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Abstract

The present work investigates the process of frosting formation on arched copper samples

with different surface temperatures, calculated the thickness of the frost layer by using the

scale method, and analyzed frost lodging, melting, and other phenomena that appeared dur-

ing the frost-formation process. The results showed that the frosting process on an arched

surface can be divided into ice-film formation, rapid growth of the frost layer, and stable

growth of the frost layer. Meanwhile, the phenomena of frost-branch breakage, lodging, and

melting were observed. The surface temperature had a large effect on the frost formation

and thickness of the frost layer, e.g., the formation time of the ice film on a surface at -5˚C

was the longest (~135 s), the frost layer formed on a surface at -20˚C was the thickest

(~660 μm). When microscopic observation of the frosting process was accompanied by cal-

culation of the frost-layer thickness, it could be seen that the appearance of the frost

branches was affected by the different thermal conductivities of the frost layers, undulating

surface of the ice film, and temperature difference between the layers. The changes in the

frost branches and the soft surface of the frost layer also affected the growth of the frost

layer. The findings of this study are expected to provide guidelines for optimization of con-

ventional defrosting methods.

1. Introduction

When the surface temperature of a material is lower than the dew point, heat transfer will

cause water vapor in a humid environment to condense on the exposed surface and form a

layer of frost. This natural phenomenon is widespread in multiple industries such as refrigera-

tion, air-conditioning, and aviation [1–5]. Frost accumulation on cold surfaces can lead to

socioeconomic loss and affect the operational efficiency and safety of equipment, and it may

even jeopardize human lives. For instance, frost accumulated on a heat pump leads to an

increase in the heat-transfer resistance and a reduction in the pump’s operational efficiency
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[6,7]. Meanwhile, frost often accumulates on evaporators of refrigeration systems, resulting in

increased energy consumption to attain the same refrigerant effect [7,8]. Moreover, the

accreted frost on the cabinet of a refrigerator not only affects the refrigerating efficiency, but

also deteriorates the quality of the food stored inside [9,10]. Of course, many industries and

our daily lives are affected by frosting, such as frost on the front glass of cars or spectacles,

which reduces visibility, and frost accumulating on aircraft wing surfaces, which compromises

the aerodynamic parameters.

Many efforts have been made to mitigate the damages caused by accumulated frost, and

many defrosting methods have been developed. These methods can be divided into three cate-

gories: mechanical ways to directly remove the accreted frost, such as manual de-frosting;

heat-based methods to melt the covered frost layer, such as blowing hot air or electric heating

of the surface; and chemical methods to delay frosting [10–12]. However, these conventional

defrosting methods have been shown to have many drawbacks during engineering applica-

tions. For example, mechanical de-frosting methods require high operating costs, the amount

of energy wasted by a heat-based defrosting method increases with the complexity of the sys-

tem, and chemical defrosting methods are detrimental to the environment, corrode structures,

and shorten the service lifetime of equipment [12–14]. Therefore, new anti-frosting and de-

frosting methods must be developed to alleviate the hazards of accreted frost.

Since the discovery of the hydrophobicity of lotus leaves in the last century [15], many

researchers have been inspired by the self-cleaning properties of the leaves and have commit-

ted to fabricating hydrophobic or super-hydrophobic surfaces to reduce frost formation.

Therefore, the use of super-hydrophobic surfaces is regarded as the most promising anti-icing

or anti-frosting method owing to their extraordinary water-repellency [12,16–18]. Sommers

and co-workers [19–21] fabricated samples with different wettabilities to alter their effect on

the frosting parameters, and the defrosting performance was tested on the surfaces with differ-

ent wettabilities and micro-patterns. However, even though hydrophobic and super-hydro-

phobic surfaces are expected to retard or prevent frost formation, many reports in the

literature reveal that after multiple freeze-thaw cycles under certain experimental conditions,

some superhydrophobic surfaces show poor performance such as low durability, weak pollu-

tion resistance, and low adhesion force between the coating and substrate [22–27]. Meanwhile,

the preparation of hydrophobic or super hydrophobic surfaces is complicated and costly, and

there have yet to be reports of their successful application in engineering.

To optimize the conventional anti-frosting and defrosting methods and mitigate their

drawbacks, many researcher adopted mathematical modeling to study and analyze the frosting

process on the surfaces of engineering components. For example, Hermes and co-workers

[28,29] proposed a semi-empirical model, combined with experimental data, for predicting

frost accretion on hydrophobic and hydrophilic surfaces and for predicting the conductivity of

the frost; Breque and Nemet [30] designed a model to predict frost growth on a heat

exchanger; Na and Webb [31] and Piucco et al. [32] adopted phase-change kinetics to analyze

the nucleation process, and they concluded that droplets should be formed more easily than

frost crystals on a cold surface. Meanwhile, published studies on the frosting process mostly

adopted the vertical method to observe the condensation process of water vapor on the smooth

surface of a substrate, and the horizontal method was used to observe the frost-formation pro-

cess. However, frost formation takes place earlier at the edge than at the center of a sample,

thus disturbing the observation of the frost-formation process at the center.

Therefore, the frost-formation process at different surface temperatures was observed dur-

ing the study reported here, especially the changes in frost branches during the formation pro-

cess. In addition, we investigated the effects of different surface temperatures on the frosting

process and the thickness of the frost layer, as well as the reasons for the changes in the frost

Frosting characteristics on arched copper specimen

PLOS ONE | https://doi.org/10.1371/journal.pone.0208721 December 11, 2018 2 / 13

https://doi.org/10.1371/journal.pone.0208721


branches. The results of this study could offer guidelines for developing new defrosting meth-

ods with fewer drawbacks, such as disturbing the frosting process or implementation of con-

ventional anti-frosting and defrosting methods, for determining the best defrosting duration,

and for reducing energy consumption and cost.

2. Materials and methods

2.1. Methods

As reported in the literature, frost formation is often examined on flat surfaces by using the

horizontal observation method. However, water vapor first condenses around the edge of the

sample, which is where frost crystals begin to appear, as shown in Fig 1A. As freezing progress

over time, the frost layer located on the edge region of the sample begins to increase, thus

affecting the freezing process on the central area of the cold surface (as viewed from the hori-

zontal direction). Hence, to avoid the defects generated by the horizontal observation method

and to establish a good observation field, an arch-shape sample, as shown in Fig 1B, was fabri-

cated for the tests. In addition, the corresponding observation device was set up for the arched

sample.

The frost-formation process is complex and influenced by many factors. Since the cold sur-

face temperature, ambient temperature, and ambient humidity are the main factors of frost

formation, our observation of the frosting process on the cold surface was carried out at a sta-

ble ambient temperature and under stable humidity conditions. The effect of surface tempera-

ture on the frosting characteristics was quantitatively analyzed.

2.2. Experimental apparatus

A microscopic set up was used to observe the frosting process on the surface of the arched

sample from the horizontal direction, as shown in Fig 2. The set up consisted of a refrigeration

system, thermoregulation system, cooling system, data acquisition system, and other compo-

nents. The refrigeration system included a semiconductor refrigeration unit to realize the goal

temperature of the sample, cooling stage, and sample holder. The thermoregulation system

consisted of a temperature controller, direct-current (DC) power supply, K-type thermocou-

ple, and it was used to synchronously control and measure the temperature during a test. The

accuracy of the thermocouple was ±1.0%. In order to decrease the effect of the heat generated

by the semiconductor refrigeration unit on a test, an experimental device equipped with a

cooling system was used to dissipate heat. This cooling system was composed of an air-cooled

condenser, water bath, and so on. The data acquisition system, which consisted of the micro-

scope with a charge-coupled device (CCD) camera and a temperature collector, could

Fig 1. Observation field of frost formation on different surfaces. (A) Smooth sample; (B) arched sample.

https://doi.org/10.1371/journal.pone.0208721.g001
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simultaneously collect a video of the frost-formation process and record the changes in surface

temperature of the sample and the temperature of the semiconductor refrigeration unit during

the experiment. The experimental data were collected every one second.

During the experiments, the entire experimental setup was placed in a climate chamber.

The climate chamber contained the temperature and humidity control systems, and the con-

trol accuracies were ± 0.2˚C and ±2.0% relative humidity (RH), respectively.

2.3. Materials

Copper is widely used as a key material in the refrigeration and aerospace industries. A copper

plate with a thickness of 0.05 mm and a diameter of 6 mm diameter was used as the arched

sample to observe the frosting process on a cold surface. The arched sample was adhered to the

arched sample holder with thermal-conductor adhesive tape (881, 3M, USA), and the holder

was mounted onto the semiconductor unit with thermally conductive grease. During the test,

the effect of the stress generated by the arched shape on the frosting process was ignored.

2.4. Experimental details

When the refrigeration unit was turned on, the surface temperature of the arched sample grad-

ually decreased from the ambient temperature to the target temperature, and the frosting pro-

cess was recorded during the temperature reduction process. The target temperature of the

sample surface, which was -5˚C, -10˚C, -15˚C, and -20˚C, was obtained by adjusting the volt-

age across the semiconductor refrigeration unit. The ambient temperature and relative humid-

ity of the experimental environment were kept constant at 18˚C and 70%, respectively. During

the test, the thickness of the frost layer on the cold surface was measured by the scaling

method, where the calibration image was first taken and then the layer thickness was measured

by counting the pixels in the experimental image against this scale. Each experiment was per-

formed three times. In order to reduce experimental errors and random errors, the residual

frost and water droplets on the sample surface were removed in an acetone ultrasonic bath for

3 min and in a deionized water ultrasonic bath for another 3 min. The samples were then

dried in an oven at 60˚C.

Fig 2. Schematic representation of the experimental setup. (1) PC; (2) charge-coupled device (CCD) camera; (3) microscope; (4) cooling

stage; (5) semiconductor refrigeration unit; (6) arched copper specimen; (7) sample holder; (8) air cooled condenser; (9) water bath; (10)

temperature controller; (11) DC power; (12) lighting system; (13) temperature recorder.

https://doi.org/10.1371/journal.pone.0208721.g002
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To ensure that the sample surface was fixed at the set temperature to reduce the effect of the

temperature difference between the sample surface and semiconductor refrigeration-unit sur-

face on the frost-layer growth, both surfaces were measured with the K-type thermocouple.

Hence, taking the target temperature of the cold surface at -10˚C as an example, the tempera-

tures of the respective surfaces of the sample and the semiconductor refrigeration unit were

collected, and the results are shown in Fig 3. Owing to the small difference (approx. 0.3˚C)

between the surface temperatures of the sample and refrigeration unit, it can be concluded

that the temperature difference had negligible effect on the frost-layer formation.

3. Results

3.1. Frost formation on arched sample

In order to optimize existing anti-frosting and defrosting methods and to develop new and

more effective defrosting methods, it is necessary to understand the formation process of frost

on a cold surface. Therefore, the frost-formation process on cold surfaces at different tempera-

tures was observed during the test. For example, Fig 4 shows the frost-formation process on

the cold surface of an arched sample at -15˚C; the frost-formation process is also illustrated in

a series of schematic diagrams. As apparent from this figure, the frosting process could be

divided into two distinct stages: the ice-film-formation period and the frost-layer-formation

period.

During the experiment, water vapor condensed on the cold arched-sample surface owing to

the large difference between the surface temperature and the ambient temperature, and a

water film gradually formed on the surface, as shown in Fig 4 (image 1). Many micro-droplets

also formed (image 2 of Fig 4) simultaneously. When the surface temperature continued to

decrease and remained above the freezing point, the micro-droplets began to converge into

large droplets (image 3 of Fig 4). As cooling continued, a phase change started to take place

and the droplets solidified into ice whose appearance was similar to that of a “peach” (image 4

of Fig 4). Next, the first frost branches appeared at the top of the peach shape (image 5 of Fig

4). Meanwhile, the frozen water film adhered to the arched sample through the built-up adhe-

sion strength.

Next, new frost spots and frost branches appeared on the surface of the ice film, and the sur-

face was gradually covered with frost branches (image 6 of Fig 4). During this period, frosting

Fig 3. Temperature curves of cold surfaces.

https://doi.org/10.1371/journal.pone.0208721.g003
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continued on the arched cold surface, which could be detected by observing the visibility on

the microscope screen. The original frost branches grew rapidly and became thicker columnar

frost branches. Many new and thin frost branches appeared on the main frost branches, and

these frost branch started to grow in three dimensions. Moreover, the newly formed frost layer

covered the old frost layer so that both the thickness and density of the frost layer gradually

increased (images 7 to 10 in Fig 4).

However, owing to the gravitational force on the frost branches, air flow, and other factors,

the bottom frost branches could not support the weight of the top of branches, and the bottom

frost branches began to break or lodge. In addition, some frost branches outside the frost layer

and the lodged frost branches began to melt, turning into ice crystals owing to the cold surface

temperature. A new frosting process thus began. Hence, the entire frosting sequence on the

arched sample could be separated into the appearance of first frost branches, rapid growth,

frost-layer thickening, frost lodging, frost-branch melting, and the frost-crystal reformation.

3.2. Changes in frost branches

Frost-branch breakage and lodging occurred during the observation test of the frosting pro-

cess. Therefore, in order to observe the changes in the frost branches during the frosting pro-

cess, the same device was used to observe in detail the changes in the frost branches on the

arched copper sample’s surface under the same experimental conditions. Some of the captured

images are shown in Fig 5.

The frost branches on the arched surface of the sample gradually grew, and the growth was

accompanied by lodging, breaking, melting, and re-formation of frost crystals, as shown in Fig

5. The frost branches changed from one-dimensional growth in the vertical direction to three-

Fig 4. Schematic diagram and microscopic images of frosting process on surface of arched copper sample.

https://doi.org/10.1371/journal.pone.0208721.g004
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dimensional growth in all directions. In the middle and top areas of the frost branches, addi-

tional new and tiny frost branches grew, and the complete cluster of frost branches became

more and more sturdy.

The frost branch A gradually grew, then fell down onto the old frost layer (images 2–5 in

Fig 5); the frost branch B melted after lodging (images 2 and 3 in Fig 5). The frost branch C

grew into the main frost branch and formed many new frost branches, and its appearance

changed from columnar to feathery. As shown in images 2–6 in Fig 5, frost branch C became

tilted as it continued to grow.

3.3. Frost layer thickness on arched surface

The thickness of the frost layer on a cold surface at different temperatures was measured by

setting the scale, and the measured results are shown in Fig 6. During the experiments, the

frost layer was defined to have reached its maximum thickness when it filled the entire viewing

screen of the microscopic observation device. As the surface temperature of the arched sample

decreased, the thickness of the frost layer on the surface gradually increased, and the time

required for the frost layer thickness to reach its maximum became shorter. For example, the

frost layer on the surface of the arched sample at -20˚C could reach a maximum thickness of

660 μm during the experiment, which is approximately 160 μm higher than the maximum

frost-layer thickness on the surface of the sample at -5˚C.

When the surface temperature of the sample (TS) was lower, the time of frost-branch

appearance on top of the ice was shorter, i.e.,4TS1A>4TS1B>4TS1C>4TS1D, and the

Fig 5. Changes of frost branches on the arched surface. (1) t = 0 s; (2) t = 74 s; (3) t = 84 s; (4) t = 94 s; (5) t = 97 s; (6) t = 104 s. The symbols A, B, C, and D mark the

frost branches that changed during the frosting process.

https://doi.org/10.1371/journal.pone.0208721.g005
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thickness of the water film on the sample surface during the period S1 was thinner, i.e.,

LS1A>LS1B>LS1C>LS1D, as shown in Fig 6. For instance, compared with the change in frost

layer thickness on the surface at -10˚C, the condensation period of water film was much longer

when the surface temperature was -5˚C, namely almost half of the total recording time, i.e.,

~135 s, and the water film reached the maximum thickness of 194 μm during four experiments

at different sample surface temperatures.

The formation rate of the frost layer rapidly increased with decreasing surface temperature.

The frost layer had the lowest growth rate on the sample surface at -5˚C during the four differ-

ent tests. Moreover, the growth rate of the frost-layer thickness gradually decreased as the cool-

ing continued. For example, the growth rate during the period S2 was lower than the rate

during the period S3.

According to the variations in thickness of the frost layer, the complete frost-formation pro-

cess on the arched copper sample surface could be summarized as the ice-film formation

period (S1), the rapid-growth stage of the frost layer (S2), and the stable-growth stage of the

frost layer (S3). In other words, the rapid-growth stage included the frost-branch appearance

and rapid growth, while the stable-growth stage consisted of frost-layer thickening, frost lodg-

ing, frost-branch melting, and frost-crystal reformation.

Fig 6. Changes in thickness of frost layer on the surface at different temperatures. (A) Surface temperature: -5˚C; (B) surface temperature: -10˚C; (C) surface

temperature: -15˚C; (D) surface temperature: -20˚C. S1, S2, and S3, represent the durations of different stages during the frosting process.

https://doi.org/10.1371/journal.pone.0208721.g006
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4. Discussion

As observed during the experiment, water vapor first condensed on the arched surface and

then solidified into ice. This means there was an ice layer before the frost formation, and the

ice adhesion strength gradually build-up. This was unfavorable to thorough clearance of the

frost layer during the actual defrosting process. Hence, if the hydrophobicity of the substrate

surface was improved by adopting surface modification technologies, the water content would

be decreased and the formation of ice would be delayed. Meanwhile, the hemispherical shape

of the frozen droplets provided more nucleating points for the growth of the frosting branches.

In order to better understand the growth characteristics of the frost layer, its growth rate on

the arched surface at different surface temperatures was calculated, as shown in Fig 7. Combin-

ing Figs 4 to 7, it can be seen that during the rapid-growth stage, frost branches developed on

the ice film mainly in a columnar shape and grew rapidly along the vertical direction of the

sample surface (as shown in the Fig 4, and again by the S2 interval in Fig 7). The thickness of

the frost layer increased rapidly, as shown by the S2 interval in Fig 6. However, the rapid

growth of frost branches resulted in large gaps (Fig 5) between adjacent frost branches, result-

ing in a rapid increase in the thickness of the frost layer. The frost layer produced during the

rapid growth of the frost branches was loose and had low density. Moreover, the loose frost

layer and the undulating surface of the ice film would increase the probability of lodging or

breakage of frost branches, as well as melting and re-frosting in the next period. If there was a

way to disturb the rapid growth of the frost layer, the formation of the frost layer could be

prevented.

According to the frost-formation process, the ice film on the sample surface, the multiple

frost layers, and the frost branches constitute the frost layer covering the surface, thus yielding

a frost layer with different properties such as density and thermal conductivity, as shown in

Fig 8. During the stable growth of the frosting process, the newly formed frost layer covered

the original frost layer, and the frost layer became denser, which could be directly seen as

decreasing visibility of the frost layer on the observation device. Although the frost layer was

Fig 7. Growth rate of frost layer on the arched surface. S1, S2, and S3, represent the durations of different stages during

the frosting process.

https://doi.org/10.1371/journal.pone.0208721.g007
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dense during the stable-growth period, the surface of the frost layer was still soft compared to

the growth of the rigid ice-film surface, which could not provide more space for the growth of

the frost layer.

Owing to the different thermal conductivities within the frost layer, there was a temperature

difference between the top of the frost branches and the substrate surface, but the temperature

at the top of the frost branches was still below the freezing point of water. Meanwhile, the top

of the frost branches on the surface was surrounded by air at 18˚C, and the large temperature

difference between the top of the frost branches and the environment caused the top of the

frost branches to melt. This increased the load of the frost branches and the possibility of lodg-

ing. Therefore, the different thermal conductivities decreased the growth rate of the frost layer.

Meanwhile, as the frost branches continuously grew in three dimensions, water vapor

adhered to the frost branches and promoted the formation of more new frost branches. Owing

to the frost branches adhering to the undulating surface of the ice film, the increasing weight

of the upper frost branches could cause the entire cluster of frost branches to tilt, lodge and

break, as shown in Fig 5. The lodged and broken frost branches were buried in the existing

frost layer and became the nucleating sites for many tiny frost branches. The phenomenon of

frost-branch breaking, lodging and melting reduced the growth rate of the frost layer, and the

thickness of the frost layer slowly increased, as shown in Figs 6 and 7. However, the density of

the frost layer increased and the frost layer became tighter during this period, and conven-

tional defrosting methods could be used to remove the accumulated frost.

5. Conclusion

In order to observe the true frosting process on material’s surface and mitigate the edge effect

on observation of the frosting process, a specially built apparatus was used to observe the frost-

ing process on the arched surface of a copper sample at different surface temperatures of -5˚C,

-10˚C, -15˚C, and -20˚C. The characteristics of the frost branches and frost layer during the

frosting process were analyzed.

The experiments showed that the frosting process on the arched surface could be separated

into the ice-film-formation period, rapid-growth period of the frost layer, and stable-growth

period of the frost layer. In addition, the surface temperature significantly affected the frosting

characteristics, such as the thickness and growth rate of the frost layer, during the frosting pro-

cess. When the surface temperature was lower, the longer the water vapor froze into the ice

film, the faster the growth of the frost layer, and the thicker the frost layer formed on the mate-

rial surface during the frosting process. Compared to the other three tests with different

Fig 8. Structure and thermal conductivity model of the frost layer. (A) Composition of frost layer; (B) thermal conductivity model of frost

layer.

https://doi.org/10.1371/journal.pone.0208721.g008
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surface temperatures, an ice film formed on the sample surface at -20˚C after 42 s, and it

reached a maximum growth rate of 4.14 μm/s, yielding a frost layer with the highest thickness

of about 660 μm.

Furthermore, we considered that the frost layer on the material surface consisted of many

newly formed frost layers and ice film, which all had different properties at different heights.

Hence, the frost branches were prone to breaking, lodging, and melting owing to the undulat-

ing surface of ice film, the frost layer with different thermal conductivities, and the top-heavy

feathery frost branches. The changes in the frost branches and the soft surface of the frost layer

could not provide more nucleating points for the frost layer growth or support the growth

space, thus limiting or affecting the growth and formation of the frost layer.

In conclusion, the results of the experiments demonstrate the detailed frosting process on

the arched surface. Based on the observed phenomena during the experiment, conventional

defrosting methods could be used to disturb the frosting process and attain surface frost

removal. Some of methods include preventing or delaying the formation of ice film, slowing

the growth rate of the frost layer, making the frost branches lodge, break, and melt.
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