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Abstract

Multi-Atlas based Segmentation (MAS) algorithms have been successfully ap-

plied to many medical image segmentation tasks, but their success relies on

a large number of atlases and good image registration performance. Choosing

well-registered atlases for label fusion is vital for an accurate segmentation. This

choice becomes even more crucial when the segmentation involves organs char-

acterized by a high anatomical and pathological variability. In this paper, we

propose a new genetic atlas selection strategy (GAS) that automatically chooses

the best subset of atlases to be used for segmenting the target image, on the

basis of both image similarity and segmentation overlap. More precisely, the

key idea of GAS is that if two images are similar, the performances of an atlas

for segmenting each image are similar. Since the ground truth of each atlas is

known, GAS first selects a predefined number of similar images to the target,

then, for each one of them, finds a near-optimal subset of atlases by means of a

genetic algorithm. All these near-optimal subsets are then combined and used

to segment the target image. GAS was tested on single-label and multi-label

segmentation problems. In the first case, we considered the segmentation of

both the whole prostate and of the left ventricle of the heart from magnetic

∗Corresponding author
Email address: m.antonelli@ucl.ac.uk (Michela Antonelli)

Preprint submitted to Medical Image Analysis February 4, 2019



resonance images. Regarding multi-label problems, the zonal segmentation of

the prostate into peripheral and transition zone was considered. The results

showed that the performance of MAS algorithms statistically improved when

GAS is used.

Keywords: Atlas selection, Genetic Algorithm, Multi-atlas based

segmentation, Multi-parametric MRI, Prostate segmentation

1. Introduction

Multi-Atlas based Segmentation (MAS) algorithms have been successfully

applied to a wide range of medical image segmentation tasks (Isgum et al.,

2009; Cardoso et al., 2013; Aljabar et al., 2009). Their success relies on the

introduction of a priori knowledge using a set of pre-segmented images. An5

atlas consists of a medical image and a corresponding segmented label image.

According to the subdivision proposed in Iglesias and Sabuncu (2014), a MAS

algorithm can be implemented following four sequential steps: first each atlas

image is registered to the target image (registration step), second either all or

a subset of atlases are chosen (atlas selection step) and their label images are10

propagated into the target space (label propagation step). Finally the propa-

gated labels are fused to generate the segmentation of the target (label fusion

step). Several types of label fusion algorithm can be found in Sabuncu et al.

(2010), while in Iglesias and Sabuncu (2014) the authors present an extensive

review of MAS algorithms.15

The performance of a MAS algorithm depends greatly on the registration

step: if an atlas is badly registered, considering it in the fusion step could

misguide the segmentation of the target image and decrease its accuracy.

The use of more complex label fusion techniques can mitigate the above

problem. In Artaechevarria et al. (2009), the authors investigate how different20

types of atlas combinations affect the segmentation accuracy. The authors stud-

ied the use of both global and local voting strategies for the label fusion step and

their results showed that, in general, there is no strategy that can recover when
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the number of poorly-registered atlases is high. For this reason, it is important

to apply an intermediate step between label propagation and label fusion that25

selects from all the atlases a near-optimal subset of them to propagate.

In the literature, several approaches have been proposed to select the best

subset of atlases to propagate and use in the label fusion step. Aljabar et al.

(2009), investigated several selection strategies based on the rank of the atlases.

The selection of the atlases from a database is performed according to their30

suitability for a given target image. First, the atlases are ranked according to

their image similarity with the target, expressed by means of metrics such as

cross-correlation (CC) and normalized mutual information (NMI). Then only

the first k atlases from the top ranked list are selected and used in the fusion

step. The results showed that MAS algorithms that apply atlas similarity selec-35

tion obtained better segmentations compared of those that use either the same

number of randomly-selected atlases or all the atlases of the database.

Klein et al. (2008) proposed a MAS algorithm which first calculates the NMI

value between the target image and each atlas, then selects and fuses only the

atlases with NMI greater than a fixed threshold. Y. Ou and Davatzikos (2012)40

applied the same selection strategy but used the mutual information in place of

NMI. Langerak et al. (2010) proposed a label fusion method (SIMPLE) that can

be used as an atlas selection strategy: first the NMI between each atlas and the

target image is calculated and only the atlases with a value of NMI greater than

a fixed threshold are selected and fused to generate an initial estimation of the45

target segmentation. Then, each atlas is re-evaluated by considering a binary

overlap measure between the estimated segmentation and the registered image

label. If this value is lower than a fixed threshold the atlas is not considered for

the next re-estimated segmentation. This process is repeated until the estimated

segmentation converges.50

All of the above mentioned approaches apply atlas selection after the regis-

tration step. Alternatively, in van Rikxoort et al. (2010), instead of registering

all the atlases to the target, and then applying the selection step, the authors

first performed a fast registration (computationally cheap) between the target
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and all the atlases, then they select the atlases depending on the difference be-55

tween the target and the registered atlas images. On the contrary, in Langerak

et al. (2013) the authors estimate the performance of an atlas before registering

it to the target image: first groups of atlases are formed on the basis of the

results of pairwise registration among the atlases themselves. Then, the groups

that are too dissimilar to the target image are discarded before the registration60

step. In this way, in addition to an improvement of the performance, they also

save computational time.

However, most of the existing MAS algorithms that perform atlas selection

rank the atlases using a measure of image similarity between each atlas and the

target image, and then they apply a threshold either on the size of the subset65

of the selected atlases or on the value of the image similarity measure. The

similarity between the registered atlas images and the target may not always be

a good estimate of the performance of the atlas. Also, optimizing the values of

the thresholds may be not trivial.

Atlas selection is a crucial step when the segmentation concerns organs such70

as the prostate that are characterized by a high variability in both shape and

surrounding structures. In this case, it is not always possible to obtain accurate

registrations between the atlases and the target. Since each registered atlas

image can be considered as a voxel-wise classifier, using a poorly-registered

atlas can be regarded as using a classifier with a very low performance.75

Prostate segmentation is a vital step of almost every computer-aided diagno-

sis systems (CAD) for the diagnosis and treatment of prostate cancer. Although

multi-parametric magnetic resonance imaging (mpMRI) has been shown to be

very effective in detecting prostate cancer and in its treatment (Graham et al.,

2014), interpreting prostate MRI images requires a high level of expertise and80

is time consuming. For this reason, there has been an increasing interest in the

development of these CAD systems (S. Wang and Summers, 2014).

Whether the CAD system based on mpMRI is used for diagnosis or treat-

ment, the first step is the extraction of the prostate region from T2-weighted

(T2w) images as the target region of interest for further feature extraction.85
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Moreover, if the CAD system is used for cancer detection and diagnosis, it is

crucial not only to identify the prostate region, but also to divide this region

into the two main zones: the peripheral zone (PZ) and the transition zone (TZ).

Cancers belonging to these two zones show different behaviour, so for a CAD

system to be effective, it is important to apply different algorithms to the two90

zones. Therefore, the segmentation step, in addition to the whole prostate (WH)

identification, has to identify PZ and TZ.

This step is extremely important as its accuracy determines the success of

the following CAD stages: a wrong segmentation may cut out prostate regions

containing lesions, or generate errors in volumetric calculations. Manual seg-95

mentation may be an option, but it is very time-consuming and prone to intra-

and inter-observer variability.

Several approaches have been proposed to automatically segment the whole

prostate in T2w MRI images. Makni et al. (2014), used an adaptation of the Ev-

idential C-Means clustering where the optimization process takes into account100

voxels’ spatial neighborhood information. In Guo et al. (2016) the authors first

used deep learning to extract the latent features from prostate MR images.

Then, based on the learned features, a prostate likelihood map is inferred by

means of a sparse patch matching method. Mahapatra and Buhmann (2014),

applied a supervoxel segmentation to identify a volume of interest followed by105

a random forest classification to generate probability maps for voxels giving

their likelihood of being prostate or non-prostate. In Yan et al. (2015); Martin

et al. (2008); Y. Ou and Davatzikos (2012); Klein et al. (2008) multi-atlas based

approaches were applied to the whole prostate segmentation. Although auto-

matic whole prostate segmentation has already been addressed in the literature,110

very few works have been proposed for zonal segmentation (Chilali et al., 2016;

Makni et al., 2014; Qiu et al., 2014; Toth et al., 2013) and none of them use

multi-atlas based methods.

In this paper we propose a new genetic atlas selection strategy (GAS), in

the framework of MAS algorithm, that automatically chooses the best subset of115

atlases on the basis of both image similarity and Dice coefficient. GAS works
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under the hypothesis that if image A is similar to image B, the performance

of an atlas that segments A is similar to the performance of the same atlas for

segmenting B. Since the manual segmentation of each atlas is known, we first

select the n most similar atlas images to the target, then we apply a genetic120

algorithm to find the best subset of atlases that segment each of these n atlas

image. Finally, these n best subsets are combined and used to segment the real

target image.

We tested the proposed GAS strategy on both single-label and multi-label

segmentation problems. For single-label segmentation, we evaluated GAS on125

the segmentation of both the whole prostate and the left ventricle of the heart.

We compared the results of four MAS algorithms without GAS, with GAS and

with the atlas selection strategy presented in Langerak et al. (2010) (SIMPLE).

The four MAS algorithms consisted of two standard MAS algorithms char-

acterized by two different label fusion methods, and two state-of-the-art al-130

gorithms, namely STEPS (Cardoso et al., 2013), which is an extension of the

well-known STAPLE, and the MAS algorithm introduced in Wang et al. (2013),

which is based on a new joint label fusion method.

For multi-label segmentation, we validated GAS on the segmentation of the

prostate into peripheral and transition zones, comparing the results obtained135

by the four MAS algorithms with and without GAS.

The results showed that GAS statistically significantly improves the per-

formance for all the four MAS algorithms and for both the single-label and

multi-label segmentations. Furthermore, it generates segmentations that are

statistically more accurate than the ones obtained by the four MAS algorithms140

which use SIMPLE as atlas selection strategy.

This paper is organized as follows: Section II describes the MAS frame-

work used and the new genetic atlas selection strategy. Section III shows the

experimental results and Section IV draws some final conclusions.
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2. Material and methods145

In this section we introduce the standard multi-atlas based segmentation

(MAS) framework and the associated notation, then we present the new genetic

atlas selection strategy.

2.1. Multi-atlas based segmentation framework

Let IT be the target image to be segmented and A = {A1, . . . , AN} the set150

of N atlases available in the database. Each atlas Ai is defined by the pair

(Ii, Li) where Ii is the raw intensity image and and Li the corresponding image

segmentation or ”image label” .

Generally, a MAS algorithm is divided into three main sequential steps,

namely the registration of the N image atlases to IT , the propagation of the155

corresponding N labels into the target space and the combination of the prop-

agated labels into the final segmentation of IT .

The registration step computes the spatial correspondences between each

image Ii and IT . Here, for each atlas Ai, with i = {1, . . . , N}, we calculate

the transformation function by applying first an affine registration(Ourselin160

et al., 2000), followed by a cubic B-spline non-rigid registration(Modat et al.,

2010). Both registration types are intensity-based, hence they search for the

transformation that maximizes a measure of the similarity in intensity between

corresponding pixels. The convolution-based fast local normalized correlation

coefficient (LNCC) (Cachier et al., 2003) is used as similarity measure for the165

non-rigid registration to enable robustness to Bias Field inhomogeneity.

For the i − th atlas, the output of the registration step is a transformation

function, Ti, such that Ti(Ii) ≈ IT , which will be used to propagate the atlas

labels Li to the target image coordinate space.

Once Ti with i = 1, . . . , N are calculated, the classic MAS algorithm propa-170

gates each image label Li into the image target space, applying the correspond-

ing transformation Ti. In this way, each atlas produces a segmentation for IT .

Finally, the last step of a MAS algorithm is the fusion of all these candidate
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segmentations into a single segmentation. One possible label fusion strategy

is majority voting: for each voxel v of IT it counts the votes considering each175

registered atlas label and chooses the label with the highest score.

Since not all the atlases produce equally accurate segmentations, to improve

the fusion step and, consequently, the segmentation of IT , a local weighted

voting strategy can be used. This type of label fusion assigns a weight to each

voxel of each atlas that reflects the similarity between the registered atlas image180

and the target around that voxel. In this way, more accurate registrations, and

subsequent segmentations, have more influence on the label choice.

In our experiments the weights are based on LNCC: for each voxel v of the

i− th atlas, wi(v) is computed by the following equation

wi(v) = exp(1− LNCC(Ti(Ii), IT )2v
σ

) (1)

where σ determines how much the value of LNCC influences the weight.185

2.2. Genetic Atlas Selection strategy

The success of a MAS algorithm heavily relies on the success of the regis-

tration step: if the registration between the atlas and the target image fails,

considering that atlas in the fusion step only introduces noise. The weighted

voting strategy described in sub-section 2.1 may reduce the effect of considering190

that poorly-registered atlas, but the LNCC between the atlas image and target

image does not always indicate the accuracy of the registered atlas image and

the corresponding segmentation.

For this reason, to select the best subset of atlas SIT to be used for seg-

menting IT , we proposed a selection strategy based on both image similarity195

and Dice coefficient. First, image similarity is used to select the n most similar

images to the target. Then, each image in turn is considered as pseudo-target

image and the best subset of atlases is calculated using the Dice coefficient as

measure of goodness of the subset. Finally, these n best subsets are combined

and used to segment the real target IT .200
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To select the n most similar images to IT , we first registered each atlas image

to the target using the affine registration followed by the non-rigid registration.

Then, using equation 1, we calculated LNCC for each pair (atlas image, target)

and selected the n atlases with highest LNCC values.

Let I∗ = (I∗1 , . . . , I
∗
n) be the set of n most similar images to IT and L∗ =205

(L∗
1, . . . , L

∗
n) the corresponding labels. The aim is, for each I∗i , to calculate the

subset SI∗
i

of atlases that produces an automatic segmentation L̂∗
i such that

to maximize the Dice coefficient Di = D(L̂∗
i , L

∗
i ). The segmentation of the

pseudo-target L∗
i is generated by using majority voting as label fusion strategy.

If the size N of the atlas database is very small, this subset could be found210

by exhaustively generating the automatic segmentation using all the possible

combinations of the N−1 atlases of the database and choosing the combination

that generates the automatic segmentation with highest Dice coefficient. How-

ever, as the number of all possible subsets grows combinatorially with N , for

larger values of N this exhaustive search is not feasible. Thus a heuristic has to215

be introduced to avoid generating all the possible 2N−1 segmentations.

We propose a genetic algorithm (GA) as a heuristic to find SI∗
i
. GAs are

optimization algorithms inspired by the concepts of natural selection and evo-

lution (Beasley et al., 1993). They usually start from a random population of

individuals, called chromosomes, each representing a candidate solution to the220

given optimization problem. A fitness score is then assigned to each individual

depending on how good the solution is for the problem. Individuals with high

fitness values are given higher chances to reproduce and create a new population

of offspring than the ones with lower fitness values.

In this way, highly fit individuals are more likely to be selected for reproduc-225

tion and to pass their good characteristics to the offspring, while the least fit

die out. The population at the next generation is obtained by selecting the best

individuals from the current population and new population of offspring. This

process, repeated over generations, allows the exploration of the more promising

area of the search space until the GA converges to an optimal solution of the230

problem.
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In order to use a GA for generating SI∗
i

two main aspects have to be defined,

namely the chromosome representation and the fitness function.

With regards to the chromosome representation, a binary string with N-1

genes is used where N is the total number of atlases of the database. Each gene235

is associated with an atlas: if the k− th gene is equal to 1, then the k− th atlas

is used for generating the segmentation of I∗i , if it is equal to 0 then that atlas

is not used. Thus, each chromosome constitutes a subset of atlases to be used

by the MAS for segmenting I∗i .

The fitness function of a chromosome represents how well the subset of at-240

lases coded in the chromosome segments I∗i . As we know the manual seg-

mentation L∗
i of I∗i , the fitness function of each individual is the value of the

Dice coefficient D(L̂∗
i , L

∗
i ), where L̂∗

i is the automatic segmentation obtained

applying a MAS that uses only the atlases with the corresponding genes in the

chromosome set to 1.245

Figure 1 shows the pseudo-code of the GA. The algorithm starts with a

randomly generated population P0. At each iteration t, the fitness function of

each individual in the population is evaluated, and, using the roulette wheel

selection mechanism, individuals are selected for reproduction . This type of

selection associates a selection probability to each chromosome proportional to250

its fitness value. Thus, the evolutionary process consists first on the selection

of two parents, p1 and p2, then, two offspring are generated applying one-point

crossover and mutation operators to p1 and p2, with probability Pcr and Pmut,

respectively. Crossover takes copies of p1 and p2, randomly selects a point in the

binary string, and swaps sub-strings of equal length between their chromosomes.255

Mutation randomly selects a gene in the chromosome and flips its value .

The two new offspring are added to the temporary population Ptemp. This

is repeated until Ptemp contains a number of individuals equal to the population

size pop size. The population Pt+1 at generation t+ 1 is generated by choosing

the best pop size/2 individuals from both Ptemp and Pt.260

The chromosome with the highest fitness value contained on the popula-

tion after a fixed number of generations (maxNumGeneration) determines the
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Figure 1: Pseudo-code of the selection strategy explained in section 2.2.

atlases in SI∗
i
.

Once SI∗
i

is generated for each I∗i , the subset of atlases SIT used to segment

the actual target IT is calculated by combining all the n subsets SI∗
i
. In partic-265

ular, let SI∗ = ∪ni=1SI∗
i

be the union with repetition of the n subsets of atlases

found by the genetic algorithm. SIT will contain along with the n most similar

atlases, the atlases that are contained at least dn/2e times in SI∗ . If no atlas

has been selected dn/2e times, SIT will contain only the n most similar atlases

(n = 9 in the experiment).270

As an example, let A = {A1, ..., A20} be the set of atlases, A2, A7, and

A11 the n most similar atlases (n = 3), and SI∗
2

= {A5, A6, A9, A16}, SI∗
7

=

{A2, A4, A9}, and SI∗
11

= {A1, A3, A9, A16} the subset of atlases found by the

genetic algorithm. The final subset of atlases to segment the target will be

SIT = {A2, A7, A9, A11, A16}.275
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3. Results and Discussion

In this section we describe the datasets used to evaluate GAS, the experi-

mental setup and the results obtained.

3.1. Dataset

Three datasets have been used in our analysis. For each dataset, the manual280

segmentation of an experienced radiologist was provided. All annotations were

performed on a slice-by-slice basis using a contouring tool. The datasets used

are:

• PROMISE12 (Litjens et al., 2014), the MICCAI 2012 prostate segmen-

tation challenge dataset (http://promise12.grand-challenge.org/). Scans285

were collected from four centres under different clinical settings and ac-

quisition protocols. Each centre provided 25 transverse T2w MR images

for a total of 100 MRI scans, split into 50 training cases, 30 test cases

and 20 live challenge cases. We used only the 50 training cases as they

include the reference segmentations of the whole prostate. The reference290

segmentations were checked and corrected by a second radiologist who has

read more than 1000 prostate MRIs.

• PICTURE (Simmons et al., 2017), a single centre, diagnostic cohort study

undertaken at the University College London Hospital NHS Foundation

Trust (UCLH). The study recruited from a population of men who are at295

risk of prostate cancer and who have already undergone a standard diag-

nostic transrectal ultrasound guided (TRUS) biopsy and where diagnostic

uncertainty remains. We selected 90 T2w MRI scans from 90 patients,

where each subject had a manual segmentation of both the whole prostate

and the PZ and TZ regions.300

• Sunnybrook Cardiac Data (SCD) (Radau et al., 2009), the 2009 Cardiac

MR Left Ventricle Segmentation Challenge. The data consists of 45 cine

MR images of healthy subjects (9), and patients with different pathologies,
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namely hypertrophy (12) , heart failure with infarction (12) and heart

failure without infarction (12). For each scan an experienced radiologist305

manually contoured the endocardium (EN) and epicardium (EP) for every

diastole phase. We performed a single-phase segmentation considering

only the images related to the end-systolic phase. The phase selection was

manually performed.

3.2. Experimental setup310

To assess the effectiveness of the proposed genetic atlas selection (GAS)

strategy on MAS segmentation accuracy, two types of segmentation problems

have been addressed using four state-of-the-art MAS algorithms.

First, we evaluated GAS on single label segmentation problems. We con-

sidered the segmentation of the whole prostate from T2w MRI images and the315

segmentation of the left ventricle og the heart from cine MRI. For both cases,

we first compare the results obtained by four state-of-the-art MAS algorithms

both with and without GAS, then we compare the results of the four MAS with

GAS and with a different atlas selection strategy.

We further validated the proposed method on a multi-label segmentation320

problem. Here, we evaluated the results obtained by the four MAS algorithms

when GAS is applied to the segmentation of the prostate into peripheral and

transition zones.

The four state-of-the-art MAS algorithms used for both the analyses are:

• Majority Voting (MV): a standard MAS algorithm which uses a majority325

voting strategy as fusion label method;

• Local Weighted Voting (WV): a standard MAS algorithm which uses a

local weighted voting strategy as fusion label method;

• STEPS (Cardoso et al., 2013): an extension of the classical STAPLE

algorithm (Warfield et al., 2004), where, at each voxel location, the atlases330

are ranked on the basis of the LNCC between the atlas image and the

target image and only a fixed number NC of atlases are used by STAPLE;
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• JLF (Wang et al., 2013): a MAS characterized by a joint label fusion strat-

egy where the weighted voting is formulated as an optimization problem

over unknown voting weights by minimizing the total expectation of the335

labelling error.

In the following subsection we will denote the four algorithms with MV,

WV, STEPS, and JLF if all the atlases are used during the label fusion steps,

and with GAS-MV, GAS-WV, GAS-STEPS, and GAS-JLF if only the atlases

selected by GAS are exploited during the label fusion step.340

For all the analyses a leave-one-out strategy (LOO) strategy is applied for

validation: one scan is used as the target image to be segmented and the other

scans are used as atlases.

For STEPS and JLF, the default parameters were used as described in the

corresponding papers (Cardoso et al. (2013), Wang et al. (2013)). To opti-345

mize the GAS parameters, 10 patients were randomly selected from the 90

patients in the PICTURE dataset. The Dice score between the manual segmen-

tation and the segmentation obtained by using GAS-WV with different values

of the parameters was calculated. The parameters corresponding to the maxi-

mum Dice coefficient value were fixed and used for the experiments on both the350

PROMISE12 and PICTURE datasets.

For the genetic algorithm, on the basis of our previous experience, we chose

the crossover and mutation probability values that allow a good trade off be-

tween exploration and exploitation of the search space. Regarding the number

of generations, since this value is more dependent on the size of the search space355

and on the type of optimization problem tackled by the GA, we tried different

values and chose the smallest value which ensured convergence of the algorithm.

Since the registration step is the same for all the MAS algorithms, its pa-

rameters were not optimized. Instead they were set on the basis of the same 10

patients registered one to each other and evaluated by visual inspection. Table360

1 shows the parameters used.

The segmentation accuracy of each algorithm is assessed by using one over-
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Table 1: Values of the optimized parameters used in the experiments.

Image registration

Size of Gaussian Kernel used for LNCC (σG) 5 mm

Control point spacing 2.5mm

Bending Energy 0.1

MAS

Size of Gaussian Kernel used for LNCC (σG) 5 mm

Temperature used for weighted label fusion (σ) 0.3

GAS

Size of the Gaussian Kernel used for LNCC (σG) 5 mm

Number of most similar image (n) 9

Size of the population (pop size) 16

Number of generation (maxNumGeneration) 40

Crossover probability (Pcr) 0.6

Mutation probability (Pmut) 0.2

lapping metric and two distance based metrics, namely, Dice Similarity Coef-

ficient the (DSC)(Dice, 1945), that measures the spatial overlap between two

masks, the 95% Hausdorff Surface Distance (HSD), that measures the largest365

difference between two contours (the 5% percentile outliers are discarded), and

the Symmetric Mean Absolute Surface Distance (MSD) (Gerig et al., 2001),

that is the mean of the sum of the shortest Euclidean distance (for each voxel)

between segmentation contours.

To assess if there are statistical differences between the performance ob-370

tained by each algorithm with and without GAS, and between the performance

obtained by GAS and the other selection strategy, a statistical analysis of the

three metrics is performed. The Wilcoxon signed-rank test for pairwise compar-

ison (Sheskin, 2007) is applied to the distributions of each metrics calculated

using LOO.375

3.3. Single-label segmentation

In this sub-section, GAS is tested on single-label segmentation problems,

namely, on the segmentation of the whole prostate from T2w MR images and

on the segmentation of the left ventricle from cine MRI. We compared the results

obtained by the four MAS algorithms without atlas selection, with GAS, and380
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with the atlas selection strategy proposed in Langerak et al. (2010) (SIMPLE).

SIMPLE uses an iterative strategy where at each iteration an estimation of

the ground truth segmentation is performed and badly performing atlases are

discarded. The iterative method ends when no atlases are discarded for two

consecutive iterations.385

3.3.1. Whole prostate segmentation

For the segmentation of the whole prostate we performed two different types

of validation. First an intra-dataset validation was considered applying the

LOO analysis to the PROMISE12 dataset. Then, to test the robustness of GAS

when target and atlases belong to different datasets, we applied a inter-dataset390

validation using images from PROMISE12 and PICTURE as target and atlases,

respectively, and vice versa.

Intra-dataset validation

This subsection shows the results obtained applying a LOO segmentation

to the PROMISE12 dataset: 49 scans were used as atlas images and one scan395

as a target image. Table 2 reports the mean and standard deviation of DSC,

MSD, and HSD obtained by the four MAS algorithms when different selection

strategies are applied. The mean values of the number of atlases selected by

GAS and SIMPLE were 21.4 and 29.1, respectively. Table 2 suggests that the

use of the GAS always improves the performance of the four MAS algorithms.400

Indeed, the algorithms with GAS obtain better mean values for all three metrics.

This improvement increases as the label fusion technique becomes simpler: as an

example, for GA-MV, DSC improves by 6% with respect to MV and by 2% with

respect to SIMPLE-MV. When more complex and robust label fusion techniques

are considered, the performance improvement reduces, GAS-JLF improves by405

2% and 1% with respect to JLF and SIMPLE-JLF, respectively.

The box plot in Fig. 2 confirms the results of Table 2. MAS with GAS are

in general more robust: the values of the three indexes are characterized by a

smaller number of outliers and a smaller interquartile range of variations (IQR).
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Table 2: Mean ± standard deviation of DSC, MSD, and HSD obtained by the four algorithms

with the different selection strategies when applied to the whole prostate segmentation on the

PROMISE12 dataset. For each metric the best results are in bold, the superscript † represents

significantly worse (p-value< 0.05) results when compared to GAS.

DSC MSD HSD

MV 0.77 ± 0.13† 1.30 ± 1.45† 4.33 ± 5.54†

SIMPLE-MV 0.81 ± 0.11† 1.19 ± 1.32† 3.24 ± 4.09†

GAS-MV 0.83± 0.10 1.13± 1.22 2.45± 2.7

WV 0.79 ± 0.12† 1.26 ± 1.42† 3.14 ± 3.26†

SIMPLE-WV 0.82 ± 0.11† 1.17 ± 1.28† 2.83 ± 3.62†

GAS-WV 0.83± 0.10 1.09± 1.19 2.07± 2.17

STEPS 0.81 ± 0.10† 1.14 ± 1.19† 2.85 ± 2.96†

SIMPLE-STEPS 0.83 ± 0.10 1.16 ± 1.18 2.22 ± 2.75

GAS-STEPS 0.84± 0.08 1.08± 1.16 2.00± 1.66

JLF 0.82 ± 0.10† 1.12 ± 1.25† 2.20 ± 1.69†

SIMPLE-JLF 0.83 ± 0.12† 1.07 ± 1.18† 2.3 ± 2.47†

GAS-JLF 0.84± 0.09 1.04± 1.12 1.83± 1.36

To test if there is a statistically significant difference among the distribution410

of the three metrics, the Wilcoxon signed-rank test for pairwise comparison is

applied between each MAS with GAS and both MAS with SIMPLE and MAS

without any atlas selection.

For the comparison MAS vs. GAS-MAS, the values of DSC, MSD and HSD

were found to be statistically better for all the four MAS algorithms when the415

GAS is applied. As expected, the highest improvement is obtained for MAS

algorithms with the simplest label fusion strategy, i.e., MV and WV (p-value

lower than 0.0001 for all the three indexes). Although the improvements on

the mean values are slightly lower for STEPS and JLF compared to those of

MV and WV, the null hypothesis is still rejected. This confirms that when a420

state-of-the-art local label fusion technique is applied, the global selection of

atlases in MAS still significantly improves the segmentation results.

Regarding the comparison of GAS-MAS vs. SIMPLE-MAS, the null hypoth-

esis is always rejected in favour of GAS, except for STEPS.

Finally, to illustrate the segmentations obtained using the four MAS algo-425

rithms with and without GAS, Figure 3 shows the segmentation results of the
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Figure 2: Box plot of the DSC, MSD, and HSD values obtained by the four MAS without

atlas selection, with SIMPLE and with GAS, for the PROMISE12 dataset.

central slice obtained by applying the MAS algorithms with and without GAS

to four different patients. For comparison, the first column shows the manual

segmentation of the same slice.

Among the 50 patients we showed the following cases:430

• row (a) the patient with maximum DSC mean value calculated among the

four MAS algorithms with GAS (Max DCEGAS).

• row (b) the patient with minimum DSC mean value calculated among the

four MAS algorithms with GAS (Min DCEGAS).

• row (c) the patient with maximum difference value between the DSC mean435

value calculated among the four MAS algorithms with and without GAS

(Max DCEdiff ).

• row (d) the patient with minimum difference value between the DSC mean

value calculated among the four MAS algorithms with and without GAS
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(Min DCEdiff ).440

The two extreme examples shown on rows (c) and (d) represent the case

where applying GAS produces the best improvement (c) and the biggest de-

terioration (d) of the DSC value. From Figure 3(c) and (d), we can confirm

the numerical results shown in the previous tables: GAS is able to improve the

segmentation accuracy and, in the worse case the deterioration of the MAS per-445

formance is not significant, i.e., row (d) shows that the segmentations produced

with and without GAS are very similar.

From Figure 3 we observe that when MV is applied, removing poorly-

registered atlases is crucial as they will affect the final segmentation with the

same weight as the well-registered atlases. If the label fusion is based on lo-450

cal weights (WV and JLF), using GAS still substantially improves the results:

firstly, although poorly-registered atlases will influence the segmentation with a

low weight, if there are a considerable number of these atlases, the noise they

introduce affects the final segmentation in a significant way; secondly, poorly-

registered atlases can be locally very similar in appearance (local minima in455

the registration), meaning that image similarity based atlas-selection methods

(local and global WV) can give high weight to poorly-registered atlases; thirdly,

in applications where image registration is complex, a large portion of the at-

lases can be consistently badly registered, resulting in a biased consensus and

affecting methods such as STAPLE and JLF. For algorithms such as STEPS,460

which includes both consensus estimation and an image-appearance-based atlas

selection, the use of GAS improves the results to a lesser degree.

Figure 3 shows also how the use of GAS affects differently the segmentation

results depending on the label fusion.

Inter-dataset validation465

In this subsection we compare the performance of the four MAS algorithms

with the different selection strategies when the target image and the atlas

database belong to different datasets. More specifically, we used the 50 scans

from PROMISE12 as target images and the 80 scans from PICTURE as atlas
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Figure 3: Examples of segmentation of the whole prostate obtained by the four MAS al-

gorithms with and without GAS on four different patients of the PROMISE12 dataset; (a)

patient with maximum DSC mean value calculated among the four MAS algorithms with

GAS, (b) patient with minimum DSC mean value calculated among the four MAS algorithms

with GAS, (c) patient with maximum difference value between the DSC mean value calculated

among the four MAS algorithms with and without GAS, (d) patient with minimum differ-

ence value between the DSC mean value calculated among the four MAS algorithms with and

without GAS.

database and vice versa. Table 3 shows the values of the three indexes for both470

cases and Figure 4 shows the corresponding boxplots. The mean values of the

number of atlases selected by GAS and SIMPLE were, respectively,14.8 and

18.5 when PROMISE12 was used as atlas database and 28.0 and 35.1 when the

atlases are from PICTURE.

When the target images are from PROMISE12, although the results are475

worse than the ones obtained for the intra-dataset validation, using GAS still

improves the performance of each of the MAS algorithms. Indeed, MAS with

GAS obtained statistically better values of all the three indexes when compared

to both MAS with SIMPLE and MAS without atlas selection. The performance

improvement is even more substantial than the one obtained for the inter-dataset480

validation. In this case using more complex decision fusion techniques does not

generate better segmentation results as the number of inaccurate registrations

is too high. Furthermore, using GAS increases the robustness of the MAS

independently of the applied fusion technique used.
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The same conclusions are obtained when PROMISE12 is used an atlas485

database and the target images are from PICTURE. Also in this case MAS

with GAS obtained statistically better results than MAS without atlas selec-

tion. Regarding SIMPLE-MAS, the segmentations generated by our method

are always statistically more accurate, except for STEPS. GAS-STEPS and

SIMPLE-STEPS are not statistically different for any of the three indexes. This490

could be due to the additional global selection included in STEPS.

Table 3: Mean ± standard deviation of DSC, MSD, and HSD obtained by the MAS algorithms

when the atlases are from PICTURE and the targets are from PROMISE12 (on the left), and

vice versa (on the right). For each metric the best results are in bold, the superscript †

represents significantly worse (p-value< 0.05) results when compared to the GAS.

Atlases from PICTURE

Targets from PROMISE12

Atlases from PROMISE12

Targets from PICTURE

DSC MSD HSD DSC MSD HSD

MV 0.68 ± 0.15† 1.55 ± 1.67† 6.25 ± 6.62† 0.74 ± 0.09† 1.27 ± 0.30† 5.49 ± 5.07†

SIMPLE-MV 0.69 ± 0.17† 1.51 ± 1.64† 6.27 ± 6.83† 0.76 ± 0.09† 1.23 ± 0.29† 4.95 ± 4.86†

GAS-MV 0.74± 0.13 1.40± 1.50 4.38± 4.35 0.78± 0.06 1.21± 0.26 3.90± 3.48

WV 0.70 ± 0.15† 1.50 ± 1.63† 5.80 ± 6.03† 0.76 ± 0.08† 1.20 ± 0.27† 4.27 ± 2.70†

SIMPLE-WV 0.70 ± 0.17† 1.48 ± 1.61† 5.90 ± 6.27† 0.77 ± 0.10† 1.17 ± 0.28† 4.11± 3.90

GAS-WV 0.75± 0.12 1.33± 1.43 3.81± 3.54 0.79± 0.06 1.14± 0.25 4.22 ± 4.59

STEPS 0.71 ± 0.14† 1.48 ± 1.60† 5.18 ± 4.72† 0.72 ± 0.09† 1.44 ± 0.28† 4.08 ± 2.70†

SIMPLE-STEPS 0.70 ± 0.17† 1.49 ± 1.61† 5.98 ± 6.51† 0.75± 0.09 1.31± 0.32 4.05 ± 3.925

GAS-STEPS 0.75± 0.12 1.34± 1.42 3.81± 3.73 0.75± 0.08 1.36 ± 0.29 3.38± 2.02

JLF 0.71 ± 0.14† 1.47 ± 1.64† 5.53 ± 5.31† 0.82 ± 0.06† 1.01 ± 0.23† 2.69 ± 2.31†

SIMPLE-JLF 0.70 ± 0.12† 1.45 ± 1.60† 5.72 ± 5.97† 0.81 ± 0.07† 1.31 ± 0.33† 2.92 ± 2.72†

GAS-JLF 0.75± 0.12 1.32± 1.44† 4.14± 4.13 0.83± 0.05 0.98± 0.20† 2.23± 1.60

3.3.2. Left ventricle segmentation

In this subsection we compare the results obtained by the four MAS algo-

rithms with the different atlas selection strategies. LOO was applied to the 45

patients of SCD. Table 4 shows the mean and standard deviation of the three495

metrics for both the endocardical and epicardial segmentation and the corre-

sponding boxplots. Although we did not optimize the registration parameters

and the parameters of GAS are not optimized for this type of segmentation,

we obtained good results, comparable with those obtained during the chal-

lenge(Radau et al., 2009). On average, GAS and SIMPLE selected 14.4 and500
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Targets from PROMISE12

Atlases from PROMISE12
Targets from PICTURE

Figure 4: Box plot of the DSC, MSD, and HSD values obtained by the four MAS with the

different atlas selection strategies, when the target images are from PROMISE12 and the

atlases from PICTURE (left), and vice versa (right).

11.2 atlases, respectively.

Table 4: Mean ± standard deviation of DSC, MSD, and HSD obtained by the four algorithms

with the different selection strategies when applied to SCD. For each metric the best results

are in bold, the superscript † represents significantly worse (p-value< 0.05) results when

compared to GAS.

Endocardial segmentation Epicardial segmentation

DSC MSD HSD DSC MSD HSD

MV 0.87 ± 0.06† 0.03 ± 0.01† 3.58 ± 2.17† 0.87 ± 0.05† 0.03 ± 0.01† 3.33 ± 2.20†

SIMPLE-MV 0.88 ± 0.06† 0.02± 0.01 2.63± 1.69 0.88 ± 0.06† 0.02± 0.01 3.44 ± 2.87†

GAS-MV 0.89± 0.05 0.02± 0.01 2.65 ± 1.63 0.89± 0.04 0.02± 0.01 3.18± 1.88

WS 0.87 ± 0.06† 0.03 ± 0.01† 3.75 ± 3.09† 0.87 ± 0.06† 0.03 ± 0.01† 3.41 ± 3.56†

SIMPLE-WS 0.87 ± 0.07† 0.03 ± 0.01† 3.17 ± 2.33† 0.87 ± 0.07† 0.02± 0.01 2.65 ± 1.57

GAS-WS 0.88± 0.05 0.02± 0.01 2.99± 2.72 0.88± 0.05 0.02± 0.01 2.64± 1.96

STEPS 0.86 ± 0.07† 0.03 ± 0.01† 2.86 ± 1.75† 0.85 ± 0.05† 0.03 ± 0.01† 2.92 ± 2.88†

SIMPLE-STEPS 0.88± 0.06 0.02± 0.01 2.58± 1.60 0.86± 0.06 0.02± 0.01 2.83 ± 2.38†

GAS-STEPS 0.88± 0.05 0.02± 0.01 2.62 ± 1.57 0.86± 0.06 0.02± 0.01 2.64± 3.81

JLF 0.90 ± 0.05† 0.02 ± 0.01† 3.22 ± 3.44† 0.89 ± 0.05† 0.03 ± 0.01† 2.82 ± 2.88†

SIMPLE-JLF 0.90 ± 0.06† 0.02 ± 0.01† 2.58± 1.89 0.89 ± 0.07† 0.02 ± 0.01 2.77 ± 2.55†

GAS-JLF 0.91± 0.05 0.01± 0.01 2.56 ± 3.58 0.90± 0.05 0.02± 0.01 2.60± 2.40
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Endocardial segmentation Epicardial segmentation

Figure 5: Box plot of the DSC, MSD, and HSD values obtained by the four MAS without

atlas selection, with SIMPLE and with GAS, for the SCD dataset.

All four MAS with GAS generated statistically significantly better results

for all the three indexes, than the ones obtained without any atlas selection

strategy for both the endocardial and epicardial segmentation. However, the

improvement on the algorithm’s performance is less substantial than the one505

achieved for prostate segmentation. This is probably due to the higher anatom-

ical variability in prostate images compared to the heart.

Regarding the comparison with SIMPLE, GAS still obtained statistically

better performance in terms of Dice coefficient for all the MAS algorithms except

STEPS. Indeed, GAS-STEPS and SIMPLE-STEPS are not statistically different510

on any the three indexes. Since the selection has a lower impact on SDC, also the

difference between SIMPLE and GAS is less critical. However, as the boxplot of

Figure 5 shows, MAS with atlas selection, and with GAS in particular, generates

more robust results than those generated by MAS without atlas selection.

Finally, Figure 6 shows the segmentations obtained by MAS and GAS-MAS515

on the four patients selected following the same criteria listed in section 3.3.1
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Figure 6: Examples of both endocardial (red) and epicardial (green) segmentations of the

left ventricle obtained by the four MAS algorithms with different selection strategies, on four

different patients of the SCD dataset;(a) patient with maximum DSC mean value calculated

among the four MAS algorithms with GAS, (b) patient with minimum DSC mean value calcu-

lated among the four MAS algorithms with GAS, (c) patient with maximum difference value

between the DSC mean value calculated among the four MAS algorithms with and without

GAS, (d) patient with minimum difference value between the DSC mean value calculated

among the four MAS algorithms with and without GAS.
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3.4. Multi-label segmentation

To further validate the proposed selection strategy, we applied GAS to a

multi-label scenario: the segmentation of the prostate into peripheral zone (PZ)

and transition zone (TZ). We compared the results obtained by the four MAS520

algorithms with and without GAS when segmenting the prostate into PZ and

TZ. LOO analysis was applied to the 80 patients of the PICTURE dataset that

had not been used for parameter optimization: 79 patients were used as the

atlas database and one patient as the target image to be segmented.

Table 5 and Figure 7, show the mean and standard deviation of the three525

indexes and the box-plot, respectively, obtained by the four MAS algorithms

with and without GAS for the PZ and TZ segmentation. GAS selected, on

average 38.2 atalses to segment PZ and TZ

Table 5: Mean ± standard deviation of DSC, MSD, and HSD obtained by the four algorithms

with and without GAS when applied to the PZ and TZ segmentations on the PICTURE

dataset. For each metric the best results are in bold, the superscript † represents significantly

worse (p-value< 0.05) results when compared to GAS.

PZ segmentation TZ segmentation

DSC MSD HSD DSC MSD HSD

MV 0.67 ± 0.08† 0.85 ± 0.21† 5.39 ± 4.06 0.81 ± 0.06† 0.91 ± 0.22† 3.12 ± 2.78†

GAS-MV 0.69± 0.07 0.81± 0.20 4.11± 4.41 0.83± 0.05 0.88± 0.21 2.76± 2.40

WV 0.68 ± 0.08† 0.82 ± 0.20† 4.52 ± 3.17† 0.82 ± 0.05† 0.88 ± 0.21† 2.97 ± 2.50†

GAS-WV 0.70± 0.07 0.78± 0.20 3.45± 1.51 0.83± 0.05 0.85± 0.20 2.74± 2.32

STEPS 0.71 ± 0.07† 0.76 ± 0.20† 2.81 ± 1.91† 0.82 ± 0.05† 0.87 ± 0.23† 2.60 ± 1.98†

GAS-STEPS 0.72± 0.08 0.74± 0.19 2.68± 1.51 0.83± 0.05 0.84± 0.20 2.28± 1.65

JLF 0.70 ± 0.07† 0.77 ± 0.19† 3.25 ± 1.63† 0.83 ± 0.05† 0.84 ± 0.19† 2.85 ± 3.09

GAS-JLF 0.71± 0.07 0.76± 0.18 3.11± 1.63 0.83± 0.05 0.83± 0.18 2.55± 2.06

The values of Table 5 confirm the results obtained for single-label segmenta-

tions: when GAS is applied, the four MAS algorithms generate more accurate530

segmentations in terms on DSC, MSD and HSD. However, for the PICTURE

dataset, this performance improvement is less evident than for the PROMISE12

dataset. Since the scans come from the same centre and are acquired with the

same scanner, they are very similar to each other, therefore it is less likely that

the registration will fail. For this reason the atlas selection step is still necessary535
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PZ segmentation TZ segmentation

Figure 7: Box plot of the DSC, MSD, and HSD values obtained by the four MAS with and

without GAS on the PICTURE dataset for PZ and TZ segmentation.

as this always improves the results, but it affects the segmentations performance

in a less significant way.

From Figure 7 we observe that the distributions of the three indexes were

found to have better mean values, and smaller values of the IQR when GAS is

applied for both PZ and TZ segmentations.540

The Wilcoxon signed-rank test applied on the mean distributions confirms

the performance improvement on the three indexes. The test results for both

the PZ and TZ segmentation showed that the use of MAS algorithms with GAS

generates segmentations characterized by statistically significant better values

for all the three metrics than the ones generated by the same MAS without any545

atlas selection.

We can conclude that GAS improves the results also when applied to a multi-

label segmentation problems. The magnitude of the improvement depends on

the similarity among the scans of the used dataset: if the dataset contains

heterogeneous scans, the registration step is more likely to fail and the atlas550

selection will impact more strongly on the results.

Finally, Figure 8 shows the segmentations obtained by MAS and GAS-MAS
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on the four patients selected following the same criteria listed in section 3.3.1.

To further investigate GAS in the multi-label scenario, we compared the

results of MAS with and without GAS when applied to the parcellation of the555

brain in T1 MRI. The dataset used consists of 130 T1 MRI images (80 for the

atlas database, 50 for the target images). All the 130 scans have been automati-

cally segmented using GIF (MJ et al., 2015) and manually corrected and quality

controlled by either an experienced radiologist or a trained neuroanatomist. As

expected, for brain images, the difference between MAS without atlas selection560

and MAS with GAS is less critical. The reason for this is that inter-subject

registration for brain does not fail very often, as the image variability is lower

when compared to prostate or heart images.

Although the results of MAS and GAS-MAS are very similar, GAS-MAS

still generated segmentations that are statistically significantly more accurate565

than those generated by MAS, for all the algorithms except JLF. In appendix A

the numerical results obtained when applying GAS to MAS with the simplest

(MV) and the complex (JLF) selection strategy, are shown.

4. Conclusion

In this paper we have presented a new genetic selection strategy to auto-570

matically choose the best subset of atlases within a MAS framework.

We applied our method to single-label and multi-label segmentation prob-

lems. For single label problem, we considered the segmentation of the whole

prostate from T2w MRI and of the left ventricle of the heart from cine MRI. For

multi-label problem, we evaluated GAS on the zonal segmentation of prostate575

into PZ and TZ. To assess the effectiveness of the GAS strategy we compare the

results of four state-of-the-art MAS algorithms without any selection strategy,

with GAS, and with SIMPLE.

The statistical analysis of the results showed that, MAS algorithms which

use GAS obtained statistically better segmentations than the ones obtained580

by MAS without GAS for both single-label and multi-label segmentations. The
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Figure 8: Examples of PZ and TZ segmentations obtained by the four MAS algorithms

with and without GAS on four different patients of the PICTURE dataset. (a) patient with

maximum DSC mean value calculated among the four MAS algorithms with GAS, (b) patient

with minimum DSC mean value calculated among the four MAS algorithms with GAS, (c)

patient with maximum difference value between the DSC mean value calculated among the

four MAS algorithms with and without GAS, (d) patient with minimum difference value

between the DSC mean value calculated among the four MAS algorithms with and without

GAS.

inter-dataset validation applied to PROMISE12 and PICTURE datasets showed

that the improvement of the segmentation accuracy is more substantial when

the target images and the atlases are from different datasets. For this reason the

performance improvement obtained applying GAS to the multi-center dataset585

PROMISE12 is more substantial of the one obtained on PICTURE. Thus, with

GAS the MAS algorithm becomes more robust to noise, and this is more evi-

dent when the complexity and robustness of the label fusion step of the MAS

algorithm decreases. We also showed that the use of GAS reduces the impact

of the fusion step on the final segmentation. Indeed, when using GAS the per-590

formance of the four MAS algorithms become more similar to each other. By

selecting the right set of atlases, MAS with a simple local weighed fusion strat-

egy achieves the same performance as MAS algorithms which apply complex

label fusion methods such as JLF.

Finally, the statistical comparisons between GAS and SIMPLE demonstrated595

that GAS, by taking into account not only the performance of a single atlas but

28



also the interaction of the atlases among themselves, can generate statistically

significantly better segmentations for both whole prostate and left ventricle seg-

mentation problems.
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6. Appendix A. Brain parcellation in T1 MRI605

For the brain parcellation, we used a dataset of 130 T1 MRI images (80 for

the atlas database, 50 for the target images) automatically segmented by GIF

(MJ et al., 2015) and manually corrected and quality controlled by either an

experienced radiologist or a trained neuroanatomist.

Table 6 shows the mean DSC value obtained by MAS and GAS-MAS for two610

label fusion strategies: the simplest (MV) and the most complex (JLF). The

results related to nine main clinically relevant brain structures are reported; if

a region has a left and a right side then the mean value of both sides is shown.

The best results are in bold, and the * represents significantly better results.

The difference between MAS and MAS-GAS is less noticeable for brain seg-615

mentation, and JLF and GAS-JLF have almost the same performance. Al-

though GAS-MV generates statistically better results than MV, the difference

between the two algorithms in terms of Dice values is small. This result confirms

that the improvement achieved by applying GAS is related to the quality of the

registration step.620
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Table 6: Mean ± standard deviation of DSC obtained by the MAS with the simplest (MV)

and the most complex label fusion strategy with and without GAS when applied to the brain

parcelation. The best results are in bold, the superscript † represents significantly worse

(p-value< 0.05) results when compared to GAS.

MV GAS-MV p-value JLF GAS-JLF p-value

Hippocampus 0.833 ± 0.008† 0.844± 0.006 < 0.0001 0.918± 0.005 0.918± 0.006 0.689

Amygdala 0.864 ± 0.007† 0.870± 0.003 < 0.0001 0.899± 0.003 0.899± 0.004 0.662

Caudate 0.827 ± 0.004† 0.848± 0.004 < 0.0001 0.920± 0.002 0.920± 0.002 0.942

Accumbens Area 0.866 ± 0.006† 0.871± 0.005 0.0200 0.901± 0.004 0.900 ± 0.004 0.932

Putamen 0.919 ± 0.007† 0.924± 0.005 0.0003 0.936± 0.004 0.935 ± 0.005 0.424

Thalamus 0.892 ± 0.002† 0.902± 0.002 < 0.0001 0.935 ± 0.001 0.936± 0.001 0.698

Globus pallidus 0.902 ± 0.007† 0.907± 0.006 0.0003 0.926 ± 0.004 0.927± 0.003 0.936

Brain Stem 0.916 ± 0.004† 0.918± 0.003 < 0.0001 0.947± 0.001 0.947± 0.001 0.496

Cerebellum 0.786 ± 0.005† 0.795± 0.005 < 0.0001 0.882± 0.003 0.882± 0.003 0.324

Lateral Ventricle 0.853 ± 0.007 0.869± 0.005 0.09 0.957± 0.001 0.956 ± 0.002 0.494

Corpus Callosum 0.883 ± 0.002† 0.902± 0.002 < 0.0001 0.939 ± 0.001 0.940± 0.001 0.043
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