where we will choose t < s to reflect that the TPD is typically
much more compact than the data distribution. In order to test the
way of quantifying tension with the TPDs, we create perturbed data
vectors (based on the fiducial realization) by adding to the first 0 ≤
Q ≤ N entries of the vector a constant q, i.e. the mean of the data
distribution is given by μτ = {q, . . . , q, 0, . . . , 0}.

To mimic the process of creating the TPD distributions, we
draw by default 1000 samples from N

(
dTPD; 0,CTPD

)
, i.e. dTPD

is Gaussian with mean 0 and covariance CTPD. We then determine
the fraction of TPD samples for which the value of χ2 according
to equation (10) is below χ2

lim as an approximation to calculating
the integral ITPD in equation (8). We calculate this integral for mσ

levels in the range 0 ≤ m ≤ 10 with a step size of δm = 0.01.
If we additionally restrict ourselves to the case of no correlations

(r = 0), one can analytically calculate the expected level of
significance as follows:

ITPD =
∫

VN (ms)
dNx N

(
x; μ,CTPD

)
(54)

=
∫ ms

−ms

dx1 N
(
x1;
√

Qq, t2
)∫

VN−1(ms)
dN−1x

N∏
i=2

N
(
xi; 0, t2

)
(55)

=
∫ ms

−ms

dx1 N
(
x1;
√

Qq, t2
)⎡⎣1 −

�
(

N−1
2 ,

m2s2−x2
1

2t2

)
�
(

N−1
2 , 0
)
⎤
⎦ .(56)

Here, VN(ms) denotes the volume of an N-dimensional sphere
of radius ms, which defines the support over which the TPD
distribution is integrated. We have used the (upper) incomplete
Gamma function,

�(a, x) =
∫ ∞

x

dy ya−1 e−y . (57)

Note that, purely for notational convenience, we have shifted the
TPD distribution by μ, not the data distribution, in equation (54).
To arrive at the second equality, we have assumed without loss of
generality that the shift vector is aligned with the x1 axis. We have
also used that |μ| = √

Qq in our model. Equation (54) holds for

N ≥ 2; in the 1D case (cf. Fig. 1) the term in square brackets is
replaced by unity.

Our definition of tension is intuitive in that in one dimension it
corresponds to the shift of the data point μ with respect to the TPD
in units of its standard deviation, s. We refer to this as the naive
tension criterion. By design, this holds exactly for t → 0, whereas
the finite size of the TPD reduces the tension mildly (see Fig. 4a).
For comparison, we also consider the definition of tension employed
by Efstathiou & Lemos (2018) who calculated the relative deviation
from the expected value of their equivalent of equation (10) (see
Section 5.3 for a more detailed discussion). In our toy model their
significance criterion reads

mEL18 = 1√
2N

(
μ2

s2
− N

)
, (58)

which implies a quadratic dependence on the relative shift of the
data vector and hence a stricter notion of tension, with the curves in
Fig. 4 rising more sharply than our choice of criterion.

Within the limits of our toy model and no correlations, one can
extend the naive tension definition to higher dimensions by using the
root mean square of all relative data point shifts, mnaive = μ/s/

√
N .

Fig. 4(b) shows the results for 10 dimensions, with the significance
of our tension significance criterion lying in-between the naive and
the strict Efstathiou & Lemos (2018) definitions. As long as t < s,
the sensitivity of the tension significance to the width of the TPD
distribution is small.

For this toy model, we find very good agreement between
the tension significance derived from our TPD approach and the
standard PPD ansatz; see Fig. 4. In this case, the PPD can be obtained
analytically as a convolution of Gaussian PDFs,

ln Pr(d̂ | d, Hα) = −1

2
(d̂ − d)τ

[
C + CTPD

]−1

× (d̂ − d) + const., (59)

while

IPPD =1 −
∫

VN (μ)
dNx N

(
x; 0,C + CTPD

) =
�
(

N
2 , μ2

2(s2+t2)

)
�
(

N
2 , 0
) .

(60)

As expected, the tension estimates agree as t/s → 0. This can also
be seen mathematically from equations (54) and (60) by taking
the limitsN

(
x; μ,CTPD

)→ δD(x − μ) andC + CTPD → C. As t/s
increases, the TPD estimate returns slightly less significant tension
than the PPD version.

We refer the reader to Appendix C for a discussion on how our
tension estimates are affected by measurement error, correlations
between data, and sampling noise in the posterior.

4 DATA SET: K I DS-450

One of the primary targets for currently ongoing large-scale
structure surveys such as KiDS, DES (DES Collaboration 2017),
and the Hyper Suprime-Cam Survey (Mandelbaum et al. 2018)
is to measure the weak gravitational lensing effect of the large-
scale structure (see Kilbinger 2015 for a review and Bartelmann &
Schneider 2001 for a more general introduction) in order to infer
precise and accurate constraints on key cosmological parameters at
low redshifts, z � 1, in contrast to the high-redshift constraints on
those parameters from the CMB.
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3134 F. Köhlinger et al.

Figure 4. Tension significance criteria for a Gaussian toy model in (a) one dimension and (b) 10 dimensions. The significance mσ is plotted as a function
of the shift of the best-fitting model (i.e. the peak of the TPD or PPD) with respect to the data, μ, in units of the standard deviation of the data measurement
error, s. Black (dark blue) lines correspond to the definition of tension based on the TPD (PPD) with different line styles showing the dependence on the TPD
width, t (as given in the legend, in units of s). The light blue line follows the definition of Efstathiou & Lemos (2018). The red line is a naive criterion taken as
the relative shift of the data vector, divided by

√
N , where N is the dimension of the distribution under consideration. In one dimension, the red line therefore

marks a one-to-one relation (overlapping the blue solid line), which is closely approximated by the TPD and PPD definitions of significance as t/s → 0.

For that purpose (several) thousand square degrees on the sky
are observed in multicolour bands typically ranging from near-
infrared to optical to measure galaxy positions and their shapes.
The shape measurements are used to infer the gravitational shear,
i.e. the tiny but coherent distortions imprinted on galaxy images due
to the weak-lensing effect of the intervening large-scale structure
through which light has to propagate before arriving at the observer.
The measured shear and galaxy positions can then be used to
build up the shear–shear two-point statistics, also termed cosmic
shear. The real space two-point correlation functions (2PCF) or
equivalently their power spectra are all related to the power spectrum
of matter density fluctuations and therefore can be used to yield
competitive constraints on the combination of the matter clustering
amplitude, σ 8 – the root-mean-square dispersion of the density
contrast measured in spheres of 8 h−1 Mpc on the sky – and the
total matter density, 
m, i.e. S8 = σ8

√

m/0.3.

In the following application of the three tiers of consistency tests
to data, we will use tomographic cosmic shear measurements from
an intermediate data release based on 450 sq deg of imaging data
from KiDS (Kuijken et al. 2015; Hildebrandt et al. 2017; Fenech
Conti et al. 2017).2

The KiDS data are processed with THELI (Erben et al. 2013) and
ASTRO-WISE (Begeman et al. 2013; de Jong et al. 2015). Shears
are measured using lensfit (Miller et al. 2013), and photometric
redshifts are obtained with BPZ (Benı́tez 2000) from point spread
function matched photometry and calibrated using external over-
lapping spectroscopic surveys (see Hildebrandt et al. 2017 for
details).

The KiDS-450 cosmic shear data were used in Hildebrandt et al.
(2017) for a real space 2PCF analysis with the ξ+(θ ) and ξ−(θ )
estimators in four tomographic bins (0.10 < z1 ≤ 0.30, 0.30 <

z2 ≤ 0.50, 0.50 < z3 ≤ 0.70, and 0.70 < z4 ≤ 0.90) spanning

2The data are publicly available at http://kids.strw.leidenuniv.nl/sciencedat
a.php.

angular scales 0.50 < θ+/arcmin < 72 and 4.2 < θ−/arcmin <

300. In addition to these fiducial scales, Hildebrandt et al. (2017)
also defined a set of ‘large’ and ‘small’ angular scales for further
systematic tests which we will also be using in the subsequent
analysis. We summarize all angular scales and their abbreviations
in Table 1 for convenience.

4.1 Data likelihood

The cosmological interpretation of the observed correlation-
function estimators, ξα

±(θ ), is carried out in a Bayesian framework.
For the estimation of cosmological model parameters, p, we sample
the posterior PDF by evaluating the likelihood

− 2 lnL( p) =
∑
α, β

�α( p) (C−1)αβ �β ( p), (61)

where the indices α and β run over the unique tomographic redshift
bin combinations. The analytical covariance matrix,C, is calculated
as outlined in Hildebrandt et al. (2017).

We note that Troxel et al. (2018) derived an update for that
covariance with an improved shot-noise model, primarily incorpo-
rating previously neglected survey-boundary effects. This improves
the goodness of fit of the fiducial model significantly with a χ2

per degree of freedom close to unity (compare also to Table 2).
However, for reasons of consistency we use subsequently the same
model as employed in the original KiDS-450 analysis and the
analysis of Efstathiou & Lemos (2018, see section 5.3), but we will
comment on potential changes due to the updated covariance where
applicable. To illustrate the correlations between angular scales but
also between different redshift bin combinations, we show in Fig. 5
the correlation matrix of the covariance.

The components of the data vector are calculated as

	α( p) = ξ̂ α
±(θ ) − ξα

±(θ, p), (62)

where the hat denotes measurements extracted from the obser-
vations. The model predictions, ξα

±(θ, p), for the ξ± correlation

MNRAS 484, 3126–3153 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/3/3126/5289919 by U
niversity C

ollege London user on 06 February 2019

http://kids.strw.leidenuniv.nl/sciencedata.php


Consistency in correlated data sets 3135

Table 1. Sets of angular scales used in the analysis.

Abbreviation Estimator θmin (arcmin) θmax (arcmin) Number of θ -bins

Fiducial scales ξ+ 0.50 72 7
Fiducial scales ξ− 4.2 300 6
Large scales ξ+ 4.2 72 3
Large scales ξ− 4.2 300 6
Small scales ξ+ 0.50 4.2 4
Small scales ξ− – – 0

Notes: The ‘fiducial scales’ and ‘large scales’ listed here correspond to the definitions in Hildebrandt et al. (2017) that
were also used by Efstathiou & Lemos (2018, see section 5.3). Based on the ‘large scales’ definition, we construct the
mutually exclusive ‘small scales’ set.

Table 2. Evidence ratios for various splits of the KiDS-450 ξ± data vector.

Data split Model B modes χ2 d.o.f. ln(Z) log10(R01) Evidence for H0

subtracted on Jeffreys’ scale

– H0 No 160.44 123 −91.27 ± 0.09 – –
Large versus
small scales

H1 No 154.73 116 −94.00 ± 0.11 1.19 ± 0.06 Strong

z-bin 3 versus all
others

H1 No 155.16 116 −95.48 ± 0.12 1.83 ± 0.06 Very strong

z-bin 4 versus all
others

H1 No 157.28 116 −96.93 ± 0.12 2.46 ± 0.06 Decisive

ξ+ versus ξ− H1 No 153.52 116 −94.71 ± 0.12 1.49 ± 0.06 Strong
– H0 Yes 137.00 123 −79.07 ± 0.08 – –
Large versus
small scales

H1 Yes 139.45 116 −87.08 ± 0.11 3.48 ± 0.06 Decisive

z-bin 3 versus all
others

H1 Yes 129.83 116 −84.93 ± 0.12 2.55 ± 0.06 Decisive

z-bin 4 versus all
others

H1 Yes 115.95 116 −80.75 ± 0.12 0.73 ± 0.06 Substantial

ξ+ versus ξ− H1 Yes 140.40 116 −87.43 ± 0.11 3.63 ± 0.06 Decisive

Notes: The first column lists the split applied to the fiducial KiDS-450 data vector. The z-bin splits should always be read as, e.g. ‘z-bin 3 (and all its CCs)
versus all other z-bin correlations’. In the second column, we give the model that is used in the calculations. H0 corresponds to the fiducial model using only
one set of parameters, whereas H1 uses separate parameter sets for each subsample of the split. The third column indicates whether or not the measured B
modes were subtracted off the data vector. The remaining columns then list the χ2 of the fit, the number of degrees of freedom (d.o.f.), the natural logarithm
of the evidence Z, the binary logarithm of the Bayes factor R01 and finally its qualitative interpretation on Jeffreys’ scale. The latter must be read as evidence
for the model H0 : ‘there exists one common set of parameters that describe all data sets’.

functions as functions of angular separation, θ , between galaxies on
the sky and between redshift-bin correlations, zμ × zν , are related
to the tomographic E-mode convergence power spectrum, CEE

μν (�),
as a function of multipoles, �, through Bessel functions of the first
kind, J0, 4 (of order 0 for ξ+ and of order 4 for ξ−):

ξ
μν
± (θ ) = 1

2π

∫
d� �CEE

μν (�)J0,4(�θ ). (63)

The tomographic convergence power spectrum in the (extended)
Limber approximation (Limber 1953, Kaiser 1992, LoVerde &
Afshordi 2008) can be written as:

CEE
μν (�) =

∫ χH

0
dχ

qμ(χ )qν(χ )

f 2
K(χ )

Pδ

(
k = � + 0.5

fK(χ )
; χ

)
, (64)

which depends on the comoving radial distance, χ , the comoving
distance to the horizon, χH, the comoving angular diameter distance,
fK(χ ), and the 3D matter power spectrum, Pδ(k; χ ).

The weight functions, qμ(χ ), depend on the lensing kernels
and hence they are a measure of the lensing efficiency in each
tomographic redshift bin, μ:

qμ(χ ) = 3
mH 2
0

2c2

fK(χ )

a(χ )

∫ χH

χ

dχ ′ nμ(χ ′)
fK(χ ′ − χ )

fK(χ ′)
, (65)

where a(χ ) is the scale factor and the source redshift distribution
is denoted as nμ(χ ) dχ = n′

μ(z) dz. It is normalized such that∫
dχnμ(χ ) = 1.
The observed shear correlation functions, ξ obs

± , are only a biased
tracer of the cosmological signal encoded in the ξ± estimators due
to intrinsic galaxy alignments:

ξ obs
± = ξ± + ξ II

± + ξGI
± . (66)

Here, ξ II
± measures the intrinsic ellipticity correlations between

neighbouring galaxies (termed ‘II’) and ξGI
± encodes the correlations

between the intrinsic ellipticities of foreground galaxies and the
gravitational shear of background galaxies (termed ‘GI’). We follow
Hildebrandt et al. (2017) in modelling these effects and employ the
non-linear modification of the tidal alignment model of intrinsic
alignments (Hirata & Seljak 2004; Bridle & King 2007; Joachimi
et al. 2011). The angular power spectra of the intrinsic alignments
can be written as:

CII
μν(�) =

∫ χH

0
dχ

nμ(χ )nν(χ )F 2(χ )

f 2
K(χ )

Pδ

(
k = � + 0.5

fK(χ )
; χ

)
, (67)
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3136 F. Köhlinger et al.

Figure 5. The correlation matrix of the ξ± correlation function covariance,
C, for all fiducial angular scales, θ , and tomographic bin combinations,
i × j (see ‘fiducial scales’ in Table 1).

CGI
μν(�) =

∫ χH

0
dχ

qν(χ )nμ(χ ) + qμ(χ )nν(χ )

f 2
K(χ )

F (χ )Pδ

(
k = � + 0.5

fK(χ )
; χ

)
, (68)

with the lensing weight function, qμ(χ ), from equation (65) and

F (χ ) = −AIAC1ρcrit

m

D+(χ )
. (69)

The dimensionless amplitude AIA allows us to rescale and vary
the fixed normalization C1 = 5 × 10−14 h−2M�−1Mpc3 in the
subsequent likelihood analysis. The critical density of the Universe
today is denoted as ρcrit and D+(χ ) is the linear growth factor
normalized to unity today.

Another astrophysical effect that needs to be taken into account
is baryon feedback, i.e. modifications of the matter distribution at
small scales, for example, due to active galactic nucleus (AGN)
feedback (e.g. Semboloni et al. 2011; Semboloni, Hoekstra &
Schaye 2013). The full physical description of baryon feedback
is not established yet and different ‘recipes’ exist usually based
on hydrodynamical simulations. The effect of baryon feedback is
typically quantified as a bias with respect to the dark-matter-only
matter power spectrum, Pδ (e.g. Semboloni et al. 2013; Harnois-
Déraps et al. 2015):

b2(k, z) ≡ P mod
δ (k, z)

P ref
δ (k, z)

, (70)

where P mod
δ and P ref

δ denote the power spectra with and without
baryon feedback, respectively.

In Hildebrandt et al. (2017), the baryon feedback model included
in HMcode by Mead et al. (2015, 2016) was used. However, this

module for the non-linear matter power spectrum is not yet avail-
able for the Boltzmann-code CLASS3 (Blas, Lesgourgues & Tram
2011; Audren & Lesgourgues 2011). Therefore, we use here the
HALOFIT algorithm within CLASS (including the Takahashi et al.
2012 recalibration) and add the baryon feedback model through
the fitting formula for baryon feedback from Harnois-Déraps et al.
(2015) based on the AGN model from the OverWhelmingly Large
Simulations (Schaye et al. 2010, van Daalen et al. 2011):

b2(k, z) = 1 − Abary[Aze(Bzx−Cz)3 − DzxeEzx] , (71)

where x = log10(k/h Mpc−1) and the terms Az, Bz, Cz, Dz, and Ez

are feedback model-dependent functions of the scale factor a = 1/(1
+ z). We refer the reader to Harnois-Déraps et al. (2015) for the
specific functional forms and constants. Moreover, we introduce
a free amplitude, Abary, to marginalize over while fitting for the
cosmological parameters.

In the likelihood analysis, we assume a cosmological model
with spatially flat geometry and use the same set of key cos-
mological parameters and priors as in Hildebrandt et al. (2017):

cdmh2, ln (1010As), 
bh2, ns, h, i.e. the amplitude of the primordial
power spectrum As, the value h of the Hubble parameter today
divided by 100 kms−1Mpc−1, the cold dark matter density 
cdmh2,
the baryonic matter density 
bh2, and the exponent of the pri-
mordial power spectrum ns. In addition to these key cosmological
parameters, we add the free amplitude parameters AIA and Abary

for the intrinsic alignment and baryon feedback model, the former
again in the same prior range as in Hildebrandt et al. (2017). We
emphasize that the likelihood pipeline used here is independent
of the cosmology pipeline used in Hildebrandt et al. (2017) with
the additional difference in the baryon feedback model and the
prior on its amplitude, Abary. However, we find that the impact of
that is negligible and our pipeline recovers a χ2

min = 160.4 and
S8 = 0.756 ± 0.037 in the fiducial joint set-up in comparison to
χ2

min = 162.5 and S8 = 0.745 ± 0.039 as found in Hildebrandt et al.
(2017).

For an efficient evaluation of the likelihood L, we employ the
nested sampling algorithm MULTINEST (Feroz & Hobson 2008;
Feroz, Hobson & Bridges 2009; Feroz et al. 2013).4 Conveniently,
its PYTHON-wrapper PYMULTINEST (Buchner et al. 2014) is included
in the framework of the cosmological likelihood sampling package
MONTE PYTHON (Audren et al. 2013) with which we derive all
cosmology-related results in this analysis.5

We will refer to the posterior samples derived with the nested
sampling algorithm as an MCMC. Moreover, we note that the
weights connected to each MCMC sample are always propagated
consistently in the subsequent analysis. For example, when we refer
to the mean of a quantity, we calculate its weighted mean.

5 A PPLICATION O F C ONSISTENCY TESTS TO
K I D S - 4 5 0

In the following, we assess the internal consistency of the fiducial
KiDS-450 correlation function analysis making use of the tests
established in Section 2 and tested in more detail in Appendix A.
The KiDS-450 cosmic shear data present an excellent test case
for assessing consistency in a highly correlated data set and is
also motivated by the following findings: Hildebrandt et al. (2017)

3Version 2.5.0 from https://github.com/lesgourg/class public
4Version 3.8 from http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
5Version 2.2.1 from https://github.com/baudren/montepython public

MNRAS 484, 3126–3153 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/3/3126/5289919 by U
niversity C

ollege London user on 06 February 2019

https://github.com/lesgourg/class_public
http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
https://github.com/baudren/montepython_public


Consistency in correlated data sets 3137

reported in their section 6.5 a shift to lower S8 values with respect
to the fiducial results when including only large angular scales in
the ξ+ measurements (see Table 1), as well as when applying large-
scale cuts to both ξ+ and ξ− (Joudaki et al. 2017). Since this shift to
lower S8 values is also observed in the quadratic estimator analysis
of Köhlinger et al. (2017), which in general uses larger scales than
the correlation function analysis (see fig. C1 in Köhlinger et al.
2017), this may hint at inconsistencies between large and small
angular scales in the data. Therefore, the first split of the fiducial
data vector consists of two mutually exclusive subsets containing
either the large or small angular scales, respectively (see Table 1).

Efstathiou & Lemos (2018) found that the scaling of some
tomographic bin combinations might be inconsistent, reporting the
largest inconsistencies for z-bins 3 and 4 (0.50 ≤ z3 < 0.70 and
0.70 ≤ z4 < 0.90; see also Section 5.3). Joudaki et al. (2017) also
found hints for an inconsistency in the source redshift distribution
of z-bin 3 (see their appendix A) and van Uitert et al. (2018) show
in a combined analysis of cosmic shear, galaxy–galaxy lensing and
angular galaxy clustering that the data preferred to shift z-bin 3 by
dz = −0.061+0.010

−0.039, while for the other z-bins no significant shifts
are observed.

In addition to that, a comparison of the source redshift distri-
butions derived with the direct calibration method (‘DIR’) and a
cross-correlation method (‘CC’; see Hildebrandt et al. 2017 for
details) reveals the largest deviations between these two methods
for z-bin 3. Therefore, we investigate the consistency of the redshift
scaling with a split of the fiducial data into mutually exclusive
subsets containing only z-bin 3 (and all its CCs) versus all other
tomographic bin combinations. This check is repeated again for
z-bin 4. We intentionally do not use the lower redshift bins 1 and
2 for this test due to the lower signal-to-noise ratio (S/N) in these
bins compared to z-bins 3 and 4.

Finally, Hildebrandt et al. (2017) present in their appendix D6 a
decomposition of the fiducial correlation function data into E and
B modes. A non-zero detection of B modes indicates that residual
systematics are present in the data. If the systematics produce E
and B modes with equal strength, it can be mitigated according to
equation (A2). Although mitigating this effect was shown to not
affect the cosmological results significantly, we split the fiducial
data vector into mutually exclusive ξ+ and ξ− subsets to assess the
significance of the measured small-scale B modes in the KiDS-450
data. Moreover, we also repeat all consistency checks for the data
splits mentioned above for a data vector from which we subtract
(two times) the measured B modes from the ξ+ correlation functions
(implicitly assuming that the systematic generates equal power in
E and B modes).

5.1 Consistency in posterior parameter space

Following Section 2.1, we perform the analysis as follows: we use
the KiDS-450 ξ± data vector and the KiDS-450 covariance matrix
within the fiducial scales (see Table 1) as the input for the joint
MCMC run (i.e. the numerator of equation 3) corresponding to the
model H0 : ‘there exists one common set of parameters that describe
all data sets’ and sample the likelihood in the same parameters
and prior ranges as presented in Hildebrandt et al. (2017) with the
caveats discussed in Section 4.1.

For the split MCMC run (i.e. the denominator of equation 3)
which tests now the model H1 : ‘there exist two separate parameter

sets that each describe one subset of the data’,6 we split the fiducial
KiDS-450 data vector according to the systematic we want to test.
For example, to detect a shift in the source redshift distribution of z-
bin 3, we split the data vector ddata

tot into one set ddata
a containing

only z-bin 3 (and all its CCs) and the mutually exclusive set
ddata

b containing all other unperturbed z-bins (and their CCs), thus
ddata

tot
τ = {ddata

a
τ
, ddata

b
τ }.

It is important to note that both subsets, ddata
a and ddata

b , of the split
data set are still coupled through the full covariance (which is the
same as used in the joint MCMC run with ddata

tot by construction),
but as mentioned in Section 2.1 we keep all cosmology-dependent
calculations as well as all cosmological and nuisance parameters
separated in the likelihood analysis. In total, the joint MCMC uses
the five cosmological and two nuisance parameters as listed in
Section 4.1 and hence the split MCMC uses 14 parameters for
typically (nθ+ + nθ−) nz(nz + 1)/2 data points (e.g. for the ‘fiducial
scales’ from Table 1 that corresponds to nz = 4, nθ + = 7, and nθ −
= 6, i.e. 130 data points in total).

While sampling the joint and split MCMCs for all four splits of
the data vector as listed in Table 2, we also calculate the evidences
and the respective Bayes factors. These reveal no significant tension
for any of the data splits and instead yield at least ‘strong’ (large
versus small scales and ξ+ versus ξ−) to ‘decisive’ (z-bin 4 versus
all others) evidence on Jeffreys’ scale for the fiducial model H0 :
‘there exists one common set of parameters that describes all data
sets’. Subtracting off the measured small-scale B modes from the
data vector generally strengthens the evidence for the fiducial model
with the exception of splitting the data into the subsets containing z-
bin 4 and all its CCs versus all other tomographic bin combinations
(‘z-bin 4 versus all others’). For this split, the evidence decreases
from ‘decisive’ to ‘substantial’ which we interpret as a sign that
an inconsistency in z-bin 4 becomes more pronounced once the
B modes are subtracted off. We note though that based on the
sensitivity analysis performed in Appendix A1, we find the Bayes
factor test only to be a necessary criterion for consistency, not a
sufficient one (see also Raveri & Hu 2018). This is due to the
prior volume which has a significant impact on the Bayes factor,
especially when most parameters are prior-driven. Wide prior ranges
on parameters that are only weakly constrained by the data will then
lower the evidence in general (compare also to Fig. 3a). Moreover, it
quantifies the general goodness of fit of a model rather than tension.

Hence, we proceed with the second tier of consistency tests, for
which we compare the differences between the duplicate parameter
sets of the split MCMC run. Although all seven primary parameters
are duplicated in that run, we focus here only on the duplicates
of two derived cosmological parameters and one primary nuisance
parameter. In particular, those are the parameter constrained best by
cosmic shear, i.e. S8, and the total matter density, 
m, as these two
parameters set the amplitude and the tilt of the cosmic shear signal.
The third parameter is the amplitude of the intrinsic alignment
model, AIA. This nuisance parameter is of particular interest because
it is degenerate with the other two derived cosmological parameters
and hence it also affects the amplitude and tilt of the cosmic shear
signal.

Indeed, we observe for the 2D projections of these key parameter
differences shown in Fig. 6 similar trends as seen in the Bayes factor
analysis: for example for the z-bin 3/4 splits (Figs 6b and d) the 68
per cent and 95 per cent (inner and outer) credibility contours for
which the B modes are subtracted off (dotted contours) are more

6Note that this is the more specific version of H1 as given in Section 2.1.
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3138 F. Köhlinger et al.

Figure 6. Duplicate parameter differences from the split MCMC run for 2D projections of key parameters for the following splits of the KiDS-450 data set:
(a) large versus small scales (angular) scales, (b) z-bin 3 (and all its CC) versus all other z-bin combinations, (c) ξ+ versus ξ−, and (d) z-bin 4 (and all its CC)
versus all other z-bin combinations. The covariance between the exclusive sets of the split MCMC run is fully taken into account in the parameter inference.
The solid black contours (the inner/outer one corresponding to the 68/95 per cent credibility interval) show the biases (i.e. offsets with respect to the cross
hairs) in the parameter projections derived using the fiducial KiDS-450 data vector. In contrast to that the dashed blue contours show the impact of removing
the measured B modes from the data vector on the splits into subsets.

biased than the contours for the fiducial KiDS-450 data vector (solid
contours).

For the other data splits though we observe that the ∼1 σ -
level biases decrease once the B modes are subtracted off. In
general, all conclusions drawn from the Bayes factor results are
strongly supported by the key parameter differences: there are no
signs for strong residual systematics and biases in the posterior
parameters are ranging at most between ∼1 σ to ≤ 2.70 σ for all

parameter projections, the strongest biases occurring for the B-mode
subtracted z-bin 4 split.

Following the method outlined in Section 2.2, we also quantify
the significances for all 2D parameter projections in Table 3.
Moreover, we also calculate the significances for tension over
the full three key-parameter subspace. These also support the
conclusions from the Bayes factor: subtracting off the B modes from
the data vector increases the tension in case of the z-bin 4 split, i.e.
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Table 3. Significances for duplicate parameter differences.

Data split B modes 	{S8, 
m, AIA} 	{S8, 
m} 	{S8, AIA} 	{
m, AIA}
subtracted

Large versus small
scales

No 1.32 σ 0.72 σ 1.25 σ 0.21 σ

z-bin 3 versus all others No 0.80 σ 1.00 σ 0.51 σ 0.25 σ

z-bin 4 versus all others No 0.92 σ 1.33 σ 0.11 σ 1.08 σ

ξ+ versus ξ− No 0.77 σ 0.77 σ 0.69 σ 0.08 σ

Large versus small
scales

Yes 0.00 σ 0.05 σ 0.01 σ 0.05 σ

z-bin 3 versus all others Yes 1.46 σ 0.95 σ 1.55 σ 1.37 σ

z-bin 4 versus all others Yes 2.42 σ 2.71 σ 0.35 σ 2.04 σ

ξ+ versus ξ− Yes 0.06 σ 0.02 σ 0.15 σ 0.04 σ

Notes: The significances for tension in the listed 2D projections of the key parameter differences and the full three-parameter subspace (third column) are
derived as described in Section 2.2. Moreover, the results for the 2D projections can directly be compared to the contours shown in Fig. 6.

from 0.92 σ to 2.42 σ , while it decreases the tension significantly
for the ‘large versus small scales’ and ‘ξ+ versus ξ−’ splits, from
≤ 1.32 σ to ∼0 σ . In contrast to that though, the overall tension
in the z-bin 3 split decreases according to the Bayes factor, but
increases from 0.80 σ to 1.46 σ when subtracting off the B modes.
However, that is due to the dimensionality of the parameter spaces
involved in each tension estimator: for the Bayes factor the full
parameter space is used, whereas the significances in Table 3 are
only calculated for the subspaces of key parameters. In summary,
we do not find hints for significant tension (i.e. ≥ 3 σ ) for any of
the tests taking place in parameter space.

5.2 Consistency in the data domain

Having investigated potential residual systematics for the four
data splits in posterior parameter space, we now turn to the data
domain and directly look at the ξ+ correlation functions per unique
tomographic bin combination zi × zj in the four panels of Fig. 7; the
ξ− correlation functions can be found in Appendix D (Fig. D1). The
black points with error bars are the KiDS-450 data (the error bars
are derived from the diagonal elements of the fiducial covariance
matrix) and the red and blue/cyan points with error bars represent
the means with their 68 per cent credibility intervals derived from
the joint and split TPDs, respectively. In general, the joint TPDs
(red) can be interpreted as a best-fitting model over all panels
(also including the ξ− correlation functions), whereas the blue and
cyan points are based on the two separate sets of cosmological and
nuisance parameters and usually yield slightly closer matches to the
data (e.g. for the small versus large angular scales in Fig. 7a). We
caution the reader against performing a ‘χ–by–eye’ estimate on the
significance of any apparent feature since the correlations between
angular scales and tomographic bin combinations are non-trivial
(see also Fig. 5).

Hence, we proceed to compare the joint and split TPDs quantita-
tively to the (multivariate Gaussian) data distribution as outlined in
Section 2.3 in order to assign significances to the trends visible in
Fig. 7. The results for all four data splits (from left to right) are shown
in Fig. 8(a). It is interesting to point out that, when we calculate
the significances for the full data vector including all tomographic
bin combinations and the fiducial angular scales corresponding to
all panels in Figs 7(a)–(d) (and including the corresponding ξ−
correlation function panels in Figs D1a–d), we observe an almost
constant significance level of ∼2.0 to �2.5 σ for any of the four
data splits (grey crosses). This generally indicates that the theory

model is only a moderately good fit to the data, which can also be
read off from the χ2-values given in Table 2.

Looking then at the significances for each subset of the splits (i.e.
estimating the significances only for the panels containing either
the light or dark blue points in Figs 7 and D1), we find that the
subsets containing ‘large (angular) scales’, ‘z-bin 4 (and all its CCs)’
or ‘ξ−’ also produce significances just below ∼2.5 σ . However,
these significances are not dependent on whether the joint or split
TPDs (circles and crosses) were used, hinting at a general mismatch
between theory and data which is not dependent on the particular
data split. Subtracting off the B modes from the fiducial data vector
(indicated with ‘no B’ in Fig. 8a), however, lowers the significances
for the ‘fiducial’ case, as expected from the improved χ2-values
(see Table 2). Hence, this consistency test quantifies the overall
goodness of fit of the model (see also Appendix A3).

We note that the mismatch between theory and data throughout
all splits flagged by this goodness-of-fit estimator can be explained
by the update of the covariance matrix by Troxel et al. (2018) which
was not applied in these tests in order to be consistent with the
original KiDS-450 analysis and the one carried out by Efstathiou &
Lemos (2018, see section 5.3). As mentioned already in Section 4.1,
these authors propose to use an improved shot-noise model, mainly
incorporating previously neglected survey-boundary effects, when
calculating the covariance matrix. They further show that this update
improves the goodness of fit of the fiducial model significantly and
reduces the χ2 per degree of freedom of currently ∼1.30 (Table 2)
to a value close to unity.

In order to get an estimate of the tension due to residual
systematics in the data, we employ the second TPD-based estimate
comparing the joint TPD directly to the split TPD assigning signifi-
cances by fitting their difference to zero (see Appendix B for details
on how the errors are estimated also accounting for all correlations).
The results for all four data splits are shown (from left to right) in
Fig. 8(b). First, we notice that all these significances are lower than
the ones presented in the corresponding Fig. 8(a) for the goodness-
of-fit estimator as expected. Moreover, we do not observe any clear
trends between the different subsets (such as ‘large versus small
angular scales’). It is interesting to point out that, when subtracting
off the measured B modes from the data vector, all significances
decrease further except for the split ‘z-bin 4 versus all others’.
Although this is not the case for the first TPD-based estimator (cf.
Fig. 8a), we would have expected such a behaviour based on our
previous analysis in the posterior parameter space (cf. Fig. 6d).

In Appendix D, we show the significances for both TPD-based
estimators for all ξ+ and ξ− correlation functions per unique
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3140 F. Köhlinger et al.

Figure 7. KiDS-450 data vector (black points) and TPD means (red and blue points) for the ξ+ estimator as a function of angular scale per redshift bin
combination. The TPDs are based on the joint (red points; the same in all panels) and split (dark and light blue points) cosmological and nuisance parameters
from MCMC runs fit to the data vector. The panels consider various mutually exclusive splits of the data vector (a) large versus small scales, (b) z-bin 3 (and
all its CCs) versus all other redshift correlations, (c) ξ+ versus ξ−, and (d) z-bin 4 (and all its CCs) versus all other redshift correlations. Error bars on the
means are derived from the 68 per cent credibility interval around the mean. The erro rbars for the data are based on the diagonal of the covariance matrix. The
corresponding plots for the ξ− estimator can be found in Appendix D (Fig. D1).

tomographic bin combination (Figs D2 and D3). It is interesting
to point out that for the TPD to data comparison in Fig. D2 the
highest significance for tension is found in ξ+ for the tomographic
bin combination z2 × z4 (at ∼2.6 σ ) and in ξ− for z1 × z2 (at
∼1.9 σ ) independent of the splits applied and also independent of
whether the joint or split TPD were used. We do not observe a similar
behaviour for the second TPD-based estimator which suggests that
the data in the z2 × z4 and z1 × z2 tomographic bin combinations
are the major causes driving the significances for the total data set

or the two subsets as depicted in Fig. 8. Figs 7 and D1 also show
that in the z2 × z4 and z1 × z2 panels the data points show large/the
largest deviations with respect to the joint or split TPDs. Subtracting
off the measured B modes again decreases all significances except
for the split into the ‘z-bin 4 versus all (other z-bin combinations)’
subsets, as noted already above.

In summary, we remark that the first TPD-based estimator,
comparing the joint and split TPDs to the data distribution, flags
a general inconsistency between the model and the data at ∼2.5σ

MNRAS 484, 3126–3153 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/3/3126/5289919 by U
niversity C

ollege London user on 06 February 2019



Consistency in correlated data sets 3141

Figure 8. Significance as derived with the two TPD-based consistency estimators for different splits of the KiDS-450 data vector. (a) The significances for the
goodness of fit are estimated by comparing the data distribution to the joint (circles) and split (crosses) TPDs. Grey symbols indicate that all fiducial angular
scales (Table 1) are used in the significance estimation, whereas green and orange symbols correspond to one of the mutually exclusive subsets as indicated in
the labels and along the x-axis. Shown are also the results when the measured B modes are subtracted from the data vector (‘no B’). (b) The significances for
tension are estimated by comparing the differences between the joint and the split TPDs.

for the ‘fiducial’ scales (see also Troxel et al. 2018) and at ∼2.0 σ

depending on which split is applied. Decomposing the data vector
further into the tomographic correlation functions reveals that the
major drivers for the bad goodness of fit arise from the z2 × z4

(for ξ+) and z1 × z2 (for ξ−) tomographic bin combinations.
In comparison, the second TPD-based estimator, comparing the
differences between the joint and the split TPDs directly, yields
lower significances for tension and is qualitatively consistent with
the results of the analysis in posterior parameter space in Section 5.1.

5.3 Comparison with Efstathiou & Lemos (2018)

Here, we provide a link from our three tiers of consistency checks
to the one presented by Efstathiou & Lemos (2018). These authors
use a cross-validation approach for which they split the fiducial data
vector into mutually exclusive subsets xD and yD (for the cases
presented here their choice and our choice of subsets coincides).
For the larger of both subsets, yD , they infer best-fitting cosmo-
logical and nuisance parameters through an MCMC evaluation. For
the best-fitting parameters, the corresponding full theory vector,
{xmodel, ymodel}, is calculated and used to make a prediction for the
vector xD conditional on the fit to yD:

xcond = xmodel + CxyC
−1
yy ( yD − ymodel), (72)

where the subscripts to the covariance C denote the submatrices
corresponding to the respective selection from the data vector. The
covariance of xcond is given as

Ccond
xx = Cxx − CxyC

−1
yy Cyx, (73)

which can be used to calculate a conditional χ2,

χ2
cond = (xD − xmodel)

τ (Ccond
xx )−1(xD − xmodel). (74)

The significance of tension is then defined as the number of standard
deviations by which χ2

cond deviates from the length Nx of the vector

xD:

Nσcond = (χ2
cond − Nx)/

√
2Nx. (75)

We emphasize that this definition of significance is generally more
conservative than the one used in our approach (cf. Fig. 4b and Sec-
tion 3 for details). Moreover, the definition of Nσcond approximates a
χ2-distribution with a Gaussian, which fails especially for smaller
degrees of freedom and for the tails of the χ2-distribution.

As discussed in Section 4.1, our likelihood pipeline is indepen-
dent of the one used in Hildebrandt et al. (2017) and Efstathiou
& Lemos (2018). Therefore, we repeat their calculations here with
the caveat that we do not include the propagation of the model
uncertainty in these repeated calculations that was incorporated
into later versions of Efstathiou & Lemos (2018) and found to have
only a small effect. The original numbers and our repeated results
are listed in the first two columns of Table 4. With the exception of
‘minus ξ−’, we reproduce the results of Efstathiou & Lemos (2018)
well (our results are expected to yield slightly higher significances
due to not propagating the model uncertainty). For the remainder of
the comparison of the two approaches, we will refer to our repeated
calculations when referring to the cross-validation approach unless
stated otherwise.

In Figs 9(a) and (b), we give a visual impression of the cross-
validation approach for the ‘minus z-bin 3/4’ cases. The KiDS-450
data vector (red points with error bars) is shown for all redshift
bin combinations containing z-bin 3 and those containing z-bin 4
compared to the expected model vector conditional on the rest of
the data, xcond. The grey bands mark the ±1 σ and ±2 σ intervals
around the expected model vector, xcond, derived from the diagonal
components of the conditional covariance matrix (equation 73).
Fig. 9(a) shows that redshift bin combinations including z-bin 3
prefer a lower amplitude than the rest of the data. This problem
is particularly apparent for ξ− (lower panel) for the z3 × z3 and
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Table 4. Comparison of significances between the approach presented here and in Efstathiou & Lemos (2018).

Data used E&L E&L
Data versus best fit

(i.e. δ-TPD) Data versus TPD Data versus TPD TPD versus TPD
(as published) (repeated) (cross-validation) (cross-validionat) (joint and split) (joint − split)

Minus z-bin 3 2.60 2.78 1.50 1.15 0.90 (joint), 0.95
(split)

0.58

Minus z-bin 4 3.52 3.58 2.48 2.28 2.18 (joint), 2.18
(split)

0.13

Minus ξ− 2.71 1.95 2.45 2.36 2.34 (joint), 2.31
(split)

0.69

Minus ξ+ 1.20 1.66 2.23 1.86 1.15 (joint), 1.07
(split)

0.28

Notes:. The first column indicates which data was used in the MCMC evaluation (i.e. the full data vector ‘minus ...’). The next two columns quote the numbers
for the cross-validation approach as published in Efstathiou & Lemos (2018) and as recalculated with the likelihood pipeline used here (see Section 4.1 for
details). The next two columns list the results from an approach linking the cross-validation significance to the symmetric TPD-based one used here (see the
text for details). The last two columns report the significances from the TPD-based estimators as shown in Fig. 8. We quote here the numbers using only the
parts of the data containing, for example, z-bins 3 and 4 in the calculation of the significances (i.e. the green symbols in that figure).

Figure 9. The ξ+ (upper panel) and ξ− (lower panel) correlation functions for all tomographic bin combinations zi × zj containing (a) z-bin 3 and (b) z-bin
4 (red points with error bars). The grey bands show the ±1 σ (dark grey) and ±2 σ (light grey) ranges allowed by the fits to the rest of the data (not containing
z-bin 3 or 4). The blue arrows (displaced along the θ -axis for better visibility) are drawn from the mean value of the joint TPD to the split TPD and hence
provide a qualitative measure for the tension at that particular θ -scale according to our TPD-based tension estimator.

z3 × z4 combinations. These two redshift bin combinations carry
a high weight in fits to the full data vector, yet they appear to be
inconsistent at ∼2.8 σ with the rest of the data according to this
estimator (equation 75).

The situation appears to be more severe for the redshift bin
combinations containing z-bin 4 since those produce a mismatch
between expected model vector and the rest of the data at ∼3.6 σ .
Both figures agree qualitatively with the conclusions presented by
Efstathiou & Lemos (2018) and to link those visually to our TPD
approach, we further include in each panel (blue) arrows pointing
from the mean of the joint TPD to the mean of the split TPD. Hence,
the length of the arrows is a qualitative measure for the strength of
the tension at that particular θ -scale according to the TPD-based
tension estimator (the longer the arrow in ±y-direction the stronger
the tension).

To also provide a link from our definition of significance to the
Efstathiou & Lemos (2018) cross-validation approach, we interpret
the best-fitting model vector xmodel, obtained from fitting only the
yD-part in the MCMC as a TPD with zero width, i.e. a Dirac δ-
distribution. Then, we estimate a significance by comparing the

‘δ-TPD’ to the data distribution as outlined in Section 2.3 instead
of using the equations of the cross-validation approach. The results
for this are listed in the third column of Table 4. Although the
significances for the cases ‘minus z-bin 3’ and ‘minus z-bin 4’
decrease with respect to the repeated Efstathiou & Lemos (2018)
results (second column), they increase for the cases ‘minus ξ−’
and ‘minus ξ+’, thus reflecting the impact of the choice of the
significance criteria. In the fourth column of Table 4, we also
account for the model uncertainty by employing all model vectors
sampled in the MCMC, i.e. the full TPD with a finite width. As
expected, this decreases the significances further by ∼0.1 σ to
∼0.4 σ (from the third to fourth column).

We now drop the cross-validation approach entirely and switch to
our previous symmetric approach and use the joint and split TPDs
to estimate significances for the last two columns of Table 4. In
particular, the fifth column lists the significances for comparing
both joint and split TPDs individually to the data distribution
using only the xD part of the data in the significance estimates
(compare also to the green/orange circles/crosses in Fig. 8). With
respect to the previous four columns, all significances decrease
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even further. This is expected because the joint and split MCMC
runs are more constrained due to being coupled through the joint
covariance than an MCMC run performed only with the larger of
the two subsets. The last column in Table 4 reports the significances
for the second TPD-based estimator, comparing the differences of
the joint and split TPDs directly, again calculated only for the
xD part of the data (compare also to the green/orange symbols
in Fig. 8b). Those are all well below 1 σ and based on this
test we do not see any hints for tension in the KiDS-450 data
either.

As the results of Efstathiou & Lemos (2018) are in general more
comparable to the first TPD-based estimator, we suggest that their
cross-validation approach is sensitive to the overall goodness of fit
and does not directly indicate residual systematics in the data for
a given split. This is further supported by the results from Troxel
et al. (2018). As mentioned in Section 4.1, these authors propose
to update the KiDS-450 covariance matrix with an improved shot-
noise model, primarily incorporating previously neglected survey-
boundary effects. Effectively, their proposed modifications increase
the uncertainties in a scale-dependent manner, which relieves the
tensions reported by Efstathiou & Lemos (2018) for all their data
splits; very much in agreement with our TPD-based tension check.

6 C O N C L U S I O N S

We presented three tiers of Bayesian consistency checks for corre-
lated data sets. These tests are based on a symmetric (as opposed to a
cross-validation) approach in the sense of introducing independent
parameter sets for each mutually exclusive split of the fiducial data
set in the likelihood evaluations, while still linking them through
their joint covariance accounting for the correlations between the
(sub)data sets. In particular, these are used to calculate evidence
ratios, i.e. Bayes factors, as the first tier of consistency checks and
differences in inferred posterior parameters as the second tier. The
third tier takes place in the data domain and for that we introduce
the concept of TPDs, a special case of Bayesian PPDs.

We showcased the usage of the TPDs with analytically tractable
toy models and gave an intuitive definition of the significance
for tension based on the TPDs. Then, we proceeded to apply
the consistency checks to real cosmic shear data from the KiDS-
450 analysis by Hildebrandt et al. (2017) and re-assessed earlier
systematics tests and claims of internal tensions.

The major conclusions of our analysis are as follows:

(i) There exist multiple well-posed definitions of tension signif-
icance, which asses different aspects of the data and the model.
Here, we show that care needs to be taken in their interpretation
and comparison with other results, as some of these methods are
more sensitive to tensions within the different parts of the data (e.g.
Fig. 8b), while the others quantify tension between the data and the
model (e.g. Fig. 8a). As a consequence, an ‘xσ tension’ is not a
universal statement.

(ii) The Bayes factor is only a necessary requirement that a
comparison of data sets has to pass for consistency, but not a
sufficient one (see also Raveri & Hu 2018 who arrive at a similar
conclusion and Jenkins & Peacock 2011 for a general criticism of
the Bayes factor as a reliable decision making tool). This is due to
the prior volume which has a significant impact on the Bayes factor.
Wide prior ranges – particularly on parameters that are only weakly
constrained by the data – will lower the evidence in general. This
can produce artificial consistency between inconsistent data sets;
see for example fig. 10 in DES Collaboration (2017). Moreover,

in our approach, the duplication of the full parameter space in the
likelihood evaluation of the subsets lowers the evidence further. To
mitigate both effects, one should only duplicate the key parameters
that are constrained best by the data. As this complicates the
implementation quite significantly, we leave the pursuit of this
approach to future work.

(iii) The TPD-based consistency estimators are complementary
to the Bayes factor and posterior space analyses by providing
a means of finding the sources of tension in the data domain.
Moreover, we can both quantify tension in the data and the goodness
of fit of the model by comparing the TPDs derived from the joint
and duplicated parameter set to each other or each individually to
the data distribution (assumed to be multivariate Gaussian).

(iv) Applying the three tiers of consistency checks to the KiDS-
450 tomographic cosmic shear correlation functions does not yield
significant evidence for tension in any of the checks, contrary to
previous claims in the literature. We find evidence that the reported
significant tension was driven by not fully accounting for the strong
correlations in the data across splits, by a stricter definition of
tension significance, and by an approach that mixes overall model
fit quality with actual tension between the data splits. Indeed, an
improved data covariance model was recently reported to alleviate
the previously claimed tension to negligible levels (Troxel et al.
2018), in line with the results for our TPD-based tension estimate on
the original KiDS-450 data set. The impact of improved modelling,
including the covariance, on the internal consistency of KiDS weak-
lensing data is investigated in Hildebrandt et al. (2018).

The core calculations for all our consistency checks are based
on performing joint likelihood evaluations for mutually exclusive
subsets still linked through the joint covariance but separated in
terms of parameter sets and parameter-dependent calculations. For
that purpose, we modified the likelihood evaluation code MONTE

PYTHON and this modified version (and the likelihoods) are made
publicly available.7 As long as the likelihood analysis is performed
with an algorithm that readily produces the evidence (such as nested
sampling), the main computational cost of our consistency tests lies
in the doubling of the parameter space to be sampled. For the current
analysis choices, this is readily tackled by MULTINEST, while for
the increased nuisance parameter spaces expected for forthcoming
studies, it may be advisable to limit the duplication to cosmological
and/or astrophysical parameters.

Since our tests are by design sensitive to any inconsistencies in the
data, it may be challenging to integrate them into blinded analyses.
Great care has to be taken that the blinding procedure preserves
consistency within the data set, and particularly also across all
probes to be combined. Consistency checks of the kind presented
in this work are always conditional on the model that is fitted and as
such necessarily involve the computation of parameter posteriors,
which may be prohibited in strict implementations of blinding until
the very final stages of the analysis. We consider it acceptable to run
the consistency tests after unblinding; however, it is then paramount
to fix the choice of data splits beforehand.

Finally, we emphasize again that the consistency checks demon-
strated here on cosmic shear data are fully general and can be
applied to any (correlated) data set for which one can evaluate
its likelihood function and approximate it as multivariate normal.

7Modified ‘2cosmos’ MONTE PYTHON (including the correspond-
ing likelihood): https://github.com/fkoehlin/montepython 2cosmos publi
c Likelihood for KiDS-450 data to be used within standard MONTE PYTHON:
https://github.com/fkoehlin/kids450 cf likelihood public
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In that regard, the consistency checks can also prove to be very
useful for establishing the internal consistency of each probe used
in multiprobe analyses such as were carried out for KiDS (van Uitert
et al. 2018; Joudaki et al. 2018) and DES (DES Collaboration 2017)
already. In the near future, these surveys will be surpassed by even
bigger large-scale structure surveys such as those carried out by the
spaceborne Euclid (Laureijs et al. 2011) and WFIRST8 satellites or
the ground-based DESI (Levi et al. 2013) and LSST (Ivezic et al.
2008). We anticipate consistency tests like the ones presented in
this work to become an integral part of the analysis pipelines within
these surveys, and instrumental for the joint cosmological inference
across probes.
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APPENDI X A : SENSI TI VI TY ANALYSI S

Here, we present a sensitivity analysis for two key types of
systematics that we would like to be able to detect in a data vector
of a cosmic shear survey:
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(i) a shift in the mean of the source redshift distribution for any
of the redshift bins and

(ii) the effect of a systematic generating B modes.

These two particular systematics are motivated by the findings of
Hildebrandt et al. (2017), Joudaki et al. (2017), van Uitert et al.
(2018), and Efstathiou & Lemos (2018) in the KiDS-450 data; see
Section 5 for details.

To test the sensitivity of the estimators for these two systematics,
we first create a noise-free mock ξ± data vector based on an arbitrary
sampled set of parameters from KiDS-450 cosmologies derived with
our likelihood pipeline.9 In a second step, we perturb this fiducial
noise-free mock vector to include the effects of the two systematics
as follows: the shift in the source redshift distribution is created
through a mock data vector obtained from the true n(z) at a shifted
redshift z + dz:

ñ(z) = n(z + dz), (A1)

i.e. a shift by positive dz moves the distribution ñ(z) to lower
redshifts. For the B-mode systematic, we add a fraction fB of the
real B modes measured in the KiDS-450 data (cf. appendix D6 of
Hildebrandt et al. 2017) to the ξ+ part of the fiducial mock data
vector,

ξ+(θ ) = ξmocks
+ + 2 fB ξB(θ ), (A2)

which assumes that the systematic adds equally to the E- and B-
mode channels.10

A1 Sensitivity of the Bayes factor

Following Section 2.1, we perform the sensitivity analysis as
follows: we use the fiducial ξ± mock data vector and the covariance
matrix of KiDS-450 for the fiducial scales as the input data for the
joint MCMC run (i.e. the numerator of equation 3) corresponding
to the model H0 : ‘there exists one common set of parameters
that describe all data sets’ and sample the likelihood in the same
parameters and prior ranges as presented in Hildebrandt et al. (2017)
with the caveats discussed in Section 4.1.

For the split MCMC run (i.e. the denominator of equation 3)
which tests now the model H1 : ‘there exist two separate parameter
sets that each describe one subset of the data’, we split the fiducial
mock data vector according to the systematic we want to test.
For example, for the shift in the source redshift distribution we
split the mock data vector dmock

tot into one set dmock
a containing the

perturbed z-bin (and all its CCs) and the mutually exclusive set
dmock

b containing all other unperturbed z-bins (and their CCs), thus
dmock

tot
τ = {dmock

a
τ
, dmock

b
τ }. In the case of adding a fraction of B

modes, we split the data vector into its ξ+ and ξ− parts, as the
assumed systematic only contributes to ξ+.

We estimate the evidences for every joint and split MCMC run for
every increment (in dz or fB) of the systematic in question, i.e. the
joint and split runs are fitted to increasingly perturbed mock data
vectors. The perturbation is not taken into account in the model.

9
cdm h2 = 0.1014, 
b h2 = 0.0199, ln (1010As) = 3.3013, h = 0.7702, ns

= 1.2256, AIA = 1.7861, and Abary = 1.8681; yielding 
m = 0.2044, σ 8 =
0.9837, and S8 = 0.8119.
10The factor of 2 on the right-hand side of equation (A2) arises because
we assume the systematic contribution to the ellipticity measurement is
uncorrelated with the true sheared ellipticity εtrue, and that it adds linearly
such that εobs = εtrue + εsys. For a detailed derivation, we refer the reader
to appendix D6 in Hildebrandt et al. (2017).

That way we calculate the evidence ratio as a function of increasing
deviation from the unperturbed mock data vector.

The sensitivity of the Bayes factor to increasing systematic shifts
is presented in Fig. A1. In the left-hand panel (Fig. A1a), we shift
the source redshift distribution of z-bin 3. We note that the choice
between the four fiducial z-bins is not entirely arbitrary, since the
lower z-bins have lower S/N than the higher z-bins. As shown in
that panel the Bayes factor only starts to flag fairly large shifts of dz

> 0.15 as problematic (i.e. at least finding ‘substantial’ evidence on
Jeffreys’ scale for the alternative model H1). Further we note that
the slope in Fig. A1(a) is another sign that the Bayes factor is not
well suited for quantifying tension between the splits of the data
set, as all classifications on Jeffreys’ scale occur within a tiny span
of 	dz ∼ 0.02.

In the right-hand panel (Fig. A1b), we show the sensitivity of
the Bayes factor to adding a fraction of B modes, fB, to the fiducial
mock data vector mimicking the effect of a systematic adding equal
power in E and B modes. Only fractions of fB > 1.60 of measured
KiDS-450 B modes added to ξ+ are flagged as problematic by this
test.

The weak sensitivity of the Bayes factor test is not completely un-
expected: first, doubling the parameter space in every split MCMC
run is a conservative approach because Occam’s razor is integral
to the evidence calculation. Thus, a model with a significantly
increased parameter space is strongly disfavoured a priori (if it
does not provide a significantly better fit to the data). Secondly,
the prior ranges are also entering in the evidence calculation and
any (unphysically) wide prior range (as is the case in our example,
e.g. for the prior on 
cdm h2)11 will also decrease the evidence for
the model being tested, again severely disfavouring the split model
(unless it explains the data significantly better, see also Raveri &
Hu 2018).

A2 Sensitivity of duplicate parameter differences

In addition to the Bayes factor, we also look at how the two system-
atics affect the inferred posteriors directly. Following Section 2.2,
the comparison of the (key) parameters obtained for each of the two
mutually exclusive subsets of the noise-free data vector used in the
split MCMC run is straightforward to interpret: if the duplication
of the parameters is indeed unnecessary (i.e. there is no tension
in the data set) both subsets (which are still coupled through the
full covariance by construction) should produce close-to identical
posteriors.

In Fig. A2, we show the differences in 2D projections of key
parameters obtained from each subset of the split MCMC runs
for both systematic tests. The left-hand panel (Fig. A2a) shows
the results for a shifted source redshift distribution of z-bin 3 and
the right-hand panel (Fig. A2b), the same for the added fraction
of small-scale B modes measured in KiDS-450. In both panels,
the dashed contours indicate the differences of parameters for the
unperturbed noise-free mock data vector at 68 per cent and 95
per cent credibility. The solid contours show the differences of
parameters for the strongest amplitude of each systematic in the
test (i.e. dz3 = 0.30 for the shift in the source redshift distribution
of z-bin 3 and fB = 2.00 for the added small-scale B modes). The
dotted line connecting the centres of the contours in each subpanel

11The prior range, however, was intentionally chosen in Hildebrandt et al.
(2017) to be that wide in order to guarantee a full sampling of the 
m versus
σ 8 degeneracy plane.
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3146 F. Köhlinger et al.

Figure A1. The common logarithm of the evidence ratio R01 as a function of (a) an additional shift dz of the source redshift distribution for z-bin 3. (b) Adding
a fraction fB of small-scale B modes measured in KiDS-450 to ξ+ (see the text for details). Both systematics are added on top a mock data vector mimicking
the KiDS-450 correlation function vector. In both panels, we interpret the Bayes factor in terms of Jeffreys’ scale and the statements should be read as ‘barely
worth mentioning’, ‘substantial’, etc., evidence for H1 : ‘there exist two separate parameter sets that each describe one subset of the data’.

Figure A2. Duplicate parameter differences from the split MCMC run for 2D projections of key parameters for both sensitivity tests: (a) shifts of the source
redshift distribution of z-bin 3 by dz = 0 (dashed contours) and dz = 0.30 (solid contours). The split applied in the duplicate parameter MCMC run is thus ‘z-bin
3 (and all its CC) versus all other z-bin combinations’, (b) adding fractions of fB = 0 (dashed contours) and fB = 2.00 (solid contours) of measured small-scale
B modes in KiDS-450 to ξ+ (see the text for details). The split applied in the duplicate parameter MCMC run is thus ‘ξ+ versus ξ−’. The covariance between
the mutually exclusive subsets of the split MCMC run is fully taken into account for the parameter inference. The dotted black lines in both panels correspond
to the differences in the weighted means of the parameters of interest for all intermediate systematic shifts (cf. Fig. A1).

marks the position of the mean deviation as a function of increasing
strength of the systematic.

As expected, the contours for the unperturbed mock data vector
(dashed) are centred on zero, i.e. both splits of the data vector
produce very similar posteriors. In contrast, most of the solid
contours show displacements from zero revealing biases in the

various 2D parameter projections. Especially the comparison of
the dashed and solid contours in the 2D projections of S8 or 
m

versus AIA in Fig. A2(a) is particularly interesting: in addition
to introducing significant biases for all of the parameters, a part
of the effect of shifting z-bin 3 (and all its CCs) is absorbed
by the intrinsic alignment parameter AIA whose contours broaden

MNRAS 484, 3126–3153 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/3/3126/5289919 by U
niversity C

ollege London user on 06 February 2019



Consistency in correlated data sets 3147

Figure A3. (a) Means of the TPD for ξ+ correlation functions per angular scale, θ , and per redshift bin combination, zi × zj. The TPDs are based on the joint
and split cosmological and nuisance parameters (red and light/dark blue points) from MCMC runs fit to a noise-free mock data vector (black points) whose
source redshift distribution was shifted by dz = 0.30 in z-bin 3. The split in both panels corresponds to ‘z-bin 3 (and all its CCs)’ (light blue points) versus
‘all other redshift bin combinations’ (dark blue points). Error bars are derived from the 68 per cent credibility interval around the mean. The error bars for the
KiDS-450 data points are based on the diagonal of the fiducial covariance matrix. (b) The same as in (a), but for the ξ− estimator.

Figure A4. (a) Means of the TPD for the ξ+ estimator based on the joint and split cosmological and nuisance parameters (red and blue points) compared and
fit to a noise-free mock data vector (black points) to which a fraction of fB = 2.00 of measured B modes were added to ξ+. The split in both panels corresponds
to ‘ξ+’ (dark blue points) versus ‘ξ−’ (light blue points, not visible). Error bars on the means are derived from the 68 per cent credibility interval around the
mean. The error bars for the data are based on the diagonal of the covariance matrix. (b) The same as in (a) but for the tomographic ξ− correlation functions.

significantly for the strongest systematic shift. This implies that the
intrinsic alignment amplitude can absorb the effect of a bias in the
redshift source distributions (in part), and broad errors on AIA are a
typical signature for that taking place.

Quantifying the tension over the three-parameter subspace of
	S8, 	
m, and 	AIA as outlined in Section 2.2 yields no tension

for the unperturbed mock data vector for both systematics (i.e. the
dashed contours in Fig. A2). For the most extreme shift in the
sensitivity analysis of dz3 = 0.30 in the source redshift distribution
of z-bin 3, we find a significant tension of 5.92 σ . For the most
extreme case of the added B-mode systematic with fB = 2.00 the
tension is at 2.03 σ over the full three-parameter subspace.
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3148 F. Köhlinger et al.

Figure A5. Significance as derived with the two TPD-based consistency estimators for a noise-free mock data vector and as a function of two increasing
systematics at a time. (a) The significances are derived by comparing the mock data and TPD distributions as a function of the first key systematic, i.e. a shift
dz applied to the source redshift distribution of z-bin 3. Lines with circles only use the joint MCMC for the TPDs, whereas lines with crosses are based on the
split MCMC. The different line styles and colours indicate which selection was applied in the calculation of the significance: the dashed–dotted lines (grey)
use all fiducial scales (Table 1), the dashed lines (green) use only ‘split 1’ corresponding to z-bin 3 (and all its CCs) and the dotted lines (orange) ‘split 2’, i.e.
all other z-bin combinations. Note that all lines overlap along the zero line. Therefore, we also provide a zoom-in panel. (b) The same as in (a) but as a function
of the second key systematic, i.e. adding a fraction fB of the measured B modes in KiDS-450 to the ξ+ part of the mock data vector. Hence, the dashed lines
(green) correspond to the ξ+ mask and the dotted lines (orange) correspond to the ξ− mask. (c) The significances are now derived by comparing the differences
between the joint and the split TPDs to zero for the first key systematic as in (a). (d) The same as in (c) but for the second key systematic as in (b).

A3 Sensitivity of translated posterior distributions

We now turn towards comparisons in the data domain and thus to
the TPDs introduced in Section 2.3, characterizing their behaviour
for the two systematics. For the calculation of the TPDs, we
approximate the integration of equation (5) by using the converged
MCMCs from the evidence and Bayes factor calculations. For each
sample of cosmological and nuisance parameters in the chain, we
recreate the ξ± theory vector and the distribution of these represents
the TPD. To guide the reader’s intuition for the interpretation of
the TPDs and to also demonstrate their strength as a qualitative
diagnostics tool, we show in Figs A3(a) and (b) the means of the
ξ+ and ξ− estimators for the split and joint TPDs created from the

cosmology and nuisance parameters fit to a mock data vector whose
source redshift distribution was shifted by dz = 0.30 for z-bin 3.

For a first qualitative interpretation, we compare the joint and split
TPDs to the data vector and to each other: the split TPD follows the
mock data vector very closely in all subpanels of the triangle that
contain z-bin 3 (light blue points) and also yields a reasonable fit
in all other subpanels (dark blue points). This is expected since the
MCMC from which the split TPDs are derived have one parameter
set for the z-bin 3 (and all its CCs) part of the mock data vector
and one additional set for the remaining part of the vector. The
posteriors, however, are still linked through the full covariance of
the data set and this is also visible in the TPDs. For example, the
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Consistency in correlated data sets 3149

dark blue points are biased low with respect to the mock data vector
in the autocorrelation panel of z-bin 4. This is due to the shift of
z-bin 3 (to lower values) and the corresponding close match of the
cyan points propagating to z-bin 4 because of the strong correlations
between different redshift bin combinations (cf. Appendix C for the
impact of correlations in the data in an analytical test case). The
behaviour of the joint TPD, however, is quite different. Since it is
derived from the MCMC with only one parameter set for the full
mock data vector, the joint TPD shows large deviations with respect
to the shifted mock data vector in all subpanels containing z-bin 3
and a reasonable match to the more constraining mock data in all
other subpanels.

In Fig. A4, we show the corresponding plots for the added B-
mode systematic. In the left-hand panel (Fig. A4a), we demonstrate
the largest impact of this effect considered in our analysis by adding
a fraction fB = 2.00 of the small-scale B modes measured in KiDS-
450 to the ξ+ estimator (cf. equation A2), whereas the right-hand
panel shows the (unchanged) ξ− estimator for that case. In both
panels the mock data vector is shown in black with error bars
derived from the fiducial KiDS-450 covariance matrix. The means
of the TPD based on the joint MCMC are given as red points and the
means of the two TPDs derived from the split MCMC are shown
in light and dark blue. Due to splitting the data set into its ξ+
and ξ− parts, Fig. A4(a) contains only dark blue and consequently
Fig. A4(b) only light blue points.

The theoretical model is not able to capture the distortions due to
adding B modes as shown in Fig. A4(a) and the difference between
the joint and split TPDs is negligible in this panel. This is in contrast
to the behaviour of the TPDs for the z-bin shift systematic. There,
the split TPD tracing the shifted part of the mock data vector yields
a close match to the perturbed mock data, whereas the joint TPD
shows larger deviations in these panels due to that the overall
fit is dominated by the other unperturbed part of the mock data.
Hence, this indicates again that comparing the individual joint and
split TPDs to the data distribution is a quantification of the overall
goodness of fit, whereas a comparison of the joint to the split TPDs
is sensitive to the tension between the splits.

To make the previous discussion quantitative, we apply the TPD-
based consistency estimators defined in Section 2.3 to the two
systematics and show the results in the panels of Fig. A5. Both
upper and lower left panels refer to the results for an increasing
shift, dz3, in the source redshift distribution of z-bin 3, whereas the
upper and lower right panels depict the case for adding an increasing
fraction fB of B modes to the ξ+ estimator.

In the upper left and right panels, we compare the TPDs from
the joint and split MCMC runs individually to the (mock) data
distribution as described in Section 2.3, i.e. the reported signifi-
cances, σ , correspond to the highest σ -value for which ITPD ≤ 1
− cm as a function of increasing systematic shift. In these panels,
the circle and cross symbols denote whether the results are derived
from the joint or split MCMC runs, respectively. In addition to
that the different colours and line styles correspond to the selection
applied to the TPD vectors: dashed–dotted lines (grey) indicate that
the fiducial scales of the Hildebrandt et al. (2017) analysis (see also
Table 1) were applied to the selection of the TPD and mock data
vectors in the comparison. The dashed (green) and dotted (orange)
lines correspond to applying the selection of the splits, i.e. ‘split 1’
corresponds to z-bin 3 (and all its CCs) and ‘split 2’ to all other
z-bin correlations in Fig. A5(a). In Fig. A5(b), ‘split 1’ corresponds
to ξ+ and ‘split 2’ to ξ−.

Focusing at first on the right-hand panel, we observe that only
the ξ+ subset (green dashed lines) shows a rise in the significance

for an increasing fraction of added B modes, fB. In contrast to that
the significance for the ξ− subset remains constant around zero
(orange dotted lines). Moreover, there is (almost) no difference
between comparing the joint (circles) or split TPDs (crosses) to the
mock data. This is a consequence of that estimator measuring the
general goodness of fit of the model rather than the internal tension
in the data. This interpretation is further supported by comparing
TPDs and mock data for the fiducial data vector (grey dashed–dotted
lines) as this reproduces features almost identical in the significance
to the ξ+ subset (green dashed lines). We also note that the tension
significances are higher compared to those from the Bayes factor
for this systematic (see Fig. A1b).

Moving on to the z-bin shift systematic, we note the generally low
level of significance estimated in all cases. Zooming-in, however,
reveals some interesting and expected features such as an increase
in significance for an increasing shift of z-bin 3, whereas the
complementary subset containing ‘all other’ z-bin combinations
(orange dotted lines) remains constant around zero. Moreover, the
increase in significance is only a feature for the TPDs derived
from the joint MCMC (circles), whereas the significances derived
from the split TPDs (crosses) remain flat. For comparison, we
also show the significance for tension when applying the fidu-
cial scales selection to the mock data and TPDs (grey dashed–
dotted lines; see Table 1) which do not produce any trends
at all.

To summarize, the comparison between the data distribution and
the individual (split or joint) TPDs does not quantify tension but the
overall goodness of fit of the model. A likely scenario for this is that
there is a systematic effect present in the data, but the chosen split
of the data vector has failed to separate elements with significant
contamination by the systematic from those with no or only small
contributions.

Therefore, we now consider the differences between the joint
and split TPDs instead of comparing each TPD individually to the
(mock) data distribution: if there is no tension in the (mock) data,
we expect the difference of the TPDs to be consistent with zero. If
the split succeeds in isolating the data affected by a systematic, a
significant discrepancy between the joint and split TPDs is expected.
For this approach, we also propagate the correlations between
the joint and split TPDs into the uncertainty of their difference
distribution as both distributions are derived from the same data.
Another complication arising in the quantification of tension for this
approach is that we are predicting a typically ∼100D distribution
from a ∼10D posterior distribution, so the estimated covariance
of the former will necessarily be close to being fully correlated.
Therefore, we need to employ a PCA on the covariance matrix
keeping only the components that contain at least 95 per cent of the
variance for the inversion of the matrix. The inverse is required in the
fitting-to-zero procedure based on which we assign significances.
For the full details on this, we refer the reader to Appendix B.
We show the resulting significances in the two lower panels
of Fig. A5.

The level of the significance in the left-hand panel for the z-
bin shift systematic has increased to values in accordance with our
expectation from the Bayes factor analysis (cf. Fig. A1a). The z-
bin 3 (and all its CCs) subset produces now tension at the ∼3 σ

level for the largest shift of dz = 0.30. Moreover, the significances
in the corresponding panel for the added B-mode fractions, i.e.
Fig. A5(d), have decreased in accordance with our expectations
from the Bayes factor analysis (cf. Fig. A1b). However, the roles
of ξ+ and ξ− seem to be reversed in these panels: since only the
ξ+ part is directly modified by adding the B-mode fraction fB,
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3150 F. Köhlinger et al.

we would have naively expected to find higher significances when
comparing the joint to split TPDs for the ξ+ correlation functions
because the ξ− correlation functions can only be affected by the
B modes through the joint covariance of both splits. However, we
know from the previous TPD-based estimator that the theory vector
is in general not a good fit to the ξ+ correlation functions. Therefore,
the difference of the TPDs is much more sensitive to differences in
the ξ− correlation functions for which the theory vector provides a
better match to the mock data.

APPENDIX B: ERROR ESTIMATION AND
C O R R E L AT I O N PRO PAG AT I O N FO R T H E
T PD-BA SED TENSION ESTIMATOR

The second TPD-based consistency estimator introduced in Sec-
tion 2.3 compares the differences between the joint and split TPDs
to zero in order to assign a significance for consistency/tension.
In practice, the joint and split TPDs are derived in independent
calculations and we set the magnitude of the error bars of the
differences by adding the diagonals of the covariances directly
estimated from the joint and split TPDs (from on the order of 104

samples each). We know, however, that these errors are correlated
since each ‘independent’ MCMC run uses the same data. Therefore,
we need to propagate these correlations into the final uncertainties
of the TPD of the differences and the significances derived from
those. For that, we employ a Fisher matrix analysis and start with
writing out the total data vector as

dτ
tot = {dτ

a , dτ
b}, (B1)

where da and db correspond to the mutually exclusive splits with S
and N − S entries, respectively, for in total N entries in d tot. Based
on this data vector, we want to derive a parameter set

pτ
tot = { pτ

j , pτ
sa
, pτ

sb
}, (B2)

where the index j labels the parameter set from the joint MCMC
and the indices sa and sb label the ones derived from the subsets of
the split MCMC. With these definitions, we can now write down
the Fisher information matrix F:

(F)μν =
N∑
i,j

∂d tot,i

∂ ptot,μ
(C−1

data)ij
∂d tot,j

∂ ptot,ν
. (B3)

The derivatives take the form ∂d tot,i/∂ psmμ = ∂d tot,i/∂ pj,μ if m
= i and are zero otherwise. The matrix Cdata denotes the fiducial
(KiDS-450) data covariance. Once the Fisher information matrix
is calculated for each of the splits used in our analysis, we can
calculate its inverse and use it as an estimate of the parameter
covariance matrix. This includes now CCs across the parameter
sets in equation (B2).

We draw 104 samples from a multivariate Gaussian distribution
centred on the best-fitting parameters, ptot,bf , and with covariance
F−1, cut to within the prior ranges of the original MCMC runs.
These parameter samples are then translated into the corresponding
theoretical ξ+ and ξ− correlation functions and constitute now
correlated joint and split TPDs. We use these correlated samples to
estimate the correlation coefficients, rij, to propagate the correlations
induced by using the same data vector into the final covariance of
the difference uncertainties:

(Cfinal
diff )ij = rij

√
(Cdiff )ii (Cdiff )jj, (B4)

where we use the entries from the added covariances of the original
‘independent’ joint and split MCMC runs:

Cdiff = Cjoint + Csplit, (B5)

thereby avoiding the simplifications inherent to the Fisher matrix
approach for the variances.

The inverse of the matrix Cfinal
diff enters in the calculation of the χ2

when fitting the differences of the joint and split TPDs to zero on
which we base the estimate of the significances for the TPD-based
tension estimator (see Section 2.3). Because we are predicting a
typically ∼100D distribution from a ∼10D posterior distribution,
the estimated covariance matrix Cfinal

diff is necessarily close to being
fully correlated. Therefore, we employ a PCA to infer its inverse.
We keep only the principal components that contain at least 95
per cent of the total variance to construct the invertible PCA-based
covariance, which is then used in the fitting process instead of Cfinal

diff .

APPENDI X C : IMPAC T O F N OI SE AND
C O R R E L AT I O N S O N G O O D N E S S - O F - F I T
SI GNI FI CANCE

In Section 3, we introduced an intuitive criterion to quantify tension
between two distributions, such as a TPD and a data distribution.
We showed that the criterion only weakly depends on the relative
widths of the data and TPD distributions, so that we will fix it in the
following to the realistic value of t/s = 0.1.

In real data, two sources of noise have to be taken into con-
sideration. First, we usually only have a single realization of
the data vector for analysis, which is an unbiased (for Gaussian-
distributed data at least) but noisy estimate of the expected value
of the data. This leads to random shifts of the data away from the
TPD modes, which are indistinguishable from systematic shifts.
Consequently, the estimated tension incurs a statistical uncertainty,
which is illustrated in Fig. C1, for which we have drawn multiple

Figure C1. The impact of two sources of noise for the TPD-based tension
estimator for a 10D mock data vector: data realization noise and the finite
sample size from which the TPDs are constructed. The black dashed line
with error bars, for example, is derived for 103 random realizations of
the data vector and uses also only 103 samples for the TPDs. The blue
dotted–dashed line with error bars is comparable to the previous one but
shows the impact of increasing the number of TPD samples by a factor
of 10. Finally, the red dashed line with (tiny) error bars employs only one
particular data realization and 104 TPD samples. This set-up matches the
analytic expectation without these noise effects (black solid line) very well.
Note that we apply a small x offset between the black and blue dashed lines
to facilitate the comparison of error bar sizes.
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Consistency in correlated data sets 3151

Figure C2. (a) Significance as measured by the TPD tension criterion for a 10D toy model vector for which the first entry was shifted by the amount indicated
on the x-axis. Differently coloured lines indicate the chosen value for the correlation parameter r (see equation 52). (b) The same as in (a), but for shifting the
first six entries of the data vector at once by the indicated amounts.

realizations of dfid fromN (dfid; 0,C). At low significance, i.e. when
data distribution and TPD nearly perfectly overlap, the noise tends
to always increase the shifts and thus the tension estimate, which
skews the result away from the expectation towards larger values.
However, it mostly affects low tension at ∼2 σ and below, and leads
to a conservative conclusion on tension in the data.

The second source of noise is the finite sample size drawn from
the TPD. Especially for large tension when only the extreme tails of
the data distribution and TPD overlap, the estimate is driven by the
single TPD sample that is closest in Euclidean distance to the core
of the data distribution. If the TPD sample size is small, the tails
are less well covered by sample points, and therefore the tension
tends to be overestimated. This trend can also be seen in Fig. C1
for a change from 103 to 104 samples; however, the difference is
small, so that we consider 104 TPD samples for the real-data case as
sufficiently stable. Note that, modulo these noise effects, the TPD
measurement pipeline reproduces the analytic expectation well.

The correlation functions used in the KiDS-450 data analysis
feature strong CCs between angular bins, tomographic redshift
bin combinations, as well as between ξ+ and ξ−. This impedes
any attempt at spotting discrepancies with best-fitting models or
the TPDs ‘by eye’. To demonstrate the effect of correlations, we
introduce r > 0 into our toy model for both the data distribution and
TPD, with results shown in Fig. C2. If one data point is perturbed,
positive correlations increase the tension, as large values of r imply
that the data strongly prefer that data points lie on the same side
of the model (in our case, the model is zero everywhere). As more
and more data points are shifted (by equal amounts q in our toy
model), the largest values of r lead to a decrease in tension because
the systematic shift lines up the data points as preferred by the
correlation structure of the data covariance.

A P P E N D I X D : A D D I T I O NA L FI G U R E S FO R
THE K IDS-450 ANALYSIS

In Section 5.2, we presented the ξ+ correlation functions for all
unique tomographic bin combinations from KiDS-450 in combina-
tion with the means of the joint and split TPDs for all four splits
into subsets. This serves for visual comparison of data to TPDs and

also to guide the reader’s intuition for the concept of TPDs. For
completeness, we show here in Fig. D1, the corresponding figures
for the ξ− correlation functions.

We also investigate the significances derived with both TPD-
based estimators for all four splits of the KiDS-450 data per ξ+ (left-
hand panels) and ξ− (right-hand panels) correlation function for
all tomographic bin combinations. Those are presented in Figs D2
and D3, respectively. In both figures, we also present in the columns
labelled with ‘no B’ the results when subtracting off the measured
small-scale B modes in KiDS-450. The different colours correspond
to one particular tomographic bin combination zi × zj as indicated
in the legends of the left-hand panels. In Fig. D2, the open circles
correspond to the significance estimates derived from the joint
TPDs, whereas the crosses are derived from the split TPDs.

The features to highlight in Figs D2(a) and (b) are the constant
levels of significance of ∼2.5 σ and ∼1.8 σ for the z2 × z4 and
z1 × z2 tomographic bin combinations (almost) independent of
the particular split into subsets. This is a strong hint for that the
mismatch between data and theory in these two tomographic bins is
driving the bad goodness of fit reported already in Fig. 8(a). Parts of
that mismatch seem to be driven by a residual systematic between
small and large angular scales and the small-scale B modes in the
ξ+ correlation function for z2 × z4 as the significances derived
from the split TPD (crosses) are lower than the ones based on the
joint TPD. The significances shown in Figs D3(a) and (b) are the
highest in ξ+ (�1.5 σ ) for the split into large versus small angular
scales (i.e. ‘LS versus SS’). However, the z2 × z4 tomographic bin
combination does not stand out in this estimator and instead the
largest contribution comes from the z4 × z4 combination.

Subtracting off the small-scale B modes decreases the tension
in every tomographic bin combination to �0.5 σ , which is also
consistent with the results for the other three splits. As mentioned
in Section 5.2, it is also interesting to point out that the significances
of all splits decrease when subtracting off the small-scale B modes,
except for the split into ‘z-bin 4 (and all its CCs) versus all’ (other
z-bin combinations). The increase in significance is small for each
individual correlation function but occurring simultaneously for all.
Therefore, we interpret this behaviour as a sign for that removing
the small-scale B modes from the fiducial data vector pronounces a
residual systematic in the ‘z-bin 4 versus all’ split.
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Figure D1. KiDS-450 data vector (black points) and TPD means (red and blue points) for the ξ− estimator as a function of angular scale per redshift bin
combination. The TPDs are based on the joint (red points; the same in all panels) and split (dark and light blue points) cosmological and nuisance parameters
from MCMC runs fit to the data vector. The panels consider various mutually exclusive splits of the data vector (a) large versus small scales, (b) z-bin 3 (and
all its CCs) versus all other redshift correlations, (c) ξ+ versus ξ−, and (d) z-bin 4 (and all its CCs) versus all other redshift correlations. Error bars on the
means are derived from the 68 per cent credibility interval around the mean. The erro rbars for the data are based on the diagonal of the covariance matrix.

MNRAS 484, 3126–3153 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/3/3126/5289919 by U
niversity C

ollege London user on 06 February 2019



Consistency in correlated data sets 3153

Figure D2. Significances for the goodness of fit estimated by comparing the joint (open circles) and split TPDs (crosses) to the data distribution for the
following splits of the fiducial KiDS-450 data vector (from left to right): large versus small scales (‘LS versus SS’), z-bin 3 and all its CCs versus all other
z-bin combinations (‘z-bin 3 versus all’), z-bin 4 and all its CCs versus all other z-bin combinations (‘z-bin 4 versus all’), ‘ξ+ versus ξ−’. (a) Using the ξ+
estimator only and per tomographic bin combination i × j . (b) Using the ξ− estimator only and per tomographic bin combination i × j . The columns marked
with ‘no B’ use the KiDS-450 data vector from which the measured small-scale B modes were removed.

Figure D3. Significances for tension estimated by comparing the differences of the joint and split TPDs to zero for the following splits of the fiducial KiDS-450
data vector (from left to right): large versus small scales (‘LS versus SS’), z-bin 3 and all its CCs versus all other z-bin combinations (‘z-bin 3 versus all’),
z-bin 4 and all its CCs versus all other z-bin combinations (‘z-bin 4 versus all’), ‘ξ+ versus ξ−’. (a) Using the ξ+ estimator only and per tomographic bin
combination i × j . (b) Using the ξ− estimator only and per tomographic bin combination i × j . The columns marked with ‘no B’ use the KiDS-450 data
vector from which the measured small-scale B modes were removed.
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