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Abstract

Rationale: There is poor understanding about protective
immunity and the pathogenesis of cavitation in patients with
tuberculosis.

Objectives: To map pathophysiological pathways at anatomically
distinct positions within the human tuberculosis cavity.

Methods: Biopsies were obtained from eight predetermined
locations within lung cavities of patients with multidrug-resistant
tuberculosis undergoing therapeutic surgical resection (n = 14)
and healthy lung tissue from control subjects without tuberculosis
(n = 10). RNA sequencing, immunohistochemistry, and bacterial
load determination were performed at each cavity position.
Differentially expressed genes were normalized to control subjects
without tuberculosis, and ontologicallymapped to identify a spatially
compartmentalized pathophysiological map of the cavity. In silico
perturbation using a novel distance-dependent dynamical sink
model was used to investigate interactions between immune
networks and bacterial burden, and to integrate these identified
pathways.

MeasurementsandMainResults:Themedian (range) lung cavity
volume on positron emission tomography/computed tomography
scans was 50 cm3 (15–389 cm3). RNA sequence reads (31% splice
variants) mapped to 19,049 annotated human genes. Multiple
proinflammatory pathways were upregulated in the cavity wall,
whereas a downregulation “sink” in the central caseum–fluid
interface characterized 53% of pathways including neuroendocrine
signaling, calcium signaling, triggering receptor expressed on
myeloid cells-1, reactive oxygen and nitrogen species production,
retinoic acid–mediated apoptosis, and RIG-I-like receptor signaling.
Themathematicalmodel demonstrated that neuroendocrine, protein
kinase C-u, and triggering receptor expressed on myeloid cells-1
pathways, andmacrophage and neutrophil numbers, had the highest
correlationwith bacterial burden (r. 0.6), whereas T-helper effector
systems did not.

Conclusions: These data provide novel insights into host immunity
toMycobacterium tuberculosis–related cavitation. The pathways
defined may serve as useful targets for the design of host-directed
therapies, and transmission prevention interventions.
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Tuberculosis (TB), first described in the
Rigveda in India 3,500 years ago, has
killed more than 1 billion people over the
past two centuries, and remains the
commonest infectious cause of death in many
countries (1). Moreover, the advent of
multidrug-resistant (MDR) TB threatens to
wipe out recent gains in TB control (2, 3). An
effective vaccine and/or immunotherapeutic
intervention combined with interruption of
transmission offer the only tangible hope of
eliminating the disease. However, several
recent TB vaccine candidates have failed to
show clinical efficacy, or at best were only
partially effective, despite promising data

from animal studies (4–7). One reason
may be lack of detailed knowledge about
protective host immunity and the
pathophysiology of cavitation. Previous work
on granulomas emphasized the role of
T-helper cell type 1 (Th1) immunity, CD4
T cells, IFN-g signaling, IL-12, tumor
necrosis factor (TNF)-a, eicosanoid signaling,
and lipid dysregulation (8–12). One recent
proteomics study found that the granuloma
center was dominated by proinflammatory
responses, whereas the area outside had an
antiinflammatory signature (12). It is unclear
if the same pathways drive cavitation or
Mycobacterium tuberculosis (Mtb) replication
in TB cavities. Cavitation underpins
liquefactive necrosis, bacterial aerosolization,
and hence disease transmission.

Although often arising from it,
the pulmonary cavity is not the same as the
granuloma. Over the last four centuries, the
histology of TB cavities has been described
based on autopsy work from Europe and the
United States (13–15). Recent histological
MDR-TB case reports from South Africa
suggest a picture of failed immunity at the
luminal edge of the TB lung cavity (16).
The cause is unclear, but likely Mtb itself
could have an immunosuppressive role via
either release of mediators, as we have
explored elsewhere, or by directly killing
immune cells (17). But why, how, and
exactly where does host immunity fail to
control Mtb growth in this lesion? To
answer these questions, we conducted a
case-control clinical study where we
performed RNA sequencing (RNA-Seq) on
biopsies from anatomically distinct points
within lung cavities of patients with MDR-
TB and compared them with healthy lung
tissue from those without TB (control
subjects). Data were analyzed using standard
modular and unsupervised approaches and
subsequently modeled using our recently
derived dynamical sink model (18).

Methods

Patient Recruitment and Dissection
Procedures
Between 2012 and 2013, we recruited
patients referred to Groote Schuur hospital
for therapeutic surgical resection after failed
MDR-TB chemotherapy (18). Control
subjects were patients undergoing lung
surgery for non-TB reasons, with no clinical
or radiological features of TB. After surgery,
the resected lung was immediately placed on
ice, and transported to the BSL3 laboratory
(z200 m from the operating room).

Surgical dissection procedures were
performed to avoid cross-contamination
between biopsy positions, as previously
described (18). Multiple 2-mm biopsies
were taken at seven anatomically distinct
sites within the cavity: 1) normal-appearing
lung tissue 2–5 cm from the fibrotic cavity
edge, 2) perifibrotic cavity edge, 3) center of
the cavity wall, 4) luminal edge of the cavity
wall, 5) air–caseum interface at cavity
lumen center, 6) airways greater than or
equal to 2.5 cm distal, and 7) proximal to
cavity mouth; and 8) sputum. In control
subjects, similarly sized biopsies were
obtained from a single lung position.
Each biopsy, including sputum, was 1)
immediately placed in RNAlater for
RNA-seq, 2) cultured for Mtb using
mycobacterial growth indicator tube
system, and 3) fixed in formalin for
histopathology (hematoxylin and eosin
staining) and immunohistochemistry.

RNA extraction, sequencing and
quality control were performed accordingly.
Mycobacterial growth indicator tubes
were monitored for time-to-positivity,
and expressed as Mtb cfu/g of tissue.
Immunohistochemistry was performed to
corroborate RNA-Seq analysis findings.
Full methodology is provided in the online
supplement.
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At a Glance Commentary

Scientific Knowledge on the
Subject: Host immunity to
Mycobacterium tuberculosis and the
pathogenesis of cavitation, the key
propagation mechanism of
tuberculosis (TB), are poorly
understood. There are hardly any
data about the TB cavity because
most studies have focused on the
granuloma.

What This Study Adds to the
Field: To our knowledge, this is the
first study to interrogate the host
transcriptome and characterize
pathophysiological mechanisms at
anatomically distinct locations within
TB cavities. TB cavities were
characterized by a centralized “sink”
with profound downregulation of
numerous immune pathways toward
the cavity center, including a newly
described neuroendocrine pathway,
which correlated with poor bacterial
containment.
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Figure 1. Cell type and effector responses distributions in and around cavity. The graphs show the mean6 SEM of per kilobase per million mapped reads
(RPKM) of all genes in the module at each position; “Normal” is normal-appearing lung in tuberculosis (TB), whereas “Non-TB lung” refers to the control
subjects. Cavity wall positions were combined. The Kruskal-Wallis test P value (corrected for multiple comparisons) in each graph is shown for the
comparison of RPKM values in control subjects without TB versus RPKM values in the different cavity positions. For RPKM comparison between control
subjects without TB and normal-appearing lung tissue in patients with multidrug-resistant TB, P value was .0.2 for all comparisons. The RPKM values
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Dual Positron Emission
Tomography/Computed Tomography
Scanning and Reading
Positron emission tomography/computed
tomography (PET-CT) imaging was
performed in accordance with the globally
accepted fluorodeoxyglucose PET/CT
EANM procedure guidelines for tumor
imaging (19). Measurements of cavity
volume are detailed in the online
supplement.

Statistical and Bioinformatics
Analyses
Differentially expressed genes (DEGs),
compared with non-TB control tissue,
were defined as greater than log2 change
and a Benjamini-Hochberg adjusted P
less than 0.01. Modular analyses were
performed using prevalidated and
annotation-specific modules, as
previously described (20–24). Reads were
expressed per kilobase per million
mapped reads (RPKM) for constituent
genes of each module. Established
immune pathways associated with DEGs
were identified using ingenuity pathway
analysis (IPA). We interrogated the
whole transcriptome in an agnostic and
unbiased fashion by identifying the most
extensively changed physiological
processes in the TB cavity.

Mathematical Model
RNA-Seq data were modeled to explore
the relationship with bacterial burden
and to integrate immune pathway
interactions. Given that PET-CT scans
and histological and RNA-Seq analyses
revealed pathophysiological patterns
consistent with our recently derived
dynamical “sink” model (18), we
modified standard linear models to
incorporate these dynamical “sinks.” In a
dynamical system, a point or state (e.g.,
cavity position) evolves over time
according to specified rules (25). We
modified the state to evolve over distance
in the cavity rather than time. This
model was then used to map the
interaction of different pathways along
the cavity positions, as detailed in the
online supplement.

Results

Clinical and Radiological
Characteristics of Patients and
Control Subjects
Clinical features describing the 14 patients
with MDR-TB (11 MDR plus resistance to
other drugs) are shown in Table E1 in the
online supplement. The median (range) age
was 33 (14–50) years. Two patients were
HIV coinfected, but were on effective
antiretroviral therapy. Typical preoperative
PET-CT scans showed lesions consisting of
consolidation with central cavitation and a
median (range) lung cavity volume of 50
cm3 (15–389 cm3) (see Figure E1 and Table
E1). Among the 10 control patients without
TB, the median age was 30 (23–74) years.
One control subject had HIV-infection and
was on antiretroviral therapy.

Pathological and Microbiological
Characteristics
Gross pathological examination of resected
TB-infected lungs revealed a median of two
(one to three) cavities per resected
specimen, with a diameter of 4 cm (2–8 cm)
per cavity. Hematoxylin and eosin stains
revealed site-specific histology (see Figure
E2 and Table E1). The cavity wall was
characterized by fibrosis and chronic
inflammation (206 7.7% and 356 11% of
the biopsied area, respectively; P = 0.014).
Cell populations in the cavity wall included
14% (4.2–40%) neutrophils and 20%
(8.9–40%) histiocytes (P = 0.34). Mtb could
be visualized at all cavity positions,
including normal-appearing tissue, both
extracellularly and within neutrophils or
macrophages. Lung tissue in control
patients demonstrated normal histology.
Mtb was culturable at all cavity positions,
including normal-appearing lung tissue.
However, the highest bacterial burden
(i.e., lowest time-to-positivity) was at the
air–caseum interface. No Mtb growth
occurred in lung tissue from control
patients (see Figure E3).

RNA Sequencing Results and
Principal Component Analyses
Sixty-nine samples passed the stringent
RNA-Seq quality criteria detailed in the

online supplement. Reads were aligned to
human genome, and were mapped to the
19,049 genes; 31.07% were splice variants
(see Figure E4). All RNA-Seq reads were
examined in toto using principal
component analysis (see Figure E5).
Transcripts clustered into four main
groups: control subjects (i.e., no TB),
normal-appearing tissue, the combination
of three cavity wall positions, and a distinct
subcluster of cavity center samples within
the normal-appearing tissue cluster.
Therefore, we assigned all samples to one of
six groups for further analyses: 1) control
subjects (non-TB), 2) normal-appearing
tissue, 3) cavity wall, 4) air–caseum
interface, 5) sputum, and 6) airways.

Modular Analyses to Map Cell Types
and Effectors to Cavity Positions
We used our validated modular analysis
approach on the RNA-seq data to map
modules to cavity positions (20–24). Figure
E6 shows multiple upregulated and
downregulated genes within each module,
indicating that modules were not
influenced by a single highly expressed
gene. Figure 1 shows modules for six cell
types. In most cases cells were most
abundant in the cavity wall compared with
control subjects, with the notable exception
the module for natural killer cells.
Conversely, the air–caseum interface at
cavity center had the lowest cellular
abundance. A similar pattern was observed
in modules of effector functions, with the
exception of Th2 and LPS responses
(Figure 1). Overall, the modular analysis
indicates that each cavity position had a
remarkably consistent gene expression
profile between different patients, with
small error bars between patients, and was
independent of cavity size and disease
extent.

Unsupervised Analyses Using the
Highest Differentially Expressed
Pathways
DEGs were mapped to different
physiological pathways using IPA. To avoid
bias when choosing the important pathways,
we defined “important” as the highest
differentially expressed pathways (up or

Figure 1. (Continued). were higher in macroscopically normal-appearing tissue in patients with multidrug-resistant TB compared with non-TB control lung,
but were highest in the cavity wall, with a precipitous decline below non-TB lung in the cavity center. However, expression of Th2 cytokine–inducible genes
and LPS response were not higher in patients with multidrug-resistant TB than in control subjects. The highest RPKM values relative to control subjects
were with the type II IFN (IFN-g)–inducible genes in the cavity wall. Also notable are the increases in B cells in the cavity wall and airways. Mtb =
Mycobacterium tuberculosis; NK = natural killer; Th2 = T-helper cell type 2; TNF = tumor necrosis factor.
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down), regardless of whether they had
known immunological function or not. IPA
of the top 500 DEGs identified 60
physiological pathways that are shown in
Figure 2. Different expressed pathways were
confined to specific spatial locations within
each cavity. Importantly, IPA results were
consistent with our modular analyses
findings in Figure 1, indicating that we

reached the same conclusions using two
different analytic approaches. These data in
Figure 2 illustrate that the topology-
constrained organization of interlinked
pathways remained consistent regardless of
cavity size and volume (which showed
significant variation between patients).
Thus, the TB cavity is mathematically an
“attractor,” defined as the condition toward

which trajectories of systems converge
despite different starting conditions, in
nonlinear dynamical systems.

Complex Pathway Expression Is
Constrained by Cavity Topology
In Figure 2, normal-appearing lung tissue
had the least number of significantly
regulated pathways of any spatial position
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Figure 2. A cavity map of the 60 highest differentially expressed pathways. The fold change scale for the pathways is shown using a log2 scale (e.g., 6 on
this scale is 64-fold change). The fold change is relative to nontuberculosis lung from control subjects, not normal-appearing tissue from subjects with
tuberculosis. There is a functional “hole” in the cavity center, as can be seen by amount of pathways with blue color. However, not all pathways were
downregulated in the cavity center; it can be seen that up to a quarter were actually upregulated. In contradistinction, the cavity wall had the most
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among the top 60 expressed pathways, including, for example, colorectal cancer metastasis signaling via WNT signaling, and p38 MAPK signaling,
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(14/60 [23%]). Of note, serine/threonine-
specific protein kinase C-u (PKCu) signaling
was observed to be upregulated in normal-
appearing lung tissue, suggesting ongoing
antigen presentation at the immunological
synapse and thus T-cell proliferation
(Figure 3A). However, peroxisome
proliferator–activated receptor-a signaling,
and the related liver X receptor and retinoid
acid receptor signaling, were the most
downregulated, as shown in Figure 3B.

In contrast, 47/60 (78%) of pathways in
the cavity wall demonstrated increased
expression in Figure 2. Only peroxisome
proliferator–activated receptor-a and liver
X receptor and retinoid acid receptor,
vitamin C antioxidant activation, and
endothelial nitric oxide synthase signaling
were downregulated in the cavity wall. The
cavity wall had the highest expression of all
pathways, including nitric oxide production
and reactive oxygen species by macrophages,
IL-1, IL-6, IFN-g, and nuclear factor-kB
(NF-kB) activation. Of note, triggering
receptor expressed on myeloid cells-1
(TREM-1) signaling was one of the most
highly expressed pathways. In addition, 15/60
(25%) highly expressed pathways changed
in parallel with TREM-1 across cavity
positions. Many of these, such as PI3K/AKT,
ERK/MAPK, p38 MAPK, IL-1, IL-6,
chemokine, NF-kB, IFN-g, TNFR1, TNFR2,
IL-8, IL-10, monocyte chemotactic protein 1,
and cell adhesion via CD54, are downstream
to, and are upregulated by, TREM-1 signaling
(25–28). Thus, TREM-1 and the 15 related
signaling pathways formed dynamic
networks of interactions that changed in
parallel at this cavity position, and are by
definition a complex system.

The air–caseum interface (cavity
center) exhibited the highest number
(32/60 [53%]) of downregulated pathways,
including RIG-I–like receptors, retinoic
acid-mediated apoptosis, and hitherto
described TREM-1–linked pathways. The
most distinct feature of Figure 2 was
that 5/32 (16%) of the downregulated
pathways at the air–caseum interface were
neuroendocrine-related (dopamine-,
metabotropic glutamate receptor (mGluR)-,
mGluR-dependent synaptic long-term
depression formation; neuronal nitric oxide
synthase, and prolactin-signaling), several
of which are shown in Figure 4. Altogether
there were more than 30 downregulated
DEGs mapping to this neuroendocrine
system, which were the most intensively
downregulated genes in the entire
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transcriptome. Closely related was the
decrease in Ca21 signaling, including of
receptor-operated Ca21 channels that are
activated by binding of neurotransmitters
(see Figure E7). We propose these pathways
as constituting the neuroendocrine system.
In contrast, complement, which has been
linked to control of Mtb burden, was one of
the few pathways upregulated at the
air–caseum interface (29, 30).

In the airways, 18/60 (30%) pathways
were extensively downregulated, whereas
36/60 (60%) were upregulated (Figure 2).
Thus, the airways had mixed picture that only
partially reflected the rest of the TB cavity.

Ontological Integration of Multiple
Networks and Mtb Burden by Spatial
Location
Given the multiplicity (60) of pathways, we
sought to limit complexity and to organize
the information using mathematical
modeling. Our nonlinear dynamical sink
model mapped along the TB cavity space
resulted in an excellent fit for the multiple
pathways and the associated Mtb burden as
shown in Figure 5 and Figure E8, whereas
standard linear models did not (see Figures
E9 and E10) (see online supplement for a
detailed explanation) (18, 25). The model
parameter estimates for the dynamical sink
model are shown in Table E2. Thus, the
multiple pathways formed complex systems
that had nonlinear and spatially constrained
interactions, which fulfills the definition of
complex adaptive systems (31–33).

Next, we calculated partial rank
correlation coefficients between both
observed and Latin hypercube
sampling–based RPKM values of the
different effector modules, with results
shown in Figure E11. Latin hypercube
sampling magnified the resolution of the
observed RPKM values and allowed us to
examine dynamical sink model sensitivity.
Figures E11A and E11B shows strong
correlation (i.e., r. 0.6 or ,20.6)
between macrophage and neutrophil counts
and both complement stimulation and
expansion, but negative correlation with
macrophage and neutrophil infection and
bursting at different cavity positions.
Infected macrophages and neutrophils

burst after intracellular bacteria replication
and are assumed to release more than 25
Mtb per cell (termed “burst size”) into the
extracellular environment (hence increasing
extracellular bacterial burden and infecting
more cells), as part of necrosis, based on
prior studies (34–36). The assumption of
necrosis as opposed to apoptosis was based
on the finding that apoptosis signaling was
not upregulated in cavities; indeed, retinoic
acid–mediated apoptosis was significantly
downregulated. Extracellular Mtb burden
varied by cavity position (see Figure E3 and
Table E1), which differentially influenced
immune cell abundance by cavity position.
The pattern of cell abundance could be
explained either via influx of macrophages
and neutrophils to the respective locations,
or increased expression, or differential
location dependent immune cell death rates
(which were all captured in the model): the
results of the modeling suggest that
depletion of different immune cells, such as
macrophages and neutrophils, and other
cell types in the “sink” is caused by Mtb
killing of the immune cells.

Neuroendocrine and PKCu
Expression Correlation with Mtb
Burden
The mathematical model allowed us to
explore the correlation betweenMtb burden
and different physiological pathways, based
on in silico simulations plus observed data
(see Figure E12). There was poor
correlation between bacterial burden and
either Th1 or Th2 system expression,
whereas TREM-1 expression showed good
correlation only in the cavity wall (see
Figures E12A–E12F). Uniquely, PKCu
demonstrated negative correlation with
Mtb burden that was highest in the cavity
wall (see Figure E12G). Neuroendocrine
expression had high negative correlation
with bacterial burden: bacterial burden
increased with increased neuroendocrine
expression (see Figure E12H).

Model Simulation-Perturbation
Experiments
What happens to Mtb burden and each
physiological module at each cavity position
when a particular pathway is either

stimulated or inhibited to a specified degree
in silico? An example is shown for the
neuroendocrine system in Figure E13. The
simulations predict profound neuroendocrine
system “dose-dependent” changes in bacterial
burden in Figure E13A, with increase in Mtb
burden as neuroendocrine signaling
increases. Figures E13B–E13I show negative
relationships between neuroendocrine
expression and expression of Th1, IL-10,
complement, and infection of macrophages
and neutrophils. These relationships were
constrained by spatial position.

Immunohistochemistry Confirmation
of RNA-Seq and Model Findings
We performed immunohistochemistry on
the cavity wall, airways, and control lung
tissue, to confirm the RNA-Seq and
mathematical modeling findings. Figure E14
shows that the abundance of CD41 and CD81

was similar between the cavity wall, airways,
and noninfected control subjects. For the
macrophage lineage, Figure E14C
demonstrated a 1.49-fold higher CD681 cell
population (i.e., macrophage lineage) in the
cavity wall compared with noninfected control
subjects, with similar levels in the airways.
FOXP31 cell stains revealed a 15-fold higher
abundance of FOXP31 cells (regulatory
T cells) in the cavity wall compared with
airways (see Figure E14D). For the proposed
neuroendocrine system, we stained for
chromogranin A (parathyroid hormone
secretory system specific) in airways, the cavity
wall, and in control subjects, with results
shown in Figure E14E. The airways had lower
chromogranin ratios than the cavity wall, and
were lower than in control subjects without
TB, consistent with RNA-seq findings and our
dynamical sink model. We also used a
neuroglia-specific S100B stain, and the airways
showed significantly lower intensity for S100B
stain than the cavity wall (see Figure E14F).
For another confirmation, cavity wall biopsy
neurofibrin staining was positive in four of
eight patient cavities tested.

Discussion

Our main goal was to identify how and
where host immunity failed to control Mtb

Figure 4. (Continued). downregulated: group I genes (GRM1 and GRM5) activate phospholipase C, and both group II (GRM2) and group III (GRM4,
GRM7, and GRM8) genes inhibit the cyclic AMP cascade. (C) In synaptic long-term depression, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (gene AMPAR), which works via PLA2 (phospholipase A2) and PKC (protein kinase C), was downregulated, as were PLA2 and PKC. iGluR AMPAR
genes, such as GRIA and GRIN, were also downregulated, as were genes encoding the vesicular glutamate transporters SLC17A and SLC1A6/7. The related
calcium signaling is shown in Figure E7. GluR = glutamate receptor; mGluR =metabotropic glutamate receptor; PRL = prolactin; PTH= parathyroid hormone.
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burden in MDR-TB cavities, and to identify
the specific host immunity pathways that
failed. We identified at least 60 different
highly expressed pathways that formed

complex adaptive system networks,
which we integrated using a dynamical
sink model onto approximately 600 cm3

histopathological space/tissue volume. In

the cavity wall, including the luminal edge
of the cavity wall, approximately 80% of the
pathways were upregulated, and were
proinflammatory. The high negative
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correlation (r,20.6) between pathway
expression and Mtb burden in the cavity
wall was encountered with macrophages,
neutrophils, TREM-1, and PKCu, whereas
the high positive correlation (r. 0.6) was
neuroendocrine (see Figure E12); the negative
correlation means increased expression of the
pathway was associated with improved
bacterial containment (lower Mtb burden)
and thus protective. In contrast, at the
air–caseum interface, only 7% of the 60
pathways were upregulated, more than 50%
were downregulated (including TREM-
1–linked pathways, neuroendocrine,
macrophage, and neutrophil pathways), and
had the highest Mtb burden of all, marking
this as the location of immune failure. The
highest negative correlation between pathway
expression and Mtb burden at air–caseum
interface were macrophages and neutrophils,
whereas high positive correlation was with
neuroendocrine pathway, suggesting that
these specific pathways play the major role in
bacterial containment and, thus, host
immunity failure.

Modeling and simulations to explore
several possible explanations for this immune
failure, including location-dependent reduced
influx of immune cells or proliferation or cell
death rates, revealed that the most likely
mechanism was of Mtb killing the immune
cells via cell bursting, which was maximal in
the cavity center. Other possible mechanisms
of cell kill, such as cytotoxic agents released
by Mtb, will be investigated in separate
modeling. The pathways identified here may
also be used as biomarkers of the failed
bacterial containment in the TB cavity. In
addition, molecules targeting these networks
could potentially offer new targets for therapy
and immunomodulation and to limit
transmission (37).

In 2009, Anyanful and colleagues
reported that a brief exposure of
Caenorhabditis elegans to toxigenic
Escherichia coli conditioned the worms to
survive subsequent exposure, because of

dopamine signaling linked to innate immune
responses (38, 39). In the lung, dopamine
receptors are known to directly control
alveolar cell inflammatory processes, and
indirectly via parathyroid hormone and
prolactin release (40, 41). Prolactin promotes
proinflammatory innate immune responses
via NF-kB and IRF-1 (42). We found
decreased expression of dopamine receptor
signaling and the downstream pathways
(parathyroid hormone, prolactin, and IRIF-1)
in TB cavity wall. In addition to dopamine,
mGluR signaling, mGluR-dependent synaptic
long-term depression formation, and calcium
signaling were decreased in parallel. Thus, the
neuroendocrine response pathways in the TB
cavity that we describe expand the system
beyond the dopamine pathway (39). Colonic
inflammation in a rat model reduced
hippocampal mGluR-dependent synaptic
long-term depression formation, which was
reversed by chronic administration of
minocycline, a drug that also has direct
anti-TB effect (43, 44). Moreover, Sarm1
expression decreases mGluR-dependent
synaptic long-term depression formation:
Sarm1 is a negative regulator of Toll-like
receptor signaling, TNF-a, and antiviral
cytokines production in mice (45–47).

Our modeling and simulations revealed
that neuroendocrine system expression had
a high positive correlation with neutrophil
and macrophage burst sizes and associated
cell-specific death from theMtb infection in
TB cavities. Moreover, our simulations
demonstrate dose-dependent changes to
the Th1 system with perturbation in the
neuroendocrine system (see Figure E13), a
major adaptive immune mechanism
effecting Mtb control. Furthermore, high
correlation coefficients between observed
neuroendocrine RPKMs and Mtb burden,
and the dose-dependent results of the in
silico perturbation exercises, all suggest that
these findings are likely biologically
meaningful. Pharmacological manipulation
of this neuroendocrine system, once better

characterized, may offer a novel approach
to reverse failed immunity in the TB cavity,
limit Mtb burden, and reduce transmission.

There were several potential limitations
of our study. First, transcriptomic data were
normalized to control subjects without TB
rather than pericavitory normal-appearing
tissue from the same patient (interpatient vs.
intrapatient control subjects). However,
viable Mtb was commonly present in
pericavitory normal-appearing tissue, thus
it was far from normal and unsuitable for
normalization, making this approach
biologically unsound. Second, five South
African control subjects had evidence of
prior TB, which could introduce biasing
toward the null. Therefore, we added a
pooled sample of five Americans with no
history of TB; the transcriptomic signatures
in the control subjects were remarkably
similar when compared by nationality (see
online supplement). Third, our findings
pertain to chronic MDR-TB (and MDR-TB
plus resistance to quinolones and other
drugs) that failed therapy, and may not be
generalizable to drug-sensitive TB. Finally,
biopsies were only performed from a single
cavity rather than from multiple cavities,
limited immunohistochemical analysis was
undertaken, and functional experiments to
interrogate the role of neuroendocrine system
were not performed. However, our express
goal was to characterize the cavity
transcriptome, and we now plan to address
the discoveries in a more granular manner.

In summary, construction of a
spatially compartmentalized transcriptomic
map of MDR-TB cavities identified several
hitherto unrecognized pathways involved in
the host immune response to TB. Further
studies are warranted to investigate the
functional characteristics of these pathways
and their effect on controlling Mtb
proliferation. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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